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Learning joint intensity-depth sparse representations
Ivana Tošić and Sarah Drewes

Abstract—This paper presents a method for learn-
ing overcomplete dictionaries of atoms composed of two
modalities that describe a 3D scene: image intensity and
scene depth. We propose a novel Joint Basis Pursuit
(JBP) algorithm that finds related sparse features in two
modalities using conic programming and we integrate
it into a two-step dictionary learning algorithm. JBP
differs from related convex algorithms because it finds
joint sparsity models with different atoms and different
coefficient values for intensity and depth. This is crucial
for recovering generative models where the same sparse
underlying causes (3D features) give rise to different
signals (intensity and depth). We give a bound for recovery
error of sparse coefficients obtained by JBP, and show
numerically that JBP is superior to the Group Lasso
(GL) algorithm. When applied to the Middlebury depth-
intensity database, our learning algorithm converges to a
set of related features, such as pairs of depth and intensity
edges or image textures and depth slants. Finally, we show
that JBP (with the learned dictionary) outperforms both
GL and Total Variation (TV) on depth inpainting for time-
of-flight 3D data.

Index Terms—Sparse approximations, dictionary learn-
ing, hybrid image-depth sensors.

I. INTRODUCTION

Hybrid image-depth sensors have recently gained a lot
of popularity in many vision applications. Time of flight
cameras [1, 2] provide real-time depth maps at moderate
spatial resolutions, aligned with the image data of the
same scene. Microsoft Kinect [3] also provides real-time
depth maps that can be registered with color data in
order to provide 3D scene representation. Since captured
images and depth data are caused by the presence of
same objects in a 3D scene, they represent two modalities
of the same phenomena and are thus correlated. This
correlation can be advantageously used for denoising
corrupted or inpainting missing information in captured
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depth maps. Such algorithms are of significant impor-
tance to technologies relying on image-depth sensors for
3D scene reconstruction or visualization [3, 4], where
depth maps are usually noisy, unreliable or of poor
spatial resolution.

Solving inverse problems such as denoising or in-
painting usually involves using prior information about
data. Sparse priors over coefficients in learned linear
generative models have been recently applied to these
problems with large success [5–7]. A similar approach
has been proposed for learning sparse models of depth
only, showing state-of-the-art performance in depth map
denoising and offering a general tool for improving
existing depth estimation algorithms [8]. However, learn-
ing sparse generative models for joint representation of
depth and intensity images has not been addressed yet.
Learning such models from natural 3D data is of great
importance for many applications involving 3D scene
reconstruction, representation and compression.

This paper proposes a method for learning joint depth
and intensity sparse generative models. Each of these
two modalities is represented using overcomplete linear
decompositions, resulting in two sets of coefficients.
These two sets are coupled via a set of hidden variables,
where each variable multiplies exactly one coefficient in
each modality. Consequently, imposing a sparse prior on
this set of coupling variables results in a common sparse
support for intensity and depth. Each of these hidden
variables can be interpreted as presence of a depth-
intensity feature pair arising from the same underlying
cause in a 3D scene. To infer these hidden variables
under a sparse prior, we propose a convex, second
order cone program named Joint Basis Pursuit (JBP).
Compared to Group Lasso (GL) [9], which is commonly
used for coupling sparse variables, JBP gives signifi-
cantly smaller coefficient recovery error. In addition, we
bound theoretically this error by exploiting the restricted
isometry property (RIP) [10] of the model. Finally, we
propose an intensity-depth dictionary learning algorithm
based on the new model and JBP. We show its superiority
to GL in model recovery experiments using synthetic
data, as well as in inpainting experiments using real time-
of-flight 3D data.

We first explain in Section II why existing models
are not sufficient for intensity-depth representation. Sec-
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tion III introduces the proposed intensity-depth genera-
tive model. Inference of its hidden variables is achieved
via the new JBP algorithm presented in Section IV, while
learning of model parameters is explained in Section V.
Section VI gives relations of the proposed JBP to prior
art. Experimental results are presented in Section VII.

II. WHY AREN’T EXISTING MODELS ENOUGH?

To model the joint sparsity in intensity and depth, one
might think that simple, existing models would suffice.
For example, an intuitive approach would be to simply
merge depth and image pixels into one array of pixels.
If we denote the vectorized form of the intensity image
as yI and depth image as yD, this ”merged” model can
be written as: [

yI

yD

]
=

[
ΦI

ΦD

]
· c

where intensity and depth are assumed to be sparse in
dictionaries ΦI , resp. ΦD. The sparse vector c would
then couple the sparse patterns in intensity and depth,
i.e., couple intensity and depth atoms in pairs. However,
since the vector of coefficients c is common, intensity
and depth atoms within a pair will be multiplied with
the same value. Let us now look at two simple synthetic
examples of 3D scenes whose intensity and depth images
are shown on Fig. 1. The first example is a 3D edge and
the second is a textured pattern on a slanted surface.
These are two common intensity-depth features in real
scenes. Since it has the flexibility of using different
atoms for intensity and depth, the merged model will
be able to represent both features. However, since the
coefficients are common between intensity and depth,
the variability in magnitude between intensity and depth
would have to be represented by different atom pairs,
leading to a combinatorial explosion in dictionary size.

