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Residual Component Analysis of Hyperspectral
Images—Application to Joint Nonlinear
Unmixing and Nonlinearity Detection
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Abstract— This paper presents a nonlinear mixing model for
joint hyperspectral image unmixing and nonlinearity detection.
The proposed model assumes that the pixel reflectances are linear
combinations of known pure spectral components corrupted
by an additional nonlinear term, affecting the end members
and contaminated by an additive Gaussian noise. A Markov
random field is considered for nonlinearity detection based on
the spatial structure of the nonlinear terms. The observed image
is segmented into regions where nonlinear terms, if present, share
similar statistical properties. A Bayesian algorithm is proposed
to estimate the parameters involved in the model yielding a joint
nonlinear unmixing and nonlinearity detection algorithm. The
performance of the proposed strategy is first evaluated on
synthetic data. Simulations conducted with real data show the
accuracy of the proposed unmixing and nonlinearity detection
strategy for the analysis of hyperspectral images.

Index Terms— Hyperspectral imagery, nonlinear spectral
unmixing, residual component analysis, nonlinearity detection.

I. INTRODUCTION

SPECTRAL unmixing (SU) of hyperspectral images has
attracted growing interest over the last few decades.

It consists of distinguishing the materials and quantifying their
proportions in each pixel of the observed image. This blind
source separation problem has been widely studied for the
applications where pixel reflectances are linear combinations
of pure component spectra [1]–[5]. However, as explained in
[6], [7], the linear mixing model (LMM) can be inappropriate
for some hyperspectral images, such as those containing sand,
trees or vegetation areas. Nonlinear mixing models (NLMMs)
provide an interesting alternative to overcoming the inherent
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limitations of the LMM. They have been proposed in the
hyperspectral image literature and can be divided into two
main classes [8].

The first class of NLMMs consists of physical models
based on the nature of the environment. These models include
the bidirectional reflectance based model proposed in [9] for
intimate mixtures associated with sand-like materials and the
bilinear models recently studied in [10]–[13] to account for
scattering effects mainly observed in vegetation and urban
areas. The second class of NLMMs contains more flexible
models allowing for different kinds of nonlinearities to be
approximated. These flexible models are constructed from
neural networks [14], [15], kernels [16], [17], or post-nonlinear
transformations [18].

While the consideration of nonlinear effects can be relevant
in specific areas, the LMM is often sufficient for approxi-
mating the actual mixing models in some image pixels, for
instance in homogeneous regions. Thus, it makes sense to
distinguish in any image, linearly mixed pixels which can be
easily analyzed, from those nonlinearly mixed requiring deeper
analysis. Nonlinearity detection in hyperspectral images has
already been addressed in [19] to detect nonlinear areas
in observed scenes using surrogate data. In previous work,
a pixel-by-pixel nonlinearity detector based on a polyno-
mial post-nonlinear mixing model (PPNMM) was proposed
and provided interesting results [20]. The detector in [20]
follows a PPNMM-based SU procedure and uses the statis-
tical properties of the parameter estimator to subsequently
derive an accurate test statistic. This paper proposes to
simultaneously achieve the SU and nonlinearity detection.
This problem has been recently addressed using sparse
SU techniques based on bilinear [21] and post-nonlinear mod-
els [22], [23]. Conversely, we propose to use a model-selection
approach for detecting nonlinearities with different statistical
properties.

This paper presents a new supervised Bayesian algorithm for
joint nonlinear SU and nonlinearity detection. This algorithm
is supervised in the sense that the endmembers contained
in the image are assumed to be known (chosen from a
spectral library or extracted from the data by an endmember
extraction algorithm (EEA)). This algorithm is based on a
nonlinear mixing model inspired from residual component
analysis (RCA) [24]. In the context of SU of hyperspec-
tral images, the nonlinear effects are modeled by additive
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perturbation terms characterized by Gaussian processes (GPs).
This allows the nonlinear terms to be marginalized, yielding
a flexible model depending only on the nonlinearity ener-
gies. The hyperspectral image to be analyzed is partitioned
into homogeneous regions in which the nonlinearities share
the same GP. This algorithm relies on an implicit image
classification, modeled by labels whose spatial dependencies
follow a Potts-Markov random field. Consideration of two
classes (linear vs. nonlinear mixtures) would lead to binary
detection maps. However, this paper allows for nonlinearly
mixed regions to be also identified, based on the energy of the
nonlinear effects. More precisely, the proposed algorithm can
identify regions with different level of nonlinearity and charac-
terized by different GPs. Most SU algorithms assume additive,
independent and identically distributed (i.i.d.) noise sequences.
However, based on previous work conducted on real hyper-
spectral images, non i.i.d. noise vectors are considered in
this paper.

When the endmembers used to estimate the abundances
are accurate, it makes sense to assume that the unknown
abundances sum to one for each pixel (at least when assuming
the LMM). However, this assumption can be relaxed. Two
alternative algorithms are proposed in this paper (with and
without the abundance sum-to-one constraint). However, only
the fully constrained version is detailed for ease of reading.
Details of the second version can be found in [25]. Moreover,
it is also reasonable to assume that the nonlinearities only
involve nonlinear transformations of the known endmembers.
Modeling endmember estimation errors for supervised SU is
an interesting problem that is however out of scope of this
paper and a topic for future investigations.

