
 

 

Abstract 

Traditional patch-based sparse representation modeling of natural images usually suffer from two problems. First, it has to solve a 

large-scale optimization problem with high computational complexity in dictionary learning. Second, each patch is considered 

independently in dictionary learning and sparse coding, which ignores the relationship among patches, resulting in inaccurate 

sparse coding coefficients. In this paper, instead of using patch as the basic unit of sparse representation, we exploit the concept of 

group as the basic unit of sparse representation, which is composed of nonlocal patches with similar structures, and establish a 

novel sparse representation modeling of natural images, called group-based sparse representation (GSR). The proposed GSR is 

able to sparsely represent natural images in the domain of group, which enforces the intrinsic local sparsity and nonlocal 

self-similarity of images simultaneously in a unified framework. Moreover, an effective self-adaptive dictionary learning method 

for each group with low complexity is designed, rather than dictionary learning from natural images. To make GSR tractable and 

robust, a split Bregman based technique is developed to solve the proposed GSR-driven 0   minimization problem for image 

restoration efficiently. Extensive experiments on image inpainting, image deblurring and image compressive sensing recovery 

manifest that the proposed GSR modeling outperforms many current state-of-the-art schemes in both PSNR and visual perception. 

 

Index Terms—Image restoration, sparse representation, nonlocal self-similarity, deblurring, inpainting, compressive 

sensing 
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I. INTRODUCTION 

mage restoration has been extensively studied in the past two decades [1]–[20], whose purpose is to reconstruct the original high 

quality image x  from its degraded observed version y  . It is a typical ill-posed linear inverse problem and can be generally 

formulated as: 

,Hy x n                                                                                                              (1) 

where ,yx  are lexicographically stacked representations of the original image and the degraded image, respectively, H  is a 

matrix representing a non-invertible linear degradation operator and n  is usually additive Gaussian white noise. When H  is a 

mask, that is, H  is a diagonal matrix whose diagonal entries are either 1 or 0, keeping or killing the corresponding pixels, the 

problem (1) becomes image inpainting [5], [6]; when H  is a blur operator, the problem (1) becomes image deblurring [9], [18]; 

when H  is a set of random projections, the problem (1) becomes compressive sensing (CS) [19], [42].  

To cope with the ill-posed nature of image restoration, image prior knowledge is usually employed for regularizing the solution 

to the following minimization problem [8]–[18]: 

    ,
2

2
1
2argmin ( )x Hx y x  λ                                                                     (2) 

where 
2

2
1
2 Hx y  is the 2  data-fidelity term, ( )x  is called the regularization term denoting image prior and λ  is the regulari-

zation parameter. Many optimization approaches for the above regularization-based image inverse problems have been developed 

[16]–[18], [43]. 

Due to that image prior knowledge plays a critical role in the performance of image restoration algorithms, designing effective 

regularization terms to reflect the image priors is at the core of image restoration. Classical regularization terms, such as half 

quadrature formulation [21], Mumford-Shah (MS) model [22], and total variation (TV) models [1] [4], utilize local structural 

patterns and are built on the assumption that images are locally smooth except at edges. These regularization terms demonstrate 

high effectiveness in preserving edges and recovering smooth regions. However, they usually smear out image details and cannot 

deal well with fine structures. 

In the past several years, sparsity has been emerging as one of the most significant properties of natural images [23], [24] and the 

sparsity-based regularization has achieved great success in various image processing applications, such as denoising [25], 

deblurring [11], and super-resolution [26]. The sparse model assumes that each patch of an image can be accurately represented by 

a few elements from a basis set called a dictionary, which is learned from natural images. Compared with traditional analytical-

ly-designed dictionaries, such as wavelets, curvelets, and bandlets, the learned dictionary enjoys the advantage of being better 

I 



adapted to the images, thereby enhancing the sparsity and showing impressive performance improvement. However, there exist 

two main problems in the current patch-based sparse representation model. First, dictionary learning is a large-scale and highly 

non-convex problem, which often requires high computational complexity [24], [27]. Second, patch is the unit of sparse repre-

sentation, and each patch is usually considered independently in dictionary learning and sparse coding, which ignores the rela-

tionships between similar patches in essence, such as self-similarity. Moreover, with the learned dictionary, the actual sparse 

coding process is always calculated with relatively expensive nonlinear estimations, such as match pursuits [28], [38], which also 

may be unstable and imprecise due to the coherence of the dictionary [37]. 

Another alternative significant property exhibited in natural images is the well-known nonlocal self-similarity, which depicts the 

repetitiveness of higher level patterns (e.g., textures and structures) globally positioned in images. Inspired by the success of 

nonlocal means (NLM) denoising filter [8], a series of nonlocal regularization terms for inverse problems exploiting nonlocal 

self-similarity property of natural images are emerging [32]–[36]. Due to the utilization of self-similarity prior by adaptive non-

local graph, nonlocal regularization terms produce superior results over the local ones, with sharper image edges and more image 

details [33], [36]. Nonetheless, there are still plenty of image details and structures that cannot be recovered accurately. One of the 

reasons is that the weighted graphs adopted by the above nonlocal regularization terms inevitably give rise to disturbance and 

inaccuracy, due to the inaccurate weights [35].  

In recent works, the sparsity and the self-similarity of natural images are usually combined to achieve better performance. In 

[11], sparsity and self-similarity are separately characterized by two regularization terms, which are incorporated together into the 

final cost functional of image restoration solution to enhance the image quality. In [12], simultaneous sparse coding is utilized to 

impose that similar patches should share the same dictionary elements in their sparse decomposition, which acquired impressive 

denoising and demosaicking results. In [15], a nonlocally centralized sparse representation (NCSR) model is proposed, which first 

obtains good estimates of the sparse coding coefficients of the original image by the principle of NLM in the domain of sparse 

coding coefficients, and then centralizes the sparse coding coefficients of the observed image to those estimates to improve the 

performance of sparse representation based image restoration. 

Lately, low-rank modeling based approaches have also achieved great success in image or video restoration. To remove the 

defects in a video, unreliable pixels in the video are first detected and labeled as missing. Similar patches are grouped such that the 

patches in each group share similar underlying structure and form a low-rank matrix approximately. Finally, the matrix completion 

is carried out on each patch group to restore the image [50] [51]. In [5], a low-rank approach toward modeling nonlocal similarity 

denoted by SAIST is proposed, which not only provides a conceptually simple interpretation for simultaneous sparse coding [12] 



from a bilateral variance estimation perspective, but also achieves highly competent performance to several state-of-the-art 

methods. 

In this paper, instead of using patch as the basic unit of sparse representation, we exploit the concept of group as the basic unit of 

sparse representation, and establish a novel sparse representation modeling of natural images, called group-based sparse repre-

sentation (GSR). Compared with traditional patch-based sparse representation, the contributions of our proposed GSR modeling 

are mainly three folds. First, GSR explicitly and effectively characterizes the intrinsic local sparsity and nonlocal self-similarity of 

natural images simultaneously in a unified framework, which adaptively sparsifies the natural image in the domain of group. 

Second, an effective self-adaptive group dictionary learning method with low complexity is designed, rather than dictionary 

learning from natural images. Third, an efficient split Bregman based iterative algorithm is developed to solve the proposed 

GSR-driven 0  minimization problem for image restoration. Experimental results on three applications: image inpainting, 

deblurring and image CS recovery have shown that the proposed GSR model outperforms many current state-of-the-art schemes. 

Part of our previous work for image CS recovery via GSR has been presented in [47]. 

The remainder of this paper is organized as follows. Traditional patch-based sparse representation is introduced in Section II. 

Section III elaborates the design of group-based sparse representation (GSR) modeling, and discusses the close relationships 

among the GSR model, the group sparsity model and the low rank model. Section IV proposes a new objective functional formed 

by our proposed GSR, and gives the implementation details of solving optimization problem. Extensive experimental results are 

reported in Section V. In Section VI, we summarize this paper. 

II. TRADITIONAL PATCH-BASED SPARSE REPRESENTATION 

In literature, the basic unit of sparse representation for natural images is patch [24]–[26]. Mathematically, denote by 
Nx and 

kx
Bs

 
the vector representations of the original image and an image patch of size B Bs s  at location , 1, 2,...,k  k = n , 

where N  and sB  are the size of the whole image vector and each image patch vector, respectively, and n  is the number of image 

patches. Then we have 

,Rx xk k ( )                                                                                            (3) 

where Rk ( )  is an operator that extracts the patch kx  from the image x , and its transpose, denoted by 
TRk ( ) , is able to put back 

a patch
 
into the k-th position in the reconstructed image, padded with zeros elsewhere. Considering that patches are usually 

overlapped, the recovery of x  from xk{ }  becomes 

,
s

T T
BR R 1xx k k kk k

n n

1 1
( ) ( )./

                                                                 
 (4) 



where the notation /.  stands for the element-wise division of two vectors, and 
sB1  is a vector of size sB  with all its elements 

being 1. Eq. (4) indicates nothing but an abstraction strategy of averaging all the overlapped patches. 

For a given dictionary s MBD ( M  is the number of atoms in D ), the sparse coding process of each patch kx  over D  is to 

find a sparse vector M
k  (i.e., most of the coefficients in k  are zero or close to zero) such that k kDx . Then the 

entire image can be sparsely represented by the set of sparse codes k{ } . In practice, the sparse coding problem of kx  over D  is 

usually cast as 

,
2

2
1
2argmin kk p

Dx λ
                                                                

 (5) 

where λ  is a constant, and p is 0 or 1. If p = 0, that means the sparsity is strictly measured by the 0 -norm of k , which counts the 

nonzero elements in k . Nonetheless, since the problem of 0 -norm optimization is non-convex and usually NP-hard, it is often 

sub-optionally solved by greedy algorithms, e.g., orthogonal matching pursuit (OMP) [28]. Alternatively, if p = 1, the 0 -norm 

minimization is approximated by the convex 1 -norm, which can be efficiently solved by some recent large-scale tools [16]–[18], 

[38], [43]. 

