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A Sparse Embedding and Least Variance Encoding
Approach to Hashing

Xiaofeng Zhu, Lei Zhang,Member, IEEE, Zi Huang

Abstract—Hashing is becoming increasingly important in
large-scale image retrieval for fast approximate similarity search
and efficient data storage. Many popular hashing methods aim
to preserve the kNN graph of high dimensional data points in
the low dimensional manifold space, which is however difficult
to achieve when the number of samples is big. In this paper, we
propose an effective and efficient hashing approach by sparsely
embedding a sample in the training sample space and encoding
the sparse embedding vector over a learned dictionary. To this
end, we partition the sample space into clusters via a linear
spectral clustering method, and then represent each sampleas a
sparse vector of normalized probabilities that it falls into its sev-
eral closest clusters. This actually embeds each sample sparsely
in the sample space. The sparse embedding vector is employed
as the feature of each sample for hashing. We then propose
a least variance encoding model, which learns a dictionary to
encode the sparse embedding feature, and consequently binarize
the coding coefficients as the hash codes. The dictionary and
the binarization threshold are jointly optimized in our mod el.
Experimental results on benchmark datasets demonstrated the
effectiveness of the proposed approach in comparison with state-
of-the-art methods.

Index Terms—hashing, manifold learning, image retrieval,
dictionary learning.

I. Introduction

Nearest neighbor search in large-scale datasets is an indis-
pensable process in many machine learning algorithms [1],
[2], [3], [4], [5], such as spectral clustering [6], kernel density
estimation [7], semi-supervised learning [8], and sparse sub-
space clustering [9], etc. Exhaustively comparing the query
sample with each training sample is prohibitive in large-scale
visual data retrieval due to its linear query time to the training
size. Besides, in many real applications (e.g., [10], [11])the
dimensionality of visual data is very high, leading to the
problem of curse of dimensionality. The high dimensionality
and the big sample size make the data storage and matching
very challenging, limiting the use of nearest neighbor search
in practical applications.

Instead of conducting the exact nearest neighbor search
with linear scan, approximate nearest neighbors (ANN) search
can be used to retrieve the query sample with sub-linear,
logarithmic, or even constant query time. For example, tree-
based approaches (including KD tree [12], ball-tree [13],
metric tree [14], and vantage point tree [15]) can achieve not
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only logarithmic query time but also efficient data structure
to store the large-scale data. However, the retrieval perfor-
mance of tree-based methods will drastically degrade for high-
dimensional data [16].

Recently, hashing methods for fast ANN search have shown
good performance to retrieve high dimensional data [17], [18],
[19] and have been applied to image retrieval [20], document
analysis [21], near-duplicate detection [22], etc. In order
for fast ANN in large-scale datasets, hashing methods first
transform the high dimensional data into a low dimensional
subspace and output the hash functions (hash function learning
in short), followed by binarizing the low dimensional data into
binary codes (binarization in short). The hashing methods aim
to preserve the original sample similarities in the binary codes
as much as possible. As a result, retrieving the original data
is replaced by matching the binary codes in memory of a PC,
which makes the retrieval process very fast.

One type of well-known hashing methods is the LSH-like
hashing methods, including LSH [21], [23], [24], Kernelized
LSH (KLSH) [25], and Shift-Invariant KLSH (SKLSH) [26].
Although having some nice properties such as constant query
time, LSH-like hashing methods need long binary codes to
achieve reasonable performance. Unfortunately, representing
each sample with long binary codes will easily lead to a low
recall rate so that multiple hash tables have to be considered
[27], [28]. Consequently, LSH-like hashing methods (with
both the long binary codes and multiple hash tables) suffer
from long query time and high storage cost.

A good hashing method should have the following proper-
ties [29], [30]. First of all, the codes should be short to enable
the easy storage of large amounts of images in memory. For
example, to store 1 billion images in a normal server with
64GB of RAM, we should represent each image with tens of
bits. Second, the binary codes should preserve the similarity
structures of the original data as much as possible. Finally, the
training stage should be applicable to large-scale applications
(e.g., at most linear time complexity to the training size for
hash function learning) and the query stage should be efficient
and scalable, e.g., constant query time to the training size.

To meet the above requirements, various learning techniques
have been developed and applied to hashing. For example,
different from the data-independent hashing methods (such as
LSH-like hashing) which learn hash functions without con-
sidering the statistical properties of the data, data-dependent
hashing methods (such as PCA-like hashing [29], [31], [32],
[33], [34] and manifold-like hashing [20], [30], [35], [36],
[37]) generate hash functions by making use of the correla-
tion among the data. PCA-like hashing methods learn hash
functions via preserving the maximal variance of original



2

Binarization

ᶲ2 ᶲ4ᶲ3ᶲ1ᶲ4ᶲ3ᶲ2ᶲ1

ᶲ4ᶲ3ᶲ2ᶲ1ᶲ4ᶲ3ᶲ2ᶲ1

1 1 11

1 1 01

1 1 10

1 1 01

... ...

0.6 0.55 0.750.61

0.78 0.85 0.110.58
0.8 0.52 0.60.3

0.67 0.98 0.050.95... ...

...

0.5 0.3 0.20 0 0

0 0 0.30.1 0.6 0

0 0 0.60.3 0 0.1

0 0 0.10 0.8 0.1
...

Linear spectral Sparse

embedding

Least variance

encoding

Binarization

Sparse

embedding
0 0 0.280.11 0.61 0

(a) Joint learning of hash functions and binarization threshold

(b) Retrieval to a query sample

Hash transform

Output 
results

Dist = 0

Dist = 1

Dist = 2
... ...

