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Abstract—Hashing is becoming increasingly important in only logarithmic query time but alsoffecient data structure
large-scale image retrieval for fast approximate similarty search  to store the large-scale data. However, the retrieval perfo

and dficient data storage. Many popular hashing methods aim _ ; ; fgin-hi
to preserve the KNN graph of high dimensional data points in ”Tance .Of tree-based methods will drastically degrade fgh-hi
dimensional datd_[16].

the low dimensional manifold space, which is however fficult -
to achieve when the number of samples is big. In this paper, we  Recently, hashing methods for fast ANN search have shown

propose an dfective and dficient hashing approach by sparsely good performance to retrieve high dimensional data [18],[1
embedding a sample in the training sample space and encoding [19] and have been applied to image retrieval [20], document
the sparse embedding vector over a learned dictionary. To fls analysis [[21], near-duplicate detection |[22], etc. In orde
end, we partition the sample space into clusters via a linear for f A‘NN" | le d h h', hods fi
spectral clustering method, and then represent each samples a or fast m_ arg(.a—sca(.e atasets,. ashing mgt 0 S irst
sparse vector of normalized probabilities that it falls into its sev- transform the high dimensional data into a low dimensional
eral closest clusters. This actually embeds each sample sgely subspace and output the hash functions (hash functionmgarn
in the sample space. The sparse embedding vector is employedin short), followed by binarizing the low dimensional datéoi

as the feature of each sample for hashing. We then propose yinary codes (binarization in short). The hashing methaus a

a least variance encoding model, which learns a dictionaryat ¢ th iqinal le similarities in the bi
encode the sparse embedding feature, and consequently biirze o preserve the original sample similarities in the binaogles

the coding codficients as the hash codes. The dictionary and @ much as possible. As a result, retrieving the originah dat
the binarization threshold are jointly optimized in our model. is replaced by matching the binary codes in memory of a PC,
Exper_imental results on benchmark dat_asets demonstrcfttedh'e which makes the retrieval process very fast.
effectiveness of the proposed approach in comparison with stat One type of well-known hashing methods is the LSH-like
of-the-art methods. hashing methods, including LSH [21], [23], 124], Kernelize
_Index Terms—hashing, manifold learning, image retrieval, | SH (KLSH) [25], and Shift-Invariant KLSH (SKLSH) [26].
dictionary learning. Although having some nice properties such as constant query
time, LSH-like hashing methods need long binary codes to
[. INTRODUCTION achieve reasonable performance. Unfortunately, reptiagen

Nearest neighbor search in large-scale datasets is an in@&ch sample with long binary codes will easily lead to a low
pensable process in many machine learning algoritifs [Ig§call rate so that multiple hash tables have to be considere
[2], 1B, [4], [5], such as spectral clustering [6], kernansity [27], [28]. Consequently, LSH-like hashing methods (with
estimation [7], semi-supervised learnifg [8], and sparde s both the long binary codes and multiple hash tablesjesu
space clustering [9], etc. Exhaustively comparing the yuefrom long query time and high storage cost.
sample with each training sample is prohibitive in largalsc A good hashing method should have the following proper-
visual data retrieval due to its linear query time to thenirsg  ties [29], [30]. First of all, the codes should be short tol#aa
size. Besides, in many real applications (elg.] [10]] [1hp the easy storage of large amounts of images in memory. For
dimensionality of visual data is very high, leading to théxample, to store 1 billion images in a normal server with
problem of curse of dimensionality. The high dimensionalitt4GB of RAM, we should represent each image with tens of
and the big sample size make the data storage and matcHifi§- Second, the binary codes should preserve the sityilari
very challenging, limiting the use of nearest neighbor aearstructures of the original data as much as possible. Firtaiy
in practical applications. training stage should be applicable to large-scale apjgits

Instead of conducting the exact nearest neighbor seaf€@., at most linear time complexity to the training size fo
with linear scan, approximate nearest neighbors (ANN)atearhash function learning) and the query stage shouldfbeent
can be used to retrieve the query sample with sub-line@nd scalable, e.g., constant query time to the training size
logarithmic, or even constant query time. For example,-tree To meet the above requirements, various learning techsique
based approaches (including KD tree |[12], ball-tree] [13ave been developed and applied to hashing. For example,
metric tree []_4], and vantage point tree [15]) can achieve n@ifferent from the data—independent hashing methods (SUCh as

LSH-like hashing) which learn hash functions without con-
Xieltofen% Zhuis VKJith th? SO!Iege_ of ggmputEef S,ICIience j@]”f"ﬂ‘,’l" Tech-  sidering the statistical properties of the data, data-depet
oy, g el Srsty, G Eal SABHNALCOT, | ashing meihods (such a3 POA-Tke hashing (9] (21 (52
ing, The Hong Kong Polytechnic University, Hong Kong. Email [33], [34] and manifold-like hashing [20]/ [30]/ [35]/ [36]
cslzhang@comp.polyu.edu.hk. . . [37]) generate hash functions by making use of the correla-
Zi Huang is with School of Information Technology and Elest Engineer- . . .
ing, The University of Queensland, Australia. Email: hu@itge.uq.edu.au. tion among the data. PCA-like hashing methods learn hash

functions via preserving the maximal variance of original
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Fig. 1. Flowchart of the proposed SELVE approach to hashing.