Similar to Eq. (4), reconstructing x  from its sparse codes k{ }
 
is formulated: 

,
s

def T T
BD DR R 1x k k kk k

n n

1 1
( ) ( )./                                                   (6) 

where  denotes the concatenation of all k , that is,  , ,..., TT T T
n1 2[ ] . The purpose of introducing the notation  is to 

exploit D to make the expression of   
s

T T
BDR R 1k k kk k

n n

1 1
( ) ( )./  more convenient. 

Now, considering the degraded version in Eq. (1), the regularization-based image restoration scheme utilizing traditional 

patch-based sparse representation model is formulated as 

ˆ ,λHD y
p

2

2
1
2argmin

 

                                                      (7) 

where λ  is the regularization parameter, and p  is 0 or 1. With ˆ , the reconstructed image can be expressed by ˆˆ Dx . 

The heart of the sparse representation modeling lies in the choice of dictionary D . In other words, how to seek the best domain 

to sparsify a given image? Much effort has been devoted to learning a redundant dictionary from a set of training example image 

patches. To be concrete, given a set of training image patches 1 2
, ,...,

J
X x x x[ ] , where J is the number of training image 

patches, the goal of dictionary learning is to jointly optimize the dictionary D  and the representation coefficients matrix 

1 2
[ ], ,...,

J  such that Dxk k  and k p L , where p  is 0 or 1. This can be formulated by the following mini-

mization problem: 



,

ˆˆ , , s.t. Lk

J

k k pk
k.

D
D Dx 2

21
( ) argmin

                                                

(8) 

Apparently, the above minimization problem in Eq. (8) is large-scale and highly non-convex even when p is 1. To make it 

tractable and solvable, some approximation approaches, including MOD [27] and K-SVD [24], have been proposed to optimize D  

and alternatively, leading to many state-of-the-art results in image processing. However, these approximation approaches for 

dictionary learning inevitably require high computational complexity.  

Apart from high computational complexity, from Eq. (5) and Eq. (8), it can be noticed that each patch is actually considered 

independently in dictionary learning and sparse coding, which ignores the relationships between similar patches in essence, such as 

self-similarity [4], [11].  

III. GROUP-BASED SPARSE REPRESENTATION (GSR) 

In this paper, to rectify the above problems of traditional patch-based sparse representation, we propose a novel sparse represen-

tation modeling in the unit of group instead of patch, aiming to exploit the local sparsity and the nonlocal self-similarity of natural 

images simultaneously in a unified framework. Each group is represented by the form of matrix, which is composed of nonlocal 

patches with similar structures. Thus, the proposed sparse representation modeling is named as group-based sparse representation 

(GSR). Moreover, an effective self-adaptive dictionary learning method for each group with low complexity is designed rather than 

dictionary learning from natural images, enabling the proposed GSR more efficient and effective. This section will give detailed 

description of GSR modeling, and elaborate the self-adaptive dictionary learning technique. 

 

 

 

Figure 1: Illustrations for the group construction. Extract each patch vector k
x

 
from image x . For each k

x , denote xS k  the set composed of 

its c  best matched patches. Stack all the patches in xS k  
in the form of matrix to construct the group, denoted by Gx k . 

A. Group Construction 

Since the unit of our proposed sparse representation model is group, this subsection will give details to show how to construct it.     



As shown in Fig. 1, first, divide the image x  with size N into n  overlapped patches of size B Bs s  
and each patch is de-

noted by the vector sBxk , i.e., 1, 2, ...,k = n .  

Then, for each patch xk
, denoted by small red square in Fig. 1, in the L L  training window (big blue square), search its c  best 

matched patches, which comprise the set kxS . Here, Euclidean distance is selected as the similarity criterion between different 

patches. 

Next, all the patches in kxS  
are stacked into a matrix of size 

sB c , denoted by sB
Gx k

c , which includes every patch in 

kxS  as its columns, i.e., 2, , ,... cG G G Gx x x x
k k k k1{ } . The matrix Gx k

 containing all the patches with similar structures is 

named as a group. Analogous to Eq. (3), we define 

G GR xx ,k k ( )                                                                                       (9) 

where GR k
( )  is actually an operator that extracts the group kGx  from x , and its transpose, denoted by T

GR k ( ) , can put back a 

group
 
into the k-th position in the reconstructed image, padded with zeros elsewhere.  

By averaging all the groups, the recovery of the whole image x  from Gx k
{ }  becomes 

1 1
( ) ( )./k k k ck k

n n
，G G GR R 1xx s

T T
B

                                                    
 (10) 

where /.  stands for the element-wise division of two vectors and 
sB1 c  is a matrix of size sB c  with all the elements being 1.  

 

Figure 2: Comparison between patch xk  
and group kGx . 

Note that, in our paper, each patch xk
 is represented as a vector, while each group kGx  is represented as a matrix, as illustrated 

in Fig. 2. According to above definition, it is obvious to observe that each patch xk
 corresponds to a group kGx . One can also see 

that the construction of kGx  explicitly exploits the self-similarity of natural images. 

B. Group-based Sparse Representation Modeling 

To enforce the local sparsity and the nonlocal self-similarity of natural images simultaneously in a unified framework, we propose 

to sparsify natural images in the domain of group. Therefore, our proposed model is named as group-based sparse representation 

(GSR). The proposed GSR model assumes that each group kGx  
can be accurately represented by a few atoms of a self-adaptive 

learning dictionary kGD .  



In this subsection, [ , ,..., ]G G GGD d d d
k k kk m1 2  

is supposed to be known. Note that each atom s cB
Gd k i  

is a matrix of 

the same size as the group 
kGx , and m is the number of atoms in 

kGD . Different from the dictionary in patch-based sparse rep-

resentation, here 
kGD  

is of size 
S

cB m( ) , that is, S cB
GD k

m( )
. How to learn 

kGD  with low complexity will be given in 

the next subsection.  

Thus, some notations about GSR can be readily extended from patch-based sparse representation. Specifically, the sparse coding 

process of each group 
kGx  over 

kGD  is to seek a sparse vector [ , ,..., ]G G GG k k kk m1 2 such that 

G G Gdx
k k ki ii

m

1
. For simplicity, we utilize the expression G GD

k k
 to represent G Gdk ki ii

m

1
 without confusion. 

Note that G GD
k k

 is not a strict matrix-vector multiplication. It is also worth emphasizing that the sparse coding process of each 

group under our proposed 
kGD  is quite efficient without iteration, which will be seen in the following section. Then the entire 

image can be sparsely represented by the set of sparse codes { }
kG  in the group domain. Reconstructing x  from the sparse 

codes { }
kG  

is expressed as:
 
 

,
s

def T T
BG G G G G GD R RD 1x

k k k k ck k

n n

1 1
( ) ( )./

                                               
(11) 

where GD  denotes the concatenation of all 
kGD , and G  denotes the concatenation of all 

kG . 

Accordingly, by considering the degraded version in Eq. (1), the proposed regularization-based image restoration scheme via 

GSR is formulated as 

0
ˆ .λG G

G
G GHD y

2

2
1
2argmin                                                    (12)

 

With ˆG , the reconstructed image can be expressed by ˆˆ G GDx . Note that, in this paper, 0 -norm is exploited to measure 

the real sparsity of G  in the group domain in order to enhance the image restoration quality. Nonetheless, Eq. (12) is usually hard 

to solve owing that 0 -norm optimization is non-convex. Thus, solving Eq. (12) efficiently and effectively is one of our main 

contributions, which will be seen in the following.  

To understand GSR model more clearly, here, we make a comparison between Eq. (12) and previous patch-based sparse rep-

resentation for image restoration in Eq. (7). We can see the differences between Eq. (12) and Eq. (7) lie in the dictionary and the 

unit of sparse representation. The advantages of Eq. (12) are mainly three-folds. First, GSR adopts group as the unit of sparse 

representation and sparsely represents the entire image in the group domain. Since the group is composed of patches with similar 

structures, GSR exploits self-similarity explicitly in dictionary learning and sparse coding, which is more robust and effectual. 

Second, rather than learning a general dictionary D  for all patches in Eq. (7), a self-adaptive dictionary kGD  
is designed for each 



kGx , which is more effective. Third, as will be seen below, the proposed self-adaptive dictionary learning of 
kGD  is with low 

complexity, which doesn’t require high computational complexity to solve large-scale optimizations. 

C. Self-Adaptive Group Dictionary Learning  

In this subsection, we will show how to learn the adaptive dictionary 
kGD  for each group 

kGx . Note that, on one hand, we hope 

that each 
kGx  can be faithfully represented by 

kGD . On the other hand, it is expected that the representation coefficient vector of 

kGx  
over 

kGD  is as sparse as possible.  Like traditional patch-based dictionary learning algorithm in Eq. (8), the adaptive dic-

tionary learning of group can be intuitively formulated as: 

,

,λ
G

G G G

x
x

D
Dx

k k k

k

Fk k

n n

p

2

1 1
{ }

argmin                                                   (13) 

where  p  is 0 or 1. Eq. (13) is a joint optimization problem of xD  and { }kG , which can be solved by alternatively optimizing 

xD  and { }kG .  

Nevertheless, we do not directly utilize Eq. (13) to learn the dictionary for each group 
kGx  based on the following three con-

siderations. First, solving the joint optimization in Eq. (13) requires much computational cost, especially in the unit of group. 

Second, the learnt dictionary from Eq. (13) is actually adaptive for a given image x , not adaptive for a group 
kGx , which means 

that all the groups { }
kG
x

 
are represented by the same dictionary xD . That’s why the dictionary learnt by Eq. (13) here is denoted 

by xD , rather than { }kGD . Finally, the dictionary learning process in Eq. (13) neglects the characteristics of each group kGx , 

which contains patches with similar patterns. That is to say it is not necessary to learn an over-complete dictionary, and it is even 

possible to learn a dictionary by a more efficient and effective manner. 