Another model that has been widely used in literature
for representing correlated signals is the joint sparsity
model, where signals share the same sparse support in
Φ, but with different coefficients:[

yI

yD

]
= Φ ·

[
a
b

]
.

Therefore, the property of this model is that signals are
represented using the same atoms multiplied by different
coefficients. Obviously, the joint sparsity model would be
able to represent the intensity-depth edge in Fig. 1 using
a piecewise constant atom and different coefficients for
intensity and depth. However, in the slanted texture
example, because the depth image is linear and the
intensity is a chirp, no atom can model both. The joint
sparsity model would then have to decouple these two
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Fig. 1. Examples of two typical image-depth features in 3D scenes.
(a) Example 1: 3D edge, (b) Example 2: slanted texture.

features in different atoms, which is suboptimal for
representing slanted textures.

It becomes clear that we need a model that allows
joint representation with different atoms and different
coefficients, but with a common sparse support (the
pattern of non-zero coefficients needs to be the same).
We introduce such a model in the next section.

III. INTENSITY-DEPTH GENERATIVE MODEL

Let us first set the notation rules. Throughout the
rest of the paper, vectors are denoted with bold lower
case letters and matrices with bold upper case letters.
Letters I,D in superscripts refer to intensity and depth,
respectively. Sets are represented with calligraphic fonts.
Column-wise and row-wise concatenations of vectors a
and b are denoted as [a b] and [a;b], respectively.

Graphical representation of the proposed joint depth-
intensity generative model is shown in Fig. 2. Intensity
image yI and depth image yD (in vectorized forms) are
assumed to be sparse in dictionaries ΦI , resp. ΦD, i.e.,
they are represented as linear combinations of dictionary
atoms {φI

i }i∈I and {φD
i }i∈I , resp. :

yI = ΦIa + ηI =
∑
i∈I0

φI
i ai + ηI

yD = ΦDb + ηD =
∑
i∈I0

φD
i bi + ηD, (1)
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Fig. 2. Graphical representation of the proposed intensity-depth generative model.

where vectors a and b have a small number of non-
zero elements and ηI and ηD represent noise vec-
tors. I0 is the set of indexes identifying the columns
(i.e., atoms) of ΦI and ΦD that participate in sparse
representations of yI and yD. Its cardinality is much
smaller than the dictionary size, hence |I0| � |I|, where
I = {1, 2, ..., N} denotes the index set of all atoms.
This means that each image can be represented as a
combination of few, representative features described
by atoms, modulated by their respective coefficients.
Because depth and intensity features correspond to two
modalities arising from the same 3D features, we model
the coupling between coefficients ai and bi through latent
variables xi as:

ai = mI
i xi; bi = mD

i xi, ∀i ∈ I, (2)

where the variables mI
i ,m

D
i represent the magnitudes

of the sparse coefficients and xi represent the activity
of these coefficients. Ideally, these variables should be
binary, 0 representing the absence and 1 representing
the presence of a depth-intensity feature pair. In that
case

∑
i xi counts the number of non-zero such pairs.

However, inference of binary values represents a combi-
natorial optimization problem of high complexity which
depends on dictionary properties and the permission of
noise, cf. [11]. We relax the problem by allowing xi
to attain continuous values between 0 and 1, which has
been proven to provide a very good approximation in a
similar context, cf., e.g., [12, 13].

By assuming that the vector x = (x1, x2, ..., xN )T is
sparse, we assume that yI and yD are described by a
small number of feature pairs (φI

i ,φ
D
i ) that are either

prominent in both modalities (both mI
i and mD

i are
significant) or in only one modality (either mI

i or mD
i is

significant). In these cases xi is non-zero, which leads
to non-zero values for either ai or bi, or both. If xi is
zero, both ai and bi are also zero. Hence, the sparsity
assumption on x enforces a compact description of both

modalities by using simultaneously active coefficients.
In addition, when such pairs cannot approximate both
images, the model also allows only one coefficient within
a pair to be non-zero. Therefore, the model represents
intensity and depth using a small set of joint features and
a small set of independent features. The main challenge
is to simultaneously infer the latent variables x, mI =

(mI
1,m

I
2, ...,m

I
N )

T and mD = (mD
1 ,m

D
2 , ...,m

D
N )

T un-
der the sparsity assumption on x. In the next section we
propose a convex algorithm that solves this problem.

