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Compressive Sensing of Sparse Tensors
Shmuel Friedland, Qun Li*,Member, IEEE, and Dan Schonfeld,Fellow, IEEE

Abstract—Compressive sensing (CS) has triggered enormous
research activity since its first appearance. CS exploits the signal’s
sparsity or compressibility in a particular domain and integrates
data compression and acquisition, thus allowing exact reconstruc-
tion through relatively few non-adaptive linear measurements.
While conventional CS theory relies on data representationin the
form of vectors, many data types in various applications such as
color imaging, video sequences, and multi-sensor networks, are
intrinsically represented by higher-order tensors. Application of
CS to higher-order data representation is typically performed
by conversion of the data to very long vectors that must be
measured using very large sampling matrices, thus imposing
a huge computational and memory burden. In this paper,
we propose Generalized Tensor Compressive Sensing (GTCS)–
a unified framework for compressive sensing of higher-order
tensors which preserves the intrinsic structure of tensor data
with reduced computational complexity at reconstruction.GTCS
offers an efficient means for representation of multidimensional
data by providing simultaneous acquisition and compression from
all tensor modes. In addition, we propound two reconstruction
procedures, a serial method (GTCS-S) and a parallelizable
method (GTCS-P). We then compare the performance of the
proposed method with Kronecker compressive sensing (KCS) and
multi-way compressive sensing (MWCS). We demonstrate exper-
imentally that GTCS outperforms KCS and MWCS in terms
of both reconstruction accuracy (within a range of compression
ratios) and processing speed. The major disadvantage of our
methods (and of MWCS as well), is that the compression ratios
may be worse than that offered by KCS.

Index Terms—Compressive sensing, compression ratio, convex
optimization, multilinear algebra, higher-order tensor, general-
ized tensor compressive sensing.

I. I NTRODUCTION

Recent literature has witnessed an explosion of interest in
sensing that exploits structured prior knowledge in the general
form of sparsity, meaning that signals can be represented by
only a few coefficients in some domain. Central to much of
this recent work is the paradigm of compressive sensing (CS),
also known under the terminology of compressed sensing
or compressive sampling [?], [?], [?]. CS theory permits
relatively few linear measurements of the signal while still
allowing exact reconstruction via nonlinear recovery process.
The key idea is that the sparsity helps in isolating the orig-
inal vector. The first intuitive approach to a reconstruction
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algorithm consists in searching for the sparsest vector that
is consistent with the linear measurements. However, thisℓ0-
minimization problem is NP-hard in general and thus compu-
tationally infeasible. There are essentially two approaches for
tractable alternative algorithms. The first is convex relaxation,
leading toℓ1-minimization [?], also known as basis pursuit
[?], whereas the second constructs greedy algorithms. Besides,
in image processing, the use of total-variation minimization
which is closely connected toℓ1-minimization first appears in
[?] and is widely applied later on. By now basic properties
of the measurement matrix which ensure sparse recovery by
ℓ1-minimization are known: the null space property (NSP) [?]
and the restricted isometry property (RIP) [?].

An intrinsic limitation in conventional CS theory is that
it relies on data representation in the form of vectors. In
fact, many data types do not lend themselves to vector data
representation. For example, images are intrinsically matrices.
As a result, great efforts have been made to extend traditional
CS to CS of data in matrix representation. A straightforward
implementation of CS on 2D images recasts the 2D problem
as traditional 1D CS problem by converting images to long
vectors, such as in [?]. However, despite of considerably
huge memory and computational burden imposed by the use
of long vector data and large sampling matrix, the sparse
solutions produced by straightforwardℓ1-minimization often
incur visually unpleasant, high-frequency oscillations.This is
due to the neglect of attributes known to be widely possessed
by images, such as smoothness. In [?], instead of seeking
sparsity in the transformed domain, a total variation-based
minimization was proposed to promote smoothness of the
reconstructed image. Later, as an alternative for alleviating the
huge computational and memory burden associated with image
vectorization, block-based CS (BCS) was proposed in [?]. In
BCS, an image is divided into non-overlapping blocks and
acquired using an appropriately-sized measurement matrix.

Another direction in the extension of CS to matrix CS gen-
eralizes CS concept and outlines a dictionary relating concepts
from cardinality minimization to those of rank minimization
[?], [?], [?]. The affine rank minimization problem consists
of finding a matrix of minimum rank that satisfies a given set
of linear equality constraints. It encompasses commonly seen
low-rank matrix completion problem [?] and low-rank matrix
approximation problem as special cases. [?] first introduced
recovery of the minimum-rank matrix via nuclear norm min-
imization. [?] generalized the RIP in [?] to matrix case and
established the theoretical condition under which the nuclear
norm heuristic can be guaranteed to produce the minimum-
rank solution.