In the Bayesian framework, appropriate prior distributions
are chosen for the unknown parameters of the proposed RCA
model, i.e., the mixing coefficients, the GP hyperparameters,
the labels and the noise covariance matrix. The joint posterior
distribution of these parameters is then derived. However,
the classical Bayesian estimators cannot be easily computed
from this joint posterior. To alleviate this problem, a Markov
chain Monte Carlo (MCMC) method is used to generate
samples according to the posterior of interest. Finally, the
generated samples are used to compute Bayesian estimators
as well as measures of uncertainties such as confidence
intervals.

The remaining paper is organized as follows. Section II
introduces the RCA model for hyperspectral image analysis.
Section III presents the hierarchical Bayesian model associated
with the proposed RCA model and its posterior distribution.
The Metropolis-Within-Gibbs sampler used to sample from the
posterior of interest is detailed in Section V. Some simulation
results conducted on synthetic and real data are shown and
discussed in Sections VI and VII. Conclusions are finally
reported in Section VIII.

II. PROBLEM FORMULATION

We consider a set of N observed pixel spectra
yn = [yn,1, . . . , yn,L ]T , n ∈ {1, . . . , N} where L is the
number of spectral bands. Each of these spectra is defined

as a linear combination of R known spectra mr , referred to as
endmembers, contaminated by an additional spectrum φn and
additive noise

yn =
R∑

r=1

ar,nmr + φn + en

= Man + φn + en, n = 1, . . . , N (1)

where mr = [mr,1, . . . , mr,L ]T is the spectrum of the r th
material present in the scene, ar,n is its corresponding propor-
tion in the nth pixel and en is an additive independently and
non identically distributed zero-mean Gaussian noise sequence
with diagonal covariance matrix �0 = diag

(
σ 2
)
, denoted as

en ∼ N (0L ,�0), where σ 2 = [σ 2
1 , . . . , σ 2

L ]T is the vector of
the L noise variances and diag

(
σ 2
)

is an L×L diagonal matrix
containing the elements of the vector σ 2. Moreover, the term
φn = [φ1,n, . . . , φL ,n]T in (1) is an unknown L × 1 additive
perturbation vector modeling nonlinear effects occurring in
the nth pixel. Note that the usual matrix and vector notations
M = [m1, . . . , mR ] and an = [a1,n, . . . , aR,n]T have been
used in the second row of Eq. (1). There are several moti-
vations for considering the mixing model (1). First, 1) this
model reduces to the classical linear mixing model (LMM) for
φn = 0L , 2) the model (1) is general enough to handle differ-
ent of kinds of nonlinearities such as the bilinear model studied
in [12] (referred to as Fan model (FM)), the generalized
bilinear model (GBM) [13], and the polynomial post-nonlinear
mixing model (PPNMM) studied for nonlinear spectral unmix-
ing in [18] and nonlinearity detection in [20]. These models
assume that the mixing model consists of a linear contribution
of the endmembers, corrupted by at least one additive term
characterizing the nonlinear effects. In the proposed model,
all additive terms are gathered in the vector φn . Note that a
similar model, called robust LMM, has been also introduced
in [26].

Due to physical considerations, the abundance vec-
tors an satisfy the following positivity and sum-to-one
constraints

R∑

r=1

ar,n = 1, ar,n > 0,∀r ∈ {1, . . . , R}. (2)

In this paper, the sum-to-one constraint is considered for
the abundances. However, this constraint can be relaxed, as
discussed in Section V-F. The problem addressed in this
paper consists of the joint estimation of the abundance
vectors and the detection of nonlinearly mixed pixels
(characterized by φn �= 0L ). The two next sections present the
proposed Bayesian model for joint unmixing and nonlinearity
detection.

III. BAYESIAN LINEAR MODEL

The unknown parameter vector associated with the pro-
posed model (1) contains the abundances A = [a1, . . . , aN ]
(satisfying the constraints (2)), the nonlinear terms of each
pixel

{
φn
}

n=1,...,N , and the noise variance vector σ 2. This
section summarizes the likelihood and the parameter priors
associated with the parameters of the linear part of the model,
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i.e., A = [a1, . . . , aN ] and σ 2. One of the main contributions
of this paper is the characterization of the nonlinearities that
will addressed later in Section IV.

A. Likelihood

Equation (1) shows that yn|M, an,φn, σ 2 is distributed
according to a Gaussian distribution with mean Man + φn
and covariance matrix �0, denoted as yn|M, an,φn, σ

2 ∼
N (Man + φn,�0

)
. Assuming independence between the

observed pixels, the joint likelihood of the observation
matrix Y can be expressed as
f (Y|M, A,�, σ 2)

∝ |�0|−N/2etr

[
− (Y − X)T �−1

0 (Y − X)

2

]
(3)

where � = [φ1, . . . ,φN ]T is an L × N nonlinearity matrix,
∝ means “proportional to”, etr(·) denotes the exponential trace
and X = MA + � is an L × N matrix.