IV. JOINT BASIS PURSUIT

Let us re-write the intensity-depth generative model,
including all unknown variables, in matrix notation as:[

yI

yD

]
=

[
ΦI 0

0 ΦD

]
·
[

MI

MD

]
· x +

[
ηI

ηD

]
,

where MI = diag(mI
1,m

I
2, ...,m

I
N ) and MD =

diag(mD
1 ,m

D
2 , ...,m

D
N ). Suppose first that we know dic-

tionaries ΦI and ΦD and we want to find joint sparse
representations of intensity and depth, i.e., to solve
for variables x,mI ,mD. To do this, we formulate the
following optimization problem:

OPT1 : min
∑
i

xi, where xi ∈ [0, 1], i = 1, ..., N

subject to: ‖yI −ΦIMIx‖2 ≤ (εI)2 (3)

‖yD −ΦDMDx‖2 ≤ (εD)2 (4)

|mI
i | ≤ U I (5)

|mD
i | ≤ UD (6)

where εI , εD are allowed approximation errors and U I

and UD are upper bounds on the magnitudes mI and
mD. In practice, the values of these upper bounds can be
chosen as arbitrarily high finite values. This optimization
problem is hard to solve using the above formulation,
since the first two constraints are non-convex due to the
terms MIx and MDx which are bilinear in the variables
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x, mI and mD. To overcome this issue, we transform
it into an equivalent problem by introducing the change
of variables given by Eqs. (2) deriving:

OPT2 : min
∑
i

xi, where xi ∈ [0, 1], i = 1, ..., N

subject to: ‖yI −ΦIa‖2 ≤ (εI)2 (7)

‖yD −ΦDb‖2 ≤ (εD)2 (8)

|ai| ≤ U Ixi (9)

|bi| ≤ UDxi, (10)

which is a convex optimization problem with linear
and quadratic constraints that can be solved efficiently,
i.e., in polynomial time, using log-barrier algorithms,
cf. [14, 15]. A variety of free and commercial software
packages are available like IBM ILOG CPLEX [16],
that we use in our experiments.

The problems (OPT1) and (OPT2) are indeed equiv-
alent using the variable transformation in Eqs. (2) as
follows.

Lemma 1. For any optimal solution (x∗,a∗,b∗) of
(OPT2), x∗ is also an optimal solution to (OPT1) with
corresponding matrices (MI)∗, (MD)∗ according to (2).
Also, any optimal solution (x∗, (MI)∗, (MD)∗) of
(OPT1) defines an optimal solution (x∗,a∗,b∗) to
(OPT2) .

Proof: For any (x∗,a∗,b∗) and corresponding
(MI)∗, (MD)∗ that satisfy Eqs. (2), conditions (7) and
(8) are equivalent to (3) and (4) by definition. Moreover,
since x∗ is nonnegative, conditions (9) and (10) are
equivalent to (5) and (6). Hence, any x∗ that is optimal
for (OPT2) with corresponding (a∗,b∗) is optimal for
(OPT1) with corresponding (MI)∗, (MD)∗ and vice
versa.

An immediate consequence of the form of the ob-
jective function and constraints in (OPT2) is that x∗ is
chosen such that (9) and (10) are both feasible and at
least one of them is active. Formally, this is stated by
the following lemma.

Lemma 2. For any optimal solution (x∗,a∗,b∗) of
(OPT2), at least one of the constraints (9) and (10) is
active for each component i, hence we have

x∗i = max{|a
∗
i |

U I
,
|b∗i |
UD
}, ∀i = 1, ..., N. (11)

Proof: Otherwise it would be a contradiction to the
optimality of x∗.

In the following, we refer to the optimization problem
(OPT2) as Joint Basis Pursuit (JBP), where x is the

vector of joint (coupling) variables in the signal model. It
is important to know the theoretical bounds on the norm
of the difference between the solution (a∗,b∗) found by
JBP and the true coefficients (a,b) of the model (1).

Based on the non-coupled case that is treated in [11],
we develop bounds on the difference of the optimal
solution of (OPT2) and a sparse signal to be recovered.
For this purpose, we assume that the matrix

A :=

[
ΦI 0
0 ΦD

]
(12)

satisfies the restricted isometry property with a constant
δS . This property of a linear system is defined as follows.
Denote AT , T ⊂ 1, ..., n as the n × |T | submatrix
obtained by extracting the columns of A corresponding
to the indices in set T , and | · | denotes the cardinality
of the set. The S-restricted isometry constant δS is then
defined as:

Definition 1. [10] The S-restricted isometry constant
δS of A is the smallest quantity such that

(1− δS)‖s‖22 ≤ ‖AT s‖22 ≤ (1 + δS)‖s‖22 (13)

for all subsets T with |T | ≤ S and coefficient sequences
(sj), j ∈ T .

When δS << 1, this property requires that every set
of columns with cardinality less than S approximately
behaves like an orthonormal system. It can thus be re-
lated to the maximal value of the inner product between
any two columns in the matrix A, usually called the
coherence of the dictionary:

µ = max
i,j 6=i
|〈φi,φj〉|, (14)

where φi and ,φj are two different atoms in the dictio-
nary (i.e., two columns of A) and 〈·〉 denotes the inner
product. With this definition, it can be easily shown that
δS = µ(|T | − 1) satisfies the RIP inequality (13).