data; however, they assign the same weight to each bit agproach. In the training stage (refer to Eig.1(a)), we first
ignore the fact that dierent directions have filerent variances. partition the training samples int& clusters by a linear
To address this problem, Spectral Hashing (SH) [33] useslastering method such as linear spectral clusteiing [#bg
separable Laplacian eigenfunction to prohibit assignirggan obtainedk centroids are used to measure the distance between
bits to the directions along which the data have a greatgrerana sample and each cluster, and then each training sample
However, this approach is a heuristic method and it makean be mapped into the space spanned byktheentroids
an impractical assumption that the data should uniformtg obtain its spatial embedding. We sparsely represent each
distribute in the high dimensional space. Isotropic Haghirsample by its several nearest centroids, and generate sespar
(IsoHash) [[38] learns the hash functions to produce isatroprector of normalized probabilities that it falls into theveeal
variances (equal variances) alongfelient directions. Iterative closest clusters. This sparse embedding process hastiimear
Quantization (ITQ) [[32] uses non-orthogonal relaxation aromplexity and it converts the original high dimensionatada
sequential projections to alleviate the problem of unbzdan into a low dimensional space with approximate neighborhood
variances. structure. The resulting low dimensional sparse embedding
Manifold-like hashing methods aims to preserve the neigdectors are used to learn the hash functions.
borhood structures of samples, i.e., similar samples shoul We consequently propose to learn a dictionary to encode
have similar binary codes. Self-taught hashing (STH) [20he sparse embedding features with a least variance emgodin
preserves the neighborhood structures of single-modddityg, model, which jointly outputs the hash functions and the bina
while composite hashing with multiple information sourceszation threshold. In the test stage (please refer td ).l
(CHMIS) [37]. Anchor graph hashing (AGH) [39] preserveshe query samples are first converted into binary codes by
approximate neighborhood structures by building an anchitve learnt hash functions, and fast retrieval can then be
graph. The main drawbacks of most manifold-like hashingpnducted via calculating the Hamming distance between the
methods are the high complexity and the out-of-sample extdnnary codes of query sample and training samples. To furthe
sion problem (i.e., no explicit hash functions, such as AGHmprove the &ectiveness of the proposed sparse embedding
Many manifold-like hashing methods preserve the neighb@nd least variance encoding (SELVE) approach, we transform
hood structures of training samples by building a sparse kNNe samples into a new space where each cluster is more
graph, which has at least quadratic time complexity. Suchcancentrated, resulting in a sparser embedding vector and
high complexity is prohibitive for large-scale image retdl. better hashing performance.
AGH reduces the high time complexity to linear by preserving The proposed SELVE method could learfieetive hash
approximate neighborhood structures. However, it needs¢o functions with short binary codes. Our extensive experi@en
long binary codes to achieve good hashing performance. rsults on four real-world datasets show that SELVE outper-
particular, AGH achieves its best performance with 48-bit (forms many state-of-the-art hashing algorithnis7([2L].][41
above) binary codes, but its performance can be worse tHag], [32], [39], [34], [4Z]) in terms of various kinds of
other representative methods (e.g., ITQ) when shortempin@valuation indices, such as precision-recall, mean gdogcis
codes are used. of Hamming radius 2 (HAM2) and mean average precision
In this paper, we propose a new hashing approach fror{MAP). The success of SELVE mainly comes from the fol-
different point of view to previous ones. Instead of buildingpwing two aspects. First, the sparse embedding vector is a
a sparse kNN graph to preserve the neighborhood structuékgiinctive indicator of the spatial location of a sample in
of training samples, we preserve and encode the spatial gt Whole sample space. Second, the least variance encoding
bedding of each sample in the space spannell biystering model couples the learning of hash functions with the leayni
centroids of the training samples, aiming to achieve godd binarization threshold. As a result, it makes the hashecod
hashing performance with short binary codes and linear tirgeneration morefgective.
complexity. Fid.l illustrates the flowchart of the proposed The remainder of the paper is organized as follows. The



proposed approach and its analysis are presented in Sectibrereo is a parameter to control the decay rateppf with
[M Section[ reports the experimental results and Sedild respect to distanag;. For simplicity, we setr=1 in this paper.
concludes the paper. Letpi = [Pi1, .- Pij» - Pik] T, @ndp; forms a representation
of x;, characterizing its spatial location in the sample space.
[I. THE METHODOLOGY Since in general a sample can only belong to one of its several

In this section, we describe in detail the proposed spar@@sest clusters, we represent each training sample Usisg i
embedding and least variance encoding (SELVE) approach (fi<< K) nearest centroids, and r:]ence veqipwill be a very
general, given a datasit € R™" where each sample isdx  SParse vector. Denote bys the s largest probability inp;,
dimensional column vector and there ardraining samples, and let - . .

