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Region-Based Iterative Reconstruction of
Structurally Changing Objects in CT

Geert Van Eyndhoven, Kees Joost Batenburg, and Jan Sijbers

Abstract—X-ray computed tomography (CT) is a powerful
tool for noninvasive imaging of time-varying objects. In the
past, methods have been proposed to reconstruct images from
continuously changing objects. For discretely or structurally
changing objects, however, such methods fail to reconstruct high
quality images, mainly because assumptions about continuity are
no longer valid. In this paper, we propose a method to reconstruct
structurally changing objects. Starting from the observation
that there exist regions within the scanned object that remain
unchanged over time, we introduce an iterative optimization
routine that can automatically determine these regions and incor-
porate this knowledge in an algebraic reconstruction method.
The proposed algorithm was validated on simulation data and
experimental pCT data, illustrating its capability to reconstruct
structurally changing objects more accurately in comparison to
current techniques.

Index Terms— Computed tomography (CT),
iterative reconstruction, region estimation.

tomography,

I. INTRODUCTION

N COMPUTED tomography (CT), most reconstruction

techniques assume that the object does not deform during
the acquisition of projection data. If the scanned object is
subject to deformation or structural changes, however, these
techniques are no longer adequate and the reconstructed image
will suffer from artefacts such as blurring.

Current approaches to account for deformation of the object
can be classified into two categories. In a first class of meth-
ods, which we refer to as the deformation-based techniques,
a deformation model is incorporated in the reconstruction
process. Affine transformations can be modeled directly by
adjusting the projection data [1] and subsequently using a
standard reconstruction algorithm. Many a priori known invert-
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ible deformation models can be compensated for by modi-
fying classical algorithms like Filtered BackProjection (FBP)
or Simultaneous Iterative Reconstruction Technique (SIRT)
[2], [3]. If no a priori deformation model is available, the
deformation parameters can be estimated using a series of
different techniques [1], [4]-[8]. A second class of meth-
ods generates reconstructions using different subsets of all
available projection data, assuming that each of these subsets
contains data acquired from a motionless object. We refer
to this type of methods as subset-reconstruction techniques.
In medical imaging, this technique is usually known as phase
binning [9], where the subsets are obtained by ordering the
projection data per phase, assuming a periodic motion. Alter-
natively, different subsequent scans can be performed in order
to obtain the subsets, assuming the object remained unchanged
during each scan. Examples of this technique can be found in
non-destructive material tests [10], soil structure and water
retention studies [11] or observations of root growth [12].
Reconstruction quality of standard subset-reconstruction tech-
niques can be improved by enforcing similarity among the
subsets with regularization strategies [13]. Another improve-
ment can be made if a prior, high quality reconstruction is
available, e.g. based on projection data acquired from the
object before the changes have commenced. From this prior
reconstruction, projections can be simulated and subtracted
from the projection data acquired from the time-varying object.
The changing volume can then be reconstructed by applying
a sparse reconstruction technique to the resulting projection
difference [14].

The deformation-based technique is only applicable to prob-
lems where continuous deformations deteriorate reconstruc-
tion quality, whereas the subset-reconstruction technique can
only be applied to periodic motion or under the assumption
that the object remains unchanged during the acquisition of
projection data for each subset. The latter assumption is a
severe restriction on the time resolution of the reconstruction,
since reconstructing the scanned object per subset implies
the acquisition of sufficient projection data per subset in
order to avoid limited data reconstruction artifacts, which in
turn implies that the acquisition time per subset is far from
negligible. This limits the applicability of these techniques, as
they cannot be applied to reconstruction setups where objects
are subject to structural, discontinuous changes that happen
in a faster time frame than the acquisition time needed for
each subset. This type of changes occurs in a wide variety of
reconstruction problems, e.g., the scanning of beam-sensitive
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samples, where regions in the object are damaged by the
X-ray beam [15], microstructural investigations of solidifica-
tion [16] and problems in the field of non-destructive testing,
where sudden discontinuous cracks are formed inside the
object [10], [17].

A straightforward dynamic imaging acquisition method that
employs the subset-reconstruction technique, is an acquisition
in which the source and detector rotate in a circular orbit mul-
tiple times around the object. In each time window for which
the full angular range is covered, a 3D image is reconstructed.
This approach is extensively used in medical imaging to obtain
real-time reconstructions [18]. The same scanning technique
could, however, be used in ¢/CT, synchrotron tomography and
other advanced lab CT setups as well. In such an approach, it
is assumed that the object remains stationary during each time
window that covers the full angular range. Evidently, this time
window also defines the temporal resolution. Increasing the
temporal resolution (by decreasing the number of projection
angles or by decreasing the radiation exposure time needed to
acquire projection data for one angular direction) will result
in reconstructions of poor quality. This limits the temporal
resolution for such a subset-reconstruction method from a
hardware point of view. From a computational point of view,
however, there is still room for improvement, as is illustrated
by the techniques introduced in this paper.