Similar to the idea of dictionary learning strategy using similar patches in [3], we propose to learn the adaptive dictionary 
kGD  

for each group kGx  directly from its estimate 
kGr , because in practice the original image x  is not available for learning all the 

groups’ dictionaries { }kGD  . The estimate 
kGr  

will be naturally selected in the process of optimization, which will be explained 

in the following sections. 

After obtaining kGr , we then apply SVD to it, that is, 

1
,T T

GG G G GG GrU V u vr k k k kk kk

m
i ii i

( )                                                      (14) 

where 
2

; ;...;
mG G G Gr r r r ，

k k k k1
[ ]  GG rk k

diag( )  is a diagonal matrix with the elements of 
Gr k

 on its main diagonal, 

and ,G Gu vk ki i  are the columns of GU k  and GV k
, separately. Each atom in kGD  for group kGx , is defined as 

1, 2, ...,,  T
G G Gd u vk k ki i i mi ,                                                                     (15) 



where s cB
Gd k i . Therefore, the ultimate adaptively learned dictionary for 

kGx  is defined as 

 [ , ,..., ]G G GGD d d dk k kk m1 2 .                                                                      (16) 

According to the above definitions, the main difference between [3] and this paper for dictionary learning is that we utilize SVD 

to learn an adaptive dictionary for each group, while [3] utilizes PCA to learn an adaptive dictionary for each patch. The advantage 

of our proposed dictionary learning for each group is that it can guarantee all the patches in each group use the same dictionary and 

share the same dictionary atoms, which is more effective and robust, while [3] just trained the dictionary for each patch inde-

pendently using its similar patches. It is clear to see that the proposed group dictionary learning is self-adaptive to each group 
kGx

and is quite efficient, requiring only one SVD for each group. In addition, owing to unitary property of 
kGD , the sparse coding 

process is not only efficient, but also stable and precise, which will be seen in the next section. 

D. Discussions 

This subsection will provide the detailed discussions about the close relationships among the proposed GSR model, the group 

sparsity model, and the low rank model. In fact, all the three models are involved with a set of similar patches to exploit the 

self-similarity of natural images.  

As illustrated in Fig. 1, the proposed GSR model aims to adaptively seek the sparse representation of natural images in the unit of 

the group Gx k . The group sparsity model imposes that similar patches in Gx k  
should share the same dictionary elements in their 

sparse decomposition. The low rank model hopes to find a low rank approximation of Gx k  
in order to find the robust estimate. 

These three models seem different at first glance, since they start from different views. However, interestingly, with the aid of the 

particular dictionary learning method by SVD, one type of the group sparsity model, and one type of the low rank model can be 

derived from our proposed GSR model, respectively. That means these three models are equivalent to some extent, which is of 

great help to understand these three models integrally. The details are given below. 

As shown in Fig. 1, for each group Gx k , given its noisy estimate Gr k
, the proposed GSR model to estimate Gx k  such that 

G G GDx
k k k  

is formulated as  

ˆ .λ
G

G G G G GDr
k Fk k k k k

2

0

1
2argmin                                               (17) 

With ˆGk , the reconstructed group is then expressed by ˆˆ
G G GDx

k k k
. 

Assume G DAx k , where s mBD  is the dictionary to sparsely represent all the patches in Gx k
, and 

m cA  denotes the 

coefficient matrix. Here, set D  to be GU k  in Eq. (14), and in the light of all the definitions above, Eq. (17) is equivalent to the 

following form: 



,

ˆ ,λGAA DA Ar
Fk

2

0

1
2argmin                                                             (18) 

where ,|| ||0  denotes the number of the nonzero rows of a matrix and is a pseudo norm [12] [29]. With Â , we get ˆˆG DAx k
.  

Due to the definition of the group sparsity model [5], [12],  [29], one can see that Eq. (18) is just the special case of the group 

sparsity model with the constraint of the 0,  matrix norm, which differs from the previous group sparsity models with the con-

straint of  the 1,2  matrix norm [12] [5] . 

Similarly, define Gx k
 the vector composed of all the singular values of 

kGx , i.e., 
2

; ;...;
mG G G Gx x x x ，

k k k k1
[ ] . Due to 

G G GDx
k k k  

and the definitions of GD k
, we obtain 

0 0
|| || || || ,

G G Gx x kk krank( )
                                                              

(19) 

where rank()  represents the rank of a matrix. Therefore, the following equation can be derived from Eq. (17): 

0
,ˆ || ||

F
λG GG

G Gx xx rx k k k kk

21
2argmin

 
                                             (20) 

which is just the low rank model with the 0  
norm of the vector composed of all the singular values of kGx  

and differs from 

previous low rank models with the 1  
norm of the singular values vector [50] [51]. 

IV. OPTIMIZATION FOR GSR-DRIVEN
 0  

MINIMIZATION 

In this section, an efficient approach is developed to solve the proposed GSR-driven 0  minimization for image restoration in Eq. 

(12), which is one of our main contributions. 

0
ˆ .λ

G
G GG GHD y

2

2
1
2argmin

                                                  
(12) 

Since 0  minimization is non-convex and NP-hard, the usual routine is to solve its optimal convex approximation, i.e., 1  

minimization, which has been proved that, under some conditions, 1  minimization is equivalent to 0  minimization in a technical 

sense. The 1  minimization can be solved efficiently by some recent convex optimization algorithms, such as iterative shrink-

age/thresholding [16], [17], split Bregman algorithms [43]. Therefore, the straightforward method to solve Eq. (12) is translated 

into solving its 1  convex form, that is  

1
ˆ .λ

G
G GG GHD y

2

2
1
2argmin                                                  (21) 

However, a fact that is often neglected is, for some practical problems including image inverse problems, the conditions de-

scribing the equivalence of 0  minimization and 1  minimization are not necessarily satisfied. Therefore, this paper attempts to 



exploit the framework of convex optimization algorithms to solve the 0  minimization. Experimental results demonstrate the 

effectiveness and the convergence of our proposed approach. The superiority of solving Eq. (12) over solving Eq. (21) is further 

discussed in the experimental section.  

In this paper, we adopt the framework of split Bregman iteration (SBI) [43] to solve Eq. (12), which is verified to be more ef-

fective than iterative shrinkage/thresholding (IST) [16] in our experiments (See Section V for more details).  

First of all, let’s make a brief review of SBI. The SBI algorithm was first proposed in [43] and was shown to be powerful in for 

solving various variational models [43], [44], [49]. Consider a constrained optimization problem 

,
s. t.   ,,  min ( ) ( )N Mf g

u v
v u Gvu

 
                                                            (22)

 

where M NG   and : ,  :N Mf g   are convex functions. The SBI to address problem (22) works as follows: 

Algorithm 1 Split Bregman Iteration (SBI) 

1.    Set 0t  , choose 0, 
0 0 0

, ,0 0 0b u v   . 

2.    Repeat 

3.     ;
2

2

( +1) ( ) ( )

2argmin ( )t t tfuu Gvu u b
    

4.        ;
2

2

( +1) ( +1) ( )

2argmin ( )t t tgv Gv v u v b
    

5.    ;( +1) ( ) ( +1) ( +1)( )t t t tGb b u v    

6.    ;+1t t  

7.      Until stopping criterion is satisfied 

In SBI, the parameter   is fixed to avoid the problem of numerical instabilities instead of choosing a predefined sequence that 

tends to infinity as done in [30]. According to SBI, the original minimization (22) is split into two sub-problems. The rationale 

behind is that each sub-problem minimization may be much easier than the original problem (22).  

Now, let us go back to Eq. (12) and point out how to apply the framework of SBI to solve it. By introducing a variable u , we first 

transform Eq. (12) into an equivalent constrained form, 

0,
,  s.t. .

2

2
1
2min

G

G GG
u
H Du y uλ                                                   (23) 

Define   ,
2

2
1
2( )f Hu yu 

 .
0

( )= g G Gλ  

Then, invoking SBI, Line 3 in Algorithm 1 becomes: 

.( +1) ( ) ( )2 2

2 2
1
2 2argmint t t

G G
u

H Du yu u b
                                                 (24) 



Next, Line 4 in Algorithm 1 becomes: 

.
2( +1) ( +1) ( )

0 22argmint t t

G
G G G GDu bλ


  

                                      
(25) 

According to Line 5 in Algorithm 1, the update of b t( )  is 

.( +1)( +1) ( ) ( +1)( )tt t t
G GDb b u                                                   (26) 

Thus, by SBI, the minimization for Eq. (12) is transformed into solving two sub-problems, namely, ,  Gu  sub-problems. In the 

following, we will provide the implementation details to obtain the efficient solutions to each separated sub-problem. For sim-

plicity, the subscript t  is omitted without confusion. 

A. u   Sub-problem 

Given G , the u  sub-problem denoted by Eq. (24) is essentially a minimization problem of strictly convex quadratic function, 

that is 

1
+ .

22

2 2

1
2 2min ( )= min - - -G Gu u DHu y u buQ

                                            
(27) 

Setting the gradient of 
1( )uQ

 
to be zero gives a closed solution for Eq. (27), which can be expressed as 

                                   ˆ ,1( )TH H I qu                                                                                   (28) 

where + ,( )T
G GH Dq y b   I is identity matrix.  

As for image inpainting and image deblurring, due to the special structure of H , Eq. (28) can be computed efficiently without 

computing the matrix inverse (more details can be found in [18]).  

As for image compressive sensing (CS) recovery, H  is a random projection matrix without special structure. Thus, it is too 

costly to solve Eq. (27) directly by Eq. (28). Here, to avoid computing the matrix inverse, the gradient descent method is utilized to 

solve Eq. (27) by applying 

û u d ,                                                                                   (29) 

where d  is the gradient direction of the objective function 
1
( )uQ and  represents the optimal step. Therefore, solving u  

sub-problem for image CS recovery only requires computing the following equation iteratively 

ˆ ,
T T

G GH H H Dyu u u u b( ( ))
                                       

 (30) 

where H H
T

 and H y
T

 can be calculated before, making above computation more efficient. 



