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Large-margin Learning of

Compact Binary Image Encodings

Sakrapee Paisitkriangkrai, Chunhua Shen, Anton van den Hengel

Abstract

The use of high-dimensional features has become a normal practice in many computer vision

applications. The large dimension of these features is a limiting factor upon the number of data points

which may be effectively stored and processed, however. We address this problem by developing a

novel approach to learning a compact binary encoding, which exploits both pair-wise proximity and

class-label information on training data set. Exploiting this extra information allows the development

of encodings which, although compact, outperform the original high-dimensional features in terms of

final classification or retrieval performance. The method is general, in that it is applicable to both

non-parametric and parametric learning methods. This generality means that the embedded features are

suitable for a wide variety of computer vision tasks, such as image classification and content-based

image retrieval. Experimental results demonstrate that the new compact descriptor achieves an accuracy

comparable to, and in some cases better than, the visual descriptor in the original space despite being

significantly more compact. Moreover, any convex loss function and convex regularization penalty (e.g.,

`p norm with p ≥ 1) can be incorporated into the framework, which provides future flexibility.
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I. INTRODUCTION

The increasing availability of large volumes of imagery, and the benefits that have flown from

the analysis of large image databases, have seen significant research effort applied in this area.

The ability to exploit these large data sets, and the range of technologies which may be applied,

is limited by the need to store and process the resulting sets of feature descriptors. This limitation

is particularly visible in retrieval algorithms which must process a large set of high-dimensional

descriptors on-line in response to individual queries.

Effort has been devoted to address these issues and a hashing based approach has since become

the most popular approach [1]–[3]. It constructs a set of hash functions that map high-dimensional

data samples to low-dimensional binary codes. The pair-wise Hamming distance between these

binary codes can be efficiently computed by using bit operations. The new binary descriptor

addresses both the issues of efficient data storage and fast similarity search. A number of effective

hashing methods have been developed which construct a variety of hash functions. We divide

these works into three categories: data-independent, data-dependent and object-category-based

approaches. Our paper falls into the last category. In contrast to all previous learning algorithms,

our approach encodes visual features of the original high-dimensional space in the form of

compact binary codes, while preserving the underlying category-based relative relationships

between the data point in the original space. To achieve this, we learn hash functions based on a

pair-wise distance information which is presented in a form of triplets. The proposed approach

assigns a large distance to pairs of irrelevant instances and a small distance to pairs of relevant

instances. In this paper, we define irrelevant instances to be samples from different classes and

relevant instances to be samples from the same class. We formulate our learning problem in

the large-margin framework. However the number of possible hash functions is infinitely large.

Column generation is thus employed to efficiently solve this large optimization problem.

The main contributions of this work are as follows. (i) We propose a novel method (referred

to as C-BID) by which we learn a set of binary output functions (binary visual descriptors) in

a single optimization framework through the use of the column generation technique. To our

knowledge, our approach is one of the most effective learning-based frameworks which exploits

both pair-wise similarity and multi-class label information. By utilizing both neighbourhood and

class label information, the learned descriptor is not only compact but also highly discriminative.
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Additionally, our approach is complimentary to many existing computer vision approaches in

significantly reducing the dimension of the data, that needs to be stored and processed. (ii)

Similar to other column-generation-based algorithms, e.g., LPBoost [4] and PSDBoost [5], our

approach is robust and highly effective. Experimental results demonstrate that C-BID not only

reduces the feature storage requirements but also retains or improves upon the classification

accuracy of the original feature descriptors.

II. RELATED WORKS

The method we propose transforms the original high-dimensional data into a more compact

yet highly discriminative feature space. It is thus a suitable pre-processing step for any computer

vision algorithms, where a massive number of data points are stored and processed. Before we

propose our approach, we provide a brief overview and related works on image representation

and image classification.

Image representation Learning compact codes or image signatures to represent the image

has been the subject of much recent work. Compact codes can be categorized into three groups:

data-independent, data-dependent (unsupervised learning) and object-category-based approaches.

In the data independent category, compact codes are generated independently of the data. One

of the best known data-independent algorithms of this category is Locality Sensitive Hashing

(LSH) [6]. LSH constructs a set of hash functions that maps similar high-dimensional data to the

same low-dimensional binary codes (buckets) with high probability. These binary codes can then

be used to efficiently index the data. LSH has been used in a wide range of applications such as

near-duplicate detection [7], image and audio similarity search [8], and object recognition [9].

Since, LSH is data independent, multiple hash tables are often used to ensure its high retrieval

accuracy.

Recently, researchers have proposed effective ways to build data-dependent binary codes in

an unsupervised manner. Examples include Spectral Hashing [3], Anchor Graph Hashing [10],

Spherical Hashing [11] and Spline Regression Hashing [2]. These algorithms learn compact

binary codes which aim to preserve the pair-wise distances between input data. The authors then

either solve the exact optimization problem or an approximate solution to the original problem.

The learned hash functions enforce the Hamming distance between codewords to approximate

the actual distance between the data in the original space. Other data-dependent descriptors also
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include bag of visual words (BoW), which is a sparse vector of occurrence counts of local features

[12] and vector of locally aggregated descriptors (VLAD), which aggregates local descriptors

into a vector of fixed dimension. BoW features can be further compressed into a compact image

signature using discriminative vocabulary coding [13].

Finally, object-category-based approaches aim to learn a compact binary descriptor in a

supervised manner. Wang et al. propose a semi-supervised hashing method that minimizes the

empirical error on the labelled data while maximizing variance of the generated hash bits over

the unlabelled data. Several supervised hashing methods have been proposed [14]–[16]. Most

of these methods define their objective based on the Hamming distance between similar and

dissimilar data pairs. Liu et al. exploit the separable property of code inner products and design

an efficient greedy hashing algorithm [15]. The authors employ a kernel function to construct

hash functions. Torresani et al. represent a compact image code as a bit-vector which are the

outputs of a large set of classifiers [17]. Li et al. propose a high-level image representation as the

response map from a large number of pre-trained generic visual detectors [18]. Bergamo et al.

propose a PiCoDes descriptor which learns a binary descriptor by directly minimizing a multi-

class classification objective [19]. The descriptor has been shown to outperform many hashing

algorithms and achieves state-of-the-art results at various descriptor sizes. One of the drawbacks

of this approach, however, is that it can take several weeks to learn an encoding. Later, the same

authors proposed the more efficient meta-class (MC) descriptor [20], which adopts the label

tree learning algorithm of [21]. The final descriptor is a concatenation of all classifiers learned

using label trees. The descriptor size is fixed. In contrast to all previous learning algorithms, the

proposed approach encodes visual features of the original high-dimensional space in the form

of compact image signatures based on Image-to-Class distance [22]. The resulted feature is not

only more compact but also preserves the underlying proximity comparison between the data

point in the original space.

Image classification Existing approaches to image classification can be categorized into the

parametric and non-parametric methods. The parametric method constructs image features as a

vector of predefined length. A discriminative classifier, such as SVM, is used to learn the decision

function that best separates the training data of the k-th class from other training samples. The

most well known example is a bag of visual words model (BoW). Visual features are first

extracted at multiple scales. These raw features are quantized into a set of visual words. A new

DRAFT 3·7·2014



1057-7149 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TIP.2014.2337759, IEEE Transactions on Image Processing

PAISITKRIANGKRAI et al.: LARGE-MARGIN LEARNING OF COMPACT BINARY IMAGE ENCODINGS 5

representative feature is then calculated on the basis of a histogram of the visual words. This

technique often reduces the high dimensional feature space to just a few thousand visual words.