: / Pi. j it pij>ps
our goal is to represerX by B € {0, 1}°" (wherec <« d) pij = 0 if pi<p 3)
such that the neighborhood structure of each training sampl o R
x; is still preserved in the Hamming space. To this end, w&e then normalizep, ; as:

first represent each training sample ak-@dgmensional sparse pi' _
embedding vector (see Sectibn11-A), which is then encoded Pl = = S (4)
over a dictionary (see Sectidn II-B). Furthermore, we can 21 Py
learn a transformation matrix to make the training sampl&nally we regard
more concentrated, i.e., achieving a sparser embeddirg (se Pi = [Pits -ves Pijs - Pikd " (5)
SectionI-C). Finally, we summarize the proposed approagh ihe sparse embedding feature vectox;of
(See Sectiol I[-D) and analyze its complexity (see Section
[T=E).
B. Least variance encoding via dictionary learning
A. Sample representation by spatial embedding Denote byP = [p1, P2, ..., Pn] € R" the sparse embedding

Many hashing methods (e.g., STH, MFH, etc.) build feature set of _the training samples; The ngxt step is to learn
sparse kNN graph such that each training samglén X th_e hash functions fror® to convertp; into blnary c_odes. To
is represented as am-dimensional sparse vectgr, € R", this end, we propose to encode egghover a dictionary®
which stands for the relationship betwegrand other training and binarize its coding vector as the hash codes. We propose
samples inX. To preserve the neighborhood of each training€ following model to learn the desired dictionary:
sample,p; is usually constructed by thie nearest neighbors MiNg A ||P—(I>A||§ +AZT‘ llov — u”g’ st. |I¢-|I§ =1 (6)
to x;; that is, onlyk elements (or coordinates) {m are non- ' i=1 )
zeros. However, building such a sparse kNN graph needsyiere ® € R is called the encoding dictionary and each
least quadratic time complexity, which is impractical inge- atom o € R¥ of @ has unitf,-norm; A = [ay, ..., an] € R™"
scale search. is the coding matrix of over ® anda; is the coding vector

Instead of building a sparse kNN graph to preserve thg p; u = 1 ¥, a; is the mean of all coding vectors; the
neighborhood structures of training samples, we proposertfionale of the regularization terfiw — |2 is to reduce the
represent each sample as its spare spatial embedding ifafance of coding vectors so that similap; can more likely
low dimensional space. The rationale and motivation of sugfve similar codes; andl is a constant.
a strategy are as follows. First of all, if two samples are The proposed least variance encoding (LVE) model ifiJEq.6
neighbors, they will have similar spatial location and thugintly optimizes the dictionary® and the coding matrix,
similar spatial embedding. Second, the spatial embeddigile the mean vectopn is simultaneously obtained with.
vector tends to be sparser than the kNN vector because @i the LVE model, the learned dictionady can be directly
sample can have many neighbors but it can only be cloggnverted into the desiretiash functions (see Eq.I3 and
to several clusters. Third, the spatial embedding has mLEaE@), while the mean vectgr can be directly taken as the
less complexity than kNN graph building, and the resultinginarization threshold to binarizea; (see Eq.I4). Since the
representation vector has much lower dimensionality. hash functions and the binarization threshold are joinfi-o

To compute the spatial embedding of the training samplgfized, the loss caused by the hashing can be mieetively
we first partition the training sample space ilkt¢k << nand reduced. There are interactions between the thresholdhand t
k < d) cells. This can be simply done by a linear clusteringash functions in the optimization process. In contrastyyna
method such as the spectral clustering method_in [40]. AseRisting hashing methods [20], [44] learn the hash funetion
result, the clustering will outpwk clusters with centroidsni, and the threshold separately.
i =12..k We denote the Euclidean distance between aThe minimization in EJ6 is not jointly convex but it is
samplex; and the centroian; as convex w.r.t. eithed or A when another is fixed. Therefore,

rij = lIxi — mjl3 (1) we optimized andA alternatively. We first randomly initialize

Like in [43], the Euclidean distance; can be converted ® @nd optimizeA by fixing . Eql becomes:

into a probability that; belongs to clustey via the following miny |IP — q)A”'Z: + AZ" llo — MII% (7)
i=1

formula: . ) = .
exp(-rij/o) oy After some mathematical derivation, we have the following

Pii = Z}‘zl exp(-rii/o) analytical solution to each; in A:



a; = arg min, ||P - ®AJ2 + 1 Zin_l (i —m, 0 —n) (8) C. Enhanced sparse embedding
= arg min, [|P - ®A|2 From Sectiori II-A and Section 1B, we see that the hash
n function learning is to encode the spatial embedding vector
+AZi:1(<ai’ai>_2<ai’”>+ (. 1)) pi of the training samplex;. Intuitively, if we can have a
= arg min, ||P - ®A|2 + ﬁzin,l”“i”% — anjjul2 sparser emb_egding rgprt_e;entationxqf i.e., only a couple
= of elements inp; are significant, the samplg can be better
identified in the space spanned by the training samples. This
can consequently make the binary codes more informative. To
this end, we propose an enhanced sparse embedding (E-SE) of
the training samples iX. Our goal is to learn a transformation
: . . N . . matrix, denote byV € R4, so that in the new space spanned
where_l is an |d_ent|ty matrlx._ Finally, we obtain the following by X’ = WX € R™, each cluster can be more concentrated.
analytical solution to each; in A: That is, after the transformation each sample in clustell
6 =@ ®+2)H D" + (D) ®'z)  (10) be closer to its centroid and farther to other centroidsilties
in a sparser embedding vector of each sample.
The learning of such &/ can be performed based on the