 
(a)                                                                           (b)                                                                          (c) 

Figure 3: The distribution of ( )te  and its corresponding variance 
( )Var( )te  for image Parrots in the case of image deblurring at different 

iterations. (a) t = 3 and 25.70 (3)V =ar( )e ; (b) t = 5 and 23.40 (5)V =ar( )e ; (c) t = 7 and 23.16 (7)V =ar( )e . 

B. G   Sub-problem 

Given u , according to Eq. (25), the G  sub-problem can be formulated as 

2
1 λQ

G G
G G G GD r

2

2 02min ( ) min    ,                                                (31) 

where r u b . 

Note that it is difficult to solve Eq. (31) directly due to the complicated definition of G . Instead, we make some transformation. 

Let G GDx  , then Eq. (31) equally becomes 

1 2

2 02min
G

Gx r   λ .                                                                         (32) 

By viewing r  as some type of noisy observation of x , we perform some experiments to investigate the statistics of e x r . 

Here, we use image Parrots as an example in the case of image deblurring, where the original image is first blurred by uniform blur 

kernel and then is added by Gaussian white noise of standard deviation 0.5. At each iteration t, we can obtain r t( )  by 

-r u bt t t( ) ( ) ( 1) . Since the exact minimizer of Eq. (32) is not available, we then approximate x t( )
 by the original image 

without generality. Therefore, we are able to acquire the histogram of e x rt t t( ) ( ) ( )  at each iteration t. Fig. 3 shows the dis-

tributions of e t( )  when t equals to 3, 5 and 7, respectively. 

From Fig. 3, it is obvious to observe that the distribution of ( )te  at each iteration is quite suitable to be characterized by gen-

eralized Gaussian distribution (GGD) [39] with zero-mean and variance 
( )Var( )te . The variance 

( )Var( )te  can be estimated by 

e x rt t t
N

2( ) ( ) ( )

2

1Var( ) .                                                                          (33) 

Fig. 3 also gives the corresponding estimated variances at different iterations. Furthermore, owing that the residual of images is 

usually de-correlated, each element of ( )te  can be modeled independently.  
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Accordingly, to enable solving Eq. (32) tractable, in this paper, a reasonable assumption is made, with which even a closed-form 

solution of Eq. (32) can be obtained. We suppose that each element of ( )te  follows an independent zero-mean distribution with 

variance 
( )Var( )te . It is worth emphasizing that the above assumption does not need to be Gaussian, or Laplacian, or GGD process, 

which is more general. By this assumption, we can prove the following conclusion. 

THEOREM 1. Let , , ,G Gx r x rk k

N B cs  , and denote the error vector by x re and each element of e  by ,( )je  

,...,1 N.j   Assume that ( )je
 
is independent and comes from a distribution with zero mean and variance .2  Then, for any 0> , 

we have the following property to describe the relationship between 
2

2
x r  and 

F
G Gx r

k kk

n 2

1
, that is, 

1 1 ,
22

2 1

lim
- - - 1| |{ }N

K
k kk

n

N KP G Gx r x r
F

                                             

 (34) 

here ( )P  represents the probability and BK ncs  (See Appendix A for detailed proof). 

According to Theorem 1, there exists the following equation with very large probability (limited to 1) at each iteration t: 

G Gx r x r
k k

t tt t

k F

n

N K

22 ( ) ( )( ) ( )

12

1 1 .                                                        (35) 

Now let’s verify Eq. (35) by the above case of image deblurring. We can clearly see that the left hand of Eq. (35) is just 
( )Var( )te

defined in Eq. (33), with 25.70 (3) =Var( )e , 23.40 (5) =Var( )e , and 23.16 (7) =Var( )e , which is shown in Fig. 3.  At the same time, 

we can calculate the corresponding right hand of Eq. (35), denoted by 
( )Var( )t
Ge , with the same values of t, leading to 

25.21 (3) =Var( )Ge , 23.15 (5) =Var( )Ge , and 23.07 (7) =Var( )Ge . Apparently, at each iteration, 
( )Var( )te  is very close to 

( )Var( )t
Ge , 

especially when t is larger, which sufficiently illustrates the validity of our assumption. 

Next, by incorporating Eq. (35) into Eq. (32), it yields 
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(36) 

where λK N( ) ( ) .  

It is obvious to see that Eq. (36) can be efficiently minimized by solving n  sub-problems for all the groups kGx . Each group 

based sub-problem is formulated as: 
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where 
kGD  is the self-adaptive learned dictionary from 

kGr  using our proposed scheme described in subsection III.C. Obviously, 

Eq. (37) can also be considered as the sparse coding problem. Now we will show that the accurate solution of Eq. (37) can be 

achieved efficiently. With the definitions of { }
kG

and ,rG k
{ }  we get ,

k k kG G GDx  G G GrDr
k k k

. Due to the unitary 

property of GD k
, we have 

 
G GG G G Gr rD D

k k k kk kF

2 2

2
.                                                                (38) 

With Eq. (38), the sub-problem (37) is equivalent to 

G GG Gr
k

k kk

2

2 02
1argmin .                                                                 (39) 

Therefore, the closed-form solution of (39) is expressed as 

ˆ , 1 ,G G GG r r rk k kk
2 2hard abs( ) = ( ( ) )

                                                 
(40) 

where ( )hard  denotes the operator of hard thresholding and  stands for the element-wise product of two vectors. This process is 

applied for all n  groups to achieve ˆG , which is the final solution for G  sub-problem in Eq. (31). 

C. Summary of Proposed Algorithm 

So far, all issues in the process of handing the above two sub-problems have been solved. In fact, we acquire the efficient so-

lution for each separated sub-problem, which enables the whole algorithm more efficient and effective. In light of all derivations 

above, a detailed description of the proposed algorithm for image restoration using GSR is provided in Table 1.  

 

 

 

 

 

 

 



Table 1: A Complete Description of Proposed GSR Modeling for Image Restoration 

Input: the observed image or measurement y and the degraded operator H  

Initialization: 0, = =, , , , , , ,(0) (0)(0)

st  G0 0b u c λ μB ;  

Repeat  

      if H  is mask operator 

Update ( +1)tu  by Eq. (28); 

else if H  is blur operator 

Update ( +1)tu  by Eq. (28); 

else if H  is random projection operator 

Update ( +1)tu  by Eq. (30); 

end if 

;( +1) ( +1) ( )t t tr u b  ;λK N( ) ( )  

for Each group 
kGx  

Construct dictionary 
kGD  by computing Eq. (16); 

Reconstruct ˆ
kG

by computing Eq. (40); 

end for 

Update 
( +1)t
GD   by concatenating all 

kGD ; 

Update ˆ ( +1)t
G   by concatenating all ˆ

kG
; 

Update ( +1)tb  by computing Eq. (26); 

;+1t t
 

Until maximum iteration number is reached 

Output: Final restored image ˆˆ G GDx . 

 

Figure 4: All experimental test images.  



V. EXPERIMENTAL RESULTS 

In this section, extensive experimental results are conducted to verify the performance of the proposed GSR for image restoration 

applications, which include image inpainting, image deblurring and image compressive sensing recovery. The parameter setting of 

GSR is as follows: the size of a group is set to be 64×60, with sB  being 64 and c being 60. The width of overlapping between 

adjacent patches is 4 pixels, leading to the relationship 240K N . The range of training window for constructing group, i.e., L×L is 

set to be 40×40. The parameters  and λ  are set accordingly for different image restoration applications, which will be given 

below. All the experiments are performed in Matlab 7.12.0 on a Dell OPTIPLEX computer with Intel(R) Core(TM) 2 Duo CPU 

E8400 processor (3.00GHz), 3.25G memory, and Windows XP operating system. 

To evaluate the quality of the reconstructed image, in addition to PSNR (Peak Signal to Noise Ratio, unit: dB), which is used to 

evaluate the objective image quality, a recently proposed powerful perceptual quality metric FSIM [45] is calculated to evaluate the 

visual quality. The higher FSIM value means the better visual quality. For color images, image restoration operations are only 

applied to the luminance component. All the experimental test images are given in Fig. 4. Due to the limit of space, only parts of 

the experimental results are shown in this paper. Please enlarge and view the figures on the screen for better comparison. 

Our Matlab code and all the experimental results can be downloaded at the website: http://idm.pku.edu.cn/staff/zhangjian/GSR/. 

A. Image Inpainting 

In this subsection, two interesting cases of image inpainting with different masks are considered, i.e., image restoration from partial 

random samples and text removal. For image inpainting application, 0.0025  and 0.082λ= . 

The proposed GSR is compared with five recent representative methods for image inpainting: SKR (steering kernel regression) 

[6], NLTV [35], BPFA [48], HSR [10] and SAIST [5]. SKR [6] is a classic method that utilizes a steering kernel regression 

framework to characterize local structures for image restoration. NLTV [35] is an extension of traditional total variation (TV) with 

a nonlocal weight function. BPFA [48] employs a truncated beta-Bernoulli process to infer an appropriate dictionary for image 

recovery and exploits the spatial inter-relationships within imagery through the use of the Dirichlet and probit stick-breaking 

processes. HSR [10] combines the strength of local and nonlocal sparse representations under a systematic framework called 

Bayesian model averaging, characterizing local smoothness and nonlocal self-similarity simultaneously.  

 

 

 

 

 

 



 

 

    

    

Figure 5: Visual quality comparison of image restoration from partial random samples for color image Barbara. From left to right and top to bottom: the degraded 

image with only 20% random samples available, original image, the recovered images by SKR [6] (PSNR=21.92dB; FSIM=0.8607), NLTV [35] (PSNR= 23.46dB; 

FSIM=0.8372), BPFA [48] (PSNR=25.70dB; FSIM=0.8926), HSR [10] (PSNR=28.83dB; FSIM=0.9273), SAIST [5] (PSNR=29.68dB; FSIM =0.9485) and the 

proposed GSR (PSNR=31.32dB; FSIM=0.9598). 