0.7 0.6 0.30.9 1 1 01

m1 m2 m3 m4 m5 m6

m1 m2 m3 m4 m5 m6

Hash functions
Threshold

 clustering

Fig. 1. Flowchart of the proposed SELVE approach to hashing.

data; however, they assign the same weight to each bit and
ignore the fact that different directions have different variances.
To address this problem, Spectral Hashing (SH) [33] uses a
separable Laplacian eigenfunction to prohibit assigning more
bits to the directions along which the data have a greater range.
However, this approach is a heuristic method and it makes
an impractical assumption that the data should uniformly
distribute in the high dimensional space. Isotropic Hashing
(IsoHash) [38] learns the hash functions to produce isotropic
variances (equal variances) along different directions. Iterative
Quantization (ITQ) [32] uses non-orthogonal relaxation or
sequential projections to alleviate the problem of unbalanced
variances.

Manifold-like hashing methods aims to preserve the neigh-
borhood structures of samples, i.e., similar samples should
have similar binary codes. Self-taught hashing (STH) [20]
preserves the neighborhood structures of single-modalitydata,
while composite hashing with multiple information sources
(CHMIS) [37]. Anchor graph hashing (AGH) [39] preserves
approximate neighborhood structures by building an anchor
graph. The main drawbacks of most manifold-like hashing
methods are the high complexity and the out-of-sample exten-
sion problem (i.e., no explicit hash functions, such as AGH).
Many manifold-like hashing methods preserve the neighbor-
hood structures of training samples by building a sparse kNN
graph, which has at least quadratic time complexity. Such a
high complexity is prohibitive for large-scale image retrieval.
AGH reduces the high time complexity to linear by preserving
approximate neighborhood structures. However, it needs touse
long binary codes to achieve good hashing performance. In
particular, AGH achieves its best performance with 48-bit (or
above) binary codes, but its performance can be worse than
other representative methods (e.g., ITQ) when shorter binary
codes are used.

In this paper, we propose a new hashing approach from a
different point of view to previous ones. Instead of building
a sparse kNN graph to preserve the neighborhood structures
of training samples, we preserve and encode the spatial em-
bedding of each sample in the space spanned byk clustering
centroids of the training samples, aiming to achieve good
hashing performance with short binary codes and linear time
complexity. Fig.1 illustrates the flowchart of the proposed

approach. In the training stage (refer to Fig.1(a)), we first
partition the training samples intok clusters by a linear
clustering method such as linear spectral clustering [40].The
obtainedk centroids are used to measure the distance between
a sample and each cluster, and then each training sample
can be mapped into the space spanned by thek centroids
to obtain its spatial embedding. We sparsely represent each
sample by its several nearest centroids, and generate a sparse
vector of normalized probabilities that it falls into the several
closest clusters. This sparse embedding process has lineartime
complexity and it converts the original high dimensional data
into a low dimensional space with approximate neighborhood
structure. The resulting low dimensional sparse embedding
vectors are used to learn the hash functions.

We consequently propose to learn a dictionary to encode
the sparse embedding features with a least variance encoding
model, which jointly outputs the hash functions and the bina-
rization threshold. In the test stage (please refer to Fig.1(b)),
the query samples are first converted into binary codes by
the learnt hash functions, and fast retrieval can then be
conducted via calculating the Hamming distance between the
binary codes of query sample and training samples. To further
improve the effectiveness of the proposed sparse embedding
and least variance encoding (SELVE) approach, we transform
the samples into a new space where each cluster is more
concentrated, resulting in a sparser embedding vector and
better hashing performance.

The proposed SELVE method could learn effective hash
functions with short binary codes. Our extensive experimental
results on four real-world datasets show that SELVE outper-
forms many state-of-the-art hashing algorithms ([21], [41],
[33], [32], [39], [34], [42]) in terms of various kinds of
evaluation indices, such as precision-recall, mean precision
of Hamming radius 2 (HAM2) and mean average precision
(MAP). The success of SELVE mainly comes from the fol-
lowing two aspects. First, the sparse embedding vector is a
distinctive indicator of the spatial location of a sample in
the whole sample space. Second, the least variance encoding
model couples the learning of hash functions with the learning
of binarization threshold. As a result, it makes the hash code
generation more effective.

The remainder of the paper is organized as follows. The
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proposed approach and its analysis are presented in Section
II. Section III reports the experimental results and Section IV
concludes the paper.

II. The methodology

In this section, we describe in detail the proposed sparse
embedding and least variance encoding (SELVE) approach. In
general, given a datasetX ∈ Rd×n where each sample is ad-
dimensional column vector and there aren training samples,
our goal is to representX by B ∈ {0, 1}c×n (where c ≪ d)
such that the neighborhood structure of each training sample
xi is still preserved in the Hamming space. To this end, we
first represent each training sample as ak-dimensional sparse
embedding vector (see Section II-A), which is then encoded
over a dictionary (see Section II-B). Furthermore, we can
learn a transformation matrix to make the training samples
more concentrated, i.e., achieving a sparser embedding (see
Section II-C). Finally, we summarize the proposed approach
(See Section II-D) and analyze its complexity (see Section
II-E).

A. Sample representation by spatial embedding

Many hashing methods (e.g., STH, MFH, etc.) build a
sparse kNN graph such that each training samplexi in X
is represented as ann-dimensional sparse vector̄pi ∈ Rn,
which stands for the relationship betweenxi and other training
samples inX. To preserve the neighborhood of each training
sample,p̄i is usually constructed by thek nearest neighbors
to xi; that is, onlyk elements (or coordinates) in̄pi are non-
zeros. However, building such a sparse kNN graph needs at
least quadratic time complexity, which is impractical in large-
scale search.

Instead of building a sparse kNN graph to preserve the
neighborhood structures of training samples, we propose to
represent each sample as its spare spatial embedding in a
low dimensional space. The rationale and motivation of such
a strategy are as follows. First of all, if two samples are
neighbors, they will have similar spatial location and thus
similar spatial embedding. Second, the spatial embedding
vector tends to be sparser than the kNN vector because one
sample can have many neighbors but it can only be close
to several clusters. Third, the spatial embedding has much
less complexity than kNN graph building, and the resulting
representation vector has much lower dimensionality.