Let the partial derivative of Elg.8 with respect ¢ equal 0,
we have:

(@T® + e — @' = ﬂ((DTtI))_l(d)T% ZI] p)  (9)

wherez =1 3", p; is the mean of all vectorp;.
Fixing A, the minimization problem in Eg.6 is reduced to

_ ) ) k clustering results oK. Denote byX;j, j = 1, ..., k, the set of

ming [IP— @Az, st [l¢jll; =1 (A1) training samples in th¢h cluster with the centroieh;. LetM
via which the dictionary® can be updated by methods suclve a matrix which has the same sizeXasbut each column
as [45]. of Mj is mj. Let[j = Xj—M;. We can see thafl’;||2 reflects

The coding matrixA and dictionary® are alternatively the variance of the training samples in clustgr The goal of
updated until convergence or the maximum iteration numbgrSE is to find a transformation matri%/ € R™¢ (I < d) such

is reached. Oncd and dictionary® are learnt, we let that WX can preserve the energy of, while the variance
T=(@"®+ )’ of each clusterX; can be reduced (i.e., the cluster is more
{ B=A(DP D+ ) DTD) D2 (12) concentrated). This leads to the following objective fimtt
According to E4-ID, we have [46]:
o =Tp; +p. (13) minw X - WTWX|[2 + yZT_NIWF,-II%,
Eq[I3 gives our hash function; that is, the real-valued code St WWT =1 (15)
vector «; is obtained by projecting the featupg onto T and ’
then shifting withf. wherey is a tuning parameter.
With all o; available, we obtain the mean vector \ia= In EQ[I5, the term|X — WTWX|2 is a data fidelity term,
Ly, @. We then binarizey, i = 1,...,n, as follows: ensuring thaX can be well reconstructed from its transformed
bi(j)=1 if «(j)=n()) dataWX. The second termiWT||2 is a regularization term,

{ bi(j)=0 if «(j) < n()) (14) enforcing that each cluster has less variance after trensfo
where j = 1,...c. That is, the mean value is used as th&iation. One can see that if we set= 0, EqLLS will be
threshold for binarization. Finally, we obtain the binandes reduced to PCA. By setting a suitable valueyotthe learned
B = [by, ..., by] of the original training samples iX. transformation matriXW will make the sample distribution

The rationale of the least variance regularizatioflore concentrated while preserving the energy of original
M, llei — w2 in Eq@ is twofold. On one hand, thelraining samples. o . .
least variance regularization is used to penalize the demia LetT =[I'1, ... I'], the minimization of EQ.T5 is equivalent
of each hash value (i.e., the real value of hash code) from fi9e
mean (i.e., the threshold). This reduces the impact ofastli  miny tr{(X - WTWX)T(X - WTWX) + yWITTWT} (16)
?n the process of .hash function Iee_lrning. On the other hand, _ miny tr{XTX — 2XTWTWX + XTWTWw Twx
it makes the learning of threshold (i.@) and the learning of T
hash codes unified. In contrast, traditional methods uguall +YWIT W'}
set the threshold separately after the real hash values ares miny tr{X"X - XTWTWX + yWITTW '}
learned. In each iteration of SELVE training, is adjusted = minw tr{WQGITT = XTX)WT + XTX}
by the real valued hash codes (i.e;). Thoseq; are used to _ T TypsT
update the dictionarp , while ® will be used to updatey; = Mmaxy trW (XX " —yITHW
in return. This iterative process makes the final threshadd fiClearly, the desiredV can be solved by applying Singular
much better the hash codes and the given data. Value Decomposition (SVD) to the matriXXT —yI'TT); that

In the test stage, given a new data pagintve first calculate is, W is composed by thé eigenvectors associated with the
its sparse embedding feature vecfgrusing Eqs[{{35), and first | largest eigenvalues oKX — yITT).
then compute its real-valued code veotgrusing EJ.IB, and  With the learnedV, we transformX into X' = WX, and the
obtain its binary code®, by Eqd4. Finally, the Hamming sparse embedding is appliedXo using the method described
distance betweelby and B is computed to find the nearestin Section[I[-A. The geometric illustration of the role ofeth
neighbours ofy. transform matrixW is shown in Fid.P.



e N\ Ve N\ in Eq[I5. By settingy > 0, the proposed E-SELVE method

u(* g X ‘ **’8" * can achieve better hashing accuracy than settirgO (i.e.,

\ **/;‘ —) \ kR ** ) using PCA for transform). For example, in the experiment on

N * / N S the MNIST dataset (Please refer to Secfion lI-D for dejails
T @ T ®) the HAM2 results of the proposed hashing method are 0.8805

Fio. 2. Il .  the role of forW. (a) T | - and 0.8712, respectively, far = 0.1 andy = 0. In addition,
ig. 2. lllustration of the role of transfornw. (a) Two clusters before ) . . L. .
transform; (b) the two clusters after transform. One can the¢ the data our E-SELVE algonthm is not sensitive to the SeIeCt'On)’Of

distribution is more concentrated after transform. Sonietpariginally locate ~ On the other hand, the SE step in our method embeds the

in the boundary of the two clusters are moved invyard so they thill have sample sparsely in the manifold subspace. It aims to build an

a more concentrated and sparser spatial embedding. approximate kNN graph with linear time complexity, which is
favorable for large-scale hashing. The conventional nodohif