Before we present the bound on the coefficient recov-
ery error of JBP, let us first define some prerequisites.
Assume we are given a pair of sparse signals (yI ,yD)
as in Eq. (1), with sparse coefficients (a0,b0), which
satisfy constraints (7) and (8). Let T0 be the support of
x0 which is at the same time the support of at least
a0 or b0 and contains the support of the other one or
it coincides with the support of both. Without loss of
generality, let us assume that

‖yI‖2 = ‖yD‖2 =: f0, (15)

which can be easily obtained by normalization. Assume
also that the components of a0 and b0 satisfy the bound
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constraints1

|a0i | ≤ f0, |b0i | ≤ f0, ∀i = 1, ..., N, (16)

i.e., in the remainder of the paper we assume the same
bounds on ai and bi: U I = UD = U = f0. It is also
useful in practice to select the approximation error ε in
terms of the fraction of the total signal energy, so we
denote ε = ηf0, where 0 ≤ η < 1.

Let further αi denote the scale between the smaller
and larger coefficient for each index i within the sparse
support set T0, i.e.:

αi = min{|a
0
i |
|b0i |

,
|b0i |
|a0i |
}, ∀i ∈ T0, (17)

and let γ denote:

γ = 1−min
i∈T0

αi. (18)

Parameter γ describes the level of similarity between the
sparse coefficients in the two signals, which is decreasing
with higher similarity. In the trivial case when a0i = b0i ,
∀i ∈ T0 we have that γ = 0. In all other cases γ ≤ 1.

Let further x0 denote an auxiliary vector that satisfies

max{|a0i |, |b0i |} = Ux0i , ∀i ∈ T0

namely (x0,a0,b0) is a feasible solution to (OPT2),
where x0 is chosen such that (9) and (10) are both
feasible and (at least) one of them is active.

Finally, let (x∗,a∗,b∗) be an optimal solution to
(OPT2). Then we have the following worst case bound
on the distance of these.

Theorem 1. Let (a0,b0) and (a∗,b∗) as defined above
and choose U = f0 with f0 from (15) and εI = εD =
ηf0, where 0 ≤ η < 1. Then

‖[a0;b0]− [a∗;b∗]‖22 ≤
[
|T0|
M

(C + γ
√
|T0|)2 + C2

]
f20

(19)
holds for a constant C that depends on the signal
model parameter γ, the sparse support size |T0| and the
approximation parameter η, and where the M -restricted
isometry property is satisfied for the linear system, cf.
Def. 1. In particular, we have:

C =
4η
√
M + γ|T0|

√
1 + δM√

M(1− δM+|T0|)−
√
|T0|(1 + δM )

. (20)

The proof of this Theorem is given in Appendix A.

1Although the assumption in Eq. (16) does not hold in general,
in practical applications using learned dictionaries we found that it
is always satisfied. However, if one wants to use a bound that is
surely satisfied, one should choose U = f0/σmin, where σmin is
the smallest of all singular values of ΦI and ΦD .

V. INTENSITY-DEPTH DICTIONARY LEARNING

In the previous section we have shown how to find
sparse coefficients in the joint depth-intensity generative
model, assuming that the model parameters, i.e., dic-
tionaries ΦI and ΦD are given. Since we do not have
those parameters in general, we propose to learn them
from a large database of intensity-depth image examples.
Dictionary learning for sparse approximation has been a
topic of intensive research in the last couple of years.
Almost all existing algorithms are based on Expectation-
Maximization, i.e., they are iterative algorithms that
consist of two steps: 1) inference of sparse coefficients
for a large set of signal examples while keeping the dic-
tionary parameters fixed, and 2) dictionary optimization
to minimize the reconstruction error while keeping the
coefficients fixed. We follow the same approach here,
using JBP in the first step and then conjugate gradient
in the second step. Once JBP finds the sparse coefficients
(a∗,b∗) and the coupling variables x, optimization of ΦI

and ΦD becomes decoupled. Therefore, in the learning
step we independently optimize the following objectives:

(ΦI)∗ = min
ΦI
‖YI −ΦIA‖2F + ρ‖ΦI‖F (21)

(ΦD)∗ = min
ΦD
‖YD −ΦDB‖2F + ρ‖ΦD‖F , (22)

where ‖·‖F denotes the Frobenius norm, YI , YD, A and
B are matrices whose columns are yI

j , yD
j , aj and bj

respectively, and j = 1, ..., J indexes the signal examples
from a given database. In addition to the reconstruction
error, we have added a normalization constraint on the
dictionaries, scaled by a small parameter ρ, in order
to control the dictionary norms as usually done in
dictionary learning. Before showing the performance of
the proposed learning algorithm, we review prior art that
we will use for experimental comparisons in Section VII.