Real-world signals of practical interest such as color imag-
ing, video sequences and multi-sensor networks, are usually
generated by the interaction of multiple factors or multi-
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media and thus can be intrinsically represented by higher-
order tensors. Therefore, the higher-order extension of CS
theory for multidimensional data has become an emerging
topic. One direction attempts to find the best rank-R tensor
approximation as a recovery of the original data tensor as
in [?], they also proved the existence and uniqueness of
the best rank-R tensor approximation in the case of 3rd
order tensors under appropriate assumptions. In [?], multi-
way compressed sensing (MWCS) for sparse and low-rank
tensors suggests a two-step recovery process: fitting a low-
rank model in compressed domain, followed by per-mode
decompression. However, the performance of MWCS relies
highly on the estimation of the tensor rank, which is an NP-
hard problem. The other direction [?] [?] uses Kronecker
product matrices in CS to act as sparsifying bases that jointly
model the structure present in all of the signal dimensions
as well as to represent the measurement protocols used in
distributed settings. However, the recovery procedure, due to
the vectorization of multidimensional signals, is rather time
consuming and not applicable in practice. We proposed in [?]
Generalized Tensor Compressive Sensing (GTCS)–a unified
framework for compressive sensing of higher-order tensors. In
addition, we presented two reconstruction procedures, a serial
method (GTCS-S) and a parallelizable method (GTCS-P). Ex-
perimental results demonstrated the outstanding performance
of GTCS in terms of both recovery accuracy and speed. In this
paper, we not only illustrate the technical details of GTCS
more thoroughly, but also further examine its performance
on the recovery of various types of data including sparse
image, compressible image, sparse video and compressible
video comprehensively.

The rest of the paper is organized as follows. Section
II briefly reviews concepts and operations from multilinear
algebra used later in the paper. It also introduces conven-
tional compressive sensing theory. Section III proposes GTCS
theorems along with their detailed proofs. Section IV then
compares experimentally the performance of the proposed
method with existing methods. Finally, Section V concludes
the paper.

II. BACKGROUND

Throughout the discussion, lower-case characters represent
scalar values(a, b, . . .), bold-face characters represent vectors
(a,b, . . .), capitals represent matrices(A,B, . . .) and calli-
graphic capitals represent tensors(A,B, . . .). Let [N ] denote
the set{1, 2, . . . , N}, whereN is a positive integer.
A. Multilinear algebra

A tensor is a multidimensional array. The order of a tensor
is the number of modes. For instance, tensorX ∈ R

N1×...×Nd

has orderd and the dimension of itsith mode (also called
modei directly) isNi.

Kronecker product The Kronecker product of matricesA ∈
R

I×J andB ∈ R
K×L is denoted byA ⊗ B. The result is a

matrix of size(I ·K)× (J · L) defined by

A⊗B =











a11B a12B · · · a1JB

a21B a22B · · · a2JB
...

...
. . .

...
aI1B aI2B · · · aIJB











.

Outer product and tensor product The operator◦ denotes
the tensor product between two vectors. In linear algebra, the
outer product typically refers to the tensor product between
two vectors, that is,u◦v = uv⊤. In this paper, the terms outer
product and tensor product are equivalent. The Kronecker
product and the tensor product between two vectors are related
by u ◦ v = u⊗ v⊤.

Mode-i product The mode-i product of a tensorX =
[xα1,...,αi,...,αd

] ∈ R
N1×...×Ni×...×Nd and a matrixU =

[uj,αi
] ∈ R

J×Ni is denoted byX ×i U and is of size
N1×. . .×Ni−1×J×Ni+1×. . .×Nd. Element-wise, the mode-
i product can be written as(X ×i U)α1,...,αi−1,j,αi+1,...,αd

=
∑Ni

αi=1 xα1,...,αi,...,αd
uj,αi

.

Mode-i fiber and mode-i unfolding A mode-i fiber of a ten-
sorX = [xα1,...,αi,...,αd

] ∈ R
N1×...×Ni×...×Nd is obtained by

fixing every index butαi. The mode-i unfoldingX(i) of X
arranges the mode-i fibers to be the columns of the resulting
Ni × (N1 · . . . ·Ni−1 ·Ni+1 · . . . ·Nd) matrix.
Y = X×1U1×. . .×dUd is equivalent toY(i) = UiX(i)(Ud⊗

. . .⊗ Ui+1 ⊗ Ui−1 ⊗ . . .⊗ U1)
⊤.

Core Tucker decomposition [?] Let X ∈ R
N1×...×Nd with

mode-i unfoldingX(i) ∈ R
Ni×(N1·...·Ni−1·Ni+1·...·Nd). Denote

by Ri(X ) ⊂ R
Ni the column space ofX(i) whose rank is

ri. Let c1,i, . . . , cri,i be a basis inRi(X ). Then the subspace
V(X ) := R1(X ) ◦ . . . ◦ Rd(X ) ⊂ R

N1×...×Nd containsX .
Clearly a basis inV consists of the vectorsci1,1 ◦ . . . ◦ cid,d
where ij ∈ [rj ] and j ∈ [d]. Hence the core Tucker
decomposition ofX is

X =
∑

ij∈[rj ],j∈[d]

ξi1,...,idci1,1 ◦ . . . ◦ cid,d. (1)

A special case of core Tucker decomposition is the higher-
order singular value decomposition (HOSVD). Any tensor
X ∈ R

N1×...×Nd can be written as

X = S ×1 U1 × . . .×d Ud, (2)

whereUi = [u1 · · ·uNi
] is orthogonal fori ∈ [d] and S is

called the core tensor which can be obtained easily byS =
X ×1 U

⊤
1 × . . .×d U

⊤
d .