D. Summary of the algorithm learning methods (e.gl,_[47], 148]. [49]) build an exact kNN

. . raph, which have at least quadratic time complexity and are
The proposed approach in the original space spanned b)groﬁibitive for large-scale hgshing applications.p ’

is abbreviated as SELVE, while the proposed method in trg)eAS in most dictionary learning methods [45], [50], the LVE

transformed space spanned Xyis abbreviated as E-SELVE. ; : ) . o
Since SELVE can be viewed as a special case of E-SELVE stgp in the proposed hashing algorithm is not jointly corteex
b ' @ andA, but it is convex to each of them when another one is

summarize the E-SELVE algorithm in Algorithin 1 (trammgﬁxed. In the alternative optimization, the energy will degse

stage) and Algorithrill2 (test stage). step by step. In Fid.]3 we plot the convergence curves of the
proposed E-SELVE hashing method on the datasets used in
our experiments (please refer to Section Il for detailsheO

Algorithm 1: The Algorithm of E-SELVE: Training Stage

Input: training datax E_Rdxn: ¢ (the number of bits)| can see that the value of objective function decreaseslyapid
(the dimensionality of transformed spack)(the in the first several iterations and then becomes stable after
number of centroids). about ten iterations.

Output: B € R™", W e R™!, T e R®K, B € RX, m € R®.
1 Perform a clustering method of to obtaink centroids E. Time and space complexity
m;; In E-SELVE, the time complexities of clustering method

2 ComputeW by Eq@, [40], sparse embedding, hash function learning, bindadnat
3 X =WX, mj = ij, and E-SE transform learning a®(dkn) [20], O(lkn + scn),

4 Computep b)_/ Eqla; O(t(c?d + cdn + 2 + ¢n)), O(cn) and O(d®), respectively, in

5 ® = rand(, ), the training stage, whererefers to the number of iterations
6 rep%at 4 by oDl in learning ®. In the test stage, it will cosO(dk + Kl + c)

; UEdZtg'(? ar)lld quy I’EqEII' for E-SE representation, hashing transform and binadmati
o | Updatea by EqLL3; plus O(1) for performing inverse lookup in the hash table.

Considering that is much smaller tham, ands and c are
usually small numbers, the time complexity of E-SELVE is
basically O(dkn + d®) in the training stage and(dk) in the
test stage. Without the E-SE transform, the time complexity
of SELVE is O(dkn) in the training stage and(dk) in the
test stage. Table 1 compares the time complexity of E-SELVE
Algorithm 2: The Algorithm of E-SELVE: Test Stage with those of representative algorithms such as LSH [21], LS

=
o

u = meang,);
until Convergence;
ComputeB by EqlT1%;

B
N e

Input: y € RY, B € RN, W € R%, T € R°K, B e R, [41], SH [33], ITQ [32] AGH[39], MDSH [34] and SpH[42].
e RS: The space complexity of E-SELVE is abadfd(l + k + n))
Output: by € R°. in the training stage and(dl + ck) plus O(cn) (binary bits)
1y =Wy; in the test stage, while for SELVE the space complexity is
2 Computep; by Eq3; ()_(d(K+ n)) in the training stage an@(ck) plusO(cn) (binary
s Computea, by Eq[I3; bits) in the test stage.
: E:/I(;rt];‘f)]ubtf?é Ey B3, Ill. EXPERIMENTAL RESULTS

We compare our proposed methods with two baseline ap-
_ . roaches, LSH[21] and LSI[41], and five state-of-the-z3t4,
The transform used in the proposed E-SE step is a PC 33), ITQ [32], AGH [39], SPH [42], and MDSH34], on four

like subspace learning method. fildérent from PCA which widely used datasets, including MNIST (Y(ﬁkplFAR(GOK)

preserves the maximal variance (a.k.a., the energy) after Ell’ NUS-WIDE (193K) [52] and GIST (500K)[53]. Note

transformation, the proposed transform preserves theggne hat AGH has two variants and we use the one with better
while making the clusters more concentrated, aiming at op;

L . . results (i.e., 2-AGH in the original paper).
taining a sparser embedding vector of each sample. Tradltio ( g paper)
PCA is a special case of our transformation, i.e., setfirg0 httpy/yann.lecun.copexdlymnisy
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TABLE |
TIME COMPLEXITY COMPARISON BETWEEN COMPETING ALGORITHMS.
Training stage Test stage
LSH o) 00)
LSI o(dm) o(dc)
SH o(d?n) o(dc)
ITQ o(d®n + c3) O(dc)
AGH O(dknT +k?n + scn) | O(dk + sc)
MDSH o(d?n) o(dc)
SpH O(c? + cdn) o(dc?)
LVE o(dn) o(sc)
SELVE o(dkn) O(dK)
E-SELVE O(dkn + d3) O(dK)

Note thatc, d, k, n, s, andT are the length of binary codes, the dimensionality
of the samples, the number of centroids, the training size, tumber of
nearest neighbors, and the iteration of k-means algoritiespectively.