 

 

    

    

Figure 6: Visual quality comparison of image restoration from partial random samples for color image House. From left to right and top to bottom: the degraded 

image with only 20% random samples available, original image, the recovered images by SKR [6] (PSNR=30.40dB; FSIM=0.9198), NLTV [35] (PSNR=31.19dB; 

FSIM=0.9093), BPFA [48] (PSNR=30.89dB; FSIM=0.9111), HSR [10] (PSNR=32.35dB; FSIM=0.9255), SAIST [5] (PSNR=35.73dB; FSIM=0.9615) and the 

proposed GSR (PSNR=35.61dB; FSIM=0.9594). 

 

 



 

 

    

    

Figure 7: Visual quality comparison in the case of text removal for color image Barbara. From left to right and top to bottom: the masked image, original image, the 

recovered images by SKR [6] (PSNR=30.81dB; FSIM=0.9747), NLTV [35] (PSNR=32.60dB; FSIM=0.9749), BPFA [48] (PSNR=34.28dB; FSIM=0.9790), HSR 

[10] (PSNR=38.86dB; FSIM=0.9901), SAIST [5] (PSNR=39.00dB; FSIM=0.9915) and the proposed GSR (PSNR=40.86dB; FSIM=0.9936). 

 

    

    

Figure 8: Visual quality comparison in the case of text removal for color image House. From left to right and top to bottom: the masked image, original image, the 

recovered images by SKR [6] (PSNR=38.65dB; FSIM=0.9850), NLTV [35] (PSNR=38.44dB; FSIM=0.9820), BPFA [48] (PSNR=39.01dB; FSIM=0.9818), HSR 

[10] (PSNR=42.06dB; FSIM=0.9913), SAIST [5] (PSNR=41.20dB; FSIM=0.9893) and the proposed GSR (PSNR=42.51dB; FSIM=0.9916).  

 



The visual quality comparisons in the case of image restoration from only 20% random samples and in the case of text removal 

for two standard color test images are provided in Figs. 5~8. It is obvious to see that SKR and NLTV are good at capturing contour 

structures, but fail in recovering textures and produce blurred effects. BPFA is able to recover some textures, while generating 

some incorrect textures and some blurred effects due to less robustness with so small percentage of retaining samples for dictionary 

learning. HSR usually restores better textures than SKR, NLTV and BPFA. However, it often produces noticeable striped artifacts. 

We can observe that SAIST and the proposed GSR modeling can provide better restoration on both edges and textures than other 

competing methods. Concretely, for image Barbara which is full of textures, GSR achieves much better PSNR and FSIM than 

SAIST, with more image details and textures in both cases as shown in Fig. 5 and Fig. 7. For image House which is rich of edges, 

GSR achieves almost the same performance with SAIST in the case of image restoration from only 20% random sample (see Fig. 

6), and achieves better result than SAIST in the case of text removal (see Fig. 8). Additional qualitative PSNR and FSIM results by 

our proposed GSR for image restoration from partial random samples on eight standard color images at different percentages of 

random samples are shown in Table 2. 

Table 2: PSNR and FSIM results by GSR for image restoration from partial random samples at different percentages of random samples 

Data 
Percentage 

Image 

Barbara House Parrots Lena 

20% 31.32/0.9598 35.61/0.9594 29.84/0.9530 34.12/0.9815 

30% 34.42/0.9768 37.65/0.9745 33.31/0.9695 36.38/0.9893 

50% 39.12/0.9906 41.61/0.9886 37.78/0.9853 39.83/0.9956 

Data 
Percentage 

Image 

Butterfly Mushroom Penguin Peppers 

20% 30.31/0.9792 28.85/0.9020 33.23/0.9594 33.82/0.9811 

30% 33.02/0.9888 30.87/0.9346 35.62/0.9732 35.47/0.9874 

50% 37.26/0.9956 34.60/0.9702 39.28/0.9872 38.30/0.9941 

B. Image Deblurring 

In this subsection, two sets of experiments are conducted to verify the performance of the proposed GSR method for image 

deblurring. In the first set, two types of blur kernels, including a 9×9 uniform kernel and a Gaussian blur kernel, are exploited for 

simulation, with standard deviation of additive Gaussian noise   = √  (see Table 4). In the second set, six typical deblurring ex-

periments (as shown in Table 3) with respect to four standard gray images, which have been presented in [14] [15] are provided. 

The proposed GSR deblurring method is compared with four recently developed deblurring approaches, i.e., TVMM [9], 

L0_ABS [46], NCSR [15], and IDDBM3D [14]. TVMM [8] is a TV-based deblurring approach that can well reconstruct the 



piecewise smooth regions but often fails to recover fine image details. The L0_ABS [9] is a sparsity-based deblurring method 

exploiting a fixed sparse domain. IDDBM3D [10] method is an improved version of BM3D deblurring method [31]. NCSR pro-

posed a centralized sparse constraint, which exploits the image nonlocal redundancy to reduce the sparse coding noise [15]. As far 

as we know, NCSR and IDDBM3D provide the current best image deblurring results in the literature. 

Table 3: Six typical deblurring experiments with various blur PSFs and noise variances in the second set 

Scenario PSF  2 

1 1/(1 + 𝑧1
2 + 𝑧2

2), 𝑧1 , 𝑧2 = −7,… ,7 2 

2 1/(1 + 𝑧1
2 + 𝑧2

2), 𝑧1 , 𝑧2 = −7,… ,7 8 

3 9×9 uniform ≈ 0.3 

4 [1 4 6 4 1] T[1 4 6 4 1]/256 49 

5 Gaussian with std = 1.6 4 

6 Gaussian with std = 0.4 64 

 

The PSNR and FSIM results on six gray test images in the first set of experiments are reported in Table 4. For the case of 9×9 

uniform kernel with noise   = √ , 0.0075  and 0.554λ= ,  and for the case of Gaussian kernel with noise   = √ , 0.0125  

and 0.41λ= .  

 

Table 4: PSNR and FSIM Comparisons for Image Deblurring in the First Set 

Image Barbara Boats House C. Man Peppers Lena Avg. 

Uniform Kernel: 9×9,   = √  

TVMM [9] 26.00/0.8538 29.39/0.8978 32.47/0.9134 26.83/0.8674 28.77/0.8983 28.68/0.8937 28.69/0.8874 

L0_ABS [46] 26.41/0.8692 29.77/0.9071 33.01/0.9241 27.12/0.8729 28.68/0.9078 28.76/0.9056 28.96/0.8978 

IDDBM3D [14] 27.98/0.9014 31.20/0.9304 34.44/0.9369 28.56/0.9007 29.62/0.9200 29.70/0.9197 30.25/0.9182 

NCSR [15] 28.10/0.9117 31.08/0.9294 34.31/0.9415 28.62/0.9026 29.66/0.9220 29.96/0.9254 30.29/0.9221 

GSR 28.95/0.9227 31.34/0.9326 34.48/0.9403 28.28/0.8937 29.66/0.9231 30.10/0.9281 30.47/0.9234 

Gaussian Kernel: fspecial (Gaussian, 25, 1.6),   = √  

TVMM [9] 24.81/0.8435 30.44/0.9219 33.01/0.9139 27.04/0.8911 29.20/0.9237 30.72/0.9259 29.21/0.9034 

L0_ABS [46] 24.78/0.8543 30.54/0.9297 33.07/0.9212 27.34/0.8955 28.88/0.9303 30.63/0.9361 29.21/0.9112 

IDDBM3D [14] 27.19/0.8986 31.68/0.9426 34.08/0.9359 28.17/0.9136 29.99/0.9373 31.45/0.9430 30.43/0.9285 

NCSR [15] 27.91/0.9088 31.49/0.9371 33.63/0.9333 28.34/0.9078 30.16/0.9331 31.26/0.9389 30.47/0.9265 

GSR 28.26/0.9155 31.69/0.9411 34.45/0.9420 27.78/0.9006 30.19/0.9349 31.47/0.9463 30.64/0.9301 

 

From Table 4, we can see that the proposed GSR achieves highly competitive performance compared with other leading 

deblurring methods. L0_ABS produces slightly higher average PSNR and FSIM than TVMM, while GSR outperforms L0_ABS by 

1.5 dB and 1.4 dB for the uniform blur and Gaussian blur, respectively. One can observe that IDDBM3D, NCSR and GSR produce 

very similar results, and obtain significant PSNR/FSIM improvements over other competing methods. In average, GSR outper-



forms IDDBM3D and NCSR by (0.22 dB, 0.21 dB) and (0.18 dB, 0.17 dB) for the two blur kernels, respectively. The visual 

comparisons of the deblurring methods are shown in Figs. 9~10, from which one can observe that the GSR model produces cleaner 

and sharper image edges and textures than other competing methods. 

 

 

   

   

Figure 9: Visual quality comparison of image deblurring on gray image Barbara (256×256). From left to right and top to bottom: noisy and blurred image (uniform 

kernel: 9×9,  =√ ), the deblurred images by TVMM [9] (PSNR=26.00dB; FSIM=0.8538), L0_ABS [46] (PSNR=26.41dB; FSIM=0.8692), NCSR [15] 

(PSNR=28.10dB; FSIM=0.9117), IDDBM3D [14] (PSNR=27.98dB; FSIM= 0.9014) and the proposed GSR (PSNR=28.95dB; FSIM=0.9227). 

 

   

   

Figure 10: Visual quality comparison of image deblurring on gray image House (256×256). From left to right and top to bottom: noisy and blurred image (Gaussian 

kernel:  = √ ), the deblurred images by TVMM [9] (PSNR=33.01dB; FSIM=0.9139), L0_ABS [46] (PSNR=33.07dB; FSIM=0.9212), NCSR [15] 

(PSNR=33.63dB; FSIM=0.9333), IDDBM3D [14] (PSNR=34.08dB; FSIM= 0.9359) and the proposed GSR (PSNR=34.45dB; FSIM=0.9420). 