The BoW approach underpins state-of-the-art results in many image classification problems [12],

[23]–[25].

In the second approach, the non-parametric method, local features belonging to the same class

are grouped together to represent that specific class. Image-to-Class (I2C) distance from a given

test image to each class is defined as the sum of distance between every local feature in the test

image and its nearest neighbour in each class. This approach is also known as a patch-based Naive

Bayes Nearest Neighbour model (NBNN) [22]. In contrast to the BoW approach, the NBNN

based approach does not quantize visual descriptors but it relies on nearest neighbour search over

image patches. The classification is performed based on the summation of Euclidean distances

between local patches of the query image and local patches from reference classes (hence the

name Image-to-Class distance). I2C distance has demonstrated promising results on several image

data sets when experimented with linear distance coding [26]. Several researchers have attempted

to improve the performance of NBNN. Behmo et al. corrected NBNN for the case in which

there are unbalanced training sets [27]. Tuytelaars et al. proposed a kernel NBNN which uses

NBNN response features as the input features from which to learn the second layer using a kernel

SVM [28]. McCann and Lowe proposed to speed up the effectiveness and efficiency of NBNN

by merging patches from all classes into a single search structure [29]. Wang et al. proposed

a per-class Mahalanobis distance metric to enhance the performance of I2C distance for small

number of local features [30]. Although these existing works have improved the effectiveness and

efficiency of the NBNN-based classifier, one still needs large storage to store the large amount

of data and their structures.

Note that the practicality of both BoW and NBNN approaches are limited by the fact that

they require highly distinctive feature descriptors for reasonable results. Unfortunately, feature

distinctiveness often comes at the cost of increased database size. In this work, we propose

a novel Compact Binary Image Descriptor (C-BID) which addresses this shortcoming. The

proposed approach is applicable to both parametric and non-parametric image classification

frameworks.
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Fig. 1: Illustration of I2Cpatch and I2Cimage distances. Here we assume that the image xi belongs

to class 1. (a) Patches in the image are represented by black triangles. Each orange arrow maps

the patch p(i,j′) to the closest patch with the same class label p+(i,j′). Each purple arrow maps the

patch p(i,j′) to the closest patch with the different class label p−(i,j′). To achieve high accuracy,

we prefer d(p(i,j),p
+
(i,j)) to be small and d(p(i,j),p

−
(i,j)) to be large. Our method learns hash

functions that preserve the relative comparison relationships in the data, i.e., the margin of xi

should be as large as possible. (b) Each image now contains one single patch. Each orange arrow

maps the image xi to several closest images with the same class label x+
i .

III. APPROACH

In this section, we present the I2C distance definition. We then define our margins and propose

two approaches which learn a set of hash functions and their coefficients (weighted Hamming

distance). We then discuss the application and computational complexity of the proposed ap-

proach. For ease of exposition, symbols and their denotations used in this section are summarized

in Table I.

A. Background

I2C distance Suppose we are given a set of training images {(xi, yi)}mi=1 where xi ∈ Rd

represents a d-dimensional image and yi ∈ {1, · · · , k} the corresponding class label. Here m is

the number of training instances and k is the number of classes. Let {p(i,1), · · · ,p(i,n)} denote

a collection of local feature descriptors, in which p(i,j) represents features extracted from the

j-th patch in the i-th image. Here n represents the number of patches in xi and visual features
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TABLE I: Notation

Notation Description

p(i,j) The j-th patch of the i-th image (I2Cpatch)

p+
(i,j) The closest patch to p(i,j) which has the same class label

as p(i,j) (I2Cpatch)

p−(i,j) The closest patch to p(i,j) which has the different class label

to p(i,j) (I2Cpatch)

NNr(p) The nearest neighbour patch to p from class r (I2Cpatch)

%i The margin of the i-th image (I2Cpatch)

w The Hamming weights for (I2Cpatch)

xτ The τ -image (I2Cimage)

x+
τ The closest image with the same class label as xτ

x−τ |r The closest image with the different class label to xτ

wr The Hamming weights for class r (I2Cimage)

ρτ,r The margin for the τ -image with respect to class r

h(·) The binary function which outputs the binary code

(β, b) Coefficients and bias of the decision function h(·)

where h(x;β, b) = sign(β>x+ b)

can simply be its pixel intensity values or local distinct feature descriptors such as SIFT [31],

Edge-SIFT [32] or SURF [33]. To calculate the I2C distance from an image xi to a candidate

class r, NBNN finds the nearest neighbour to each feature p(i,j) from each class r. The I2C

distance is defined as the sum of Euclidean distances between each feature p(i,j) in image

xi and its nearest neighbour from class r, NNr(p(i,j)). The distance can be written as [22]:∑n
j=1 ‖p(i,j) − NNr(p(i,j))‖2. The NBNN classifier is of the form

F (xi) = argmin
r=1,··· ,k

n∑
j=1

‖p(i,j) − NNr(p(i,j))‖2 (1)

where NNr(p(i,j)) is the nearest neighbour patch of p(i,j) in class r.

Patch-based I2C margin The objective of this paper is to learn a set of compact and highly

discriminative binary codes {h1(·), . . . , ht(·)}, ∈ H, each of which maps the patch p(i,j) into the

binary space {−1,+1}. The I2C margin is based on the I2C distance proposed for the NBNN

classifier. To better model a pair-wise proximity, we define the weighted distance between any

two input patches, p and p′ as d(p,p′) =
∑t

s=1ws|hs(p)−hs(p′)|. Here w = [w1, · · · , wt] ∈ Rt

is the (non-negative) weight vector. We formulate the I2C margin of the i-th image based on
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the intuition that the distance of patch p(i,j) to any other classes (p−(i,j)) should be larger than

the distance to its belonging class (p+(i,j)). The I2Cpatch margin can be written as1,

%i =
n∑
j=1

[
d(p(i,j),p

−
(i,j))− d(p(i,j),p

+
(i,j))

]
(2)

=
(∑

j a(i,j)

)
w

where p−(i,j) = NN 6=yi(p(i,j)) is the nearest neighbour patch of p(i,j) with a different class label

(purple arrows in Fig. 1a), p+(i,j) = NNyi(p(i,j)) is the nearest neighbour patch of p(i,j) with

the same class label (orange arrows in Fig. 1a), a(i,j) =
[
a(i,j),1, · · · , a(i,j),t

]
, and a(i,j),s =[

|hs(p(i,j)) − hs(p
−
(i,j))| − |hs(p(i,j)) − hs(p

+
(i,j))|

]
. We thus aim to learn a set of functions,

{hs(·)}ts=1, where h(p;β, b) = sign(β>p + b), such that the weighted distance between two

binary codes [h1(p(i,j)), · · · , ht(p(i,j))] and [h1(p
+
(i,j)), · · · , ht(p

+
(i,j))] remains small.

Image-based I2C margin Recent publications have shown that a parametric method, in which

image features are constructed as a vector of predefined length, combined with a discriminative

classifier achieves the state-of-the-art result [38]. Unfortunately, to achieve high retrieval and

classification accuracy on many data sets, the parametric method often uses high-dimensional

descriptors. The objective of this section is to introduce a novel approach to encode high-

dimensional descriptors to compact binary codes without sacrificing accuracy. In this section,

we extend the I2C margin originally designed for key-point matching to image matching. We

represent the whole image as a large single patch. Similar to the previous margin, the orange

arrow can be mapped to multiple patches (images). We illustrate our new I2Cimage in Fig. 1b.