A. Datasets

50,000 images are used for training and the remaining 10,000
images are used for testing. For each image, a 512-dimeaision
GIST feature vector is extracted [54]. The CIFAR dataset is
also fully annotated, and we regard their true nearest beigh

as semantic nearest neighbors based on the associated class
labels.

The NUS-WIDE dataset originally contains 269,648 images
associated with 81 ground truth concept tags. We pruned
the original NUS-WIDE in our experiments based on the
description in [18, 29]. First, a subset of 195,969 images
was extracted, in which each image is annotated by at least
one of the 21 most frequent labels. Second, we uniformly
sampled 100 images from each of the 21 tags to form a
guery set of 2,100 images. The other 193,869 images serve
as the training set. Third, each image is represented by a 500
dimensional SIFT feature vector. Finally, the ground tristh
defined according to whether two images share at least one
common tag.

The MNIST dataset consists of 70,000 digit images of size
28x28. We use the Matlab format of MNIST dataset provided In the GIST dataset [53], we selected all the 500K learning
by [39], 8], including 69,000 training samples and 1,000ectors and 1,000 query vectors as our training dataset and
test samples. Following Liu et al. [39], we split the MNISTquery dataset, respectively. In GIST, each image is reptede
dataset into two parts: a training set containing 69,00@ ddty a 960-dimensional GIST descriptor. The original ground
points and a test set of 1,000 data points. Because MNISTiigths in GIST were not designed for the training dataset.
fully annotated, we regard true nearest neighbors as se@maimilar to the setting in[26], we use a nominal thresholchef t

nearest neighbors based on the associated digit labels.

average distance to the Bhearest neighbours to determine

The CIFAR datasets consists of 60,000 colour images (sizehether a training sample returned for a given query sample
32x 32) from 10 classes, while each class has 6,000 sampiesconsidered as a ground truth.



B. Evaluation criteria and comparison approaches underlying semantic structure of the original data matrix

In order to evaluate the proposed hashing approach, some X 1S used to learn the‘ha’\sh.functipns.
quantitative criteria should be used. We follow the litaras ~ * SPectral Hashing (SH)[33]: SH first conducts PCA on

(such as([8],[[39]) to conduct two popular search procedures the ongma_l data, and then uses the ar!aly_tlcal ITapIquan
i.e., hash lookup and Hamming ranking. eigenfunctions corr_]pu_ted along the principal directions
Hash lookup first constructs a lookup table for the binary of the data for projection to generate the hash codes. It
codes of all data samples, and then returns the percentage of belon_gs toa P,CAfl'ke has‘hlﬁg methqd.
the data samples falling into a small Hamming radius cedtere ° Iterative _Ql_Jant|zat|on (ITQYLE2]: ITQ first conducts PCA.
at the query sample. For example, HAM2 (i.e., the Hamming on the original data, and then_learns an orthogonal_matnx
radius is 2) means that the Hamming distance between the © SOlvé the unbalanced variance problem offedent
training samples and the query sample is smaller than 2. In PCA directions. ITQ, as a PCA-like hashmg,_has shown
our experiments, we employed HAM2 to evaluate the results better performance than OIher PCA-like hashing methods
of hash lookup. Although the complexity of hash lookup is (such as SHI33], SKLSH [‘!6,]’ :’:md PCA-.Nonor‘th .[59])'
constant, it may fail in the case of long hash codes becausg Anchor Graph Hashing (AGH) [39]: AGH is a manifold-
the Hamming codes space is very sparse so that only few like h"_"Sh'ng method. It first generates the New repre-
samples fall into the same hash bucket as the query. sentation f(_)r each sample, and then uses eigenfunction
Hamming ranking ranks all the samples in the database generalization to encode test samples tlo solve the out-of-
based on their Hamming distances to the query sample and sample problem. AGH has ;hown superior performance to
then returns the top ones. The complexity of Hamming ranking many state-of-the-art hashlnlg methods, such as.SH [33],
is linear. In our experiments, we employ the mean average PCA—_Nonorth [29], KLSH [[2b], SKLSHIL26], and PCA
precision (MAP) (i.e., the mean of all query samples’ averag Has*_“F‘g- : .
precision) to evaluate the performance of Hamming ranking® Mu|t|d|men5|ona_l Spectral Hashmg (MDSH) [34]: Based
under diferent hash bits. Since computing MAP is slow on on the observation thaF the re!a’uve perf_ormance of hash-
the two large datasets NUS-WIDE and GIST, following the Ing can c_hange dramatlcally with the definition ofgr_ound-
literature [8], [39], we report the results of Mean Preaisio truth_ neighbors, MD_SH first reconstructs t_héﬁraty :
(MP) of the top-50K returned neighbors. matn)g of _the data points, and th_en solv_es a blne_lry_matnx
These two distinct criteria (i.e., Hash lookup and Hamming factorlzat_lon problem of thefﬁ_nlty matrix, 1.e., finding
ranking) are designed to evaluatdfeient characteristics of the top e|genveptors of theﬁnlt.y matr|>§.
hashing techniques. The larger the HAM2 or MAP or MP, the * Spherical Hashing .(SpH" [4.2]' SpH first uses a hyper-
better the hashing performance. sphere baseq hashmg_ function to map spatlally_ coherent
Besides, we use the precision-recall curve to measure the data points iinfo a binary code, and then tailors the

hashing performance. The definitions of precision and tecal hypersphere ba;ed binary qodmg scheme by_de3|gn|ng
are as follows[[37]: a binary code distance function, namely, spherical Ham-

_ _ ming distance.
precision = Number of retrieved relevant images , Among the competing methods, LSH is the only data-
Total number of all retrieved images dependent hashing method. All the other methods, including
the proposed LVE, SELVE and E-SELVE, belong to data-
(18) dependent hashing methods.