To compute the spatial embedding of the training samples,
we first partition the training sample space intok (k << n and
k < d) cells. This can be simply done by a linear clustering
method such as the spectral clustering method in [40]. As a
result, the clustering will outputk clusters with centroidsmi,
i = 1, 2, ..., k. We denote the Euclidean distance between a
samplexi and the centroidm j as

ri, j = ‖xi −m j‖22 (1)

Like in [43], the Euclidean distanceri, j can be converted
into a probability thatxi belongs to clusterj via the following
formula:

pi, j =
exp(−ri, j/σ)
∑k

l=1 exp(−ri,l/σ)
(2)

whereσ is a parameter to control the decay rate ofpi, j with
respect to distanceri, j. For simplicity, we setσ=1 in this paper.

Let pi = [pi,1, ..., pi, j, ..., pi,k]T , andpi forms a representation
of xi, characterizing its spatial location in the sample space.
Since in general a sample can only belong to one of its several
closest clusters, we represent each training sample using its s
(s << k) nearest centroids, and hence vectorpi will be a very
sparse vector. Denote byps the sth largest probability inpi,
and let

p
′

i, j =

{

pi, j if pi, j ≥ ps

0 if pi, j < ps
(3)

We then normalizep
′

i, j as:

p̄i, j =
p
′

i, j
∑k

l=1 p
′

i,l

. (4)

Finally we regard

p̄i = [ p̄i,1, ..., p̄i, j, ..., p̄i,k]T (5)

as the sparse embedding feature vector ofxi.

B. Least variance encoding via dictionary learning

Denote byP = [p̄1, p̄2, ..., p̄n] ∈ Rk×n the sparse embedding
feature set of the training samples. The next step is to learn
the hash functions fromP to convertp̄i into binary codes. To
this end, we propose to encode eachp̄i over a dictionaryΦ
and binarize its coding vector as the hash codes. We propose
the following model to learn the desired dictionary:

minΦ,Λ ‖P−ΦΛ‖2F + λ
∑n

i=1
‖αi − µ‖22, s.t. ‖φ j‖22 = 1 (6)

whereΦ ∈ Rk×c is called the encoding dictionary and each
atomφ j ∈ Rk of Φ has unitℓ2-norm;Λ = [α1, ...,αn] ∈ Rc×n

is the coding matrix ofP overΦ andαi is the coding vector
of p̄i; µ = 1

n

∑n
i=1αi is the mean of all coding vectors; the

rationale of the regularization term‖αi − µ‖22 is to reduce the
variance of coding vectorsαi so that similar̄pi can more likely
have similar codes; andλ is a constant.

The proposed least variance encoding (LVE) model in Eq.6
jointly optimizes the dictionaryΦ and the coding matrixΛ,
while the mean vectorµ is simultaneously obtained withΛ.
Via the LVE model, the learned dictionaryΦ can be directly
converted into the desiredhash functions (see Eq.13 and
Eq.14), while the mean vectorµ can be directly taken as the
binarization threshold to binarizeαi (see Eq.14). Since the
hash functions and the binarization threshold are jointly opti-
mized, the loss caused by the hashing can be more effectively
reduced. There are interactions between the threshold and the
hash functions in the optimization process. In contrast, many
existing hashing methods [20], [44] learn the hash functions
and the threshold separately.

The minimization in Eq.6 is not jointly convex but it is
convex w.r.t. eitherΦ or Λ when another is fixed. Therefore,
we optimizeΦ andΛ alternatively. We first randomly initialize
Φ and optimizeΛ by fixing Φ. Eq.6 becomes:

minΛ ‖P−ΦΛ‖2F + λ
∑n

i=1
‖αi − µ‖22 (7)

After some mathematical derivation, we have the following
analytical solution to eachαi in Λ:
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α̂i = arg minΛ ‖P−ΦΛ‖2F + λ
∑n

i=1

〈

αi − µ,αi − µ
〉

(8)

= arg minΛ ‖P−ΦΛ‖2F
+ λ
∑n

i=1
(〈αi,αi〉 − 2

〈

αi,µ
〉

+
〈

µ,µ
〉

)

= arg minΛ ‖P−ΦΛ‖2F + λ
∑n

i=1
‖αi‖22 − λn‖µ‖22

Let the partial derivative of Eq.8 with respect toαi equal 0,
we have:

(ΦT
Φ + λI )α̂i −ΦT p̄i = λ(ΦT

Φ)−1(ΦT 1
n

n
∑

i=1

p̄i) (9)

whereI is an identity matrix. Finally, we obtain the following
analytical solution to eachαi in Λ:

α̂i = (ΦT
Φ + λI )−1(ΦT p̄i + λ(Φ

T
Φ)−1

Φ
T z) (10)

wherez = 1
n

∑n
i=1 p̄i is the mean of all vectors̄pi.

Fixing Λ, the minimization problem in Eq.6 is reduced to

minΦ ‖P−ΦΛ‖2F , s.t. ‖φ j‖22 = 1 (11)

via which the dictionaryΦ can be updated by methods such
as [45].

The coding matrixΛ and dictionaryΦ are alternatively
updated until convergence or the maximum iteration number
is reached. OnceΛ and dictionaryΦ are learnt, we let

{

T = (ΦT
Φ + λI )−1

Φ
T

β = λ(ΦT
Φ + λI )−1(ΦT

Φ)−1
Φ

T z
(12)

According to Eq.10, we have

αi = Tp̄i + β. (13)

Eq.13 gives our hash function; that is, the real-valued code
vectorαi is obtained by projecting the featurēpi onto T and
then shifting withβ.