Table 5: Comparison of the ISNR (dB) Deblurring Results in the Second Set 

 Scenario Scenario 

 1 2 3 4 5 6 1 2 3 4 5 6 

Method Cameraman (256×256) House (256×256) 

BSNR 31.87 25.85 40.00 18.53 29.19 17.76 29.16 23.14 40.00 15.99 26.61 15.15 

Input PSNR 22.23 22.16 20.76 24.62 23.36 29.82 25.61 25.46 24.11 28.06 27.81 29.98 

TVMM [9] 7.41 5.17 8.54 2.57 3.36 1.30 7.98 6.57 10.36 4.12 4.54 2.44 

L0_ABS [46] 7.70 5.55 9.10 2.93 3.49 1.77 8.40 7.12 11.06 4.55 4.80 2.15 

IDDBM3D [14] 8.85 7.12 10.45 3.98 4.31 4.89 9.95 8.55 12.89 5.79 5.74 7.13 

NCSR [15] 8.78 6.69 10.33 3.78 4.60 4.50 9.96 8.48 13.12 5.81 5.67 6.94 

GSR 8.39 6.39 10.08 3.33 3.94 4.76 10.02 8.56 13.44 6.00 5.95 7.18 

Method Lena (512×512) Barbara (512×512) 

BSNR 29.89 23.87 40.00 16.47 27.18 15.52 30.81 24.79 40.00 17.35 28.07 16.59 

Input PSNR 27.25 27.04 25.84 28.81 29.16 30.03 23.34 23.25 22.49 24.22 23.77 29.78 

TVMM [9] 6.36 4.98 7.47 3.52 3.61 2.79 3.10 1.33 3.49 0.41 0.75 0.59 

L0_ABS [46] 6.66 5.71 7.79 4.09 4.22 1.93 3.51 1.53 3.98 0.73 0.81 1.17 

IDDBM3D [14] 7.97 6.61 8.91 4.97 4.85 6.34 7.64 3.96 6.05 1.88 1.16 5.45 

NCSR [15] 8.03 6.54 9.25 4.93 4.86 6.19 7.76 3.64 5.92 2.06 1.43 5.50 

GSR 8.24 6.76 9.43 5.17 4.96 6.57 8.98 4.80 7.15 2.19 1.58 6.20 

 

   

   

Figure 11: Visual quality comparison of image deblurring on image Barbara (512×512). From left to right and top to bottom: original image, noisy and blurred 

image (scenario 2), the deblurred images by TVMM [8] (PSNR=24.58dB; FSIM=0.9576), IDDBM3D [10] (PSNR=27.21dB; FSIM=0.9699), NCSR [11] 

(PSNR=26.89dB; FSIM=0.9669) and the proposed GSR (PSNR=28.05dB; FSIM=0.9738). 

 

Table 5 lists the comparison of ISNR results for six typical deblurring experiments in the second set. It is clear to observe that 

GSR achieves the highest ISNR results in the most cases, as labeled in bold. In particular, for image Barbara (512×512) with rich 

textures, GSR outperforms current state-of-the-art methods NCSR and IDDBM3D more than 1 dB in the scenarios 1, 2, 3, with 



more textures and clearer edges than other competing methods, as shown in Fig. 11. More visual results can be found in the website 

of this paper. 

C. Image Compressive Sensing Recovery 

From many fewer acquired measurements than suggested by the Nyquist sampling theory, CS theory demonstrates that a signal can 

be reconstructed with high probability when it exhibits sparsity in some domain, which has greatly changed the way engineers 

think of data acquisition. More specifically, suppose that we have an image Nx  and its measurement My , namely,
 

Hy x . Here, H  is an M×N measurement matrix such that M is much smaller than N. The purpose of image CS recovery is to 

recover x  from y  with measurement rate, denoted by ratio, equal to M/N. For image CS recovery application, 0.0025  and 

0.082λ= . 

In our simulations, the CS measurements are obtained by applying a Gaussian random projection matrix to the original image 

signal at block level, i.e., block-based CS with block size of 32×32 [47]. GSR is compared with four representative CS recovery 

methods in literature, i.e., wavelet method (DWT), total variation (TV) method [41], multi-hypothesis (MH) method [40], col-

laborative sparsity (CoS) method [42], which deal with image signals in the wavelet domain, the gradient domain, the random 

projection residual domain, and the hybrid space-transform domain, respectively. It is worth emphasizing that MH and CoS are 

known as the current state-of-the-art algorithms for image CS recovery. 

Table 6: PSNR and FSIM Comparisons with Various CS Recovery Methods (dB) 

Ratio Algorithms House Barbara Leaves Monarch Parrot Vessels Avg. 

20% 

DWT 30.70/0.9029 23.96/0.8547 22.05/0.7840 24.69/0.8155 25.64/0.9161 21.14/0.8230 24.70/0.8494 

TV [41] 31.44/0.9051 23.79/0.8199 22.66/0.8553 26.96/0.8870 26.6/0.9018  22.04/0.8356 25.59/0.8675  

MH [40] 33.60/0.9370 31.09/0.9419 24.54/0.8474 27.03/0.8707 28.06/0.9332 24.95/0.8756 28.21/0.9010 

CoS [42] 34.34/0.9326 26.60/0.8742 27.38/0.9304 28.65/0.9171  28.44/0.9282 26.71/0.9214 28.69/0.9259 

GSR 36.78/0.9618 34.59/0.9703 29.90/0.9499 29.55/0.9236 30.60/0.9512 31.58/0.9599 32.17/0.9528 

30% 

DWT 33.60/0.9391 26.26/0.8980 24.47/0.8314 27.23/0.8628 28.03/0.9445 24.82/0.8924 27.40/0.8947 

TV [41] 33.75/0.9384 25.03/0.8689 25.85/0.9092 30.01/0.9279 28.71/0.9329 25.13/0.9011 28.08/0.9131 

MH [40] 35.54/0.9546 33.47/0.9614 27.65/0.8993 29.18/0.9003 31.20/0.9529 29.36/0.9360 31.07/0.9341 

CoS [42] 36.69/0.9592 29.49/0.9267 31.02/0.9606 31.38/0.9449 30.39/0.9490 31.35/0.9664 31.72/0.9511 

GSR 38.93/0.9761 36.92/0.9811 33.82/0.9731 33.17/0.9558 33.95/0.9671 36.33/0.9841 35.53/0.9729 

40% 

DWT 35.69/0.9576 28.53/0.9327 26.82/0.8741 29.58/0.9011 30.06/0.9588 29.53/0.9467 30.03/0.9285 

TV [41] 35.56/0.9574 26.56/0.9088 28.79/0.9442 32.92/0.9538 30.54/0.9530 28.14/0.9441 30.42/0.9436 

MH [40] 37.04/0.9676 35.20/0.9727 29.93/0.9276 31.07/0.9217 33.21/0.9651 33.49/0.9677 33.32/0.9537 

CoS [42] 38.46/0.9724 32.76/0.9618 33.87/0.9744 33.98/0.9637 32.55/0.9627 33.95/0.9784 34.26/0.9689 

GSR 40.60/0.9836 38.99/0.9877 37.02/0.9846 36.07/0.9714 36.44/0.9780 40.24/0.9922 38.23/0.9829 

 



 

   

   

Figure 12: Visual quality comparison of image CS recovery on gray image Vessels in the case of ratio = 20%. From left to right: original image, the CS recovered 

images by DWT (PSNR=21.14dB; FSIM=0.8230), TV [41] (PSNR=22.04dB; FSIM=0.8356), MH [40] (PSNR=24.95dB; FSIM=0.8756), CoS [42] (PSNR= 

26.71dB; FSIM=0.9214) and the proposed GSR (PSNR= 31.58dB; FSIM=0.9599). 

 

   

   

Figure 13: Visual quality comparison of image CS recovery on gray image Barbara in the case of ratio = 20%. From left to right and top to bottom: original image, 

the CS recovered images by DWT (PSNR=23.96dB; FSIM=0.8547), TV [41] (PSNR =23.79dB; FSIM =0.8199), MH [40] (PSNR=31.09dB; FSIM=0.9419), CoS 

[42] (PSNR= 26.60dB; FSIM=0.8742) and the proposed GSR (PSNR=34.59dB; FSIM =0.9703). 

 



The PSNR and FSIM comparisons for six gray test images in the cases of 20%, 30%, and 40% measurements are provided in 

Table 6. GSR achieves the highest PSNR and FSIM among the six comparative algorithms over all the cases, which can improve 

roughly 7.9 dB, 7.3 dB, 4.4 dB, and 3.7 dB on average, in comparison with DWT, TV, MH, CoS, respectively, greatly improving 

existing CS recovery results.  

Some visual results of the recovered images by various algorithms are presented in Figs. 12~13. Obviously, DWT and TV 

generate the worst perceptual results. The CS recovered images by MH and CoS possess much better visual quality than those of 

DWT and TV, but still suffer from some undesirable artifacts, such as ringing effects and lost details. The proposed algorithm GSR 

not only eliminates the ringing effects, but also preserves sharper edges and finer details, showing much clearer and better visual 

results than the other competing methods. Our work also offers a fresh and successful instance to corroborate the CS theory applied 

for natural images. 

D. Effect of Number of Best Matched Patches  

This subsection will give the detailed description about how sensitive the performance is affected by c , which is the number of 

best matched patches. 

To investigate the sensitivity of c , experiments with respect to various c , ranging from 20 to 120, in the case of image 

inpainting and image deblurring for three test images are conducted. The performance comparison with various c  is shown in Fig. 

14. From Fig.14, it is concluded that the performance of our proposed algorithm is not quite sensitive to c  because all the curves 

are almost flat. The highest performance for each case is usually achieved with c  in the range [40, 80]. Therefore, in this paper, c  

is empirically set to be 60. 

  

Figure 14: Performance comparison with various c  for three test images. From left to right: in the case of image text removal and in the case of image deblurring 

with 9×9 uniform blur kernel and   = 0.5. 