B. Prior for the Abundance Matrix A

Each abundance vector can be written as an = [cT
n , aR,n]T

with cn = [a1,n, . . . , aR−1,n]T and aR,n = 1−∑R−1
r=1 ar,n . The

LMM constraints (2) impose that cn belongs to the simplex

S =
{

c

∣∣∣∣∣cr > 0,∀r ∈ 1, . . . , R − 1,

R−1∑

r=1

cr < 1

}
(4)

To reflect the lack of prior knowledge about the abundances,
we propose to assign noninformative prior distributions for the
N vectors cn . More precisely, the following uniform prior

f (cn) ∝ 1S (cn) , n ∈ {1, . . . , N} (5)

is assigned for each vector cn , where 1S (·) is the indicator
function defined on the simplex S. Assuming prior indepen-
dence between the N abundance vectors {an}n=1,...,N leads to
the following joint prior distribution

f (C) =
N∏

n=1

f (cn) (6)

where C = [c1, . . . , cN ] is an (R − 1) × N matrix.

C. Prior for the Noise Variance Vector σ 2

A noninformative Jeffreys’ prior is chosen for the noise
variance of each spectral band σ 2

�

f (σ 2
� ) ∝ 1

σ 2
�

1R+
(
σ 2

�

)
(7)

which reflects the absence of knowledge for this parame-
ter (see [27] for motivation). Assuming prior independence
between the noise variances, we obtain

f (σ 2) =
L∏

�=1

f
(
σ 2

�

)
. (8)

IV. MODELING THE NONLINEARITIES

We propose in this paper to exploit spatial correlations
between the pixels of the hyperspectral image to be ana-
lyzed. It seems reasonable to assume that nonlinear effects
occurring in a given pixel are related to the nonlinear effects
present in neighboring pixels. Formally, the hyperspectral
image is assumed to be partitioned into K classes denoted as
C0, . . . , CK−1. Let Ik ⊂ 1, . . . , N denote the subset of pixel
indexes belonging to the kth class (k = 0, . . . , K − 1). An
N ×1 label vector z = [z1, . . . , zN ]T with zn ∈ {0, . . . , K −1}
is introduced to identify the class of each image pixel, i.e.,
yn ∈ Ck ⇔ n ∈ Ik ⇔ zn = k. In each class, the unknown
nonlinearity vectors are assumed to share the same statistical
properties, as will be shown in the sequel.

A. Prior Distribution for the Nonlinearity Matrix �

As mentioned above, the mixing model (1) reduces to the
LMM for φn = 0L . For nonlinearity detection, it makes sense
to consider a pixel class (referred to as class C0) corresponding
to linearly mixed pixels. The resulting prior distribution for φn
conditioned upon zn = 0 is given by

f (φn|zn = 0) =
L∏

�=1

δ(φ�,n). (9)

It can be seen that bilinear models and more generally polyno-
mial models (i.e., model involving polynomials nonlinearities
with respect to the endmembers) are particularly well adapted
to model scattering effects, mainly observed in vegetation and
urban areas. Consequently, it makes sense to assume that
the nonlinearities φn depend on the endmember matrix M.
Nonlinear effects can vary, depending on the relief of the
scene, the underlying components involved in the mixtures
and the observation conditions to name a few factors. This
makes the choice of a single informative prior distribution
challenging. From a classification point of view, it is interest-
ing to identify regions or classes where similar nonlinearities
occur. For these reasons, we propose to divide nonlinearly
mixed pixels into K − 1 classes and to assign different priors
for the nonlinearity vectors belonging to the different classes.
The nonlinearities (of nonlinearly mixed pixels) are assumed
to be random. Assume yn belongs to the kth class. The prior
distribution of the corresponding nonlinear term φn is given
by the following GP (k = 1, . . . , K − 1)

φn |M, zn = k, s2
k ∼ N

(
0L , s2

k K M

)
, (10)

where K M is an L × L covariance matrix parameterized by
the endmember matrix M and s2

k is a scaling hyperparameter
that tunes the energy of the nonlinearities in the kth class.
Note that all nonlinearity vectors within the same class share
the same prior. The performance of the unmixing procedure
depends on the choice of K M, more precisely on the similarity
measure associated with the covariance matrix. In this paper,
we consider the symmetric second order polynomial kernel,
which has received considerable interest in the machine learn-
ing community [28]. This kernel is defined as follows

[K M]i, j = (mi,:mT
j,:
)2

, i, j ∈ {1, . . . , L}, (11)
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Fig. 1. 4-pixel (left) and 8-pixel (right) neighborhood structures. The
considered pixel appear as a black circle whereas its neighbors are depicted
in white.

where mi,: is an 1 × R vector that denotes the i th row of M.
Polynomial kernels are particularly well adapted to character-
ize multiple scattering effects (modeled by polynomial func-
tions of the endmembers). Note that the parametrization of the
matrix K M in (11) only involves bilinear and quadratic terms1

with respect to the endmembers mr , r = 1, . . . , R. More, pre-
cisely, the matrix K M can be rewritten as K M = Q QT where
Q = [m1 	 m1, . . . , mR 	 mR ,

√
2m1 	 m2, . . . ,

√
2mR−1 	

mR] is an L×R(R+1)/2 matrix and 	 denotes the Hadamard
(termwise) product. Note also that a polynomial kernel similar
to (11) has been recently considered in [16] and that other
kernels such as the Gaussian kernel could be investigated to
model other nonlinearities as in [24]. As mentioned above,
the endmembers of the scene are assumed to be known in this
paper. Consequently, the proposed nonlinear model does not
involved endmember estimation errors (i.e., missing or poorly
estimated endmembers).