With all αi available, we obtain the mean vector viaµ =
1
n

∑n
i=1αi. We then binarizeαi, i = 1, ..., n, as follows:

{

bi( j) = 1 i f αi( j) ≥ µ( j)
bi( j) = 0 i f αi( j) < µ( j)

(14)

where j = 1, ..., c. That is, the mean value is used as the
threshold for binarization. Finally, we obtain the binary codes
B = [b1, ..., bn] of the original training samples inX.

The rationale of the least variance regularization
∑n

i=1 ‖αi − µ‖22 in Eq.7 is twofold. On one hand, the
least variance regularization is used to penalize the deviation
of each hash value (i.e., the real value of hash code) from the
mean (i.e., the threshold). This reduces the impact of outliers
in the process of hash function learning. On the other hand,
it makes the learning of threshold (i.e.,µ) and the learning of
hash codes unified. In contrast, traditional methods usually
set the threshold separately after the real hash values are
learned. In each iteration of SELVE training,µ is adjusted
by the real valued hash codes (i.e.,αi). Thoseαi are used to
update the dictionaryΦ , while Φ will be used to updateαi

in return. This iterative process makes the final threshold fits
much better the hash codes and the given data.

In the test stage, given a new data pointy, we first calculate
its sparse embedding feature vectorp̄y using Eqs.(1-5), and
then compute its real-valued code vectorαy using Eq.13, and
obtain its binary codesby by Eq.14. Finally, the Hamming
distance betweenby and B is computed to find the nearest
neighbours ofy.

C. Enhanced sparse embedding

From Section II-A and Section II-B, we see that the hash
function learning is to encode the spatial embedding vector
p̄i of the training samplexi. Intuitively, if we can have a
sparser embedding representation ofxi, i.e., only a couple
of elements inp̄i are significant, the samplexi can be better
identified in the space spanned by the training samples. This
can consequently make the binary codes more informative. To
this end, we propose an enhanced sparse embedding (E-SE) of
the training samples inX. Our goal is to learn a transformation
matrix, denote byW ∈ Rl×d, so that in the new space spanned
by X′ = WX ∈ Rl×n, each cluster can be more concentrated.
That is, after the transformation each sample in clusterk will
be closer to its centroid and farther to other centroids, resulting
in a sparser embedding vector of each sample.

The learning of such aW can be performed based on the
k clustering results ofX. Denote byX j, j = 1, ..., k, the set of
training samples in thejth cluster with the centroidm j. Let M j

be a matrix which has the same size asX j but each column
of M j is m j. Let Γ j = X j−M j. We can see that‖Γ j‖2F reflects
the variance of the training samples in clusterX j. The goal of
E-SE is to find a transformation matrixW ∈ Rl×d (l ≤ d) such
that WX can preserve the energy ofX, while the variance
of each clusterX j can be reduced (i.e., the cluster is more
concentrated). This leads to the following objective function
[46]:

minW ||X −WT WX ||2F + γ
∑k

j=1
||WΓ j||2F ,

s.t.,WWT = I (15)

whereγ is a tuning parameter.
In Eq.15, the term||X −WT WX ||2F is a data fidelity term,

ensuring thatX can be well reconstructed from its transformed
dataWX . The second term||WΓ j||2F is a regularization term,
enforcing that each cluster has less variance after transfor-
mation. One can see that if we setγ = 0, Eq.15 will be
reduced to PCA. By setting a suitable value ofγ, the learned
transformation matrixW will make the sample distribution
more concentrated while preserving the energy of original
training samples.

Let Γ = [Γ1, ...,Γk], the minimization of Eq.15 is equivalent
to:

minW tr{(X −WT WX )T (X −WT WX ) + γWΓΓT WT } (16)

= minW tr{XT X − 2XT WT WX + XT WT WWT WX

+ γWΓΓT WT }
= minW tr{XT X − XT WT WX + γWΓΓT WT }
= minW tr{W(γΓΓT − XT X)WT + XT X}
= maxW tr{W(XXT − γΓΓT )WT }

Clearly, the desiredW can be solved by applying Singular
Value Decomposition (SVD) to the matrix (XXT −γΓΓT ); that
is, W is composed by thel eigenvectors associated with the
first l largest eigenvalues of (XXT − γΓΓT ).

With the learnedW, we transformX into X
′
=WX , and the

sparse embedding is applied toX
′

using the method described
in Section II-A. The geometric illustration of the role of the
transform matrixW is shown in Fig.2.
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(a) (b)

Fig. 2. Illustration of the role of transformW. (a) Two clusters before
transform; (b) the two clusters after transform. One can seethat the data
distribution is more concentrated after transform. Some points originally locate
in the boundary of the two clusters are moved inward so that they will have
a more concentrated and sparser spatial embedding.

D. Summary of the algorithm

The proposed approach in the original space spanned byX
is abbreviated as SELVE, while the proposed method in the
transformed space spanned byX

′
is abbreviated as E-SELVE.

Since SELVE can be viewed as a special case of E-SELVE, we
summarize the E-SELVE algorithm in Algorithm 1 (training
stage) and Algorithm 2 (test stage).

Algorithm 1: The Algorithm of E-SELVE: Training Stage

Input : training data:X ∈ Rd×n; c (the number of bits);l
(the dimensionality of transformed space);k (the
number of centroids).