We define the new margin based on the intuition that the distance between a pair of irrelevant

images (image xτ and images from any other classes) should be larger than the distance between

a pair of relevant images (image xτ and images from its belonging class). The training data can

be written in a form of triplets {(xτ ,x+
τ ,x

−
τ |r)}

|S|
τ=1 where each triplet indicates the relationship

of three images, S is the triplet index set and |S| is the total number of triplets. Here x+
τ is a set

of nearest neighbours from the same class and x−τ |r is a set of nearest neighbours from class r

(r 6= yτ ). Unlike the I2Cpatch distance, we parameterize each class by a weight vector associated

with the class label. Since we have k classes, we define the matrix W = [w1, · · · ,wk], such

1The margin definition defined here has also been used in various literatures, e.g., feature selection [34], [35], classification

and metric learning [5], [36], data embedding based on similarity triplets [37], etc.
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that the r-th column of W contains Hamming weights for class r. We define the distance

between any two data points, xi and xj , as ∆(xi,xj, r) = ∆yi(xi,xj) + ∆r(xi,xj) where

∆r(xi,xj) =
∑t

s=1ws,r|hs(xi)−hs(xj)|. Here [w1,r, · · · , wt,r] ∈ Rt is the (non-negative) weight

vector associated with the class label r. We define the margin for xτ as the difference between

two distances (i) weighted distance between xτ and x−τ |r, and (ii) weighted distance between xτ

and x+
τ :

ρτ,r = ∆(xτ ,x
−
τ |r, r)−∆(xτ ,x

+
τ , r) (3)

= a(τ |r)wyτ − a(τ |r)wr

where τ is an index of the triplet set {(xτ ,x+
τ ,x

−
τ |r)}

|S|
τ=1, a(τ |r) =

[
a(τ |r),1, · · · , a(τ |r),t

]
, and

a(τ |r),s =
[
|hs(xτ )−hs(x−τ |r)|−|hs(xτ )−hs(x+

τ )|
]
. Similar to the patch-based approach, we thus

aim to learn a set of functions, {hs(·)}ts=1, where h(x;β, b) = sign(β>x+ b). The comparison

between I2Cpatch and I2Cimage is illustrated in Fig. 1

Note that both I2Cpatch and I2Cimage approaches learn a set of binary output functions and

Hamming weights using the triplet information. However we learn a single vector of Hamming

weights in the I2Cpatch approach and a set of Hamming weights in the I2Cimage approach. Our

intuition is that, for I2Cpatch, a patch from one image class can be visually similar to a patch from

other image classes, i.e., a patch representing a wheel can appear in both ‘cars’ and ‘bicycles’

classes. We learn a single Hamming weights vector for all classes instead of Hamming weights

vector for each class. However, for I2Cimage, visual descriptors generated from each image are

more distinct and we learn Hamming weights for each class. If we only learn a single vector of

Hamming weights for all classes, there could be a high probability that multiple instances from

different classes are equi-distance from the query. Learning Hamming weights for each class

helps improve the similarity measure amongst classes.

B. Learning compact descriptors

In this section, we design the new approach using the large margin framework. The optimiza-

tion problem is formulated such that the distance of the nearest instance from the same class

(nearest hit) is smaller than the distance of the nearest instance from other classes (nearest miss).

Patch-based I2C optimization The general `1-regularized optimization problem for the patch-
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based I2C margin is

min
w,%

∑m
i=1L(%i) + ν‖w‖1 (4)

s.t.: %i =
(∑

ja(i,j)

)
w,∀i, j; w ≥ 0,

where L can be any convex loss function, the regularization parameter ν determines the trade-off

between the data-fitting loss function and the model complexity, subscripts i and j index images

and patches, respectively. Here we introduce the auxiliary variables, %, to obtain a meaningful

dual formulation. For the logistic loss, the learning problem can be expressed as:

min
w,%

∑
i log (1 + exp(−%i)) + ν‖w‖1 (5)

s.t.: %i =
(∑

ja(i,j)

)
w,∀i, j; w ≥ 0,

The Lagrangian of (5) can be written as:

Λ =
∑
i

log(1 + exp(−%i)) + ν1>w

−
∑
i

vi

(
%i −

(∑
ja(i,j)

)
w
)
− q>w,

with q ≥ 0. The dual function can be written as [39]:

inf
w,%

Λ = inf
w,%

∑
i log(1 + exp(−%i))−

∑
ivi%i

+

must be zero︷ ︸︸ ︷(∑
ivi(
∑

ja(i,j))− q> + ν1>
)
w.

Since the convex conjugate function of the logistic loss, log (1 + exp(−x)), is (−u) log(−u) +

(1 + u) log(1 + u) if −1 ≤ u ≤ 0 and ∞ otherwise. The Lagrange dual for the logistic loss is:

max
v
−
∑m

i=1

[
−vi log(−vi) + (1 + vi) log(1 + vi)

]
s.t.:

∑m
i=1vi

(∑
ja(i,j)

)
≥ −ν1>.

By reversing the sign of v, we obtain:

min
v

∑m
i=1

[
vi log(vi) + (1− vi) log(1− vi)

]
(6)

s.t.:
∑m

i=1vi

(∑
ja(i,j)

)
≤ ν1>.
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Image-based I2C optimization The general `1-regularized optimization problem we want to

solve is

min
W ,ρ

∑
τ,rL(ρτ,r) + ν‖W ‖1 (7)

s.t.: ρτ,r = a(τ |r)wyτ − a(τ |r)wr,∀τ, r; W ≥ 0.

The learning problem for the logistic loss can be expressed as:

min
W ,ρ

∑
τ,r log (1 + exp(−ρτ,r)) + ν‖W ‖1 (8)

s.t.: ρτ,r = a(τ |r)wyτ − a(τ |r)wr,∀τ, r; W ≥ 0.

The Lagrangian of (8) can be written as

Λ(W ,ρ,U ,Z) =
∑

τ,r log(1 + exp(−ρτ,r)) + ν
∑

rwr

−
∑

τ,ruτ,r(ρτ,r − a(τ |r)wyτ + a(τ |r)wr)−Tr(Z>W ),

with Z ≥ 0. The Lagrangian function is

inf
W ,ρ

Λ(W ,ρ,U ,Z) (9)

=−
∑

τ,r sup
ρτ,r

(
uτ,rρτ,r − log(1 + exp(−ρτ,r))

)
+ inf

W

(
ν
∑

rwr +
∑

τ,ruτ,ra(τ |r)wyτ

−
∑

τ,ruτ,ra(τ |r)wr −Tr(Z>W )
)
.