B. Prior Distribution for the Label Vector z
In the context of hyperspectral image analysis, the labels

z1, . . . , zN indicate the pixel classes and take values in
{0, . . . , K − 1} where K is the number of classes and the
set {zn}n=1,...,N forms a random field. To exploit the corre-
lation between pixels, a Markov random field is introduced
as a prior distribution for zn given its neighbors zV(n), i.e.,
f (zn|z\n) = f (zn|zV(n)), where V(n) is the neighborhood
of the nth pixel and z\n = {zn′ }n′ �=n . More precisely, this
paper focuses on the Potts-Markov model since it is very
appropriate for hyperspectral image segmentation [29]. Given
a discrete random field z attached to an image with N pixels,
the Hammersley-Clifford theorem yields

f (z) = 1

G(β)
exp

⎡

⎣β

N∑

n=1

∑

n′∈V(n)

δ(zn − zn′)

⎤

⎦. (12)

where β > 0 is the granularity coefficient, G(β) is a normaliz-
ing (or partition) constant and δ(·) is the Dirac delta function.
Several neighborhood structures can be employed to define
V(n). Fig. 1 shows two examples of neighborhood structures.

1Note: it can be shown that (10) and (11) can be obtained by defining φn
as a linear combination of terms mi 	 m j (as in [13]) and marginalizing
the corresponding coefficients using a Gaussian prior parameterized by s2

k .
Marginalizing these coefficients allows the number of unknown parameters to
be significantly reduced, leading to the nonlinearities being characterized by
a single parameter s2

k .

Fig. 2. DAG for the parameter and hyperparameter priors (the fixed
parameters appear in boxes).

The four pixel structure (or 1-order neighborhood) will be
considered in the rest of the paper.

The hyperparameter β tunes the degree of homogeneity of
each region in the image. More precisely, small values of β
yield an image with a large number of regions, whereas large
values of β lead to fewer and larger homogeneous regions.
In this paper, the granularity coefficient is assumed to be
known. Note however that it could be also included within
the Bayesian model and estimated using the strategy described
in [30].

C. Hyperparameter Priors
The performance of the proposed Bayesian model for spec-

tral unmixing mainly depends on the values of the hyperpara-
meters

{
s2

k

}
k=1,...,K . When the hyperparameters are difficult to

adjust, it is the norm to include them in the unknown parameter
vector, resulting in a hierarchical Bayesian model [18], [31].
This strategy requires the definition of prior distributions for
the hyperparameters.

The following inverse-Gamma prior distribution

s2
k |γ, ν ∼ IG(γ, ν), ∀k ∈ {1, . . . , K } (13)

is assigned for the nonlinearity hyperparameters, where (γ, ν)
are additional parameters that will be fixed to ensure a
noninformative prior for s2

k ((γ, ν) = (1, 1/4) in all simu-
lations presented in this paper). Assuming prior independence
between the hyperparameters, we obtain

f (s2|γ, ν) =
K−1∏

k=1

f (s2
k |γ, ν). (14)

where s2 = [s2
1 , . . . , s2

K ]T.

V. BAYESIAN INFERENCE USING A

METROPOLIS-WITHIN-GIBBS SAMPLER

A. Marginalized Joint Posterior Distribution

The resulting directed acyclic graph (DAG) associated with
the proposed Bayesian model introduced in Sections III and IV
is depicted in Fig. 2.

Assuming prior independence between A, (�, z) and σ 2,
the posterior distribution of (�, θ ) where θ = (C, z, σ 2, s2)



2152 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 23, NO. 5, MAY 2014

can be expressed as

f (θ,�|Y, M) ∝ f (Y|M, θ,�) f (�|M, z, s2) f (θ),

where f (θ) = f (C) f (σ 2) f (z) f (s2). This distribution can be
marginalized with respect to � as follows

f (θ |Y, M) ∝ f (θ)

∫
f (Y|M, θ ,�) f (�|M, z, s2)d�

∝ f (θ) f (Y|M, θ) (15)

where

f (Y|M, θ) =
∫

f (Y|M, θ ,�) f (�|M, z, s2)d�

∝
K−1∏

k=0

∏

n∈Ik

1

|�k | 1
2

exp

[
−1

2
ȳT

n �−1
k ȳn

]
(16)

with �0 = diag
(
σ 2
)
, �k = s2

k K M + �0 (k = 1, . . . , K − 1)
and ȳn = yn − Man . The advantage of this marginalization
is to avoid sampling the nonlinearity matrix �. Thus, the
nonlinearities are fully characterized by the known endmember
matrix, the class labels and the values of the hyperparameters
in s2 = [s2

1 , . . . , s2
K ]T.

Unfortunately, it is difficult to obtain closed form expres-
sions for standard Bayesian estimators associated with (15).
In this paper, we propose to use efficient Markov Chain Monte
Carlo (MCMC) methods to generate samples asymptotically
distributed according to (15). The next part of this section
presents the Gibbs sampler which is proposed to sample
according to (15). The principle of the Gibbs sampler is
to sample according to the conditional distributions of the
posterior of interest [32, Chap. 10]. Due to the large number
of parameters to be estimated, it makes sense to use a block
Gibbs sampler to improve the convergence of the sampling
procedure. More precisely, we propose to sample sequentially
the N labels in z, the abundance matrix A, the noise variances
σ 2 and s2 using moves that are detailed in the next paragraphs.