There are many ways to get a weaker decomposition as

X =

K
∑

i=1

a
(1)
i ◦ . . . ◦ a(d)i , a

(j)
i ∈ Rj(X ), j ∈ [d]. (3)

A simple constructive way is as follows. First decomposeX(1)

asX(1) =
∑r1

j=1 cj,1g
⊤
j,1 (e.g. by singular value decomposi-

tion (SVD)). Now eachgj,1 can be represented as a tensor of
order d − 1 ∈ R2(X ) ◦ . . . ◦ Rd(X ) ⊂ R

N2×...×Nd . Unfold
eachgj,1 in mode2 to obtaingj,1(2) and decomposegj,1(2) =
∑r2

l=1 dl,2,jf
⊤
l,2,j , dl,2,j ∈ R2(X ), fl,2,j ∈ R3(X ) ◦ . . . ◦

Rd(X ). By successively unfolding and decomposing each
remaining tensor mode, a decomposition of the form in Eq. (3)
is obtained. Note that ifX is s-sparse then each vector in
Ri(X ) is s-sparse andri ≤ s for i ∈ [d]. HenceK ≤ sd−1.



CANDECOMP/PARAFAC decomposition [?] For a tensor
X ∈ R

N1×...×Nd , the CANDECOMP/PARAFAC (CP) decom-
position isX ≈ [λ;A(1), . . . , A(d)] ≡

∑R
r=1 λra

(1)
r ◦ . . .◦a(d)r ,

whereλ = [λ1 . . . λR]
⊤ ∈ R

R and A(i) = [a
(i)
1 · · · a(i)R ] ∈

R
Ni×R for i ∈ [d].

B. Compressive sensing

Compressive sensing is a framework for reconstruction of
signals that have sparse representations. A vectorx ∈ R

N

is called s-sparse if it has at mosts nonzero entries. The
CS measurement protocol measures the signalx with the
measurement matrixA ∈ R

m×N wherem < N and encodes
the information asy ∈ R

m where y = Ax. The decoder
knowsA and attempts to recoverx from y. Sincem < N ,
typically there are infinitely many solutions for such an under-
constrained problem. However, ifx is known to be sufficiently
sparse, then exact recovery ofx is possible, which establishes
the fundamental tenet of CS theory. The recovery is achieved
by finding a solutionz⋆ ∈ R

N satisfying

z⋆ = argmin{‖z‖1, Az = y}. (4)

Such z⋆ coincides withx under certain condition. The fol-
lowing well known result states that eachs-sparse signal can
be recovered uniquely ifA satisfies the null space property of
orders, denoted as NSPs. That is, ifAw = 0,w ∈ R

N \{0},
then for any subsetS ⊂ {1, 2, . . . , N} with cardinality|S| = s

it holds that‖vS‖1 < ‖vSc‖1, wherevS denotes the vector
that coincides withv on the index setS and is set to zero on
Sc.

One way to generate suchA is by sampling its entries using
numbers generated from a Gaussian or a Bernoulli distribution.
This matrix generation process guarantees that there exists a
universal constantc such that if

m ≥ 2cs ln
N

s
, (5)

then the recovery ofx using (4) is successful with probability
greater than1− exp(−m

2c ) [?].
In fact, most signals of practical interest are not really sparse

in any domain. Instead, they are only compressible, meaning
that in some particular domain, the coefficients, when sorted
by magnitude, decay according to the power law [?]. Given a
signalx ∈ R

N which can be represented byθ ∈ R
N in some

transformed domain, i.e.x = Φθ, with sorted coefficients such
that ‖θ‖(1) ≥ . . . ≥ ‖θ‖(N), it obeys that‖θ‖(n) ≤ Rn− 1

p for
eachn ∈ [N ], where0 < p < 1 and R is some constant.
According to [?], [?], when A is drawn randomly from a
Gaussian or Bernoulli distribution andΦ is an orthobasis, with
overwhelming probability, the solutiong⋆ ∈ R

N to

g⋆ = argmin{‖g‖1, AΦg = y} (6)

is unique. Furthermore, denote byx♯ the recovered signal
via x♯ = Φg, with a very large probability we have the
approximation

‖x− x♯‖2 ≤ CR(
m

lnN
)

1
2
− 1

p ,

whereA ∈ R
m×N is generated randomly as stated above,

m is the number of measurements, andC is some constant.
This provides theoretical foundation for CS of compressible
signals.