At optimum the first derivative of the Lagrangian with respect to each row of W must be zeros,

i.e., ∂Λ
∂wr

= 0, and therefore∑
τ |yτ=r

(
∑

l uτ,l)a(τ |r) −
∑
τ

uτ,ra(τ |r) = zr: − ν1>

⇒
∑

τδr,yτ (
∑

l uτ,l)a(τ |r) −
∑

τuτ,ra(τ |r) ≥ −ν1>,

∀r and δs,t = 1 if s = t and 0, otherwise. The Lagrange dual problem is

max
U

−
∑

τ,r

[
−uτ,r log (−uτ,r) + (1 + uτ,r) log (1 + uτ,r)

]
s.t.:

∑
τ [δr,yτ (

∑
l uτ,l)− uτ,r]a(τ |r) ≥ −ν1>,∀r;

3·7·2014 DRAFT



1057-7149 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TIP.2014.2337759, IEEE Transactions on Image Processing

12 MANUSCRIPT

By reversing the sign of U , we obtain

min
U

∑
τ,r

[
uτ,r log (uτ,r) + (1− uτ,r) log (1− uτ,r)

]
s.t.:

∑
τ [δr,yτ (

∑
l uτ,l)− uτ,r]a(τ |r) ≤ ν1>, ∀r; (10)

General convex loss In this section, we generalize our approach to any convex losses with

`1-norm penalty. Note that our approach is not limited to the `1-norm regularized framework but

other `p-norm penalties (p > 1) can also be applied. The Lagrangian of (7) can be written as2:

Λ =
∑

τ,rL(ρτ,r) + ν
∑

rwr −
∑

τ,ruτ,r

(ρτ,r − a(τ |r)wyτ + a(τ |r)wr)−Tr(Z>W ),

with Z ≥ 0. Following our derivation for the logistic loss, the Lagrange dual can be written as

min
U

∑
τ,rL

∗(−uτ,r) (11)

s.t.:
∑

τ [δr,yτ (
∑

l uτ,l)− uτ,r]a(τ |r) ≤ ν1>,∀r;

where L∗(·) is the Fenchel dual function of L(·). Through the KKT optimality condition, the

duality gap between the solutions of the primal optimization problem (7) and the dual problem

(11) must coincide since both problems are feasible and the Slater’s condition is satisfied. The

required relationship between the optimal values of U and ρ (for I2Cimage) and between the

optimal values of v and % (for I2Cpatch) thus hold at optimality. These relationships can be

expressed as uτ,r = −L′(ρτ,r) (for I2Cimage) and vi = −L′(%i) (for I2Cpatch). For the logistic

loss of (7) and (4), we can write these relationships as:

u∗τ,r =
exp(−ρ∗τ,r)

1 + exp(−ρ∗τ,r)
(12)

and

v∗i =
exp(−%∗i )

1 + exp(−%∗i )
, (13)

respectively.

Learning binary output functions Since there may be infinitely many constraints in (11), we

use column generation to identify an optimal set of constraints3 [4]. Column generation allows

2The Lagrange dual of (4) can be formulated similarly.
3Note that constraints in the dual correspond to variables in the primal.
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us to avoid solving the original problem, which has a large number of constraints, and instead

to consider a much smaller problem which guarantees the new solution to be optimal for the

original problem. The algorithm begins by finding the most violated dual constraint in the dual

problem (11) and inserts this constraint into the new optimization problem (which corresponds

to inserting a primal variable). Unlike [4], in which the binary classification problem is solved

and the authors assume that weak classifiers have been given, we propose a novel method by

which we learn a set of weak classifiers (binary output functions) through the use of column

generation techniques. We achieve this by exploiting both pair-wise similarity and multi-class

label information which have not been discussed in [4].

From (11) the subproblem for generating the most violated dual constraint, h∗(·), is

h∗(·) = argmax
h(·)∈H,r

∑
τ (δr,yτ (

∑
l uτ,l)− uτ,r)a(τ |r), (14)

where a(τ |r) = |h(xτ ) − h(x−τ |r)| − |h(xτ ) − h(x+
τ )| and h(xi) = sign(β>xi + b). At each

iteration, we thus add an additional constraint to the dual problem. The process continues until

there are no violated constraints or the maximum number of iterations is reached.

Not only (14) is non-convex but also exhaustively evaluating all possible candidates in the

hypothesis space is infeasible. We thus treat the problem of learning binary output functions as

the gradient ascent optimization problem. To achieve this, we replace |·| and sign(·) operators in

(14) with (·)2 and 2
π

arctan(·), respectively, due to their differentiability. Note that it is possible

to replace sign(·) with other sigmoid functions, e.g., 1
1+exp(−t) . We used arctan(·) here as it has

been successfully applied to learn features in [40]. To summarize, we replace a(τ) and h(xτ ;β, b)

in (14) with,

a(τ) →
(
h(xτ )− h(x−τ |r)

)2−(h(xτ )− h(x+
τ )
)2
,

h(xτ ;β, b)→
2

π
arctan(β>xτ + b).

Given an initial value of (β, b), we iteratively search for the new value that leads to the larger

value of
∑

τ (δr,yτ (
∑

l uτ,l) − uτ,r)a(τ |r) based on the gradient ascent method. To find a local

maximum, we repeatedly take a step proportional to the gradient of the function at the current

point. The iteration stops when the magnitude of the gradient is smaller than some threshold,

i.e., the objective value is at its local maximum.
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For ease of exposition, we define the following variables: h̃τ = h(xτ ), h̃+τ = h(x+
τ ), h̃−τ =

h(x−τ |r) and ω(τ,r) = (δr,yτ (
∑

l uτ,l)−uτ,r). Let Π =
∑

τ (δr,yτ (
∑

l uτ,l)−uτ,r)a(τ |r). The gradient

of Π can then be expressed as:

∂Π

∂β
=
∑

τω(τ,r)

∂a(τ |r)
∂β

, (15)

∂Π

∂b
=
∑

τω(τ,r)

∂a(τ |r)
∂b

, (16)

where

∂a(τ |r)
∂β

= 2(h̃τ − h̃−τ )

(
∂h̃τ
∂β
− ∂h̃−τ

∂β

)

− 2(h̃τ − h̃+τ )

(
∂h̃τ
∂β
− ∂h̃+τ

∂β

)
,

∂h̃τ
∂β

=
2

π

xτ

1 + (β>xτ + b)2
,

∂a(τ |r)
∂b

= 2(h̃τ − h̃−τ )

(
∂h̃τ
∂b
− ∂h̃−τ

∂b

)

− 2(h̃τ − h̃+τ )

(
∂h̃τ
∂β
− ∂h̃+τ

∂β

)
,

∂h̃τ
∂b

=
2

π

1

1 + (β>xτ + b)2
.

Since using a fixed small learning rate can yield a poor convergence, a more sophisticated

off-the-shelf optimization method can be a better alternative. In our implementation, we use a

limited memory BFGS (L-BFGS) [41] to perform a line search algorithm. At each L-BFGS

iteration, we use (15) and (16) to compute the search direction. Since (14) is highly non-convex,

choosing the initial value of (β, b) is critical to finding the global maximum. We randomly

generate a large number of (β, b) pairs and use the pair with the highest response as an initial

value for L-BFGS. In our paper, the initial values of β are generated independently from a

normal distribution with a mean of 0 and a variance of 1, i.e., N (0, 1), and the initial value of b

is a real number chosen uniformly from the range [0, 1], i.e., U(0, 1). Note that the same solver

has also been used to speed up training in deep learning [42].
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Algorithm 1 Training algorithm for I2CpatchC-BID.
Input:

1) Training examples {xi, yi}mi=1 and their associated patches {p(i,j)};

2) The maximum number of bits, t;

Output:

1) t-bit binary functions, {hs(·)}ts=1;

2) Associated Hamming weights, w;

Initialize:

1) s← 0;

2) Initialize dual variables, vi = 1/m;

while s < t do

¬ Train a new binary function by solving hs(·) = argmax
h(·)∈H

∑m
i=1vi

(∑
ja(i,j)

)
;

­ Add the new binary function, hs(·), into the current set ;

® Solve the primal problem (4) ;

¯ Update dual variables using (13) ;

° s← s + 1 ;
end

Learning Hamming weights Hamming weights can be calculated in a totally corrective

manner as in [4]. For the logistic loss formulation, the primal problem has tk variables and |S|

constraints. Here | · | counts the number of elements in the triplet set. Since the scale of the

primal problem is much smaller than the dual problem4, we solve the primal problem instead

of the dual problem. The primal problem, (7), can be solved using an efficient Quasi-Newton

method like L-BFGS-B, and the dual variables can be obtained using the KKT condition, (12)

and (13). The details of our I2Cpatch and I2CimageC-BID algorithms are given in Algorithm 1

and 2, respectively.