B. Sampling the Labels

For the nth pixel (n ∈ {1, . . . , N}), the label zn is a
discrete random variable whose conditional distribution is fully
characterized by the probabilities

P(zn = k|yn, M, θ \zn ) ∝ f (yn|M, s2, zn = k, an)

× f (zn |z\n),

where θ\zn denotes θ without zn , k = 0, . . . , K − 1 (for K
classes). These posterior probabilities can be expressed as

P(zn = k|yn, M, θ \zn ) ∝ exp

⎡

⎣β

N∑

p=1

∑

p′∈V(p)

δ(z p − z p′)

⎤

⎦

× 1

|�k | 1
2

exp

[
−1

2
ȳT

n �−1
k ȳn

]
. (17)

Consequently, sampling zn from its conditional distribution
can be achieved by drawing a discrete value in the finite set
{0, . . . , K − 1} with the probabilities defined in (17).

C. Sampling the Abundance Matrix A

Sampling from f (C|Y, M, θ\C) seems difficult due to the
complexity of this distribution. However, it can be shown that

f (C|Y, M, z, σ 2, s2) =
N∏

n=1

f (cn|yn, M, zn, σ 2, s2), (18)

i.e., the N abundance vectors {an}n=1,...,N are a posteriori
independent and can be sampled independently in a parallel
manner. Straightforward computations lead to

cn|yn, M, zn = k, σ 2, s2 ∼ NS (c̄n,�n) (19)

where

�n =
(

M̃T �−1
k M̃

)−1

c̄n = �nM̃T �−1
k ỹn

M̃ = [m1 − mR, . . . , mR−1 − mR] (20)

and ỹn = yn − mR . Moreover, NS(c̄n,�n) denotes the trun-
cated multivariate Gaussian distribution defined on the simplex
S with hidden mean c̄n and hidden covariance matrix �n .
Sampling from (19) can be achieved efficiently using the
method recently proposed in [33].

D. Sampling the Noise Variance σ 2

It can be shown from (15) that

f (σ 2|Y, M, A, z, s2) =
L∏

�=1

f (σ 2
� |Y, M, A, z, s2), (21)

where
f (σ 2

� |Y, M, A, z, s2)

∝ 1

σ 2
�

K−1∏

k=0

∏

n∈Ik

1

|�k | 1
2

exp

[
−1

2
ȳT

n �−1
k ȳn

]
1R+

(
σ 2

�

)
(22)

Sampling from (22) is not straightforward. In this case, an
accept/reject procedure can be used to update σ 2

� , leading
to a hybrid Metropolis-within-Gibbs sampler. In this paper,
we introduce the standard change of variable δ� = log(σ 2

� ),
δ� ∈ R. A Gaussian random walk for δ� is used to update the
variance σ 2

� . Note that the noise variances are a posteriori inde-
pendent. Thus they can be updated in a parallel manner. The
variances of the L parallel Gaussian random walk procedures
have been adjusted during the burn-in period of the sampler
to obtain an acceptance rate close to 0.5, as recommended in
[34, p. 8].

E. Sampling the Vector s2

It can be shown from (15) that

f (s2|Y, M, A, z, σ 2, γ , ν) =
K−1∏

k=1

f (s2
k |Y, M, A, σ 2, γ , ν),

where
f (s2

k |Y, M, A, σ 2, γ , ν)

∝ f (s2
k |γ, ν)

∏

n∈Ik

1

|�k | 1
2

exp

[
−1

2
ȳT

n �−1
k ȳn

]
. (23)
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Algorithm 1 Gibbs Sampling Algorithm

Due to the complexity of the conditional distribution (23),
Gaussian random walk procedures are used in the log-space to
update the hyperparameters {s2

k }k=1,...,K−1 in a parallel manner
(similarly to the noise variance updates). Again, the proposal
variances are adjusted during the burn-in period of the sampler.
The resulting Metropolis-within-Gibbs sampler used to sample
according to the posterior (15) is summarized in Algo. 1.

After generating NMC samples using the procedures detailed
above and removing Nbi iterations associated with the burn-
in period of the sampler (Nbi has been set from preliminary
runs), the marginal maximum a posteriori (MAP) estimator
of the label vector, denoted as ẑMAP, can be computed. The
label vector estimator is then used to compute the mini-
mum mean square error (MMSE) of A conditioned upon
z = ẑMAP. Finally, the noise variances and the hyperparame-
ters {s2

k }k=1,...,K−1 are estimated using the empirical averages
of the generated samples (MMSE estimates).

F. Relaxation of the Abundance Constraints

In this paper, the abundances are assumed to sum to one.
This choice has been motivated by the fact that this constraint
has been widely used for linear and nonlinear mixing models
[12], [13], [16], [18]. However, the sum-to-one constraint can
be removed when considering nonlinear mixtures, as proposed
in [35]. In a Bayesian framework, relaxing the abundance sum-
to-one constraint can be achieved by assigning a different prior
for the abundances. An extension of the proposed algorithm
has been investigated to relax the abundance sum-to-one
constraints. For brevity, the Bayesian model and corresponding
sampler have been omitted in this paper and have been
reported in [25].

VI. SIMULATIONS FOR SYNTHETIC DATA

This section studies the performance of the proposed
algorithm for synthetic hyperspectral images.