VI. RELATION TO PRIOR ART

To the best of our knowledge, there has not been
any work that addresses the problem of learning joint
intensity-depth sparse representations. Therefore, we
overview prior work that focuses on sparse approxima-
tion algorithms that bear similarities to the proposed JBP
algorithm. Since the main characteristic of JBP is to find
sparse approximations of two signals sharing a common
sparse support, we overview algorithms targeting this
problem. Such algorithms can be grouped into two
categories with respect to the signal model they address:
a) simultaneous sparse approximation algorithms, and
b) group sparse approximation algorithms. We further
discuss how algorithms from each group relate to JBP.
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Simultaneous sparse approximation algorithms re-
cover a set of jointly sparse signals modeled as 2:

ys = Φxs + εs =
∑
i∈I

φix
s
i + εs, s = 1, ..., S, (23)

where S is the total number of signals ys, Φ is the
dictionary matrix and εs is a noise vector for signal ys.
Vectors of sparse coefficients xs share the same sparsity
support set I, i.e., they have non-zero entries at the same
positions. One of the earliest algorithms in this group
is the Simultaneous Variable Selection (SVS) algorithm
introduced by Turlach et. al. [17]. SVS selects a common
subset of atoms for a set of signals by minimizing
the representation error while constraining the `1-norm
of the maximum absolute values of coefficients across
signals. Formally, SVS solves the following problem:

(SVS) : min
1

2

S∑
s=1

‖ys −Φxs‖2, (24)

subject to:
∑
i

max{|x1i |, ..., |xSi |} ≤ τ, (25)

where τ is given. Let X denote the matrix with xs, s =
1, ..., S as columns. We can see that the left hand side
of the constraint in SVS is obtained by applying the
`∞-norm to rows (to find the largest coefficients for all
explanatory variables), followed by applying the `1-norm
to the obtained vector in order to promote sparsity of
the support. We denote this norm as ‖X‖∞,1. Versions
of the same problem for the unconstrained case and the
error-constrained case have been studied by Tropp [18].

To see the relation of SVS to JBP, we use Lemma 2,
which allows us to formulate the JBP for the special case
of U I = UD as:

min : t (26)

subject to: ‖yD −ΦDa‖2 ≤ ε2 (27)

‖yI −ΦIb‖2 ≤ ε2 (28)∑
i

max{|ai|, |bi|} ≤ t. (29)

Therefore, JBP operates on the same `∞,1-norm of the
coefficient matrix as SVS. However, in contrast to SVS,
JBP minimizes the number of non-zero elements in both
a and b by minimizing ‖[a b]‖∞,1 and constraining
the approximation error induced by the coefficients. A
much more important difference of our work and [17]
is that we allow for different sets of atoms for intensity
and depth. Thus, in JBP, each signal can be represented
using a different dictionary, but with coefficient vectors

2For the case of two signals, for example image intensity and depth,
this model is a noisy version of the second model discussed in Sec. II.

that share the same positions of non-zero entries. This
makes JBP applicable to intensity-depth learning, in
contrast to SVS. Finally, we remark here that choosing
the objective function as we did allows for a smooth
convex representation of the last constraint (29).

Group sparse approximation algorithms recover a
signal modeled as:

y =
∑
i

Hixi + ε, (30)

where Hi is a submatrix of a big dictionary matrix H.
This model is useful for signals whose sparse support has
a group structure, namely when groups of coefficients
are either all non-zero or all zero. The first algorithm
proposed for group sparse approximation was a gener-
alization of Lasso, developed by Bakin [9], and later
studied by other authors (e.g. Yuan and Lin [19]). Group
Lasso refers to the following optimization problem:

(GL) : min ‖y −
∑
i

Hixi‖2 + λ
∑
i

‖xi‖p, (31)

where ‖ · ‖p denotes the `p-norm. The most studied
variant of group lasso is for p = 2, because it leads
to a convex optimization problem with efficient imple-
mentations. The group sparsity model can be used to
represent intensity-depth signals by considering pairs
(ai, bi), i = 1, ..., N as groups. In this case, group lasso
with p = 2 becomes:

(GL-ID) : min(‖yI −
∑
i

φI
i ai‖2+ (32)

‖yD −
∑
i

φD
i bi‖2 + λ

∑
i

√
a2i + b2i ).

The drawback of GL with p = 2 is that the square
norm gives higher weight to balanced atom pairs (pairs
with similar coefficients) than to asymmetric pairs with
one large and one small coefficient. This means that
GL would give priority to atom pairs with similar
coefficients, which do not necessarily correspond to
meaningful intensity depth pairs (see examples in Sec-
tion II, where 3D features yield pairs with possibly
large differences in coefficient values). Choosing p =∞
avoids this problem and allows selection of pairs with
unbalanced coefficients. In that case the regularizer pe-
nalizes the norm ‖[a b]‖∞,1. Rather than solving the
unconstrained problem of group lasso with p = ∞ and
a non-smooth objective, JBP reaches a similar goal by
solving a constrained convex optimization problem with
smooth constraints. It also eliminates the need for tuning
the Lagrange multiplier.
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VII. EXPERIMENTAL RESULTS

We have performed two sets of experiments in order
to evaluate the proposed JBP and dictionary learning
based on JBP. The first set of experiments uses simulated
random data, with the goal to determine the model
recovery performance of JBP when the ground truth
signal models are given. In the second set, we apply
JBP and dictionary learning on real depth-intensity data
and show its performance on a depth inpainting task.
In both cases, JBP has been compared to Group Lasso
(GL). For the depth inpainting task, we also compare
JBP to inpainting using total variation (TV) [20].