E. Effect of Sparsity Parameter 

This subsection gives some discussion about how sensitive the performance is affected by the sparsity parameter λ . 
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To investigate the effect of the sparsity parameter λ  for the performance, two scenarios of deblurring experiments are con-

ducted with various blur kernels and noise variances, i.e., scenario 4 and scenario 5 in Table 3. Fig. 15 provides ISNR (dB) evo-

lution with respect to λ
 
in the cases of scenario 4 (PSF = [1 4 6 4 1]

T
 [1 4 6 4 1],   = 7) and scenario 5 (PSF = Gaussian with std = 

1.6,   = 2) for two test images. From Fig. 15, three conclusions can be observed. First, as expected, there is an optimal λ
 
that 

achieves the highest ISNR by balancing image noise suppression with image details preservation (see Fig. 16(c)). That means, if λ  

is set too small, the image noise can’t be suppressed (see Fig. 16(b)); if λ  is set too large, the image details will be lost (see Fig. 

16(d)). Second, in each case, the optimal λ
 
for each test image is almost the same. For instance, in the case of    = 7, the optimal 

λ  is 12.2, and in the case of    = 2, the optimal λ  is 0.8. This is very important for parameter optimization, since the optimal λ  in 

each case can be determined by only one test image and then applied to other test images. Third, it is obvious to see that λ  has a 

great relationship with  , i.e., a larger   corresponds to a larger λ . 

  

Figure 15: PSNR evolution with respect to sparsity parameter λ
 
in the cases of in the cases of scenario 4 (PSF = [1 4 6 4 1]T [1 4 6 4 1],   = 7) and scenario 5 (PSF 

= Gaussian with std = 1.6,   = 2) for two test images. 

 

 

    

(a)                                                     (b)                                                      (c)                                                     (d) 

Figure 16: Visual quality comparison of proposed algorithm with various λ
 
in the case of scenario 5 (PSF = Gaussian with std = 1.6,   = 2) with respect to image 

House. (a) Original image; (b) Deblurred result with λ = 0.2, ISNR=2.68dB; (c) Deblurred result with λ = 0.8, ISNR=5.95dB; (d) Deblurred result with λ = 3.2, 

ISNR=5.28dB. 
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F. Algorithm Complexity and Computational Time 

The complexity of GSR is provided as follows. Assume that the number of image pixels is N, that the average time to compute 

similar patches for each reference patch is sT . The SVD of each group Gx k  
with size of s cB  is s cB 2( ) . Hence, the total 

complexity of GSR for image restoration is s scN TB 2( ( ))+ . For a 256×256 image, the proposed algorithm GSR requires about 

8~9 minutes for image inpainting, 6~7 minutes for image deblurring and 7~8 minutes for CS recovery, on an Intel Core2 Duo 

2.96G PC under Matlab R2011a environment. 

  

Figure 17: Stability of the proposed algorithm. From left to right: progression of the PSNR (dB) results achieved by proposed GSR for test images with respect to 

the iteration number in the cases of image deblurring with uniform blur kernel and image CS recovery with ratio=0.3. 

G. Algorithm Stability 

Since the objective function (12) is non-convex, it is difficult to give its theoretical proof for global convergence. Here, we only 

provide empirical evidence to illustrate the stability of the proposed GSR. Take the cases of image CS recovery and image 

deblurring as examples. Fig. 17 plots the evolutions of PSNR versus iteration numbers for test images in the cases of image 

deblurring with uniform blur kernel and CS recovery with ratio=0.3. It is observed that with the growth of iteration number, all the 

PSNR curves increase monotonically and ultimately become flat and stable, exhibiting good stability of the proposed GSR model. 

H. Comparison between 0  and 1  Minimization  

In order to make a comparison between 0  and 1  minimization, split Bregman iteration (SBI) is also used to solve Eq. (21). The 

only difference from solving Eq. (12) described in Table 1 is ˆ
kG  

in Eq. (40) is computed by the operator of soft thresholding, 

rather than hard thresholding. Take the cases of image deblurring with uniform blur kernel for two images Barbara and Parrot as 

examples. Fig. 18 plots their progression curves of the PSNR (dB) results achieved by proposed GSR-driven 0  and 1  minimi-

zation with respect to the iteration number. The result achieved by GSR-driven 0  minimization with SBI is denoted by SBI+L0 

(blue solid line), while the result achieved by GSR-driven 1  minimization with SBI is denoted by SBI+L1 (green dotted line). It is 

obvious that SBI+L0 has better performance than SBI+L1 with more than 1.5 dB on average, which fully demonstrates and the 
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superiority of 0  minimization (Eq. (12)) over 1  minimization (Eq. (21)), and validates the effectiveness of our proposed ap-

proach to solve Eq. (12) again. Our study also assures the feasibility of using the 0  minimization for image restoration problems. 

  

Figure 18: Comparison between GSR-driven 0  and 1  minimization solved by SBI. From left to right: progression of the PSNR (dB) results achieved by pro-

posed GSR-driven 0  and 1  minimization with respect to the iteration number for images Barbara and Parrot in the cases of image deblurring with uniform blur 

kernel. 

I. Comparison between SBI and IST 

In our previous work [47], the convex optimization approach iterative shrinkage/thresholding (IST) is utilized to solve our pro-

posed GSR-driven 0  minimization for image CS recovery. Here, we make a comparison between SBI and IST. Take the cases of 

image CS recovery with ratio=0.3 for two images Monarch and Leaves as examples. Fig. 19 plots their progression curves of the 

PSNR (dB) results achieved by solving GSR-driven 0  minimization with SBI and IST. The result achieved by 0  minimization 

with SBI is denoted by SBI+L0 (red solid line), while the result achieved by 0  minimization with IST is denoted by IST+L0 (black 

dotted line). Obviously, SBI is more efficient and effective to solve our proposed GSR-driven 0  minimization problem than IST. 

 

  

Figure 19: Comparison between SBI and IST for solving GSR-driven 0  minimization. From left to right: progression of the PSNR (dB) results achieved by 

proposed GSR-driven 0  minimization with respect to the iteration number for images Monarch and Leaves in the cases of image CS recovery with ratio=0.3. 
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VI. CONCLUSIONS 

This paper establishes a novel and general framework for high-quality image restoration using group-based sparse representation 

(GSR) modeling, which sparsely represents natural images in the domain of group, and explicitly and effectively characterizes the 

intrinsic local sparsity and nonlocal self-similarity of natural images simultaneously in a unified manner. An effectual self-adaptive 

group dictionary learning technique with low complexity is designed. To achieve high sparsity degree and high recovery quality, 

this paper proposes to exploit the convex optimization algorithms to solve the non-convex 0  minimization problem directly. Our 

study not only assures the feasibility of using the 0  minimization for image restoration problems, but also demonstrates the su-

periority of the 0  minimization over the 1  minimization, which is very interesting and surprising. Experimental results on three 

applications: image inpainting, deblurring and CS recovery have shown that the proposed GSR achieves significant performance 

improvements over many current state-of-the-art schemes and exhibits good stability. It is worth emphasizing that GSR greatly 

improves existing CS recovery results, which will promote further research and development of CS theory applied in natural 

images. Future work includes the extensions of GSR on a variety of applications, such as image deblurring with mixed Gaussian 

and impulse noise, and video restoration and so on. 

REFERENCES 

[1] L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Phys. D., vol. 60, pp. 259–268, Nov. 1992. 

[2] M. R. Banham and A. K. Katsaggelos, “Digital image restoration,” IEEE Trans. Signal Processing Mag., vol. 14, no. 2, pp. 24–41, Mar. 

1997. 

[3] L. Zhang, W. Dong, D. Zhang, G. Shi, “Two-stage image denoising by principle component analysis with local pixel grouping,” Pattern 

Recognition, vol. 43, pp.1531–5549, Apr. 2010. 

[4] A. Chambolle, “An algorithm for total variation minimization and applications,” J. Math. Imaging Vis., vol. 20, no. 1–2, pp. 89–97, Jan– 

Mar 2004. 

[5] W. Dong, G. Shi, and X. Li, “Nonlocal image restoration with bilateral variance estimation: a low-rank approach,” IEEE Trans. on Image 

Processing, vol. 22, no. 2, pp. 700–711, Feb. 2013. 

[6] H. Takeda, S. Farsiu, and P. Milanfar, “Kernel regression for image processing and reconstruction,” IEEE Trans. on Image Process., vol. 16, 

no. 2,  pp. 349–366, Feb. 2007. 

[7] S. Roth and M. J. Black, “Fields of experts,” International Journal of Computer Vision, vol. 82, no. 2, pp. 205–229, 2009. 

[8] A. Buades, B. Coll, and J. M. Morel, “A non-local algorithm for image denoising,” Proc. of Int. Conf. on Computer Vision and Pattern 

Recognition,  pp. 60–65, 2005. 

[9] J. Bioucas-Dias, M. Figueiredo, J. Oliveira, “Total-variation image  deconvolution: A majorization-minimization approach,” Proc. of IEEE 

Int. Conf. on Acoustics, Speech, and Signal Processing, Toulouse, France, 2006.  



[10] X. Li, “Image recovery from hybrid sparse representation: a deterministic annealing approach,” IEEE J. of Selected Topics in Signal Pro-

cessing, vol. 5, no. 5, pp. 953–962, Sep. 2011 

[11] W. Dong, L. Zhang, G. Shi, X. Wu, “Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regulariza-

tion,” IEEE Trans. on Image Processing, vol. 20, no. 7, pp. 1838–1857, Jul. 2011. 

[12] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Non-local sparse models for image restoration,” Proc. IEEE Int. Conf. Comput. 

Vis., Tokyo, Japan, pp. 2272–2279, Sep. 2009. 

[13] J.-F. Cai, H. Ji, C. Liu, and Z. Shen, “Framelet based blind motion deblurring from a single image,” IEEE Transactions on Image Pro-

cessing, vol. 21, no. 2, pp. 562–572, Feb. 2012. 

[14] A. Danielyan, V. Katkovnik, and K. Egiazarian, “BM3D frames and variational image deblurring,” IEEE Trans. Image Process., vol. 21,no. 