A. First Scenario: RCA vs. Linear Unmixing

The performance of the proposed joint nonlinear SU and
nonlinearity detection algorithm is first evaluated by unmixing
a synthetic image of 60 × 60 pixels generated according to
the model (1). The R = 3 endmembers contained in these
images (i.e., green grass, olive green paint and galvanized
steel metal) have L = 207 different spectral bands and have

Fig. 3. Actual (left) and estimated (right) classification maps of the synthetic
image associated with the first scenario.

Fig. 4. Actual noise variances (red) and variances estimated by the RCA-SU
algorithm (blue) for the synthetic image associated with the first scenario.

TABLE I

FIRST SCENARIO: CONFUSION MATRIX (N = 3600 PIXELS)

been extracted from the spectral libraries provided with the
ENVI software [36]. The number of classes has been set
to K = 4, i.e, K − 1 = 3 classes of nonlinearly mixed
pixels. The hyperparameters

{
s2

k

}
k=1,...,3 have been fixed as

shown in Table II, which represents three possible levels of
nonlinearity. For each class, the nonlinear terms have been
generated according to (10). The label map generated with
β = 1.6 is shown in Fig. 3 (left). The abundance vectors
an, n = 1, . . . , 3600 have been randomly generated according
to a uniform distribution over the admissible set defined by
the positivity and sum-to-one constraints. The noise variance
(depicted in Fig. 4 as a function of the spectral bands) have

been arbitrarily fixed using σ 2
� = 10−4

[
2 − sin

(
π

�

L − 1

)]
.

to model a non-i.i.d. (colored) noise. The joint nonlin-
ear SU and nonlinearity detection algorithm, denoted as
“RCA-SU”, has been applied to this data set with NMC = 4000
and Nbi = 2500. Fig. 3 (right) shows that the estimated
label map (marginal MAP estimates) is in agreement with the
actual label map. Moreover, the confusion matrix depicted in
Table I illustrate the performance of the RCA-SU in term of
pixel classification. Table II shows that the RCA-SU provides
accurate hyperparameter estimates and thus can be used to
obtain information about the importance of nonlinearities
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TABLE II

FIRST SCENARIO: HYPERPARAMETER ESTIMATION

TABLE III

RNMSEs (×10−2): SYNTHETIC IMAGES

in the different regions. Note that the estimation error is
computed using |s2

k − ŝ2
k |/s2

k , where s2
k and ŝ2

k are the actual
and estimated dispersion parameters for the kth class. The
estimated noise variances, depicted in Fig. 4 are also in good
agreement with the actual values of the variances.

The quality of abundance estimation can be evaluated by
comparing the estimated and actual abundance vectors using
the root normalized mean square error (RNMSE) defined in
each class by

RNMSEk =
√√√√ 1

Nk R

∑

n∈Ik

∥∥ân − an
∥∥2 (24)

with Nk = card(Ik) and where an and ân are the actual and
estimated abundance vectors for the nth pixel of the image.
For this scenario, the proposed algorithm is compared with
the classical FCLS algorithm [2] assuming the LMM. Com-
parisons to nonlinear SU methods will be addressed in the next
paragraph (scenario 2). Table III shows the RNMSEs obtained
with the proposed and the FLCS algorithms for this first
data set. These results show that the two algorithms provide
similar abundance estimates for the first class, corresponding
to linearly mixed pixels. For the three nonlinear classes, the
estimation performance is reduced. However, the proposed
algorithm provides better results than the FCLS algorithm that
does not handle nonlinear effects.

B. Second Scenario: RCA vs. Nonlinear Unmixing

1) Data Set: The performance of the proposed joint nonlin-
ear SU and nonlinearity detection algorithm is then evaluated
on a second synthetic image of 60 × 60 pixels containing
the R = 3 spectral components presented in the previous
section. In this scenario, the image consists of pixels generated
according to four different mixing models associated with four
classes (K = 4). The label map generated using β = 1.6 is
shown in Fig. 5(a). The class C0 is associated with the LMM.
The pixels of class C1 have been generated according to the
generalized bilinear mixing model (GBM) [13]

yn =
R∑

r=1

ar,nmr

+
R−1∑

i=1

R∑

j=i+1

γi, j ai,na j,nmi 	 m j + en (25)

Fig. 5. Nonlinearity detection for the scenario #2. (a) Actual label
map. (b) log

(∥∥φn
∥∥2
)

. (c) Detection map (PPNMM). (d) Detection map
(RCA-SU).

where n ∈ I1 and the nonlinearity parameters {γi, j } have been
uniformly drawn in [0.5, 1]. The class C2 is composed of pixels
generated according to the PPNMM [18] as follows

yn =
R∑

r=1

ar,nmr

+ b

(
R∑

r=1

ar,nmr

)
	
(

R∑

r=1

ar,nmr

)
+ en (26)

where n ∈ I2 and b = 0.5 for all pixels in class C2.
Finally, the class C3 has been generated according to (1) with
s2 = 0.1. For the four classes, the abundance vectors have
been randomly generated according to a uniform distribution
over the admissible set defined by the positivity and sum-to-
one constraints. All pixels have been corrupted by an additive
i.i.d Gaussian noise of variance σ 2 = 10−4, corresponding to
an average signal-to-noise ratio SNR � 30dB. The noise is
assumed to be i.i.d. for a fair comparison with SU algorithms
assuming i.i.d. Gaussian noise. Fig. 5(b) shows the log-energy
of the nonlinearity parameters for each pixel of the image, i.e.,
log
(∥∥φn

∥∥2
)

for n = 1, . . . , 3600. This figure shows that each
class corresponds to a different level of nonlinearity.