A. Model recovery

To evaluate the performance of JBP, we have gener-
ated a set of pairs of signals of size N = 64, denoted
by {yI

j} and {yD
j }, j = 1, 500. Signals in each pair

have a common sparsity support of size |T0|, and they
are sparse in random, Gaussian iid dictionaries ΦI and
ΦD of size 64× 128. Their coefficients, {aj} and {bj},
j = 1, 500 are random, uniformly distributed, and do not
have the same values nor signs. However, their ratios αi

(as defined in Eq. 17) are bounded from below, which
gives a certain value of γ (see Eq. 18). Hence, we assume
some similarity in the magnitudes within each pair of
coefficients of the two modalities. All signals have been
corrupted by Gaussian noise.

Figure 3 shows the relative coefficient reconstruction
error ‖a∗−a‖22/‖a‖22+‖b∗−b‖22/‖b‖22, where (a∗,b∗)
are the reconstructions of original values (a,b). The
error is averaged over 50 different signals and plotted
versus the signal-to-noise (SNR) ratio between sparse
signals and Gaussian noise. The parameter values for
this evaluation set have been chosen as: |T0| = 10 and
γ = 0.25, which represent reasonable values that we
would expect in real data. We have compared JBP with
GL and with the theoretical bound in Eq. 19, for M = 25
and M = 64. Instead of using the dictionary coherence
value for δ, which would give the worst-case bounds,
we use the mean of inner products between all atoms to
obtain and plot the average case bounds. We can see that
JBP outperforms GL for a large margin. Moreover, the
actual performance of JBP is much better than predicted
by the theory, showing that the average derived bound
is rather conservative.

Furthermore, we have used these randomly generated
signals as training sets in our dictionary learning algo-
rithm, in order to recover the original dictionary. For four
different values of sparsity |T0| = 2, 4, 6, 8, we have
applied the proposed learning algorithm starting from
a random initial dictionary. For comparison, we have

Fig. 3. JBP model recovery performance for random signals.
Average relative coefficient reconstruction error is plotted for different
signal-to-noise (SNR) ratios between sparse signals and Gaussian
noise.

replaced the JBP in the inference step with GL, while
keeping the learning step exactly the same. We refer to
this method as GL-based learning. Figure 4a shows the
mean square error (MSE) between the original atoms
and the recovered ones vs sparsity |T0|, for JBP and
GL-based learning. Similarly, we plot in Figure 4b the
percentage of recovered atoms vs sparsity, where an atom
is considered recovered when its MSE is less than 0.05.
Below this threshold the comparison is impossible since
GL recovery error is huge (almost 0 recovered atoms).
We can see from both graphs that learning based on JBP
is superior to GL-based learning.

B. Intensity-depth dictionary learning

In our second set of experiments we have evaluated
the performance of JBP and dictionary learning on real
data, in particular on depth-intensity images. We have
learned a depth-intensity overcomplete dictionary on the
Middlebury 2006 benchmark depth-intensity data [21].
The intensity data has been whitened, i.e., its frequency
spectrum has been flattened, as initially proposed in [5].
Such pre-processing speeds up the learning. Depth data
could not be whitened because it would introduce Gibbs
artifacts around the missing regions at occlusions. We
handle such missing pixels by masking. Learning has
been performed in a patch-mode. Namely, in each itera-
tion of the two-step learning process, a large number of
depth-intensity pairs of 12 × 12 size patches have been
randomly selected from data. Each depth and intensity
patch within a pair coincide in a 3D scene. Patches have
been normalized to have norm one, and η has been set
to 0.1. We have chosen this value such that we get a
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Fig. 4. Recovery performance of dictionary learning using JBP and
comparison to GL. (a) Mean square error between recovered atoms
and original atoms vs sparsity |T0|. (b) Percentage of recovered atoms
vs sparsity |T0|.

good reconstruction of depth, without the quantization
effects present in Middlebury depth maps (i.e., such that
the quantization error is subsumed by the reconstruction
error). We have learned dictionaries ΦI and ΦD, each of
size 144×288, i.e., twice overcomplete. For comparison,
we have also learned depth-intensity dictionaries using
GL-based learning, where λ = 0.3 has been chosen to
obtain the same average reconstruction error as in JBP.

Figures 5a and Figures 5b show dictionaries learned
by JBP and GL, respectively. The JBP-learned dictionary
contains more meaningful features, such as coinciding
depth-intensity edges, while GL-learned dictionary only
has few of those. JBP dictionary atoms also exhibit cor-
relation between orientations of the Gabor-like intensity
atoms and the gradient angle of depth atoms. This is
quite visible in the scatter plots of intensity orientation
vs depth gradient angle shown in Figure 6. We can
see that for JBP there is significant clustering around
the diagonal (corresponding to a 90◦ angle between
orientation and gradient). On the other hand, we cannot
see this effect when using GL for learning. To the best of
our knowledge, this is the first time that the correlation
between depth gradient angles and texture orientations is
found to emerge from natural scenes data (see [22] for
some recent research in the area of 3D scene statistics).