In many problems where structural changes complicate the
reconstruction process, there is redundancy between projection
data acquired at different time points. This redundancy is
exploited by the techniques introduced in this paper; we
propose an iterative method that generates accurate reconstruc-
tions using limited projection data by assuming the existence
of regions inside the object that remain constant over time.
Since less projection data is needed, time resolution increases.
Regularization methods are less suitable for handling struc-
tural changes, as they assume that every region in a time-
varying object is similar over time, which is certainly not the
case for structurally changing objects. Unlike regularization
methods, the proposed method enforces similarity by com-
bining iterative update steps over different projection-subset
reconstructions. Also, in contrast to the approach introduced
in [14], the proposed method does not depend on the prior
knowledge of a high quality image of the object before the
structural changes initiated. In preliminary work, a region-
based SIRT (rSIRT) algorithm was developed, where these
stationary regions are assumed to be known [19]. In this con-
tribution, the rSIRT algorithm is improved and incorporated
in an optimization routine that automatically determines the
stationary regions inside the object. The developed method
was validated on simulation data and on data obtained from
a controlled experimental 4CT setup. Results show that the
proposed method reduces the number of projections and thus
a significant increase in time resolution is achieved.

In section II, a brief introduction to algebraic reconstruction
methods and computed tomography of static and dynamic
objects is given. In Section III, the improved version of the
rSIRT algorithm is introduced, together with the iterative
routine that incorporates the rSIRT algorithm in a projection
distance minimization scheme that automatically estimates
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Fig. 1.

Illustration of the projection process.

the parameters defining the stationary region. Simulation and
experimental results are reported in Section IV. The paper is
concluded in Section V.

II. NOTATION AND CONCEPTS

In this section, we introduce some basic concepts in com-
puted tomography; more details can be found in [20] and [21].
Next, a description of the SIRT algorithm is given and the
concepts of computed tomography are generalized from static
objects to dynamic objects, i.e., objects that change over time.

A. Tomography Model

The reconstructed image of the scanned object is repre-
sented on a pixel grid of size IN. The pixel values of the image
are represented by an N x 1 column vector = (z;) € RV,
Denote the number of detector elements by d and the total
number of projection angles by ng. Then the scanning process
results in M = ngd data values, which are log-corrected
and ordered in a vector p = (p;) € RM. We refer to p as
the projection data. Starting from a reconstructed image x,
the i*" projection value can be simulated by the linear
combination Z;vzl w;; T, where w;; usually represents the
intersection length between pixel j and projection line i, as
is illustrated in Fig.1. Other methods for determining the
weights w;; are also possible (e.g., a strip kernel [20], Joseph’s
method [22]). For reconstructing 3D volumes from 2D projec-
tions, other approaches for simulating the projection values
are more suitable, including distance-driven methods [23]
and separable footprints [24]. If all the weights are properly
stored into a (sparse) matrix W = (w;;) € RM*N the
correspondence between the projection data p and the image
can be written as a system of linear equations

Wax = p. €))

Since noise and discretization effects render Eq.(1) incon-
sistent, algebraic methods typically minimize the projection
distance ||W x — p|| for some norm || - ||.

B. SIRT

The methods introduced in this paper are based on
the Simultaneous Iterative Reconstruction Technique
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(SIRT) [25]. SIRT is known to converge to a solution
of argmin, (||[Wx — p||%), where R = (r;;) € RM*M
is the diagonal matrix with inverse row sums of the
projection matrix W; its diagonal elements are given by
ri = 1/ wij. Define C = (cij) € RV*N as the
diagonal matrix with the inverse column sums of W
(i.e., ¢j; =1/, wyj). Then, the update expression for SIRT
can be compactly written as

z* D) = 2™ L CWTR(p — Wa®)), )

C. Dynamic Objects

A slightly different modeling approach is needed when
the scanned object changes over time, as we can no longer
assume the object to be the same for every projection angle
0; (1 €{1,...,n¢}). Hence, this assumption is discarded and
replaced by the assumption that the object remains stationary
(i.e., it does not move or change) during the acquisition of
tomographic data corresponding to a single projection angle.
The time-varying object is therefore represented as a series
of subsequent vectors z; € RY, where [ € {1,...,np}. We
refer to the i*? pixel in the reconstruction x; at time index
I as x;(i). Define W, € R¥¥ as the submatrix of W that
corresponds to the projection angle #; and p; € R? as the
subvector of the projection data p corresponding to the same
angle 6;. Then the reconstruction x; at time index [ should
ideally satisfy Wix; = p;. These equations can be written in
a single matrix equation

W1 0 s 0 T
0 W2 0 o ~
=Wz=p, )
0 0 Weol [Tn,

where W represents the block diagonal matrix consisting
of blocks Wi, Wy, ..., W, and & € R"" represents the
vertical concatenation of the vectors x1,a,...,Ty,.