Number of retrieved relevant images

recall = -
Total number of all relevant images

In order to more comprehensively evaluate the propos€d Parameter setting

hashing method, we evaluate three variants of it: In the proposed SELVE and E-SELVE, we set the pa-
« LVE, i.e., using LVE to perform hashing in the originalrametersk = 300,1 = 300 ands = 10 on the GIST
data space; dataset, and sett = 300, = 300 ands = 4 on other
« SELVE, i.e., LVE with sparse embedding (SE); three datasets. The parametérin Eq[@ is set via per-
« E-SELVE, i.e., LVE with enhanced SE (E-SE). forming line search oven = [0.01,0.1,1,10,100]. For the

We compare LVE, SELVE and E-SELVE with the followingESE step in E-SELVE, the parameteris also set by line
representative and state-of-the-art hashing approaches. ~ search overy = [0.01,0.1,1,10,100]. In the experiments,

« Locality Sensitive Hashing (LSH) [21]: LSH generateéf"e vary the length of hash codes (i._e..,.number of hash bits)
random linear functions as hash functions. Following tHe [1216,24,28, 32,48, 64]. ThF." senS|_t|V|ty of the proposed
literature [32], we generate a Gaussian random matflethod to these parameters will be discussed in SeCtida. I1l-

as the projection matrix (i.e., the hash functions) in our For all the o.ther comparison approaches, the MATLAB
experiments. codes are provided by the authors. We tune the parameters

. Latent Semantic Indexing (LSIJ [41] [55].[56]: Bina-2ccording to the corresponding papers.
rized Latent Semantic Indexing (LSI) employs truncated
SVD [57], [58] to find the best low-rank description ofD. Results
original dataX, i.e., the low-rank matri® with minimum The hashing results of all competing approaches are shown
error||X—D||§. Then the low-rank matri® revealing the in Figsi4t6é and Tablé&ldll. From Figs[4-6, we can have the



TABLE I
CPUTIME (IN SECONDS) FOR ALL HASHING APPROACHES BY FIXING CODE LENGTH AS 28.

MNIST CIFAR NUS-WIDE GIST
Methods — — — _—
training test training test training test training test
LSH 1871 | 27x10° 1056 | 6.7x107 | 4321 | 25x10° | 2537 | 51x10*
LSl 4374 | 80x10°% | 9041 | 42x107 1204 | 57x10°| 8016 | 1.0x10°
SH 9012 | 79x10° | 5306 | 6.6x10° 1957 | 99x10° | 9756 | 87x10*
ITQ 1737 | 25x10° 1689 | 1.3x10°| 3780 | 24x10° | 2281 | 45x10*

AGH 2475 | 58x10° | 1161 | 18x10°| 3151 | 71x10° | 1679 | 21x10*
MDSH 1077 | 15x10° | 4311 | 62x10°| 1372 | 13x10°| 8867 | L1x10*
SpH 1684 | 81x10°| 1209 | 80x10°®| 1722 [ 73x10°| 9150 | 7.2x10*
LVE 2399 [ 36x10°| 8172 | 1.0x10°| 2585 | 67x10° | 1435 | 20x10*
SELVE 2487 | 54x10° | 1071 | 11x10°| 3020 | 91x10° | 1457 | 21x10*
E-SELVE | 3023 | 6.7x10° | 1593 | 26x10°®| 3573 [ 96x10° | 2079 | 7.3x10*