C. Discussion

In this section, we briefly review existing works on supervised hashing methods. There

4Not only is |S| � k but we also have more training samples than the number of binary output functions to be learned, i.e.,

one usually trains 1024 binary output functions (to generate 1024-bit codes) but the number of training samples could be larger

than 10, 000.
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Algorithm 2 Training algorithm for I2CimageC-BID.
Input:

1) A set of training data in the form of triplets {(xτ ,x+
τ ,x

−
τ |r)}

|S|
τ=1

2) The maximum number of bits, t;

Output:

1) t-bit binary functions, {hs(·)}ts=1;

2) Associated Hamming weights for each class, {wr}kr=1;

Initialize:

1) s← 0;

2) Initialize dual variables, uτ,r = 1/(|S| · r);

while s < t do
¬ Train a new binary function, hs(·) = argmax

h(·)∈H,r
Π(β, b), using the gradient ascent technique (see text);

­ Add the new binary function, hs(·), into the current set ;

® Solve the primal problem (7) ;

¯ Update dual variables using (12) ;

° s← s + 1 ;
end

exist several supervised hashing methods such as a supervised version of self-taught hashing

[43], Binary Reconstructive Embeddings (BRE) [14], Minimal Loss Hashing (MLH) [16] and

Kernel-based Supervised Hashing (KSH) [15]. Most of these algorithms formulate their learning

objectives in terms of pair-wise similarity, in which a pair of inputs are labeled as either similar

or dissimilar based on their class labels. These algorithms enforce a Hamming distance between

binary codes for similar labels to be small and for dissimilar labels to be large. For example,

[43] extends their unsupervised hashing algorithms [44] by constructing the k-NN graph using

the class label information, i.e., a set of k nearest neighbours to the given sample and the

sample itself must have the same class label. MLH minimizes a hinge-like loss function to learn

similarity preserving binary codes [16]. Recently Xi et al. propose a column generation based

method (CGHash) for learning hash functions on the basis of proximity comparison information

[45]. CGHash learns hash functions that preserve the relative comparison relationships in the data

using a set of triplets. [45] show that learning hash functions based on triplet-based constraints

outperforms several existing hashing algorithms. However, CGHash operates at the image-level
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instead of patch-level and is not applicable to the I2C distance. We extend the work of [45] such

that binary codes can be applied to the non-parametric image classification method. Similar

to [45], we define the loss in terms of relative similarity. For I2Cpatch, the Hamming distance

between the given query image to each class is defined as the sum of distance between every

local patch in the test image and its nearest patches in each class. This definition is different

from CGHash. For I2Cimage, we extend the work of CGHash to multi-class data sets. We learn

a set of Hamming weights for each class labels.

D. Application

In this section, we illustrate how the proposed compact binary code can be applied to the

image classification problem using both I2Cpatch and I2Cimage approaches.

Patch-based I2C approach In NBNN the training data for a class is a collection of small

patches densely extracted from given training images [22]. Since the dimension of visual de-

scriptors is large and patches are sampled densely, the storage space and the retrieval time are

two critical issues that need to be addressed. In this section, we illustrate how our approach can

be applied to reduce the storage space and improve the retrieval time. Following NBNN, we

first extract a large number of visual patches from each training image at the same orientation

but multiple spatial scales. During training, each patch is mapped to have the same binary code

as the most similar patch from the same class. During evaluation, a large number of patches are

extracted from the test image and the label is assigned based on the minimal distance between

test patches and training patches, i.e., argmin
`

∑n
j=1

∑t
s=1ws|hs(pj)− hs(pj+)|, where n is the

total number of patches in the image and pj+ represents the training patch from class ` such that

d
(
[h1(pj), · · · , ht(pj)], [h1(pj+), · · · , ht(pj+)]

)
=
∑t

s=1ws|hs(pj)− hs(pj+)| is minimal. Note

that, in order to further improve the efficiency during retrieval, binary outputs of the training

data, i.e., {hs(p(i,j))}ts=1, i = 1, · · · ,m, j = 1, · · · , n, can be pre-computed offline. The detail of

the NBNN algorithm with C-BID is given in Algorithm 3. We illustrate the step 2 of Algorithm 3

in Fig. 2.

Image-based I2C approach The typical steps involved in the image-based model are: (i)

feature extraction (ii) learning a multi-class classifier. Our algorithm falls in between step (i)

and (ii). In other words, we represent the output of step (i) in a more compact form. The new

descriptor significantly reduces the storage space required while preserving pair-wise distances
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Algorithm 3 The NBNN algorithm with C-BID.
Input:

1) Query image, I;

2) t-bit binary functions, {hs(·)}ts=1;

3) Hamming weights, {ws}ks=1;

Output: Predicted label, `∗;

1) Compute visual descriptors for each patch, {pj}nj=1, from the test image ;

2) `∗ = argmin
`

∑n
j=1

∑t
s=1 ws|hs(pj)− hs(pj+)|

where pj+ is the nearest patch to pj in the new binary space, i.e.,

d
(
[h1(pj), · · · , ht(pj)], [h1(pj+), · · · , ht(pj+)]

)
is minimal, and pj+ is from class ` ;

between the input data.

E. Computational complexity

During training (offline), we need to iteratively find the best hash function (14) and solve the

primal problem (7). The computational complexity during training is similar to LPBoost [4].

During evaluation (online), the time complexity is almost the same as other hashing algorithms.

With a proper implementation, weighted Hamming distance can be calculated almost as fast as

Hamming distance. For example, one can use the Hamming distance to retrieve similar items.

Retrieved items can be re-ranked using Hamming weights. To further improve the speed, the

weighted Hamming distance between 8 consecutive bits of the query and binary codes can

be pre-computed and stored in a lookup table [46]. In addition, vector multiplication can be

computed efficiently using a linear algebra library.

IV. EXPERIMENTS

We evaluate the proposed C-BID on both synthetic data set and computer vision tasks. Unless

otherwise specified, we use the logistic loss with `1-norm penalty.