Finally, we have compared the performance of JBP

and GL, and the corresponding learned dictionaries,
on an inpainting task. Namely, we have randomly re-
moved 96% of depth pixels from an intensity-depth pair
obtained by a time-of-flight (TOF) camera3. We have
chosen the TOF data to show that learned dictionaries of
intensity-depth are not linked to particular depth sensors.
Original intensity and depth images are shown in Fig-
ures 7a) and b), respectively. From the original intensity
image and 4% of depth pixels (shown in Figure 7c),
we have reconstructed the whole depth image, using GL
with the GL-learned dictionary (Figure 7d), and using
JBP with the JBP-learned dictionary (Figure 7e). We
have also applied TV inpainting on depth masked image
only and obtained the result shown in Figure 7f. We can
see that JBP gives the best performance (mean square
error MSE=4.9e-3), followed by GL (MSE=7.2e-3) and
TV (MSE=7.7e-3). Therefore, GL gives just a minor
improvement to TV inpainting (which does not use the
intensity image), while JBP gives a significantly smaller
MSE compared to both GL and TV.

VIII. CONCLUSION

We have presented an algorithm for learning joint
overcomplete dictionaries of image intensity and depth.
The proposed method is based on a novel second order
cone program (called JBP) for recovering sparse signals
of joint sparse support in dictionaries with two modali-
ties. We have derived a theoretical bound for the coef-
ficient recovery error of JBP and shown its superiority
to the Group Lasso algorithm through numerical sim-
ulations. When applied to the Middlebury image-depth
database, the proposed learning algorithm converges to
a dictionary of various intensity-depth features, such as
coinciding edges and image grating - depth slant pairs.
The learned features exhibit a significant correlation of
depth gradient angles and texture orientations, which
is an important result in 3D scene statistics research.
Finally, we have shown that JBP with the learned dictio-
nary can reconstruct meaningful depth maps from only
4% of depth pixels. These results outline the important
value of our method for 3D technologies based on hybrid
image-depth sensors.

APPENDIX

A. Proof of Theorem 1

Let us first prove the following lemma:

Lemma 3. For h := [a∗;b∗]−[a0;b0] it holds true that:

‖hT C
0
‖1 ≤ ‖hT0‖1 + γU |T0|, (33)

3http://www.pmdtec.com/
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(a) JBP

(b) GL

Fig. 5. Learned intensity-depth dictionaries. Each column contains a set of atom pairs (φI
1,φ

D), where the left part is an intensity atom
and the right part is a depth atom. (a) JBP-learned dictionaries, (b) GL-learned dictionaries.

Texture + slant basis functions
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Fig. 6. Correlation between depth atom gradients and image atom orientations. a) Illustration of atom pairs that have 90 degrees angle
between the orientation of the Gabor-like intensity part and the gradient angle of the depth part. Scatter plots of orientation vs gradient angle
for b) JBP and c) GL.

(a) (b) (c) (d) GL (e) JBP (f) TV

Fig. 7. Inpainting results on time of flight data. a) Original intensity image, b) Original depth image, c) 4% of kept depth pixels, d)
reconstructed depth with GL; MSE = 7.2e-3, e) reconstructed depth with JBP, MSE = 4.9e-3, f) reconstructed depth with total variation
inpainting, MSE=7.7e-3.
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where T C
0 denotes the complement set of T0 and hT

denotes the subvector of h corresponding to T .

Proof: Define

I0a :={i ∈ I : |a0i | = Uxi
0},

I0b :={i ∈ I \ I0a : |b0i | = Uxi
0},

I∗a :={i ∈ I : |a∗i | = Uxi
∗},

I∗b :={i ∈ I \ I∗a : |b∗i | = Uxi
∗}.

Due to Lemma 2, we have that I0a ∪ I0b = I and I∗a ∪
I∗b = I, and due to the definition above it holds that
I0a ∩ I0b = ∅ and I∗a ∩ I∗b = ∅. Therefore, we have that:

‖[a∗;b∗]‖1 =
∑
i∈I∗a

|a∗i |+
∑
i∈I∗b

|b∗i |+
∑
i∈I∗a

|b∗i |+
∑
i∈I∗b

|a∗i |

≤ U
∑
i∈I
|x∗i |+ U

∑
i∈I∗a

|x∗i |+ U
∑
i∈I∗b

|x∗i |

= 2U‖x∗‖1. (34)

Similarly, we have that:

‖[a0;b0]‖1 =
∑
i∈I0a

|a0i |+
∑
i∈I0b

|b0i |+
∑
i∈I0a

|b0i |+
∑
i∈I0b

|a0i |

≥ U
∑
i∈I
|x0i |+min

i∈T0
αi(
∑
i∈I0a

|a0i |+
∑
i∈I0b

|b0i |)