Consider the case where the observationy is noisy. For a
given integers, a matrixA ∈ R

m×N satisfies the restricted
isometry property (RIPs) if

(1− δs)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δs)‖x‖2
for all s-sparsex ∈ R

N and for someδs ∈ (0, 1). Given a
noisy observationy with bounded errorǫ, an approximation
of the signalx, f⋆ ∈ R

N , can be obtained by solving the
following relaxed recovery problem [?],

f⋆ = argmin{‖f‖1, ‖Af − y‖2 ≤ ǫ}. (7)

It is known that ifA satisfies the RIP2s property withδ2s ∈
(0,

√
2− 1), then

‖f⋆ − x‖2 ≤ C2ǫ, whereC2 =
4
√
1 + δ2s

1− (1 +
√
2)δ2s

. (8)

Recently, the extension of CS theory for multidimensional
signals has become an emerging topic. The objective of our
paper is to consider the case where thes-sparse vectorx
is represented as ans-sparse tensorX = [xi1,i2,...,id ] ∈
R

N1×N2×...×Nd . Specifically, in the sampling phase, we con-
struct a set of measurement matrices{U1, U2, . . . , Ud} for all
tensor modes, whereUi ∈ R

mi×Ni for i ∈ [d], and sampleX
to obtainY = X ×1U1×2U2× . . .×dUd ∈ R

m1×m2×...×md .
Note that our sampling method is mathematically equivalent
to that proposed in [?], whereA is expressed as a Kronecker
productA := U1⊗U2⊗ . . .⊗Ud, which requiresm to satisfy

m ≥ 2cs(− ln s+
d

∑

i=1

lnNi). (9)

We show that if eachUi satisfies the NSPs property, then
we can recoverX uniquely fromY by solving a sequence
of ℓ1 minimization problems, each similar to the expression
in (4). This approach is advantageous relative to vectorization-
based compressive sensing methods because the corresponding
recovery problems are in terms ofUi’s instead ofA, which
results in greatly reduced complexity. If the entries ofUi

are sampled from Gaussian or Bernoulli distributions, the
following set of condition needs to be satisfied:

mi ≥ 2cs ln
Ni

s
, i ∈ [d]. (10)

Observe that the dimensionality of the original signalX ,
namelyN = N1 · . . . ·Nd, is compressed tom = m1 · . . . ·md.
Hence, the number of measurements required by our method
must satisfy

m ≥ (2cs)d
d
∏

i=1

ln
Ni

s
, (11)

which indicates a worse compression ratio than that from (9).
Note that (11) is derived under the assumption that each fiber
has the same sparsity as the tensor, and hence is very loose.



We propose two reconstruction procedures, a serial method
(GTCS-S) and a parallelizable method (GTCS-P) in terms
of recovery of each tensor mode. A similar idea to GTCS-
P, namely multi-way compressive sensing (MWCS) [?] for
sparse and low-rank tensors, also suggests a two-step re-
covery process: fitting a low-rank model in the compressed
domain, followed by per-mode decompression. However, the
performance of MWCS relies highly on the estimation of
the tensor rank, which is an NP-hard problem. The proposed
GTCS manages to get rid of tensor rank estimation and
thus considerably reduces the computational complexity in
comparison to MWCS.

III. G ENERALIZED TENSOR COMPRESSIVE SENSING

In each of the following subsection, we first discuss our
method for matrices, i.e.,d = 2 and then for tensors, i.e.,
d ≥ 3.

A. Generalized tensor compressive sensing with serial recov-
ery (GTCS-S)

Theorem 3.1: Let X = [xij ] ∈ R
N1×N2 be s-sparse. Let

Ui ∈ R
mi×Ni and assume thatUi satisfies the NSPs property

for i ∈ [2]. Define

Y = [ypq] = U1XU⊤
2 ∈ R

m1×m2 . (12)

Then X can be recovered uniquely as follows. Let
y1, . . . ,ym2

∈ R
m1 be the columns ofY . Let z⋆i ∈ R

N1

be a solution of

z⋆i = min{‖zi‖1, U1zi = yi}, i ∈ [m2]. (13)

Then eachz⋆i is unique ands-sparse. LetZ ∈ R
N1×m2 be the

matrix with columnsz⋆1, . . . , z
⋆
m2

. Let w⊤
1 , . . . ,w

⊤
N1

be the
rows of Z. Thenu⋆

j ∈ R
N2 , the transpose of thejth row of

X , is the solution of

u⋆
j = min{‖uj‖1, U2uj = wj}, j ∈ [N1]. (14)

Proof: Let Z = XU⊤
2 ∈ R

N1×m2 . Assume that
z⋆1, . . . , z

⋆
m2

are the columns ofZ. Note thatz⋆i is a linear
combination of the columns ofX . z⋆i has at mosts nonzero
coordinates, because the total number of nonzero elements in
X is s. SinceY = U1Z, it follows thatyi = U1z