II1. METHODS

In this section, we introduce the rSIRT algorithm, a modified
version of the well known SIRT algorithm that combines
traditional SIRT update steps over different regions and points
in time. Next, a formal definition of the scanning protocol is
given. The rSIRT algorithm assumes that stationary regions
within the object are given a priori. As in practice, this
assumption does not hold, we propose a methodology to
automatically estimate the stationary regions: a B-spline model
for region description, together with the rSIRT algorithm, are
incorporated in a weighted projection distance minimization
scheme, that automatically calculates the parameters describ-
ing the stationary regions.

A. rSIRT

The scheme to calculate a single rSIRT iteration is displayed
in the flowchart of Fig.2. The phantom of Fig. 5(a)—(d) is
used for visualization purposes. We assume the scanned object
to consist of stationary regions and regions that change over

" p Di x)

extract [th
g subset
Y Y
perform one perform one
SIRT iteration SIRT iteration
Y

extract stationary
region with Ig

extract time-varying
region with Iy

Fig. 2. Flowchart of a single rSIRT iteration. Starting from a previous
estimate &%) and the projection data p, the rSIRT algorithm calculates for

every time index ! a new estimate :zl(

time, i.e., variable regions. Define S C {1,...,N} as the
set of pixel indices that correspond to the stationary regions
and define V' as its complement, i.e., V = {1,..., N}\S is
the set of pixel indices corresponding to the object’s variable
regions. Let Iy, € {0,1}V*Y be the binary diagonal matrix
representing the operator that sets all pixels belonging to the
stationary region to 0. Its diagonal elements are given by

1 ifjeV
Iv(j,j) =
v(3:9) 0 otherwise.

Define the binary diagonal matrix Is € {0,1}"*¥ analo-

gously. It is the operator setting all pixels in the variable
regions to 0. Define a window size n,, € N\{0} and use this
number to define the projection matrix

Wi nw/2]

N Wil 2)+1

W, = “)

Wiiin,/21-1

for each time index | with |n,,/2|4+1 <1 <ng—[n,/2]+1.
The matrix W; € R wdxN represents the projection operator
that projects along the n,, directions centered around projec-
tion angle ;. Define

Wi
W, = : )
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for I < [n,/2] +1 and
Wn9—7zw+1
Wi = : ©6)
an

for | > ng — [n,/2] + 1. Next, let p; € R™"=? denote the
projection data corresponding to the projection directions as
they are encoded in W;. Finally, define R; € R"=%*"»? a5 the
diagonal matrix with inverse row sums of V~Vl and é’l € RNVxN
as the diagonal matrix with inverse column sums of W,. The
introduced notations allow us to describe the rSIRT algorithm
as the following iterative process:

) = 2™ L W R(p - Wz®)
+Iy W, Ri(pr — Wizi"). 9
This update needs to be calculated for every I € {1,...,ny}

before incrementing the iteration count k. Basically, Eq.(7)
calculates two update steps. A traditional SIRT update step
for the stationary region using all available projection data p,
corresponding to the left hand side of the flowchart in Fig.2,
and an update step for the variable region using only the
projection data centered around the current time index [,
corresponding to the right hand side of the flowchart in Fig. 2.

The rSIRT algorithm with initial estimate £ = 0 is
representable as a linear operator applied to the projection
data p, which we denote as 725 =g kP, where K denotes
the number of rSIRT iterations. This can be proven in an
analogous manner to the proof in [26], where the regular
SIRT algorithm is proven to be a linear operator on the
projection data. The details of this derivation can be found
in Appendix C.

Note that for a practical implementation, the update term in
Eq. (7) for the stationary region IsCW T R(p—W z*)) needs
to be calculated only once, since it is exactly the same for
every time index [. Also, instead of working with matrices, a
ray-based approach can be used for the forward and backward
projection operators [27].

B. Scanning Protocol

It is well known that image reconstruction from a limited
angular range deteriorates the reconstruction quality [28].
Hence, we need projection data per time point that has a
sufficiently large angular range, since the goal is to reconstruct
the object at different time points. This is why source and
detector are rotated multiple times around the object, acquiring
projection data at n,, angular directions approximately every
180 degrees. Define an angular stepsize 6o = 7/n, and
choose the first equiangularly spaced n,, projection directions
as 0; = (i —1)0a € [0,m — O] for i = 1,...,n,. The other
projection directions are defined as

O i = k(w—9A)+kn19 +(i—1)0a ®)
fori=1,...,n4, k=1,...,|ng/nyw] and kn,+i < ng. The
angles 01,02, ...,02,, are schematically displayed in Fig.3.

The small incremental step knle in Eq. (8) ensures that there
exist no two projection directions that are equal modulo .
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Fig. 3. Source positions for the first 2n,, projection directions indicated by
square markers.

On the one hand, using the same projection angle (modulo 7
for parallel beam and modulo 27 for fan beam) more than
once increases the signal-to-noise ratio (SNR). On the other
hand, this will introduce redundant angular information, since
the rays going through the stationary region give the same
projection values (up to noise). This situation is avoided by
choosing the projection angles via Eq. (8). Furthermore, Eq. (8)
guarantees that each subsequent n,, projection directions cover
a range of approximately 180 degrees, thus avoiding limited
view artifacts.