A. Patch-based I2C distance

In this section, we perform experiments using our C-BID with NBNN based approach. All

images are resized to a maximum of 150 × 150 pixels prior to processing. We use dense
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Query image 

[0,0,1] [0,1,1] 

Given: Learned binary output functions and the Hamming weights of [3 1 2] 

CLASS 1 

CLASS 2 

[0,0,1] [1,1,1] [0,0,1] [0,1,0] [0,0,1] [1,0,1] 

The nearest patch to [0,0,1] is [0,0,1] 

Distance = 3|0-0|+1|0-0|+ 2|1-1|= 0 

The nearest patch to [0,1,1] is [0,0,1] 

Distance = 3|0-0|+1|1-0|+ 2|1-1|= 1 

I2C distance = 0 + 1 = 1 

I2C distance = 2 + 2 = 4 

[0,0,0] [1,1,0] [1,1,1] [1,0,1] [0,1,0] [1,1,1] 

The nearest patch to [0,0,1] is [0,0,0] 

Distance = 3|0-0|+1|0-0|+ 2|1-0|= 2 

The nearest patch to [0,1,1] is [0,1,0] 

Distance = 3|0-0|+1|1-1|+ 2|1-0|= 2 

[1,1,0] 

Fig. 2: In this example, we learn 3 binary hash functions. We assume the Hamming weights are

[3, 1, 2]. Given the query image which consists of two patches, we compare the binary codes to

all patches in class 1. Here the I2C distance is 1 for the first class. We repeat the process for the

second class. The I2C distance is 4 for the second class. Since the first class has the smallest

distance, we classify the query image as belonging to the first class.

SIFT features in all algorithms. We randomly select 10 images per class as the training set

and 25 images per class as the test set. All experiments are repeated 5 times and the average

accuracy reported. For Caltech-101, we use five classes similar to [27]: faces, airplanes, cars-

side, motorbikes and background. In this experiment, we use 1 nearest neighbour from the same

class and one nearest neighbour from each other classes. We compare our approach with BoW

with an additive kernel Map of [47], the original NBNN with SIFT features [22], NBNN with

an approximate NN (ANN) search using best-bin first search of kd-tree5, NBNN with LSH6,

and NBNN with SIFT (PCA) features7 and report experimental results in Table II. From the

5We use a C-MEX implementation of [48] and limit the maximum number of comparisons to 500.
6We use a C-MEX implementation of [49] with 25 hash tables (20 hash functions per table), `2-norm distance and the size

of the bin for hash functions is set to 0.25.
7PCA is performed to reduce the size of the original SIFT descriptor. The projected data is stored as a floating point (32 bits).
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TABLE II: Experiments on patch-based I2C distance. Performance comparison between BoW +

kernel map + SVM [47], SIFT + NBNN [22], SIFT + NBNN + kd-tree search, SIFT + NBNN

+ LSH, SIFT (PCA) + NBNN and our approach on various data sets. The average accuracy and

standard deviation (in percentage) are reported. The last row reports the average evaluation time

per image per class of NBNN based approaches (excluding feature extraction time). Experiments

are executed on a single core of Intel Core i7 930 (2.8 GHz) with 12 GB memory. Our approach

achieves the higest average accuracy while having a much lower storage cost and evaluation

time.

BoW + NBNN NBNN NBNN NBNN + SIFT (PCA) C-BID

Kernel Map Exact NN Best bin first LSH 256 512 bits 16 32 128 bits

Graz-02 70.67 (5.7) 70.40 (7.9) 67.47 (6.0) 62.93 (5.3) 66.13 (6.6) 68.80 (8.3) 65.87 (11.4) 67.73 (9.4) 72.27 (7.4)

Caltech-101 86.88 (2.2) 84.96 (4.0) 84.64 (3.9) 84.80 (3.0) 74.72 (3.6) 83.04 (4.9) 73.12 (7.0) 80.96 (4.8) 86.24 (4.2)

Sports-8 57.40 (3.1) 62.20 (3.4) 59.60 (4.1) 51.70 (3.6) 48.40 (5.2) 54.70 (3.9) 42.70 (3.4) 56.90 (3.4) 63.00 (4.3)

Scene-15 55.73 (2.4) 54.72 (2.6) 53.97 (2.1) 40.21 (4.7) 46.24 (2.1) 54.67 (1.8) 30.03 (1.9) 54.51 (1.8) 57.28 (2.8)

Avg. accuracy (%) 67.67 68.07 66.42 59.91 58.87 65.30 52.93 65.03 69.70

Storage/image 141.0 kB 5, 000.0 kB 5, 000.0 kB 5, 000.0 kB 312.5 kB 625.0 kB 19.5 kB 39.1 kB 156.3 kB

Eval./img/class 78.8 sec. 1.55 sec. 3.83 sec. 5.50 sec. 8.62 sec. 0.15 sec. 0.24 sec. 1.11 sec.

table, our approach consistently outperforms all NBNN-like approaches and performs best on

average. We suspect that the performance improvement of C-BID is due to the large margin

learning and the introducing of non-linear functions into the original SIFT descriptor. From the

table, our algorithm at 128 bits consistently performs better than SIFT (PCA) at 512 bits. From

the same table, ANN search tradeoffs speed over accuracy. Fig. 3 compares the accuracy of

different algorithms using box plots.

Storage For BoW, we divide an image into 20 sub-images and the number of visual words is

600. Hence there are 36, 000 dimensional features being extracted from each image. We also map

each feature vector to a higher-dimensional feature space via an explicit map: Rn → Rn(2r+1)

where r is set to 1 [47]. Each descriptor is stored as a floating point (32 bits), each image

requires approximately 141 kB of storage.

For NBNN, we extract dense SIFT at 4 different scales. Assuming that a total of 10, 000

SIFT features are extracted and kept in the database from each image (as a 32-bit floating

point representation), NBNN requires approximately 5, 000 kB of storage per image. Using our
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Fig. 3: Performance comparison (box plots) between BoW + SVM (BoW) [47], NBNN-Exact

(N1) [22], NBNN with kd-tree search (N2), NBNN with LSH (N3), NBNN with SIFT-PCA

(N4) and our C-BID approach (Ours). The central mark on each box is the median. The edges

of the box are the 25-th and 75-th percentiles. Our approach consistently performs similar to the

original NBNN [22] while having a much lower storage cost and evaluation time.

approach with 32 binary output functions, the original 128 dimensional SIFT descriptor (512

bytes) is now reduced to 4 bytes (a 128-fold reduction in storage) and each image now takes up

approximately 39 kB of storage.

Our approach is also much more efficient than the original NBNN due to its compact binary

codes and the use of bitwise exclusive-or operation. Since ANN algorithms, e.g., best bin first

and LSH, only index the data, original data points still need to be kept in order to determine

the exact distance between the query patch and patches kept in the database. Hence the storage

of ANN is similar to that of the exact NN.

Evaluation time We also report the average evaluation time of various NBNN based ap-

proaches (excluding feature extraction time and index building time) in the last row of Table II.

Our approach has a much lower evaluation time than the original NBNN with SIFT due to more

compact binary codes and the use of bitwise exclusive-or operation. For LSH, we set the number

of hash functions per hash table to 20. We use 25 hash tables. Hence there are a total of 500

hash functions (500 binary descriptors). However, LSH has a much higher evaluation time than

our approach. We suspect that most of the evaluation time is spent in calculating the distance

between training samples that are mapped to the same hash bucket, i.e., hash collision.
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Fig. 4: First column: Decision boundary using kNN on a Fermat’s problem (k = 3). Second

column: Decision boundary using kNN on 8 bits code length learned with Spectral Hashing.

Last two columns: Decision boundary using kNN and linear SVM on the 8 bits feature learned

using our approach.