Output : B ∈ Rc×n, W ∈ Rd×l, T ∈ Rc×k, β ∈ Rk, µ ∈ Rc.
1 Perform a clustering method onX to obtaink centroids

m j;
2 ComputeW by Eq.16;
3 X =WX , m j =Wm j;
4 ComputeP by Eq.4;
5 Φ = rand(l, c);
6 repeat
7 UpdateΦ by Eq.11;
8 UpdateT andβ by Eq.12;
9 Updateα by Eq.13;

10 u = mean(α);
11 until Convergence;
12 ComputeB by Eq.14;

Algorithm 2: The Algorithm of E-SELVE: Test Stage

Input : y ∈ Rd, B ∈ Rc×n, W ∈ Rd×l, T ∈ Rc×k, β ∈ Rk,
µ ∈ Rc;

Output : by ∈ Rc.
1 y =Wy;
2 Computep̄y by Eq.4;
3 Computeαy by Eq.13;
4 Computeby by Eq.14;
5 Match by to B;

The transform used in the proposed E-SE step is a PCA-
like subspace learning method. Different from PCA which
preserves the maximal variance (a.k.a., the energy) after the
transformation, the proposed transform preserves the energy
while making the clusters more concentrated, aiming at ob-
taining a sparser embedding vector of each sample. Traditional
PCA is a special case of our transformation, i.e., settingγ = 0

in Eq.15. By settingγ > 0, the proposed E-SELVE method
can achieve better hashing accuracy than settingγ = 0 (i.e.,
using PCA for transform). For example, in the experiment on
the MNIST dataset (Please refer to Section III-D for details),
the HAM2 results of the proposed hashing method are 0.8805
and 0.8712, respectively, forγ = 0.1 andγ = 0. In addition,
our E-SELVE algorithm is not sensitive to the selection ofγ.

On the other hand, the SE step in our method embeds the
sample sparsely in the manifold subspace. It aims to build an
approximate kNN graph with linear time complexity, which is
favorable for large-scale hashing. The conventional manifold
learning methods (e.g., [47], [48], [49]) build an exact kNN
graph, which have at least quadratic time complexity and are
prohibitive for large-scale hashing applications.

As in most dictionary learning methods [45], [50], the LVE
step in the proposed hashing algorithm is not jointly convexto
Φ andΛ, but it is convex to each of them when another one is
fixed. In the alternative optimization, the energy will decrease
step by step. In Fig. 3 we plot the convergence curves of the
proposed E-SELVE hashing method on the datasets used in
our experiments (please refer to Section III for details). One
can see that the value of objective function decreases rapidly
in the first several iterations and then becomes stable after
about ten iterations.

E. Time and space complexity

In E-SELVE, the time complexities of clustering method
[40], sparse embedding, hash function learning, binarization,
and E-SE transform learning areO(dkn) [40], O(lkn + scn),
O(t(c2d + cdn + c3 + c2n)), O(cn) andO(d3), respectively, in
the training stage, wheret refers to the number of iterations
in learningΦ. In the test stage, it will costO(dk + kl + sc)
for E-SE representation, hashing transform and binarization,
plus O(1) for performing inverse lookup in the hash table.
Considering thatl is much smaller thand, and s and c are
usually small numbers, the time complexity of E-SELVE is
basicallyO(dkn + d3) in the training stage andO(dk) in the
test stage. Without the E-SE transform, the time complexity
of SELVE is O(dkn) in the training stage andO(dk) in the
test stage. Table 1 compares the time complexity of E-SELVE
with those of representative algorithms such as LSH [21], LSI
[41], SH [33], ITQ [32] AGH[39], MDSH [34] and SpH [42].

The space complexity of E-SELVE is aboutO(d(l + k + n))
in the training stage andO(dl + ck) plus O(cn) (binary bits)
in the test stage, while for SELVE the space complexity is
O(d(k+ n)) in the training stage andO(ck) plusO(cn) (binary
bits) in the test stage.

III. Experimental results

We compare our proposed methods with two baseline ap-
proaches, LSH [21] and LSI [41], and five state-of-the-arts,SH
[33], ITQ [32], AGH [39], SPH [42], and MDSH [34], on four
widely used datasets, including MNIST (70K)1, CIFAR(60K)
[51], NUS-WIDE (193K) [52] and GIST (500K) [53]. Note
that AGH has two variants and we use the one with better
results (i.e., 2-AGH in the original paper).

1http://yann.lecun.com/exdb/mnist/
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Fig. 3. The convergence curves of E-SLVE model (λ = 1, γ = 1, c = 28, andk = 300).

TABLE I
Time complexity comparison between competing algorithms.

Training stage Test stage
LSH O(1) O(1)
LSI O(dn2) O(dc)
SH O(d2n) O(dc)
ITQ O(d2n + c3) O(dc)
AGH O(dknT + k2n + scn) O(dk + sc)

MDSH O(d2n) O(dc)
SpH O(c2 + cdn) O(dc2)
LVE O(dn) O(sc)

SELVE O(dkn) O(dk)
E-SELVE O(dkn + d3) O(dk)

Note thatc, d, k, n, s, andT are the length of binary codes, the dimensionality
of the samples, the number of centroids, the training size, the number of
nearest neighbors, and the iteration of k-means algorithm,respectively.

A. Datasets

The MNIST dataset consists of 70,000 digit images of size
28×28. We use the Matlab format of MNIST dataset provided
by [39], [8], including 69,000 training samples and 1,000
test samples. Following Liu et al. [39], we split the MNIST
dataset into two parts: a training set containing 69,000 data
points and a test set of 1,000 data points. Because MNIST is
fully annotated, we regard true nearest neighbors as semantic
nearest neighbors based on the associated digit labels.

The CIFAR datasets consists of 60,000 colour images (size:
32× 32) from 10 classes, while each class has 6,000 samples.

50,000 images are used for training and the remaining 10,000
images are used for testing. For each image, a 512-dimensional
GIST feature vector is extracted [54]. The CIFAR dataset is
also fully annotated, and we regard their true nearest neighbors
as semantic nearest neighbors based on the associated class
labels.