C. Region Inconsistency Minimization

In this section, we introduce a projection distance mini-
mization scheme that uses the rSIRT algorithm to estimate
the stationary region automatically.

For describing the variable region, a B-spline based closed
curve model is used. More details can be found in Appendix A.
The coordinates of the B-spline closed curve control points
are ordered in a parameter vector c, describing the degrees of
freedom of our optimization routine. Using this region model,
we present a measure that indicates how likely a stationary
region is to occur. The measure itself is introduced first, while
its different components are explained later. The measure is
named region Inconsistency (rI) and is defined as

Dz (@) = [[WSED — pl[y + 11 Pr(ex) + pz Pa(cx).
©)
The first term in Eq. (9) is a data fidelity term. Its calculation is
displayed schematically in the uppermost part of the flowchart
in Fig.4. Since the linear operator describing K iterations of
rSIRT depends on the variable region’s shape, we denote it by
S%. The rSIRT reconstruction S%p is forward projected with
the projection matrix W and compared to the original data p
through the norm |- ||%, . Instead of weighting this norm with
the classical inverse row sum matrix R (see Section II-B), it is
weighted with a normalized version of an adjusted inverse row
sum diagonal matrix R, where the ray intersection lengths

o’
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Fig. 4. Flowchart of the optimization strategy. The solid arrows indicate the
calculation of the region inconsistency, while the dotted arrows illustrate the
optimization strategy.

through pixels belonging to the variable region are multiplied
with a factor A\ > 1. Hence the diagonal elements of R}, are
defined as

Ry (1,0) =1/ (L4 Iy (3, 5) (0 = 1)wig)

J

(10)

By normalizing R, such that it has the same mean along its
diagonal as R, the normalized diagonal matrix R is formed.
Basically, this weight matrix reflects the higher confidence in
measurements corresponding to rays that mainly intersected
the stationary region. A more detailed description of R}, can
be found in Appendix B. The term P;(«) in Eq.(9) gives
a penalty to self-intersecting curves; it simply counts the
number of times the curve intersects itself. The term Ps(cx)
gives a penalty to regions that exceed the boundaries of the
reconstruction domain. It is given by the sum of the Euclidean
distances of each control point outside the reconstruction
domain to the closest point inside the reconstruction domain,
which is assumed to be confined within [—1, 1] x [—1, 1]. The
severity of the penalties defined by P;(a) and Pi(c) are
controlled by the parameters p; and po.

An adapted variant of the Levenberg-Marquardt (LM) algo-
rithm [29] is used for minimizing rI, which is illustrated in
the lower part of the flowchart in Fig.4. The rI function is
a non-convex function that, due to noise and discretization
effects, has a non-smooth, coarse landscape on a small scale.
This coarseness can make the finite difference approximation
of the objective function’s gradient inaccurate. Therefore, finite
differences are calculated with a parameter increment (referred
to as the stepsize), starting from a larger initial stepsize that
is halved every time the solver reaches a local minimum.
When the stepsize becomes smaller than a specified threshold,
the stepsize is reinitialized and the number of spline control
points is doubled by applying Boehm’s formula for knot
insertion [30], thus providing more degrees of freedom to

(d) t = t300

(h) t = t300

(@)t =1t (b) t =t120 (c) t =ti1s0

(f) t =t120 (&) t =tis0

Ht=t (k) t = t1s0

(m) t =t

(n) t = t120 (0) t = t1g0 (p) t = t300

Fig. 5. Each row represents a different phantom. Each column represents a
different point in time. (a-d) Phantom 1: a modified Shepp-Logan phantom.
The changes in the phantom resemble a liquid flowing from one chamber of
the object into another. (e-h) Phantom 2: a modified Shepp-Logan phantom.
In the middle of the phantom a structure with skulls is changing over time.
(i-1) Phantom 3: blob-shaped phantom with an eight-like variable region in
the middle. (m-p) Phantom 4: image of material in which a crack is formed.

the solver by this multi-resolution approach on the parameter
vector o.

IV. EXPERIMENT

In this section, rSIRT and the region inconsistency mini-
mization are validated on numerical and experimental data.

A. Numerical Simulations

Consider the phantoms in Fig.5. Phantom 1 is displayed
in Fig. 5(a)-(d). It is a modified Shepp-Logan phantom. The
phantom resembles a sample in which fluid flows from one
chamber into another during the acquisition of the CT data.
Phantom 2 [Fig. 5(e)—(h)] and phantom 3 [Fig. 5(1)—(1)] are
artificial phantoms in which a structurally varying region in
the form of a circle and an eight-like shape are present in
the object. Finally, phantom 4, displayed in Fig. 5(m)—(p),
represents an object in which a crack is formed.