2) Unmixing: Different estimation procedures have been
considered for the four different mixing models:

• The FCLS algorithm [2] which is known to have good
performance for linear mixtures (with the regularization
parameter δ set to δ = 105).

• The GBM-based approach [37] which is particularly
adapted for bilinear nonlinearities. The optimization algo-
rithm is stopped when the norm of the difference between
consecutive parameter estimates is smaller than 10−6.

• The gradient-based approach of [18] which is based on
a PPNMM and has shown nice properties for various
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TABLE IV

ABUNDANCE RNMSEs (×10−2): SCENARIO #2

TABLE V

RES (×10−2): SCENARIO #2

nonlinear models. This iterative algorithm is stopped
when the difference of consecutive cost function values
is smaller than 10−12.

• The proposed RCA-SU algorithm which has been
designed for the model in (1). It has been applied to this
data set with NMC = 4000, Nbi = 2500, K = 4 and
β = 1.6.

• Finally, we consider the K-Hype method [16] to com-
pare our algorithm with state-of-the art kernel based
unmixing methods. The kernel used in this paper is the
polynomial, second order symmetric kernel whose Gram
matrix is defined by (11). This kernel provides better
performance on this data set than the kernels studied in
[16] (namely the Gaussian and the polynomial, second
order asymmetric kernels). All hyperparameters of the
K-Hype algorithm have been optimized using preliminary
runs.

Table IV compares the RNMSEs obtained with the SU
algorithms for each class of the second scenario. These results
shows that the proposed algorithm provides abundance esti-
mates similar to those obtained with the LMM-based algorithm
(FCLS) for linearly mixed pixels. Moreover, the RCA-SU
also provides accurate estimates for the three mixing models
considered, which illustrates the robustness of the RCA-based
model regarding model mis-specification.

The unmixing quality is also evaluated by the reconstruction

error (RE) defined as REk =
√∑

n∈Ik

∥∥ŷn − yn
∥∥2

/(Nk L),
where yn is the nth observation vector and ŷn its estimate.
Table V compares the REs obtained for the different classes.
This table shows the accuracy of the proposed model for
fitting the observations. The REs obtained with the RCA-
SU are similar for the four pixel classes. Moreover, the
performance in terms of RE of the proposed algorithm are
similar to the performance of the K-Hype algorithm. Table VI
compares the processing time of the different unmixing
algorithms considered to process the synthetic data of the

TABLE VI

PROCESSING TIME (IN S): SCENARIO #2

second scenario. This table shows that the proposed algorithm
requires a higher computational cost when compared to the
other algorithms, mainly due to the sampling procedure.
However, it is important to note that since the proposed
hybrid Gibbs sampler is highly parallelizable, (i.e., the N
abundance vectors are a posteriori independent and the label
vector can be efficiently updated using two sequential updates
for a 4-pixel neighborhood), it does not suffer from potential
computational burden induced by processing the image pixels
sequentially.

From a reconstruction point of view, the K-Hype and
RCA-SU algorithms provides similar results. However, the
proposed algorithm also provides nonlinearity detection maps.
The PPNMM and RCA-SU algorithms perform similarly in
term of abundance estimation and allow both nonlinearities to
be detected in each pixel. However, the nonlinearities can be
analyzed more deeply using the RCA-SU, as will be shown
in the next part.

3) Nonlinearity Detection: The performance of the pro-
posed algorithm for nonlinearity detection is compared to the
detector studied in [20], which is coupled with the PPNMM-
based SU procedure mentioned above. The probability of false
alarm of the PPNMM-based detection has been set to PFA =
0.05. Fig. 5(c) and (d) show the detection maps obtained
with the two detectors. Both detectors are able to locate the
nonlinearly mixed regions. However, the RCA-SU provides
more homogeneous regions, due to the consideration of spatial
structure through the MRF. Moreover, the proposed algorithm
provides information about the different levels of nonlinearity
in the image thanks to the estimation of the hyperparameters
s2

k associated with the different classes. In this simulation,
we obtain [ŝ2

1 , ŝ2
2 , ŝ2

3 ] = [0.2, 1.3, 10] × 10−2, showing that
nonlinearities of class C1 are less severe than those of class
C2 and that are themselves weaker than those of class C3. The
next section studies the performance of the proposed algorithm
for a real hyperspectral image.

VII. SIMULATIONS FOR A REAL HYPERSPECTRAL IMAGE

A. Data Set

The real image considered in this section was acquired in
2010 by the Hyspex hyperspectral scanner over Villelongue,
France (00°03’W and 42°57’N). L = 160 spectral bands
were recorded from the visible to near infrared with a spatial
resolution of 0.5m. This dataset has already been studied
in [17] and [38] and is mainly composed of forested and
urban areas. More details about the data acquisition and pre-
processing steps are available in [38]. A sub-image of size
180 × 250 pixels is chosen here to evaluate the proposed
unmixing procedure and is depicted in Fig. 6. The scene is
composed mainly of a path and different vegetation species,
resulting in R = 5 endmembers. The spectral signatures of



2156 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 23, NO. 5, MAY 2014

Fig. 6. Real hyperspectral Madonna data acquired by the Hyspex hyperspec-
tral scanner over Villelongue, France (left) and sub-image of interest (right).