The NUS-WIDE dataset originally contains 269,648 images
associated with 81 ground truth concept tags. We pruned
the original NUS-WIDE in our experiments based on the
description in [18, 29]. First, a subset of 195,969 images
was extracted, in which each image is annotated by at least
one of the 21 most frequent labels. Second, we uniformly
sampled 100 images from each of the 21 tags to form a
query set of 2,100 images. The other 193,869 images serve
as the training set. Third, each image is represented by a 500-
dimensional SIFT feature vector. Finally, the ground truthis
defined according to whether two images share at least one
common tag.

In the GIST dataset [53], we selected all the 500K learning
vectors and 1,000 query vectors as our training dataset and
query dataset, respectively. In GIST, each image is represented
by a 960-dimensional GIST descriptor. The original ground
truths in GIST were not designed for the training dataset.
Similar to the setting in [26], we use a nominal threshold of the
average distance to the 50th nearest neighbours to determine
whether a training sample returned for a given query sample
is considered as a ground truth.
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B. Evaluation criteria and comparison approaches

In order to evaluate the proposed hashing approach, some
quantitative criteria should be used. We follow the literatures
(such as [8], [39]) to conduct two popular search procedures,
i.e., hash lookup and Hamming ranking.

Hash lookup first constructs a lookup table for the binary
codes of all data samples, and then returns the percentage of
the data samples falling into a small Hamming radius centered
at the query sample. For example, HAM2 (i.e., the Hamming
radius is 2) means that the Hamming distance between the
training samples and the query sample is smaller than 2. In
our experiments, we employed HAM2 to evaluate the results
of hash lookup. Although the complexity of hash lookup is
constant, it may fail in the case of long hash codes because
the Hamming codes space is very sparse so that only few
samples fall into the same hash bucket as the query.

Hamming ranking ranks all the samples in the database
based on their Hamming distances to the query sample and
then returns the top ones. The complexity of Hamming ranking
is linear. In our experiments, we employ the mean average
precision (MAP) (i.e., the mean of all query samples’ average
precision) to evaluate the performance of Hamming ranking
under different hash bits. Since computing MAP is slow on
the two large datasets NUS-WIDE and GIST, following the
literature [8], [39], we report the results of Mean Precision
(MP) of the top-50K returned neighbors.

These two distinct criteria (i.e., Hash lookup and Hamming
ranking) are designed to evaluate different characteristics of
hashing techniques. The larger the HAM2 or MAP or MP, the
better the hashing performance.

Besides, we use the precision-recall curve to measure the
hashing performance. The definitions of precision and recall
are as follows [37]:

precision =
Number o f retrieved relevant images
Total number o f all retrieved images

(17)

recall =
Number o f retrieved relevant images
Total number o f all relevant images

(18)

In order to more comprehensively evaluate the proposed
hashing method, we evaluate three variants of it:

• LVE, i.e., using LVE to perform hashing in the original
data space;

• SELVE, i.e., LVE with sparse embedding (SE);
• E-SELVE, i.e., LVE with enhanced SE (E-SE).

We compare LVE, SELVE and E-SELVE with the following
representative and state-of-the-art hashing approaches.

• Locality Sensitive Hashing (LSH) [21]: LSH generates
random linear functions as hash functions. Following the
literature [32], we generate a Gaussian random matrix
as the projection matrix (i.e., the hash functions) in our
experiments.

• Latent Semantic Indexing (LSI) [41], [55], [56]: Bina-
rized Latent Semantic Indexing (LSI) employs truncated
SVD [57], [58] to find the best low-rank description of
original dataX, i.e., the low-rank matrixD with minimum
error‖X−D‖2F . Then the low-rank matrixD revealing the

underlying semantic structure of the original data matrix
X is used to learn the hash functions.

• Spectral Hashing (SH) [33]: SH first conducts PCA on
the original data, and then uses the analytical Laplacian
eigenfunctions computed along the principal directions
of the data for projection to generate the hash codes. It
belongs to a PCA-like hashing method.

• Iterative Quantization (ITQ) [32]: ITQ first conducts PCA
on the original data, and then learns an orthogonal matrix
to solve the unbalanced variance problem on different
PCA directions. ITQ, as a PCA-like hashing, has shown
better performance than other PCA-like hashing methods
(such as SH [33], SKLSH [26], and PCA-Nonorth [59]).

• Anchor Graph Hashing (AGH) [39]: AGH is a manifold-
like hashing method. It first generates the new repre-
sentation for each sample, and then uses eigenfunction
generalization to encode test samples to solve the out-of-
sample problem. AGH has shown superior performance to
many state-of-the-art hashing methods, such as SH [33],
PCA-Nonorth [59], KLSH [25], SKLSH [26], and PCA
Hashing.

• Multidimensional Spectral Hashing (MDSH) [34]: Based
on the observation that the relative performance of hash-
ing can change dramatically with the definition of ground-
truth neighbors, MDSH first reconstructs the affinity
matrix of the data points, and then solves a binary matrix
factorization problem of the affinity matrix, i.e., finding
the top eigenvectors of the affinity matrix.

• Spherical Hashing (SpH) [42]: SpH first uses a hyper-
sphere based hashing function to map spatially coherent
data points into a binary code, and then tailors the
hypersphere based binary coding scheme by designing
a binary code distance function, namely, spherical Ham-
ming distance.

Among the competing methods, LSH is the only data-
dependent hashing method. All the other methods, including
the proposed LVE, SELVE and E-SELVE, belong to data-
dependent hashing methods.

C. Parameter setting

In the proposed SELVE and E-SELVE, we set the pa-
rametersk = 300, l = 300 and s = 10 on the GIST
dataset, and setk = 300, l = 300 and s = 4 on other
three datasets. The parameterλ in Eq.6 is set via per-
forming line search overλ = [0.01, 0.1, 1, 10,100]. For the
ESE step in E-SELVE, the parameterγ is also set by line
search overγ = [0.01, 0.1, 1, 10,100]. In the experiments,
we vary the length of hash codes (i.e., number of hash bits)
as [12, 16, 24, 28, 32,48, 64]. The sensitivity of the proposed
method to these parameters will be discussed in Section III-E.