Projections were simulated with the scanning protocol of
Section III-B where we took the window size to be n,, = 30.
We simulated 300 projections using a strip kernel and a higher
resolution version of the phantom, i.e., on a 500 x 500 isotropic
pixel grid, while the algorithm calculates reconstructions on a
100 x 100 isotropic pixel grid. Also, Poisson distributed noise
was applied to the projection data assuming an incoming beam
intensity of 10000 (photon count) per detector pixel.
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(a) (b) (© (@ (e)

Fig. 6. (a)~(d) Ground truth for the time-varying region for all simulation
phantoms. (e) Initial estimate for simulation experiments with the region
inconsistency minimization algorithm. In all figures, white pixels belong to
the time-varying region and black pixels belong to the stationary region.

TABLE I
RMSE AFTER 100 ITERATIONS FOR ALL SIMULATED PHANTOMS
(ROWS) AND FOR DIFFERENT METHODS (COLUMNS)

[ SIRT [ Conventional [ rSIRT [ rSIRT-opt
Phantom 1 | 0.13379 0.12291 0.09767 0.09793
Phantom 2 | 0.12508 0.13702 0.11247 0.11257
Phantom 3 | 0.12993 0.13627 0.11038 0.11068
Phantom 4 | 0.36335 0.36543 0.28545 0.28867

For validation, we used three different measures. A first
figure of merit is the Root Mean Square Error (RMSE). Denote
the calculated reconstruction by & and the phantom used to
generate the data by @. Then the RMSE is given by

RMSE = /(& — 2)?), (11)

where the squaring should be interpreted pointwise and
where () represents the average. We upsampled the calcu-
lated reconstruction 5 times in order to perform the RMSE
calculations on the 500 x 500 grid. A second measure is the
projection distance, defined as

PD =||Wg —pla. (12)

Finally, for the validation of the region inconsistency mini-
mization, we also look at the relative Number of Misclassified
Pixels (rNMP), i.e., the number of misclassified variable region
pixels (with respect to the ground truth variable region) divided
by the total number of pixels belonging to the ground truth
variable region. The rINMP was also calculated on the original
500 x 500 grid by scaling up the optimized region.

The performance of rSIRT was compared to two other
reconstruction methods. A first method is the conventional
method. It calculates a regular SIRT reconstruction per subset
of the projection data p; with the corresponding projection
matrices as they are defined in Eq.(4), Eq.(5) and Eq.(6).
Also, a regular SIRT reconstruction was used for comparison,
i.e., a SIRT reconstruction using all the projection data p
where the object was regarded as stationary through time
(see Section II-B).

First, a validation of the rSIRT algorithm is presented. Since
the phantoms are simulated, the stationary region is known and
can be used as prior knowledge for rSIRT. The ground truth
regions are displayed in Fig. 6(a)—(d).

The RMSE after 100 iterations with an initial zero estimate
was calculated for all phantoms and for each of the recon-
struction methods. The results are summarized in the columns
“SIRT”, “Conventional” and “rSIRT” in Table I. In this table,
the column rSIRT refers to the rSIRT reconstruction with
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Fig. 7. The convergence of the different methods for phantom 4. (a) RMSE
as a function of iteration number. (b) PD as a function of iteration number.
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Fig. 8. RMSE per point in time for reconstructions after 100 iterations for
phantom 4.

the ground truth stationary region. In order to illustrate the
convergence properties of rSIRT, more detailed plots of the
results for phantom 4 are presented in Figs. 7 and 8. Fig. 7(b)
indicates that all methods reduce the projection distance as
the iteration number increases. As the reconstruction per time
point for the conventional method must only match with a
subset of all projection data, its projection distance decreases
the fastest. However, since the RMSE assesses the image
quality directly, it can be concluded from Fig. 7(a) that rSIRT
has superior performance. Also, SIRT is unable to capture
the object’s dynamics, as it generates one reconstruction for
the entire projection data set. The conventional method can
capture some dynamics, but reconstruction quality is severely
degraded. The rSIRT algorithm combines the better properties
of the conventional method and SIRT, and reconstructs the
object with improved image quality and time resolution. The
RMSE at each time instance of the reconstructions after
100 iterations is displayed in Fig.8, confirming the previous
statements.

Also, the region inconsistency minimization was validated
on the simulated data. The parameter setup was A = 10, spline
degree k = 2, uyy = 1, po = 1, ny, = 30 and K = 30.
The initial estimate for the variable region is displayed in
Fig. 6(e). Other initial estimates (e.g., not intersecting with
the ground truth variable region) may affect convergence
speed, but typically produce the same result. The number of
control points was doubled three times, resulting in a final
region descriptor of 32 control points. In the last optimization
round, i.e., when using 32 control points, the number of
rSIRT iterations K was set to 60 to obtain a more accurate
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Fig. 9. rNMP as a function of iteration number of the region inconsistency
minimization algorithm.

(a) Phantom 1, (b) Phantom 2, (c) Phantom 3, (d) Phantom 4,
rNMP = 0.157 NMP = 0.0712 rNMP = 0.0879 rNMP = 0.397

Fig. 10. Region estimate after region inconsistency minimization.
Red indicates misclassified pixels, green indicates correctly classified pixels.
The corresponding rNMP is also indicated for every region estimate.

result. The output of the region inconsistency minimization
algorithm — the stationary region — was used as input for
the rSIRT algorithm with 100 iterations. The RMSE of this
rSIRT reconstruction is tabulated in the column “rSIRT-opt”
in Table I. The rNMP as a function of iteration number is
displayed in Fig.9. The resulting variable region estimates and
its misclassified pixels are visualized in Fig. 10.