B. Image-based I2C distance

Synthetic data set We first evaluate the behaviour of C-BID on a Fermat’s problem in which

two-class samples are distributed in a two-dimensional space forming a spiral shape. We plot a

decision boundary using kNN (k = 3) and illustrate the result in Fig. 4. We then apply Spectral

Hashing (SH) [3] with 8 bits code length and plot the decision bounding using kNN in the

same figure. We observe that SH keeps the neighbourhood relationship of the original data but

the decision boundary is not as smooth as the decision boundary of kNN on the original data.

We then evaluate our approach by training 8 bits feature length and plot the decision boundary

using two popular classifiers (kNN with k = 3 and linear SVM). The results are illustrated in

the last two columns of Fig. 4. We observe that both classifiers achieve a very similar decision

boundary using our features. Compared to the original 2-D features, which do not exploit class

label information, the new feature has a much smoother decision boundary. The results clearly

demonstrates the benefit of training visual features using both pair-wise proximity and class-label

information.

Image similarity identification In this experiment, we demonstrate the capability of C-BID

in retrieving similar images to the query image. We use EPFL multi-view car data sets. We

categorize vehicles based on their appearance: SUV, station wagon, city car and sports car. Each

category consists of the same vehicle type at different poses. For each category, we randomly

DRAFT 3·7·2014



1057-7149 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TIP.2014.2337759, IEEE Transactions on Image Processing

PAISITKRIANGKRAI et al.: LARGE-MARGIN LEARNING OF COMPACT BINARY IMAGE ENCODINGS 23

Hamming distance

 

 

SUV Station wagon City car Sports car

SUV − R
SUV − F
SUV − L
SUV − B
SW − R
SW − F
SW − L
SW − B
City − R
City − F
City − L
City − B

Sports − R
Sports − F
Sports − L
Sports − B

5

10

15

20

25

Fig. 5: Top: Each class corresponds to each vehicle type (SUV, station wagon (SW), city car

and sports car) with orientations ranging from right-profile (R), frontal pose (F), left-profile

(L) to back view (B). Bottom: The weighted Hamming distance between the binary code of

query images and that of the database is illustrated. Each row represents each query image and

each column represents each vehicle type being rotated at 4 − 5 degrees. Hamming distance

can be separated into three groups: a set of training images having the same class and similar

orientations to the query image (dark blue), a set of images having the same class but different

orientations (light blue), and a set of images having different classes (orange).

select 80 images as the training set and 4 images, corresponding to the frontal pose, left-profile,

right-profile and back view, as the test set. We extract pyramid HOG (pHOG) features and learn

C-BID with 256 bits. The weighted Hamming distance between the binary code of test images

and the binary code of training images is plotted in Fig. 5. Each row (Fig. 5-Bottom) represents

each query image, e.g., SUV-R (the image of SUV captured at the right-profile orientation) is

the first query image. Each column represents each vehicle type being rotated at 4− 5 degrees,

e.g., the first column represents the image of SUV captured at the right-profile orientation and

the second column represents the image of SUV rotated by 5 degrees from the first column.

The binary code learned using C-BID is not only discriminative across different vehicle types

but also preserves similarity within the same vehicle category.

Face and pedestrian classification Next we evaluate the performance of C-BID on face

and pedestrian classification. We use 2000 faces from [50] and randomly extract 2000 negative

patches from background images. We use the original raw pixel intensity and Haar-like features in

our experiments. For pedestrians, we use the Daimler-Chrysler pedestrian data sets [51]. We use
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Fig. 6: The classification accuracy on face (left) and pedestrian (right) data sets.

10
−3

10
−2

10
−1

10
0

.30

.40

.50

.64

.80

False positives per image

D
e
te

c
ti
o
n
 r

a
te

InriaTest

 

 

59.30% HOG+CBID
54.02% HOG

10
−3

10
−2

10
−1

10
0

.05

.10

.20

.30

.40

.50

.64

.80
1

False positives per image

D
e
te

c
ti
o
n
 r

a
te

TudBrussels

 

 

33.97% HOG+CBID
22.10% HOG

Fig. 7: Pedestrian detection performance (left) INRIA (right) TUD-Brussels. Log-average

detection rate is also reported.

the original raw pixel intensities and pHOG features. We use 5 nearest neighbours information

per training sample. On both face and pedestrian data sets, C-BID consistently outperforms raw

intensity, Haar-like and pHOG features. We show the results of experiments using both Haar-like

and pHOG features in Fig. 6.

In the next experiment, we apply C-BID to the baseline pedestrian detector of [52] using

INRIA human data sets [52] and TUD-Brussels data sets [53]. INRIA training set consists of

2, 416 cropped mirrored pedestrian images and 1, 200 large background images. The test set

contains 288 images containing 588 annotated pedestrians and 453 non-pedestrian images. In

this experiment, we only use 288 images which contain pedestrians [54]. TUD-Brussels test

set contains 508 images containing 1498 annotated pedestrians. Pedestrian detection is divided

into two steps: initial classification and post-verification. The first step is similar to the method

described in [52] while, in the second step, we apply C-BID to enforce the pair-wise similarity

between positive training samples. To be more specific, in the first step, each training sample is

scaled to 64×128 pixels with 16 pixels additional borders for preserving the contour information.

Histogram of oriented gradient features are extracted from 105 blocks of size 16 × 16 pixels.
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Fig. 8: Combining C-BID with GIST and KDES. Top: Average ‘precision rate at 10’ of different

number of training samples per class. Bottom: Average precision rate of logistic and exponential

losses with `1 and `∞ penalties. Using GIST, C-BID at 256 bits consistently outperforms GIST

(512 dims ≈ 16 kilobits). Using KDES, C-BID at 4096 bits outperforms KDES (270, 000 dims

≈ 8.6 megabits).

Each block is divided into 2 × 2 cells, and the HOG in each cell is divided into 9 bins. We

train a pedestrian detector using the linear SVM. In the second step, we learn C-BID from HOG

extracted in the first step. We use 5 nearest neighbours information to generate 25 triplets per

positive training image. We learn 3780 bits descriptor (similar to the original HOG feature length)

and build the classifier using the linear SVM. During evaluation, each test image is scanned with

4 × 4 pixels step size and 10 scales per octave. For TUD-Brussels, we up-sample the original

image to 1280×960 pixels before applying the pedestrian detector. The performance is evaluated

using the protocol described in [54]. Both ROC curves are plotted in Fig. 7. We also report the

log-average detection rate which is computed by averaging the detection rate at nine FPPI rates

evenly spaced in log-space between 10−2 to 1. We observe that applying C-BID further improves

the log-average detection rate by 5.28% on INRIA test set and 11.87% on TUD-Brussels data

sets. This performance gain comes at no additional feature extraction cost. Fig. 11 shows a

qualitative assessment of the new detector. We observe that most false positive examples usually

contain patterns that mimic the contour of human shoulders or vertical gradients that mimic the

torso and leg boundaries.

Combining C-BID with various visual descriptors Next we evaluate the performance of

C-BID using GIST [55] and recently proposed Kernel Descriptors (KDES) [56]. We use UIUC

Sports-8 data sets and vary the number of training samples per class. For each split, we train a

linear SVM. The results are reported in Fig. 8. We observe that C-BID at 256 bits consistently
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Fig. 9: The average k-NN classification performance: (top) 5-NN classification accuracy (bottom)

10-NN classification accuracy. We compare our approach with Anchor Graph [10], Spectral

Hashing [3], Spherical Hashing [11], Self-Taught Hashing [44], a supervised version of Self-

Taught Hashing [43] and Laplacian Co-Hashing [57]. The performance of kNN is also plotted.