⋆
i . Also, since

U1 satisfies the NSPs property, we arrive at (13). Observe that
Z⊤ = U2X

⊤; hence,wj = U2u
⋆
j . SinceX is s-sparse, then

eachu⋆
j is s-sparse. The assumption thatU2 satisfies the NSPs

property implies (14). This completes the proof.
If the entries ofU1 andU2 are drawn from random distri-

butions as described above, then the set of conditions from
(10) needs to be met as well. Note that although Theorem 3.1
requires bothU1 andU2 to satisfy the NSPs property, such
constraints can be relaxed if each row ofX is s2-sparse, where
s2 < s, and each column ofXUT

2 is s1-sparse, wheres1 < s.
In this case, it follows from the proof of Theorem 3.1 thatX

can be recovered as long asU1 andU2 satisfy the NSPs1 and
the NSPs2 properties respectively.

Theorem 3.2 (GTCS-S): Let X = [xi1,...,id ] ∈ R
N1×...×Nd

be s-sparse. LetUi ∈ R
mi×Ni and assume thatUi satisfies

the NSPs property fori ∈ [d]. Define

Y = [yj1,...,jd ] = X ×1 U1 × . . .×d Ud ∈ R
m1×...×md . (15)

ThenX can be recovered uniquely as follows. UnfoldY in
mode1,

Y(1) = U1X(1)[⊗2
k=dUk]

⊤ ∈ R
m1×(m2·...·md).

Let y1, . . . ,ym2·...·md
be the columns ofY(1). Then yi =

U1zi, where eachzi ∈ R
N1 is s-sparse. Recover eachzi using

(4). LetZ = X ×2U2× . . .×d Ud ∈ R
N1×m2×...×md with its

mode-1 fibers beingz1, . . . , zm2·...·md
. Unfold Z in mode 2,

Z(2) = U2X(2)[⊗3
k=dUk ⊗ I]⊤ ∈ R

m2×(N1·m3·...·md).

Let w1, . . . ,wN1·m3·...·md
be the columns ofZ(2). Thenwj =

U2vj , where eachvj ∈ R
N2 is s-sparse. Recover eachvj

using (4).X can be reconstructed by successively applying
the above procedure to tensor modes3, . . . , d.

The proof follows directly that of Theorem 3.1 and hence
is skipped here.

Note that although Theorem 3.2 requiresUi to satisfy the
NSPs property fori ∈ [d], such constraints can be relaxed if
each mode-i fiber ofX ×i+1Ui+1× . . .×dUd is si-sparse for
i ∈ [d − 1], and each mode-d fiber of X is sd-sparse, where
si ≤ s, for i ∈ [d]. In this case, it follows from the proof of
Theorem 3.2 thatX can be recovered as long asUi satisfies
the NSPsi property, fori ∈ [d].

B. Generalized tensor compressive sensing with parallelizable
recovery (GTCS-P)

Employing the same definitions ofX andY as in Theorem
3.1, consider a rank decomposition ofX with rank (X) = r,
X =

∑r
i=1 ziu

⊤
i , which could be obtained using either Gauss

elimination or SVD. After sampling we have,

Y =

r
∑

i=1

(U1zi)(U2ui)
⊤. (16)

We first show that the above decomposition ofY
is also a rank-r decomposition, i.e.,U1z1, . . . , U1zr and
U2u1, . . . , U2ur are two sets of linearly independent vectors.

SinceX is s-sparse,rank (Y ) ≤ rank (X) ≤ s. Further-
more, denote byR(X) the column space ofX , both R(X)
andR(X⊤) are vector subspaces whose elements ares-sparse.
Note thatzi ∈ R(X),ui ∈ R(X⊤). SinceU1 andU2 satisfy
the NSPs property, thendim(U1R(X)) = dim(U2R(X⊤)) =
rank (X). Hence the above decomposition ofY in (16) is a
rank-r decomposition ofY .

Theorem 3.3: Let X = [xij ] ∈ R
N1×N2 be s-sparse. Let

Ui ∈ R
mi×Ni and assume thatUi satisfies the NSPs property

for i ∈ [2]. If Y is given by (12), thenX can be recovered
uniquely as follows. Consider a rank decomposition (e.g.,
SVD) of Y such that

Y =

K
∑

i=1

b
(1)
i (b

(2)
i )⊤, (17)



whereK = rank (Y ). Let w(j)⋆
i ∈ R

Nj be a solution of

w
(j)⋆
i = min{‖w(j)

i ‖1, Ujw
(j)
i = b

(j)
i }, i ∈ [K], j ∈ [2].