These results indicate that the region inconsistency min-
imization algorithm is able to estimate a stationary region
that closely approximates the ground truth stationary region,
resulting in an almost identical RMSE for the rSIRT recon-
struction based on the estimated region and the ground truth
region. Despite the region estimate for phantom 4 being less
accurate [see Fig. 10(d)], Fig.8 indicates that the RMSE is
still significantly improved. Also, Fig. 7(a) illustrates that the
convergence properties remain almost unaltered.

The calculation of 30 rSIRT iterations in the experi-
mental setup as described above (i.e., reconstructing on a
100 x 100 pixel grid and using projection data consisting
of 300 projection angles), takes about 5 seconds with an
unoptimized GPU implementation. Depending on the number
of iterations needed by the region inconsistency minimization
algorithm, it takes about 2-4 hours to calculate a variable
region estimate. However, this computational time could be
significantly reduced by parallelizing the I function evalua-
tions, which are needed for the gradient calculation.

B. Experimental Data

A sequence of cone beam projection images of a plexiglas
(Polymethyl Methacrylate) resolution phantom was acquired in
a SkyScan 1172 uCT scanner. Each radiograph was acquired
using a source voltage of 80 kV, a source current of 124 A,

projection dataset 1
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Fig. 11. Illustration of the combination of the two datasets, consist-
ing of 600 projections each, into one single dataset, consisting of only
150 projections.

a 0.5 mm Al filter and an exposure time of 360 ms. The
object has been scanned over the full angular range of 360°
with a 0.6° tilt increment, this resulted in a total of 600 log-
corrected projection images per scan. To increase the SNR, the
original detector pixels of size 9.01 ym were downsampled by
a factor 4 in both dimensions, resulting in projection images
of dimension 666x 1000 with detector pixel size 36.04 pm.
Reconstructions are performed on a 1000 x 1000 isotropic
pixel grid of the slice on the optical axis. Having a horizontal
cone-beam angle of 9.52° and a source to origin distance of
130.21 mm, this results in a pixel size of 21.69 pm. Since ring-
and beam-artifact correction goes beyond the focus of this
paper, we have preprocessed the projection images to correct
these artifacts using the standard SkyScan NRecon software
package.

A cross section on the optical axis of the plexiglas phantom
is displayed in Fig. 14(a). The 2 cm diameter plexiglas cylinder
was drilled with three 4 mm diameter holes, four 3 mm
diameter holes and four 2 mm diameter holes. We created
2 datasets, each consisting of 600 projection images of the
phantom. The first dataset is a regular scan of the phantom.
Next, one of the pores was filled with water and the second
dataset was acquired with exactly the same parameter setup
as for the acquisition of the first dataset. A ground truth
for each of the datasets was created by calculating a SIRT
reconstruction using 50 iterations and the full set of 600 pro-
jections. Subsequently the reconstruction was segmented using
the method of Otsu [31]. The obtained ground truth for the
first and the second dataset are displayed in Fig. 14(a) and (b),
respectively.

We combined the first two projection datasets into a single
projection dataset as if the hole was filled with water during the
data acquisition. The combination of the projection datasets is
illustrated in Fig. 11.
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Fig. 12. RMSE (left vertical axis) and INMP (right vertical axis) in function
of iteration number for the region inconsistency minimization applied to
the plexiglas resolution phantom. The RMSE values are calculated on the
reconstruction generated with 40 rSIRT iterations and the intermediate variable
region estimate.

(a) Initial (b) Ground truth (c¢) I minimiza- (d) Misclassified

estimate tion result pixels,
rNMP = 0.0681
Fig. 13. Region inconsistency minimization results. In (a)-(c), the initial

estimate, the ground truth and the region inconsistency minimization result
are shown, respectively. White pixels indicate the time-varying region and
black pixels indicate the stationary region. In (d), the misclassified pixels are
visualized, red pixels are misclassified and green pixels are correctly classified.

The first 75 projections were taken from the first dataset,
where the projections were ordered analogously to the scan-
ning protocol from section III-B with window size n,, = 25.
The only difference is that we made sure that each n,
directions correspond to approximately 360°, since each of
the projection datasets corresponds to a full 360° angular
range. The next 75 projections were taken from the second
dataset, and ordered in the same manner as the first dataset.
This resulted in a projection dataset consisting of 150 angular
directions, where source and detector have rotated a total of
6 times around the object.