C-BID outperforms most hashing methods as the number of bits increases.

outperforms GIST (GIST occupies 4 × 512 bytes of storage space) and C-BID at 2048 bits

performs comparable to KDES.

In the next experiment, we compare the performance of our binary descriptors with several

existing bit-code-based methods. We use the state-of-the-art feature descriptor known as Meta-

Class features (MC) [20] to learn binary codes. Experiments are conducted on four different

visual data sets: Graz-02, UIUC Sports-8, Scene-15, and Caltech-101. For Graz-02 and Sports-

8, we randomly select 50 images per class for training, 10 images per class for validation and

the remainder for testing. For Scene-15, we randomly select 100 images for training, 10 images

for validation, and the remainder for testing. For Caltech-101, we randomly select 15 images

per class for training, 5 images per class for validation, and 20 images per class for test. We

evaluate our algorithm using two different classifiers: K-NN and SVM.

k-NN In this experiment, we compare C-BID with various hashing algorithms using the k-NN

classifier. For C-BID, we use 5 nearest neighbours information to generate 25 triplets per training

image. We use MC-PCA as our feature descriptors (99% of the total variance is preserved). We
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Fig. 10: Image classification accuracy on Scene-15, Graz-02, Sports-8 and Caltech-101 data sets

using different binary codes as a function of the number of bits. We compare our results with

AGHash [10] + Linear SVM, MC-bit [20], BoW + HIK SVM [58], Sparse Coding [24] and LLC

[25]. C-BID achieves comparable accuracy to many state-of-the-art algorithms while requiring

at least an order of magnitude less storage.

compare our approach with various state-of-the-art hashing methods, e.g. Spectral Hashing (SH)

[3], Two-layer Anchor Graph Hashing (AGH) [10], Spherical Hashing (SphH) [11], Self-Taught

Hashing (STH) [43] and Laplacian Co-Hashing (LCH) [57]. For AGHash, we set the number of

anchors to be 300 and the number of nearest anchors to be 5. For STH, we set the k-NN parameter

for LapEig to be 5. The experiments are repeated 5 times and the average accuracy is reported in

Fig. 9 (top). On Scene-15 data sets, we achieve the same accuracy as the original features while

requiring only 64 bits. By increasing the number of bits, our approach outperforms all hashing

algorithms. Clearly the performance of our approach improves as the number of bits increases.

We also compare the performance of our approach with and without Hamming weights. The

performance of C-BID without Hamming weights is slightly worse than C-BID with Hamming

weights. Next we compare the accuracy of different algorithms using the 10-NN classifier. We

use 10 nearest neighbours information for C-BID. We set the number of nearest anchors to be

10 for AGHash and the k-NN parameter for LapEig to be 10 for STH. The average accuracy is

reported in Fig. 9 (bottom). We observe a similar performance to the results obtained previously.

SVM To compare C-BID with state-of-the-art methods, e.g., Sparse Coding [24] and LLC [25],

we learn the classifier using SVM. We also compare C-BID with other binary descriptors, e.g.,

PiCoDes [19], the thresholded version of MC (known as MC-bit [20]), MC-PCA and AGHash.

For C-BID, we choose the regularization parameter from {10−8, 10−7, 10−6, 10−5}. We use 5
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Fig. 11: Top row: Pedestrian detection examples on TUD-Brussels data sets. Bottom row: False

positive examples made by our detector. Most false positive examples usually contain patterns

that mimic the contour of human shoulders or vertical gradients that mimic the torso and leg

boundaries.

nearest neighbours information to generate 25 triplets per training image. Careful tuning of these

parameters can further yield an improvement from the results reported here. We use LIBLINEAR

[59] to train C-BID, PiCoDes, AGHash and MC descriptors. Average classification accuracy

for different algorithms is compared in Fig. 10. We observe that our approach outperforms

the baseline MC-PCA descriptors and performs comparable to many state-of-the-art algorithms

when the number of bits increases. We observe that AGHash+SVM performs quite poorly as

the number of bits increases. The similar phenomenon has also been pointed out in [60].

V. LIMITATION AND FUTURE WORKS

In this section, we briefly discuss several limitations of the proposed approach and possible

future research directions. Although learning hash functions based on triplet-based constraints

outperforms existing hashing algorithms based on pair-wise similarity, this performance im-

provement comes at the cost of increased computational complexity due to the large amount of

triplets being generated. In other words, the current implementation will not be able to handle

a large amount of training data such as those presented in the ImageNet Large Scale Visual

Recognition Competition [61]. The current ImageNet data set consists of 1.2 million images

from 1000 categories. For I2Cimage approach, the total number of triplets generated would be

over 1010 in size (assuming that triplets are generated from 5 nearest neighbours from the same

class and 5 × 999 nearest neighbours from other classes). Solving (4), (7) and (14) using the

Quasi-Newton method with off-the-shelf hardware is no longer feasible. In order to solve Step
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¬ and ® in Algorithm 1 and 2, existing approaches to handle large-scale data can be adopted.

In Step ¬, one can sub-sample the number of triplets in (14) using approaches such as weight-

trimming, by which triplets with weights smaller than a certain threshold will be temporarily

discarded during training [62] or Stochastic Boosting, by which a random subset of triplets are

chosen to solve (14) [63]. For Step ®, one can exploit a distributed optimization method, such

as Alternating Direction Method of Multipliers (ADMM), to solve (4) and (7) [64]. ADMM

has been successfully applied in distributed dictionary learning [65], image deconvolution [66],

compressive sensing [67] and multi-class classification [68]. The algorithm works by solving the

optimization problem in a distributed fashion. The basic idea of ADMM is to distribute a subset

of training data to each cluster in the network and gather the optimal solution from all clusters

to form the average. Interested readers should refer to Chapter 8 in [64].

Another limitation of the proposed approach is that hash functions and associated Hamming

weights are learned in a standard batch setting. Once learned, the approach is unable to make

use of additional information available from the new training data. One possible future direction

is to replace the logistic loss with the least square loss and apply the algorithm of [69] to update

Hamming weights as new training samples become available.

Furthermore the proposed approach assumes that class labels are mutually exclusive. In

other words, there is no interdependent relationship between classes. However many real world

image classification problems present more complex classification scenarios, i.e., class labels are

naturally organized in the form of class taxonomies or hierarchies. For example, the class ‘dog’

and ‘cat’ belong to the ‘animal’ class while ‘bus’ and ‘van’ belong to the ‘vehicle’ class. One

possible research direction to build hierarchical binary output codes using column generation

is to reformulate the proposed approach in a structured learning framework, by which classes

are no longer represented by a single scalar but in a tree-structured hierarchy [70]. Handling

multi-label information, i.e., one instance can be categorized into multiple classes, can also be

considered as our future works.

VI. CONCLUSION

We have proposed a novel learning-based approach to building compact binary embeddings.

The method is distinguished from other embedding techniques in that it exploits extra information

in the form of a set of class labels and pair-wise proximity on the training data set. Although
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this learning-based approach is relatively computationally expensive, it needs only be carried out

once offline. Exploiting previously ignored class-label information allows the method to generate

embedded features which outperform their original high-dimensional counterparts. Experimental

results demonstrate the effectiveness of our approach for both parametric and non-parametric

models.
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