4, pp. 1715–1728, Apr. 2012. 

[15] W. Dong, L. Zhang, G. Shi and X. Li, “Nonlocally centralized sparse representation for image restoration,” IEEE Trans. on Image Pro-

cessing, vol. 22, no. 4, pp. 1620-1630, Apr. 2013. 

[16] J. Bioucas-Dias and M. Figueiredo, “A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE 

Trans. on Image Process., vol. 16, no. 12, pp. 2992–3004, Dec. 2007. 

[17] A. Beck and M. Teboulle, “Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems,” IEEE 

Trans. on Image Process., vol. 18, no. 11, pp. 2419–2434, Nov. 2009. 

[18] M. Afonso, J. Bioucas-Dias and M. Figueiredo, “Fast image recovery using variable splitting and constrained optimization,” IEEE Trans. on 

Image Process., vol. 19, no. 9, pp. 2345–2356, Sep. 2010. 

[19] M. Duarte, M. Davenport, D. Takhar, J. Laska, and T. Sun, “Single-pixel imaging via compressive sampling,” IEEE Signal Processing 

Magazine, vol. 25, no. 2, pp. 83–91, 2008. 

[20] J. Zhang, D. Zhao, C. Zhao, R. Xiong, S. Ma, and W. Gao, “Compressed sensing recovery via collaborative sparsity,” Proc. of IEEE Data 

Compression Conference, pp. 287–296, Snowbird, Utah, USA, Apr. 2012. 

[21] D. Geman and G. Reynolds, “Constrained restoration and the recovery of discontinuities,” IEEE Trans. on Pattern Analysis and Machine 

Intelligence, vol. 14, no. 3, pp. 367–383, Mar. 1992. 

[22] D. Mumford and J. Shah, “Optimal approximation by piecewise smooth functions and associated variational problems,” Comm. on Pure and 

Appl. Math., vol. 42, pp. 577–685, Jul. 1989. 

[23] A. M. Bruckstein, D.L. Donoho, and M. Elad, “From sparse solutions of systems of equations to sparse modeling of signals and images,” 

SIAM Review, vol. 51, no. 1, pp. 34–81, 2009. 

[24] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation,” IEEE 

Trans. on Signal Process., vol. 54, no. 11, pp. 4311–4322, 2006. 

[25] M. Elad and M. Aharon, “Image denoising via sparse and redundant representations over learned dictionaries,” IEEE Trans. Image Process., 

vol. 15, no. 12, pp. 3736–3745, Dec. 2006. 

[26] J. Yang, J. Wright, T. Huang, and Y. Ma, “Image super-resolution via sparse representation,” IEEE Trans. Image Process., vol. 19, no. 11, 

pp. 2861–2873, Nov. 2010. 



[27] K. Engan, S. O. Aase, and J. H. Hakon-Husoy, “Method of optimal directions for frame design,” Proc. of IEEE Int. Conf. Acoust., Speech, 

Signal Process., vol. 5, pp. 2443–2446, 1999. 

[28] Joel A. Tropp and Anna C. Gilbert, “Signal recovery from random measurements via orthogonal matching pursuit,” IEEE Transactions on 

Information Theory, vol. 53, no. 12, pp. 4655–4666, Dec. 2007. 

[29] J. Tropp, A. Gilbert, M. Strauss, “Algorithms for simultaneous sparse approximation part I: greedy pursuit,” Signal processing, vol. 86, no. 

3 pp. 572–588, Mar. 2006. 

[30] L. Xu, C. Lu, Y. Xu, and J. Jia, “Image smoothing via L0 gradient minimization,” ACM Trans. on Graphics, vol. 30, no. 6, Dec. 2011. 

[31] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image restoration by sparse 3-D transform-domain collaborative filtering,” Proc. of 

SPIE Electron. Imaging, San Jose, CA, 2008, vol. 6812, Art. ID 6812–1D. 

[32] S. Kindermann, S. Osher, and P.W. Jones, “Deblurring and denoising of images by nonlocal functionals,” Multiscale Model. Simul., vol. 4, 

no. 4, pp. 1091–1115, 2005. 

[33] A. Elmoataz, O. Lezoray, and S. Bougleux, “Nonlocal discrete regularization on weighted graphs: a framework for image and manifold 

processing,” IEEE Trans. Image Processing, vol. 17, no. 7, pp. 1047–1060, Jul. 2008. 

[34] G. Peyré, “Image processing with nonlocal spectral bases,” Multiscale Model. Simul., vol. 7, no. 2, pp. 703–730, 2008.  

[35] X. Zhang, M. Burger, X. Bresson and S. Osher, “Bregmanized nonlocal regularization for deconvolution and sparse reconstruction,” SIAM 

J. Imaging Sci., vol. 3, no. 3, pp. 253–276, 2010. 

[36] M. Jung, X. Bresson, T. F. Chan, and L. A. Vese, “Nonlocal Mumford-Shah regularizers for color image restoration,” IEEE Trans. Image 

Process., vol. 20, no. 6, pp. 1583–1598, Jun. 2011. 

[37] S. Mallat and G. Yu, “Super-resolution with sparse mixing estimators,” IEEE Trans. Image Process., vol. 19, no. 11, pp. 2889–2900, Nov. 

2010. 

[38] S. Chen, D. Donoho, M. Saunders, “Atomic decompositions by basis pursuit,” SIAM Review, vol. 43, pp. 129–159, 2001. 

[39] M. K. Varanasi, B. Aazhang, “Parametric generalized Gaussian density estimation,” J. Acoust. Soc. Amer., vol. 86, no. 4, pp. 1404–1415, 

1989. 

[40] C. Chen, E. W. Tramel, and J. E. Fowler, “Compressed-Sensing Recovery of Images and Video Using Multi-hypothesis Predictions,” Proc. 

of the 45th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, pp. 1193–1198, Nov. 2011. 

[41] C. Li, W. Yin, and Y. Zhang, “TVAL3: TV Minimization by Augmented Lagrangian and Alternating Direction Algorithm,” 2009. 

[42] J. Zhang, D. Zhao, C. Zhao, R. Xiong, S. Ma and W. Gao, “Image compressive sensing recovery via collaborative sparsity,” IEEE Journal 

on Emerging and Selected Topics in Circuits and Systems, vol. 2, no. 3, pp. 380–391, Sep. 2012. 

[43] T. Goldstein and S. Osher, “The split Bregman algorithm for L1 regularized problems,” SIAM J. Imaging Sci., vol. 2, pp. 323–343, Apr. 

2009. 

[44] J. Zhang, D. Zhao, R. Xiong, S. Ma, and W. Gao, “Image Restoration Using Joint Statistical Modeling in Space-Transform Domain,” IEEE 

Transactions on Circuits System and Video Technology (2014), DOI: 10.1109/TCSVT.2014.2302380. 

[45] L. Zhang, L. Zhang, X. Mou and D. Zhang, “FSIM: A Feature SIMilarity index for image quality assessment,” IEEE Trans. Image Pro-

cessing, vol. 20, no. 8, pp. 2378–2386, Aug. 2011. 



[46] J. Portilla, “Image restoration through l0 analysis-based sparse optimization in tight frames,” IEEE Int. conf. Image Process., pp. 3909-3912, 

Nov. 2009.   

[47] J. Zhang, D. Zhao, F. Jiang and W. Gao, “Structural group sparse representation for image compressive sensing recovery,” Proc. of IEEE 

Data Compression Conference, pp. 331–340, Snowbird, Utah, USA, Mar. 2013. 

[48] M. Zhou, H. Chen, J. Paisley, L. Ren, L. Li, Z. Xing, D. Dunson, G. Sapiro and L. Carin, “Nonparametric Bayesian dictionary  learning for 

analysis of noisy and incomplete images,” IEEE Trans. Image Processing, vol. 21, no. 1, pp. 130–144, Jan. 2012. 

[49] J. Zhang, C. Zhao, D. Zhao, and W. Gao, “Image compressive sensing recovery using adaptively learned sparsifying basis via L0 minimi-

zation,” Signal Processing (2013), DOI: 10.1016/j.sigpro.2013.09.025. 

[50] H. Ji, C. Liu, Z. Shen, and Y. Xu, “Robust video denoising using low rank matrix completion,” Proc. of IEEE Conference on Computer 

Vision and Pattern Recognition (CVPR), pp. 1791–1798, 2010. 

[51] H. Ji, S. Huang, Z. Shen, and Y. Xu, “Robust video restoration by joint sparse and low rank matrix approximation,” SIAM J. Imaging Sci., 

vol. 4, no. 4, pp. 1122–1142, 2011. 

APPENDIX A 

Proof of Theorem 1:    

Due to the assumption that each ( )je  is independent, we obtain that each 
2( )je  is also independent. Since ( )[ ] 0jEe 

 
and 

2V ( )ar[ ]je σ , 

we have the mean of each 
2( )je , that is 

,...,,   .2 2 2( ) ( ) ( ) 1[ ] Var[ ] [ [ ]] Nj j jE E j  e e e σ                                                                       (41) 

By invoking Law of Large Numbers in probability theory, for any 0> , it yields 
1lim ,

1

2 2
2( ) 1-{| | }N

N jNP je σ i.e., 

2 2
2

1
2lim 1{| | }

N NP x r σ 


     ,                                                                           (42) 

Further, let ,G Gx r denote the concatenation of all kGx  and kGr , 1, 2, ...,k = n , respectively, and denote each element of G Gx r by 

, ...,, =Ge Ki i( ) 1 . Due to the assumption, we conclude that ( )iGe  is independent with zero mean and variance .2σ   

Therefore, the same manipulations with Eq. (40) applied to 
2( )iGe  lead to 

1lim
1

2 2

2( ) 1-{| | }K

iK
K iP Ge σ , namely, 

1lim σG Gx rk k
K k F

n

KP
2

2
1 2- 1| |{ }  .                                                        (43) 

Considering Eqs. (42) and (43) together, we prove Eq. (34). □ 

 

 