For all the other comparison approaches, the MATLAB
codes are provided by the authors. We tune the parameters
according to the corresponding papers.

D. Results

The hashing results of all competing approaches are shown
in Figs.4-6 and Table II. From Figs.4-6, we can have the
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TABLE II
CPUtime (in seconds) for all hashing approaches by fixing code length as 28.

Methods
MNIST CIFAR NUS-WIDE GIST

training test training test training test training test
LSH 1.871 2.7× 10−5 1.056 6.7× 10−7 4.321 2.5× 10−5 25.37 5.1× 10−4

LSI 43.74 8.0× 10−6 90.41 4.2× 10−7 120.4 5.7× 10−6 801.6 1.0× 10−5

SH 9.012 7.9× 10−5 5.306 6.6× 10−6 19.57 9.9× 10−5 97.56 8.7× 10−4

ITQ 17.37 2.5× 10−5 16.89 1.3× 10−6 37.80 2.4× 10−5 228.1 4.5× 10−4

AGH 24.75 5.8× 10−5 11.61 1.8× 10−6 31.51 7.1× 10−5 167.9 2.1× 10−4

MDSH 10.77 1.5× 10−5 4.311 6.2× 10−6 13.72 1.3× 10−5 88.67 1.1× 10−4

SpH 16.84 8.1× 10−5 12.09 8.0× 10−6 17.22 7.3× 10−5 91.50 7.2× 10−4

LVE 23.99 3.6× 10−5 8.172 1.0× 10−6 25.85 6.7× 10−5 143.5 2.0× 10−4

SELVE 24.87 5.4× 10−5 10.71 1.1× 10−6 30.20 9.1× 10−5 145.7 2.1× 10−4

E-SELVE 30.23 6.7× 10−5 15.93 2.6× 10−6 35.73 9.6× 10−5 207.9 7.3× 10−4

following findings. First, the proposed E-SELVE performs the
best, while the proposed SELVE is very competitive with
other approaches. More specifically, E-SELVE outperforms the
other approaches, followed by SELVE, SpH, AGH, MDSH,
ITQ, SH, LVE, LSI and LSH. It is not surprising that LSH
performs the worst since it is a data-independent hashing
method by randomly generating hash functions. Both SH and
ITQ are PCA-like hashing methods but they solve the problem
of unbalanced variances along different directions in different
ways. ITQ employs an orthogonal transformation, while SH
employs a separable Laplacian eigenfunction with uniform
distribution, which is a too strong assumption for real data.
As a result, ITQ outperforms SH in general, as shown in Fig.
6(d) on the large dataset GIST.

The proposed SELVE method is basically a manifold-like
hashing method, while E-SELVE further employs a PCA-like
transformation before performing sparse embedding. Com-
pared with the state-of-the-art manifold-like hashing method
AGH, in most cases SELVE performs better, though AGH
employs a more complex binarization process, i.e., hierarchical
method. In addition, SELVE achieves its best performance
with shorter binary code than AGH. These observations
demonstrate that the proposed LVE process is very useful.
From the experimental results, we can see that using LVE
alone, the hashing performance is better than LSI and LSH
but worse than other state-of-the-art methods such as SH,
SpH, MDSH and AGH. With the SE step, the SELVE method
outperforms all the competing methods. This indicates thatthe
SE process is very important in our hashing framework. Com-
pared with SELVE, E-SELVE performs consistently better.
This demonstrates that the learned transform can make the SE
process more effective. According to our experimental results,
we can conclude that the SE process is the most important
component in our E-SELVE framework.

From Fig.4, we see that the precision decreases when the
recall increases, and vice versa. This is because the value of
precision is sensitive to true positive rate while that of recall
is sensitive to false positive rate. E-SELVE has much better
precision-recall curves than other methods (i.e., its precision
decreases much more slowly with the increase of recall than
others).

From Fig.5, we see that all hashing methods first achieve
their best HAM2 performance (i.e., the peak), and then drop.
This is mainly because a longer binary code may lead to less
retrieved results given the fixed Hamming distance threshold.
Such a phenomenon has also been discussed in [39], [60].
We can also see from Fig.5 that all competing approaches,
except for AGH, achieve their best HAM2 performance when
the number of hash bits is between 24 and 32. For example,
the proposed SELVE and E-SELVE obtain their best HAM2
performance on all the four datasets with hash code of 28 bits.
SpH, MDSH, ITQ, SH, LSI and LSH obtain their best HAM2
performance on all the four datasets with code length between
24 and 32. However, AGH obtains its best HAM2 performance
when the code length is between 48 and 64. This shows that
although AGH achieves the third best performance among
all competing hashing algorithms, it needs to represent each
sample with longer binary codes, which leads to more data
storage cost and longer query time. Overall, from Fig.5 one
can conclude that the proposed hashing framework achieves
the best HAM2 results with short binary codes.

Finally, from Fig.6 we see that the MAP or MP results of all
methods will increase with the increase of hash bits, while the
proposed E-SELVE achieves the best MAP or MP results in
almost all cases on the four databases. The results of SELVE
are also very competitive.

Table II lists the training time and test time of all methods.
In terms of training time, LSI is the most time consuming one
since it needs to conduct SVD on all the training samples.
LSH is the fastest one, while ITQ, SpH, MDSH, AGH, SH,
SELVE and E-SELVE have similar training time. In terms of
test time on each test sample, LSI is the fastest one, while
all the other methods are in the same order. This is consistent
to the complexity analysis in Table I. Overall, the proposed
E-SELVE has comparable running time to state-of-the-arts but
with better accuracy.