Next we applied the region inconsistency minimization to
the resulting combined projection dataset. The used parameters
were A\ = 10, spline degree k = 2, u1 = 1, po = 1, ny, = 25
and K = 25. The initial variable region estimate is displayed
in Fig. 13(a). The intermediate variable region estimates, i.e.,
after each iteration of the region inconsistency minimiza-
tion algorithm, were used to calculate the rNMP as well
as the RMSE of the associated rSIRT reconstruction. These
results are displayed in Fig.12. Convergence was reached
after 33 iterations. The final variable region estimate was used
to generate an rSIRT reconstruction, which is referred to as
“rSIRT-opt.” The RMSE of this reconstruction with respect to
the ground truth was calculated and compared to the results
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TABLE II
RMSE AFTER 40 ITERATIONS FOR THE PLEXIGLAS PHANTOM
SIRT [ conventional [ rSIRT [ rSIRT-opt
1.6752e-04 2.0325e-04 1.4597e-04 | 1.4821e-04

(b) Ground truth at time in-
stance t; with ¢ > 75

(a) Ground truth at time in-
stance t; with ¢ < 75

(c) SIRT - t30 (d) SIRT - t120

(e) conventional - t3o

(f) conventional - t120

(g) rSIRT - t30 (h) rSIRT - t120

(i) rSIRT-opt - t30

(j) rSIRT-opt - t120

Fig. 14. Ground truth and reconstructions at t3g and at t120 with 40 iterations
for the different methods.

of alternative methods in Table II. The ground truth variable
region, the final variable region estimate and the misclassified
pixels are displayed in Fig.13. A visual comparison of the
different reconstructions can be done in Fig. 14.
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Visual as well as numerical results indicate the advantage
of the region inconsistency minimization algorithm. The SIRT
reconstruction in Fig. 14(c) and (d) is exactly the same for
every time point, which makes it useless for studying structural
changes within the scanned object. The conventional method’s
reconstruction of Fig. 14(e) and (f) is able to image changes
through time, but suffers from severe streak artifacts because it
is based on limited projection data per time point reconstruc-
tion. In contrast, the rSIRT reconstruction of Fig. 14(g) and (h)
is able to simultaneously capture the structural changes and
maintain image quality, because it combines projection data
over different time points within the stationary region. This
improves image quality in the stationary region and in the
variable region, since the update step in rSIRT is based on
difference between the simulated projections of the current
reconstruction and the measured projection data.

V. CONCLUSION

In general, reconstructing structurally or discretely time-
varying objects based on tomographic data is a difficult
problem. Popular methods either reconstruct the object inde-
pendently at different time points using a subset of all pro-
jection data or assume the changes to be continuous. The
first method suffers from artifacts introduced by the lack of
projection data per reconstruction, and the latter cannot be
applied to structurally or discretely time-varying objects, as
these changes are no longer representable by a continuous
deformation model.

In this paper, we have presented the novel rSIRT algo-
rithm. It can be used for the reconstruction of time-varying
structurally changing objects when there exist regions within
the object that remain stationary through time. There are two
intuitive aspects of the rSIRT algorithm that illustrate its ability
to create accurate reconstructions. On the one hand, rSIRT
guarantees accurate image quality in the stationary region,
since the iterative update step for this region is based on
all available projection data, in contrast to the conventional
method, where the stationary (and time-varying) region is
reconstructed based upon information available in a subset
of all projection data. On the other hand, as image qual-
ity in the stationary region improves, this is propagated to
the variable region to some extent, since the update step
for the variable region is computed using the projection
difference of the previous estimate, which is based on the
projection of stationary and variable region. Naturally, the
final reconstruction quality is influenced by the amount of
projection data used for generating the iterative update step
in the time-varying region, which is encoded by the window
size in this paper. However, for any fixed window size rSIRT
improves the reconstruction quality, thereby allowing shorter
acquisition times per time window. Motivated by its ability to
reconstruct a wide variety of objects, SIRT was the algorithm
of choice for the generation of the iterative update steps in the
time-varying and stationary region within the rSIRT algorithm.
However, any other iterative algorithm could be employed to
generate these update steps. In more specific scanning set-
ups, the choice of reconstruction algorithm should be tailored

to the specific properties of the object under investigation, e.g.
sparsity.

As it is time consuming and not always trivial to manually
indicate the time-varying regions, we have developed the
region inconsistency minimization procedure, an optimiza-
tion algorithm that automatically estimates the time-varying
regions. The method minimizes a region inconsistency mea-
sure, where the difference between simulated and measured
projection data is weighted according to a factor that essen-
tially encodes the ray intersection length and the quality of
the simulated projection based on the proportion of the ray
that passed through the stationary region (see Appendix B).
Consequently, the region inconsistency minimization algo-
rithm is most suited for objects where no extreme changes
in reconstruction quality through the stationary region are
present. However, most objects do not exhibit this kind of
behavior, which makes the region inconsistency minimization
method widely applicable.

Experiments with simulated and puCT data illustrate the
ability of the region inconsistency minimization algorithm to
find a good approximation of the time-varying regions. Also,
the rSIRT algorithm was shown to have a clear advantage
over popular methods when constructing structurally changing
objects.