Fig. 7. The R = 5 endmembers estimated by the LMM-based algorithm
[31] for the real sub-image.

Fig. 8. The R = 5 abundance maps estimated by the RCA-SU (left)
and FCLS (middle) algorithms for the Madonna real image (white pixels
correspond to large abundances, contrary to black pixels). Right: Maps of
absolute differences between the FCLS and RCA-SU abundance estimates.

the components have been extracted from the data using the
LMM-based algorithm studied in [31] and are depicted in
Fig. 7.

B. Spectral Unmixing

The proposed algorithm has been applied to this data set
with NMC = 4000 and Nbi = 2500. The number of classes
has been set to K = 5 (one linear class and four nonlinear
classes). The granularity parameter of the label prior (12) has
been fixed to β = 1.6. Fig. 8 shows the abundance maps
estimated by the FCLS algorithm and the proposed method.
The abundance maps estimated by the RCA-SU algorithm

TABLE VII

RECONSTRUCTION ERRORS: REAL IMAGE

Fig. 9. Noise variances estimated by the RCA-SU (red) and the Hysime
algorithm (blue) for the real Madonna image.

Fig. 10. Top: true color image of the scene of interest. Bottom: nonlinearity
detection map obtained with the RCA-SU detector for the Madonna image
(K = 5).

are in good agreement with those estimated by FCLS for
most of the pixels but can differ locally. Table VII shows
that the state-of-the-art and the proposed algorithm provide
similar reconstruction errors. Fig. 9 compares the noise vari-
ance estimated by the RCA-SU for the real image with the
noise variance estimated by the HySime algorithm [39]. This
figure shows that the two algorithms provide similar noise
variance estimates. These results motivate the consideration
of non i.i.d. noise for hyperspectral image analysis since the
noise variances increase for the highest wavelengths. The
simulations conducted on this real dataset show the accuracy
of the proposed RCA-SU in terms of abundance estimation
and reconstruction error, especially for applications where the
noise variances vary depending on the wavelength. Moreover,
it also provides information about the nonlinearities of the
scene.

C. Nonlinearity Detection

Fig. 10 (bottom) shows the detection map (map of zn for
n = 1, . . . , N) provided by the proposed RCA-SU detector for
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the real image considered. Due to the consideration of spa-
tial structures, the proposed detector provides homogeneous
regions. Similar structures can be identified in this detection
map and the true color image of the scene [Fig. 10 (top)].
Moreover, the RCA-SU can identify four levels of nonlinearity,
corresponding to [ŝ2

1 , ŝ2
2 , ŝ2

3 , ŝ2
4 ] = [0.004; 0.03; 0.15; 1.54].

The estimated class C4 (white pixels) associated with the
highest level of nonlinearity is mainly located on the path
crossing the image. A second region of average nonlinearity
level associated with the class C3 (light grey pixels) is mainly
located in the pixels containing the first endmember. Finally,
weak nonlinearities (classes C2 and C1) and linear mixtures
(class C0) are located in homogeneous regions of the image.
Additional simulation results conducted with different num-
bers of classes can be found in [25].

VIII. CONCLUSION

We have proposed a new hierarchical Bayesian algorithm
for joint linear/nonlinear spectral unmixing of hyperspectral
images and nonlinearity detection. This algorithm assumed
that each pixel of the image is a linear or nonlinear mixture
of endmembers contaminated by additive Gaussian noise. The
nonlinear mixtures are decomposed into a linear combination
of the endmembers and an additive term representing the
nonlinear effects. A Markov random field was introduced
to promote spatial structures in the image. The image was
decomposed into regions or classes where the nonlinearities
share the same statistical properties, each class being associ-
ated with a level of nonlinearity. Nonlinearities within a same
class were modeled using a Gaussian process parametrized
by the endmembers and the nonlinearity level. Note finally
that the physical constraints for the abundances were included
in the Bayesian framework through appropriate prior distrib-
utions. Due to the complexity of the resulting joint posterior
distribution, a Markov chain Monte Carlo method was investi-
gated to compute Bayesian estimators of the unknown model
parameters.

Simulations conducted on synthetic data illustrated the
performance of the proposed algorithm for linear and nonlinear
spectral unmixing. An important advantage of the proposed
algorithm is its robustness regarding the actual underlying
mixing model. Another interesting property resulting from
the nonlinear mixing model considered is the possibility of
detecting several kinds of linearly and nonlinearly mixed
pixels. This detection can be used to identify the image
regions affected by nonlinearities in order to characterize the
nonlinear effects more deeply. Finally, simulations conducted
with real data showed the accuracy of the proposed unmixing
and nonlinearity detection strategy for the analysis of real
hyperspectral images.

The endmembers contained in the hyperspectral image were
assumed to be known in this work. Of course, the performance
of the algorithm relies on this endmember knowledge. We
think that estimating the pure component spectra present in the
image, jointly with the abundance estimation and the nonlin-
earity detection is an important issue that should be considered
in future work. The number of classes and the granularity of

the scene were assumed to be known in this study. Estimating
these parameters is clearly a challenging issue that is under
investigation. Finally, an extended algorithm has been pro-
posed to estimate the abundances without abundance sum-to-
one constraint, as often considered for images with significant
shadowing effects. Modeling shadow in hyperspectral images
is also a interesting prospect.
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