E. Sensitivity to parameters

We then test the proposed methods with different parameter
settings. More specifically, we first report the results of SELVE
and E-SELVE in terms of HAM2 by varying the number of
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centroids (i.e., settingk = [100, 200, 300, 400, 500, 600]).
Then we test the HAM2 performance of E-SELVE via setting
different dimensionality (i.e., settingl = [25, 50, 100, 200, 300,
600]) in the E-SE process. Finally, we test the HAM2 perfor-
mance of E-SELVE via setting different values onλ and γ
(i.e., λ = [0.01, 0.1, 1, 10,100] andγ = [0.01, 0.1, 1, 10, 100]).
The results are reported in Fig.7, Fig.8, and Fig.9, respectively.

From Fig.7, we see that increasingk can lead to better
results of SELVE and E-SELVE. This is reasonable because
using more clusters can more accurately describe the data
distribution of the training samples. Nonetheless, using too
many clusters will need much more computational cost. Ac-
cording to our experience, settingk ≤

√
n can make a good

trade-off between the hashing accuracy and cost. From Fig.8,
we see that even with a smalll, E-SELVE still obtains good
performance. This validates the effectiveness and advantage
of the E-SE step in the E-SELVE approach. From Fig. 9, one
can clearly see that the proposed method is not sensitive to the
settingλ in Eq.6 andγ in Eq.15. In addition, we also found
the proposed method is not also sensitive to the setting of the
s. By varying s from 2 to 12, the hashing performance of
E-SELVE does not vary much. We do not report the detailed
results here to save space.

F. The role of the centralized term in Eq.6

Finally, we validate the role of the centralized term
λ
∑n

i=1 ‖αi − µ‖22 in Eq.6. This term is important in the pro-
posed framework because it is designed to simultaneously
generate hash functions and the binarization threshold. Itcan
also reduce the impact of outliers. In Fig.10, we test E-SELVE
with (i.e., let λ = 1 in Eq.6) and without (i.e., letλ = 0 in
Eq.6) the centralized term. It can be seen that E-SELVE with
the centralized term always outperforms E-SELVE without the
centralized term.

IV. Conclusion

We proposed an effective sparse embedding and least vari-
ance encoding (SELVE) approach to hashing, aiming at high
hashing accuracy with short binary codes. We first partitioned
the whole training dataset into clusters and then represented
each training sample by the normalized probabilities that it
falls into the several closest clusters. Such a spatially sparse
embedding process leads to advantages such as sparse repre-
sentation, similarity preservation and linear time complexity.
We then encoded the sparse embedding features of training
samples over a dictionary to learn the explicit hash functions
and the binarization threshold jointly, which makes the whole
hashing process more accurate. In addition, by learning a
transformation matrix to make the sample space more concen-
trated, an enhanced sparse embedding was developed to further
improve the performance of SELVE. The experimental results
on four benchmark datasets validated that SELVE and its
enhanced counterpart, i.e., E-SELVE, achieve very promising
hashing performance.
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“Aggregating local image descriptors into compact codes,”IEEE Trans.
Pattern Anal. Mach. Intell., vol. 34, no. 9, pp. 1704–1716, 2012.

[18] W. Liu, J. Wang, Y. Mu, S. Kumar, and S.-F. Chang, “Compact
hyperplane hashing with bilinear functions,” inICML, 2012.

[19] J. He, S.-F. Chang, R. Radhakrishnan, and C. Bauer, “Compact hashing
with joint optimization of search accuracy and time,” inCVPR, 2011,
pp. 753–760.

[20] D. Zhang, J. Wang, D. Cai, and J. Lu, “Self-taught hashing for fast
similarity search,” inSIGIR, 2010, pp. 18–25.

[21] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for approx-
imate nearest neighbor in high dimensions,”Commun. ACM, vol. 51,
no. 1, pp. 117–122, 2008.

[22] X. Zhu, Z. Huang, H. T. Shen, and X. Zhao, “Linear cross-modal hashing
for efficient multimedia search,” inACM MM, 2013, pp. 143–152.

[23] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-sensitive
hashing scheme based on p-stable distributions,” inSOCG, 2004, pp.
253–262.

[24] A. Gionis, P. Indyk, and R. Motwani, “Similarity searchin high
dimensions via hashing,” inVLDB, 1999, pp. 518–529.

[25] B. Kulis and K. Grauman, “Kernelized locality-sensitive hashing for
scalable image search,” inICCV, 2009, pp. 2130–2137.



10

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

pr
ec

is
io

n

 

 

LSH
LSI
SH
ITQ
AGH
MDSH
SpH
LVE
SELVE
E−SELVE

(a) MNIST

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

pr
ec

is
io

n

 

 

LSH
LSI
SH
ITQ
AGH
MDSH
SpH
LVE
SELVE
E−SELVE

(b) CIFAR

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

pr
ec

is
io

n

 

 

LSH
LSI
SH
ITQ
AGH
MDSH
SpH
LVE
SELVE
E−SELVE

(c) NUS-WIDE

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

pr
ec

is
io

n

 

 

LSH
LSI
SH
ITQ
AGH
MDSH
SpH
LVE
SELVE
E−SELVE

(d) GIST

Fig. 4. Precision-Recall curves of all approaches.
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Fig. 5. HAM2 of all approaches. The legends are the same as Fig.4.
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Fig. 6. MAP of all approaches. The legends are the same as Fig.4.
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Fig. 7. HAM2 of the proposed E-SELVE and SELVE under different number of centroids by fixingl = 300 andc = 28.
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Fig. 8. HAM2 of the proposed E-SELVE approach under different dimensions of the transformed space byW (c = 28 andk = 300).
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Fig. 9. HAM2 of the proposed E-SELVE with different values ofλ andγ (c = 28 andk = 300).
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