≥(18) 2U‖x0‖1 − γU |T0|. (35)

Due to optimality of x∗, we have ‖x∗‖1 ≤ ‖x0‖1, which
combined with (34) and (35) gives:

‖[a∗;b∗]‖1 ≤ 2U‖x0‖1 ≤ ‖[a0;b0]‖1 + γU |T0|. (36)

Due to a0
T C
0

= 0 and b0
T C
0

= 0, we can write

‖[a0;b0] + h‖1 = ‖[a0
T0 ;b

0
T0 ;0] + [hT0 ;hT C

0
]‖1

= ‖[a0
T0 ;b

0
T0 ] + hT0‖1 + ‖hT C

0
‖1.

(37)

Thus, using the triangle inequality and the definition of
h we derive:

‖[a0;b0]‖1 − ‖hT0‖1 + ‖hT C
0
‖1 ≤ ‖[a0;b0] + h‖1

= ‖[a∗;b∗]‖1 ≤(36) ‖[a0;b0]‖1 + γU |T0|

and thus
‖hT C

0
‖1 ≤ ‖hT0‖1 + γU |T0|. (38)

We are now ready to prove Theorem 1.
Proof: Let A be defined as in Eq. (12). Then we

have from (7) and (8) that

‖Ah‖2 ≤ 4ε = 4ηf0.

Assume we have divided T C
0 into subsets of size M ,

more precisely, we have T C
0 = T1 ∪ · · · ∪ Tn−|T0|, where

Ti are sorted by decreasing order of hT C
0

, and where
T01 = T0 ∪ T1. Without alternations - cf. [11] - it holds
true that

‖hT C
01
‖22 ≤ ‖hT C

0
‖21/M.

Using (38) yields now

‖hT C
01
‖22 ≤ (‖hT0‖1 + γU |T0|)2/M
≤ (
√
|T0|‖hT0‖2 + γU |T0|)2/M, (39)

where the second step follows from the norm inequality.
Hence:

‖h‖22 = ‖hT01‖22 + ‖hT C
01
‖22

≤ (1 +
|T0|
M

)‖hT0‖22 +
2γU |T0|3/2

M
‖hT0‖2

+
(γU |T0|)2

M
. (40)

From the restricted isometry hypothesis, cf. Def. 1, we
get

‖Ah‖2 = ‖AT01hT01 +
∑
j≥2

ATjhTj‖2

≥ ‖AT01hT01‖2 − ‖
∑
j≥2

ATjhTj‖2

≥ ‖AT01hT01‖2 −
∑
j≥2
‖ATjhTj‖2

≥
√

1− δM+|T0|‖hT01‖2 −
√

1 + δM
∑
j≥2
‖hTj‖2

≥
√

1− δM+|T0|‖hT0‖2 −
√

1 + δM
∑
j≥2
‖hTj‖2

(41)

where δS is a constant chosen such that the inequalities
hold, which follows from inequality (4) in [11]. Here,
AT denotes the columns of A corresponding to the
index set T .

In analogy to [11], due to the ordering of the sets Tj
by decreasing order of coefficients, we have:

|hTj+1(t)| ≤ ‖hTj‖1/M

meaning each component in hTj+1
is smaller than the

average of the components in hTj (absolute value-wise).
Thus, we get:

‖hTj+1
‖22 =

∑
t∈Tj+1

‖ht‖22

≤
∑

t∈Tj+1

‖hTj‖21/M2

≤M‖hTj‖21/M2 = ‖hTj‖21/M,
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and∑
j≥2
‖hTj‖2 ≤

∑
j≥1
‖hTj‖1/

√
M

= ‖hT C
0
‖1/
√
M

≤(38) (‖hT0‖1 + γU |T0|)/
√
M

≤
√
|T0|/M‖hT0‖2 + γU |T0|/

√
M (42)

where the last step follows from the norm inequality.
Combining Eq. (42) and Eq. (41), we get:

‖Ah‖2 ≥
√

1− δM+|T0|‖hT0‖2

−
√

1 + δM
√
|T0|/M‖hT0‖2

− γU |T0|
√

1 + δM/
√
M (43)

and subsequently:

‖hT0‖2 ≤
‖Ah‖2 + γU |T0|

√
1 + δM/

√
M√

1− δM+|T0| −
√
1 + δM

√
|T0|/M

(44)

≤ 4ηf0
√
M + γf0|T0|

√
1 + δM√

M(1− δM+|T0|)−
√
|T0|(1 + δM )

= Cf0, (45)

if the denominator is greater than zero. Replacing this
result in Eq. (40) and taking U = f0 we get:

‖h‖22 ≤ (1 +
|T0|
M

)C2f20 + 2γ
|T0|3/2

M
Cf20 + γ2

|T0|2

M
f20 ,

(46)
which is equivalent to (19) and thus completes the proof.
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