APPENDIX A

A brief description of the parametric B-spline closed curve
model [30], [32] is given, which is used throughout this paper
for describing the variable region within the scanned object. To
define the normalized B-spline closed curve of degree k with n
control points, we first introduce n+ 2k + 1 knot-points t _j, <
t_gt+1 < -+ < tp4r € R. The following recursion relations
are used to define the normalized B-spline basis functions of
degree k for ¢t = —k,—k+1,...,n—1:

t—1t;
———Nix(t)
Livk — ti

tivkar —t
LT NG () (13)
tivkr1 — tit1

Nigt1(t) =

_ i 1 if t;<t< tit1
Niat) = {0 otherwise

The normalized B-spline N; ;1 can be used to define a closed
curve c(t) for t € [to, tn]:

(14)

n—1
c(t) =Y eiNipp(t), (15)

i=—k
with control points ¢; € R? for i = —k,...,n — 1 and
¢, = ¢, fori =n—k,...,n — 1. Once the knot-points

are fixed, the region within the closed curve ¢ is com-
pletely described by the coordinates of the control points
Co,..-,Cpn—1.

APPENDIX B

In this appendix, a more detailed description of the normal-
ized adjusted inverse row sum matrix R, is given. Remember
that R), is calculated as the normalized version of Eq.(10),
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where the normalization refers to the fact that the diagonal
elements of R}, are multiplied with a suitable factor in order
to have the same mean as the diagonal elements of the standard
inverse row sum matrix R.

Unlike R, which contains weights that encode the ray
intersection lengths with the reconstruction domain, Rg addi-
tionally encodes how much of the ray interacted with the
variable region. It can be understood in light of the region
inconsistency measure 1y o (c) = |[|[WSEp — p||%é:

o If a large part of the ray passes through the variable
region, its corresponding value in R will be rather
small, indicating that the difference between the simu-
lated and the measured detector value in this detector
pixel is less important than others.

o If a ray passes mostly through the stationary region, the
corresponding value in R}, will be rather large. This
means that the simulated projection value should have
a strong resemblance to the measured detector value.

Intuitively, rSIRT reconstructs the stationary region using all
projection data, hence this part of the reconstruction should
be more accurate and the calculated projection values corre-
sponding to this region should have a good match with the
measured projection data, which is encoded by the relatively
larger weights in R),. On the other hand, the variable region
is reconstructed using less projection data, and is therefore
expected to be of lower quality in comparison to the stationary
region. This is encoded in the fact that corresponding pro-
jection values receive a smaller weight. Without this adjusted
weighting, optimization of 1 would always result in a variable
region covering the entire reconstruction domain. This can
be understood as follows: The stationary regions are used to
generate projections that must match up with all projection
data, which limits the set of possible solutions for the pixels
belonging to the stationary regions. On the other hand, the
variable regions are used to simulate projections that must
match up with only a subset of all projection data, which
results in a larger set of possible solutions for the pixels
in the variable region. As the size of the variable region
increases, the set of possible reconstructions matching the
projection data grows, which would result in a smaller value
for the projection distance. This property was experimentally
confirmed by the following simulation experiment. Consider
the modified Shepp-Logan phantom of Fig. 5(e)—(h). A version
of this phantom on a 500 x 500 pixel grid was used to generate
projections over 300 time points. This projection data was used
to calculate a rSIRT reconstruction with window size n,, = 30
on a 100 x 100 grid. Subsequently I o o(cx) was calculated
for different values of A and for different variable region’s
sizes, resulting in Fig.15. Note that A = 1 corresponds to a
weighting with the standard inverse row sum matrix R.

APPENDIX C

This appendix provides more details about the linear opera-
tor Sk that represents the rSIRT algorithm. More precisely, if
#(0) = 0, the rSIRT reconstruction after K iterations depends
linearly on the projection data, i.e., ) = Sgp.
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Fig. 15. The region inconsistency measure 1 ¢ (o) for different region
sizes and for A = 1,5, 10, 20, illustrated on the phantom of Fig. 5(e)—(h).
A scaling factor 1 corresponds to the ground truth region. To illustrate the size
of the variable regions for different scaling factors, we have superimposed the
region for a scaling factor of 0.6, 1 and 1.8 on the phantom.

First, for [ = 1,...,ng, define K; as the N X nyg/N matrix
that selects the reconstruction ax; at time index [ from the
full reconstruction vector x, i.e., K;&x = ;. Also define
L; as the n,d X ngd matrix that selects the projection data
p; corresponding to the /th window from the full projection
data p, i.e., L;p = p;. With these definitions, Eq.(7) can be
rewritten as

wz(kH) = M; ;3% + M, »p, (16)
with
M, = K, - IsCWTRW — I,C) W RW, K, (17)
and
M, = IsCWTR + IszVVlTRle. (18)
Set
M1 M,
M=| : P (19)
Mng,l Mn9,2
@ ]lngd

where 1,, represents the identity matrix of size n € N\{0}. It
can be easily verified that for

Sk =[1n,n MMK[HSJ’ (20)

we have £(5) = Sgp.
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