Thus eachw(j)⋆
i is unique ands-sparse. Then,

X =

K
∑

i=1

w
(1)⋆
i (w

(2)⋆
i )⊤. (18)

Proof: First observe thatR(Y ) ⊂ U1R(X) andR(Y ⊤) ⊂
U2R(X⊤). Since (17) is a rank decomposition ofY and
Ui satisfies the NSPs property for i ∈ [2], it follows that
b
(1)
i ∈ U1R(X) and b

(2)
i ∈ U2R(X⊤). Hencew

(1)⋆
i ∈

R(X),w
(2)⋆
i ∈ R(X⊤) are unique ands-sparse. LetX̂ :=

∑K
i=1 w

(1)⋆
i (w

(2)⋆
i )⊤. Assume to the contrary thatX−X̂ 6= 0.

Clearly R(X − X̂) ⊂ R(X), R(X⊤ − X̂⊤) ⊂ R(X⊤). Let
X − X̂ =

∑J
i=1 u

(1)
i (u

(2)
i )⊤ be a rank decomposition of

X − X̂ . Henceu(1)
1 , . . . ,u

(1)
J ∈ R(X) andu

(2)
1 , . . . ,u

(2)
J ∈

R(X⊤) are two sets ofJ linearly independent vectors.
Since each vector either inR(X) or in R(X⊤) is s-
sparse, andU1, U2 satisfy the NSPs property, it follows that
U1u

(j)
1 , . . . , U1u

(j)
J are linearly independent forj ∈ [2]. Hence

the matrix Z :=
∑J

i=1(U1u
(1)
i )(U2u

(2)
i )⊤ has rankJ . In

particular,Z 6= 0. On the other hand,Z = U1(X − X̂)U⊤
2 =

Y − Y = 0, which contradicts the previous statement. So
X = X̂. This completes the proof.

The above recovery procedure consists of two stages,
namely, the decomposition stage and the reconstruction stage,
where the latter can be implemented in parallel for each matrix
mode. Note that the above theorem is equivalent to multi-way
compressive sensing for matrices (MWCS) introduced in [?].

Theorem 3.4 (GTCS-P): Let X = [xi1,...,id ] ∈ R
N1×...×Nd

be s-sparse. LetUi ∈ R
mi×Ni and assume thatUi satisfies

the NSPs property for i ∈ [d]. DefineY as in (15), thenX
can be recovered as follows. Consider a decomposition ofY
such that,

Y =

K
∑

i=1

b
(1)
i ◦ . . . ◦ b(d)

i , b
(j)
i ∈ Rj(Y) ⊆ UjRj(X ),

j ∈ [d]. (19)

Let w(j)⋆
i ∈ Rj(X ) ⊂ R

Nj be a solution of

w
(j)⋆
i = min{‖w(j)

i ‖1, Ujw
(j)
i = b

(j)
i }, i ∈ [K],

j ∈ [d]. (20)

Thus eachw(j)⋆
i is unique ands-sparse. Then,

X =

K
∑

i=1

w
(1)⋆
i ◦ . . .◦w(d)⋆

i , w
(j)⋆
i ∈ Rj(X ), j ∈ [d]. (21)

Proof: SinceX is s-sparse, each vector inRj(X ) is s-
sparse. If eachUj satisfies the NSPs, thenw(j)⋆

i ∈ Rj(X ) is
unique ands-sparse. Define

Z =

K
∑

i=1

w
(1)⋆
i ◦ . . . ◦w(d)⋆

i , w
(j)⋆
i ∈ Rj(X ), j ∈ [d]. (22)

Then
(X − Z)×1 U1 × . . .×d Ud = 0. (23)

To showZ = X , assume a slightly more general scenario,
where eachRj(X ) ⊆ Vj ⊂ R

Nj , such that each nonzero
vector inVj is s-sparse. ThenRj(Y) ⊆ UjRj(X ) ⊆ UjVj

for j ∈ [d]. Assume to the contrary thatX 6= Z. This
hypothesis can be disproven via induction on modem as
follows.

Suppose

(X − Z)×m Um × . . .×d Ud = 0. (24)

Unfold X andZ in modem, then the column (row) spaces
of X(m) andZ(m) are contained inVm (V̂m := V1 ◦ . . . ◦
Vm−1 ◦ Vm+1 ◦ . . . ◦ Vd). SinceX 6= Z, X(m) − Z(m) 6=
0. ThenX(m) − Z(m) =

∑p
i=1 uiv

⊤
i , whererank (X(m) −

Z(m)) = p, andu1, . . . ,up ∈ Vm,v1, . . . ,vp ∈ V̂m are two
sets of linearly independent vectors.

Since(X − Z)×m Um × . . .×d Ud = 0,

0 = Um(X(m) − Z(m))(Ud ⊗ . . .⊗ Um+1 ⊗ I)⊤

= Um(X(m) − Z(m))Û
⊤
m

=

p
∑

i=1

(Umui)(Ûmvi)
⊤.