following findings. First, the proposed E-SELVE performeth From FiglB, we see that all hashing methods first achieve
best, while the proposed SELVE is very competitive wittheir best HAM2 performance (i.e., the peak), and then drop.
other approaches. More specifically, E-SELVE outperfotmas t This is mainly because a longer binary code may lead to less
other approaches, followed by SELVE, SpH, AGH, MDSHretrieved results given the fixed Hamming distance threshol
ITQ, SH, LVE, LSI and LSH. It is not surprising that LSHSuch a phenomenon has also been discussed In [39], [60].
performs the worst since it is a data-independent hashig can also see from Hig.5 that all competing approaches,
method by randomly generating hash functions. Both SH aedcept for AGH, achieve their best HAM2 performance when
ITQ are PCA-like hashing methods but they solve the probletine number of hash bits is between 24 and 32. For example,
of unbalanced variances alongfdrent directions in dierent the proposed SELVE and E-SELVE obtain their best HAM2
ways. ITQ employs an orthogonal transformation, while SHerformance on all the four datasets with hash code of 28 bits
employs a separable Laplacian eigenfunction with unifor@®pH, MDSH, ITQ, SH, LSI and LSH obtain their best HAM2
distribution, which is a too strong assumption for real datperformance on all the four datasets with code length betwee
As a result, ITQ outperforms SH in general, as shown in Fig@4 and 32. However, AGH obtains its best HAM2 performance
[B(d) on the large dataset GIST. when the code length is between 48 and 64. This shows that
The proposed SELVE method is basically a manifold-likelthough AGH achieves the third best performance among
hashing method, while E-SELVE further employs a PCA-likall competing hashing algorithms, it needs to represert eac
transformation before performing sparse embedding. Cosample with longer binary codes, which leads to more data
pared with the state-of-the-art manifold-like hashing moet storage cost and longer query time. Overall, from[Fig.5 one
AGH, in most cases SELVE performs better, though AGKan conclude that the proposed hashing framework achieves
employs a more complex binarization process, i.e., hieieat the best HAM2 results with short binary codes.
method. In addition, SELVE achieves its best performanceFinally, from Figl6 we see that the MAP or MP results of all
with shorter binary code than AGH. These observatiomsethods will increase with the increase of hash bits, whiée t
demonstrate that the proposed LVE process is very usefotoposed E-SELVE achieves the best MAP or MP results in
From the experimental results, we can see that using L\dimost all cases on the four databases. The results of SELVE
alone, the hashing performance is better than LS| and LSife also very competitive.
but worse than other state-of-the-art methods such as SHTable[] lists the training time and test time of all methods.
SpH, MDSH and AGH. With the SE step, the SELVE methoth terms of training time, LSI is the most time consuming one
outperforms all the competing methods. This indicatesttiat since it needs to conduct SVD on all the training samples.
SE process is very important in our hashing framework. CorhSH is the fastest one, while ITQ, SpH, MDSH, AGH, SH,
pared with SELVE, E-SELVE performs consistently betteSELVE and E-SELVE have similar training time. In terms of
This demonstrates that the learned transform can make thet8§ time on each test sample, LSl is the fastest one, while
process morefeective. According to our experimental resultsall the other methods are in the same order. This is consisten
we can conclude that the SE process is the most importamtthe complexity analysis in Tablé I. Overall, the proposed
component in our E-SELVE framework. E-SELVE has comparable running time to state-of-the-arts b
From Figl4, we see that the precision decreases when thieh better accuracy.
recall increases, and vice versa. This is because the vélue o
precision is sensitive to true positive rate while that afale
is sensitive to false positive rate. E-SELVE has much better
precision-recall curves than other methods (i.e., its ipi@c We then test the proposed methods witffetent parameter
decreases much more slowly with the increase of recall thaettings. More specifically, we first report the results of $E
others). and E-SELVE in terms of HAM2 by varying the number of

Sensitivity to parameters



centroids (i.e., settinge = [100, 200, 300, 400, 500, 600]).
Then we test the HAM2 performance of E-SELVE via setting
different dimensionality (i.e., settig [25, 50, 100, 200, 300,
600]) in the E-SE process. Finally, we test the HAM2 perfo
mance of E-SELVE via setting fierent values om andy
(i.e.,4=100.01,0.1,1,10,100] andy = [0.01,0.1,1, 10, 100]).
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The results are reported in Hify.7, Fig.8, and[Big.9, respyt
From FiglT, we see that increasikgcan lead to better
results of SELVE and E-SELVE. This is reasonable because

using more clusters can more accurately describe the data

distribution of the training samples. Nonetheless, usiog t [1]
many clusters will need much more computational cost. Ac-
cording to our experience, setting< +/n can make a good 2]
trade-df between the hashing accuracy and cost. FroniFig.8,
we see that even with a smaJIE-SELVE still obtains good [3I
performance. This validates thetectiveness and advantage
of the E-SE step in the E-SELVE approach. From Eig. 9, ong
can clearly see that the proposed method is not sensitiveeto t
setting4 in Eq[@ andy in Eq[IB. In addition, we also found [5]
the proposed method is not also sensitive to the settingeof th
s. By varying s from 2 to 12, the hashing performance of[6]
E-SELVE does not vary much. We do not report the detailed
results here to save space.

(7]

(8]
F. The role of the centralized term in Eql6

Finally, we validate the role of the centralized term[®
AX L llei — il in Eq[8. This term is important in the pro-j;q
posed framework because it is designed to simultaneously
generate hash functions and the binarization thresholchrit
also reduce the impact of outliers. In [Eig.10, we test E-seLVH
with (i.e., letA = 1 in Eql6) and without (i.e., lef = 0 in
Eq[6) the centralized term. It can be seen that E-SELVE with
the centralized term always outperforms E-SELVE withoet tr{”]
centralized term. [13]

[14]

IV. CoNcLUSION [15]

We proposed anfeective sparse embedding and least vart®!
ance encoding (SELVE) approach to hashing, aiming at higi
hashing accuracy with short binary codes. We first partitbn

the whole training dataset into clusters and then repreden
each training sample by the normalized probabilities that i
falls into the several closest clusters. Such a spatialyrssp [19]
embedding process leads to advantages such as sparse repr
sentation, similarity preservation and linear time comitfe |2

and the funding of Guangxi 100 Plan.
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