SinceUmu1, . . . , Umup are linearly independent, it follows
that Ûmvi = 0 for i ∈ [p]. Therefore,

(X(m) − Z(m))Û
⊤
m = (

p
∑

i=1

uiv
⊤
i )Û

⊤
m =

p
∑

i=1

ui(Ûmvi)
⊤ = 0,

which is equivalent to (in tensor form, after folding)

(X − Z)×m Im ×m+1 Um+1 × . . .×d Ud

= (X − Z)×m+1 Um+1 × . . .×d Ud = 0, (25)

whereIm is theNm×Nm identity matrix. Note that (24) leads
to (25) upon replacingUm with Im. Similarly, whenm = 1,
U1 can be replaced withI1 in (23). By successively replacing
Um with Im for 2 ≤ m ≤ d,

(X − Z)×1 U1 × . . .×d Ud

=(X − Z)×1 I1 × . . .×d Id

=X − Z = 0,

which contradicts the assumption thatX 6= Z. Thus,X = Z.
This completes the proof.

Note that although Theorem 3.4 requiresUi to satisfy the
NSPs property for i ∈ [d], such constraints can be relaxed
if all vectors∈ Ri(X ) are si-sparse. In this case, it follows
from the proof of Theorem 3.4 thatX can be recovered as
long asUi satisfies the NSPsi , for i ∈ [d]. As in the matrix
case, the reconstruction stage of the recovery process can be
implemented in parallel for each tensor mode.

The above described procedure allows exact recovery. In
some cases, recovery of a rank-R approximation ofX , X̂ =
∑R

r=1 w
(1)
r ◦ . . . ◦w(d)

r , suffices. In such scenarios,Y in (19)
can be replaced by its rank-R approximation, namely,Y =
∑R

r=1 b
(1)
r ◦ . . .◦b(d)

r (obtained e.g., by CP decomposition).



C. GTCS reconstruction with the presence of noise

We next briefly discuss the case where the observation
is noisy. We state informally here two theorems for matrix
case. For a detailed proof of the theorems as well as the
generalization to tensor case, please refer to [?]. Assume that
the notations and the assumptions of Theorem 3.1 hold. Let
Y ′ = Y +E = U1XU⊤

2 +E, Y ∈ R
m1×m2 . HereE denotes

the noise matrix, and‖E‖F ≤ ε for some real nonnegative
numberε.

Our first recovery result is as follows: assume that that each
Ui satisfies the RIP2s property for someδ2s ∈ (0,

√
2 −

1). Then X can be recovered uniquely as follows. Let
c1(Y

′), . . . , cm2
(Y ′) ∈ R

m1 denote the columns ofY ′. Let
z⋆i ∈ R

N1 be a solution of

z⋆i = min{‖zi‖1, ‖ci(Y ′)− U1zi‖2 ≤ ε}, i ∈ [m2]. (26)

Define Z ∈ R
N1×m2 to be the matrix whose columns are

z⋆1, . . . , z
⋆
m2

. According to (8),‖ci(Z)−ci(XU⊤
2 )‖2 = ‖z⋆i −

ci(XU⊤
2 )‖2 ≤ C2ε. Hence‖Z − XU⊤

2 ‖F ≤ √
m2C2ε. Let

c1(Z
⊤), . . . , cN1

(Z⊤) be the columns ofZ⊤. Then u⋆
j ∈

R
N2 , the solution of

u⋆
j = min{‖uj‖1, ‖cj(Z⊤)−U2uj‖2 ≤

√
m2C2ε}, j ∈ [N1],

(27)
is thejth column ofX⊤. Denote byX̂ the recovered matrix,
then according to (8),

‖X̂ −X‖F ≤
√

m2N1C
2
2ε. (28)

The upper bound in (28) can be tightened by assuming
that the entries ofE adhere to a specific type of distribution.
Let E = [e1, . . . , em2

]. Suppose that each entry ofE is an
independent random variable with a given distribution having
zero mean. Then we can assume that‖ej‖2 ≤ ε√

m2
, which

implies that‖E‖F ≤ ε. In such case,‖X̂ −X‖F ≤ C2
2ε.

Our second recovery result is as follows: assume thatUi

satisfies the RIP2s property for someδ2s ∈ (0,
√
2−1), i ∈ [2].

ThenX can be recovered uniquely as follows. Assume thats′

is the smallest betweens and the number of singular values of
Y ′ greater than ε√

s
. Let Y ′

s′ be a best rank-s′ approximation
of Y ′:

Y ′
s′ =

s′
∑

i=1

(
√

σ̃iũi)(
√

σ̃iṽi)
⊤. (29)

ThenX̂ =
∑s′

i=1
1
σ̃i
x⋆
iy

⋆
i
⊤ and

‖X − X̂‖F ≤ C2ε, (30)

where

x⋆
i = min{‖xi‖1, ‖σ̃iũi − U1xi‖2 ≤ ε√

2s
},

y⋆
i = min{‖yi‖1, ‖σ̃iṽi − U2yi‖2 ≤ ε√

2s
}, i ∈ [s].

IV. EXPERIMENTAL RESULTS

We experimentally demonstrate the performance of GTCS
methods on the reconstruction of sparse and compressible
images and video sequences. As demonstrated in [?], KCS

outperforms several other methods including independent mea-
surements and partitioned measurements in terms of recon-
struction accuracy in tasks related to compression of mul-
tidimensional signals. A more recently proposed method is
MWCS, which stands out for its reconstruction efficiency.
For the above reasons, we compare our methods with both
KCS and MWCS. Our experiments use theℓ1-minimization
solvers from [?]. We set the same threshold to determine the
termination ofℓ1-minimization in all subsequent experiments.
All simulations are executed on a desktop with 2.4 GHz Intel
Core i5 CPU and 8GB RAM.

A. Sparse image representation

As shown in Figure 2(a), the original black and white image
is of size 64 × 64 (N = 4096 pixels). Its columns are14-
sparse and rows are18-sparse. The image itself is178-sparse.
We let the number of measurements evenly split among the
two modes, that is, for each mode, the randomly constructed
Gaussian matrixU is of size m × 64. Therefore the KCS
measurement matrixU⊗U is of sizem2×4096. Thus the total
number of samples ism2. We define the normalized number of
samples to bem

2

N
. For GTCS, both the serial recovery method

GTCS-S and the parallelizable recovery method GTCS-P are
implemented. In the matrix case, GTCS-P coincides with
MWCS and we simply conduct SVD on the compressed
image in the decomposition stage of GTCS-P. Although the
reconstruction stage of GTCS-P is parallelizable, we here
recover each vector in series. We comprehensively examine
the performance of all the above methods by varyingm from
1 to 45.

Figure 1(a) and 1(b) compare the peak signal to noise ratio
(PSNR) and the recovery time respectively. Both KCS and
GTCS methods achieve PSNR over 30dB whenm = 39.
Note that at this turning point, PSNR of KCS is higher than
that of GTCS, which is consistent with the observation that
GTCS usually requires slightly more number of measurements
to achieve the same reconstruction accuracy in comparison
with KCS. Asm increases, GTCS-S tends to outperform KCS
in terms of both accuracy and efficiency. Although PSNR of
GTCS-P is the lowest among the three methods, it is most
time efficient. Moreover, with parallelization of GTCS-P, the
recovery procedure can be further accelerated considerably.
The reconstructed images whenm = 38, that is, using 0.35
normalized number of samples, are shown in Figure 2(b),
2(c), and 2(d). Though GTCS-P usually recovers much noisier
image, it is good at recovering the non-zero structure of the
original image.

B. Compressible image representation

As shown in Figure 3(a), the cameraman image is resized
to 64× 64 (N = 4096 pixels). The image itself is non-sparse.
However, in some transformed domain, such as discrete cosine
transformation (DCT) domain in this case, the magnitudes of
the coefficients decay by power law in both directions (see
Figure 3(b)), thus are compressible. We let the number of mea-
surements evenly split among the two modes. Again, in matrix
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Fig. 1. PSNR and reconstruction time comparison on sparse image.

(a) The original sparse image (b) GTCS-S recovered image

(c) GTCS-P recovered image (d) KCS recovered image
Fig. 2. The original image and the recovered images by GTCS-S(PSNR =
22.28 dB), GTCS-P (PSNR = 23.26 dB) and KCS (PSNR = 22.28 dB) when
m = 38, using 0.35 normalized number of samples.

data case, MWCS concurs with GTCS-P. We exhaustively vary
m from 1 to 64.

Figure 4(a) and 4(b) compare the PSNR and the recovery
time respectively. Unlike the sparse image case, GTCS-P
shows outstanding performance in comparison with all other
methods, in terms of both accuracy and speed, followed
by KCS and then GTCS-S. The reconstructed images when
m = 46, using 0.51 normalized number of samples and when
m = 63, using 0.96 normalized number of samples are shown
in Figure 5.

C. Sparse video representation

We next compare the performance of GTCS and KCS on
video data. Each frame of the video sequence is preprocessed
to have size24× 24 and we choose the first 24 frames. The
video data together is represented by a24 × 24 × 24 tensor
and hasN = 13824 voxels in total. To obtain a sparse tensor,
we manually keep only6 × 6 × 6 nonzero entries in the

(a) Cameraman in space domain
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(b) Cameraman in DCT domain

Fig. 3. The original cameraman image (resized to 64× 64 pixels) in the
space domain (a) and the DCT domain (b).
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(b) Recovery time comparison

Fig. 4. PSNR and reconstruction time comparison on compressible image.

center of the video tensor data and the rest are set to zero.
Therefore, the video tensor itself is216-sparse and its mode-i

fibers are all6-sparse fori ∈ [3]. The randomly constructed
Gaussian measurement matrix for each mode is now of size
m× 24 and the total number of samples ism3. Therefore, the
normalized number of samples ism

3

N
. In the decomposition

stage of GTCS-P, we employ a decomposition described in
Section II-A to obtain a weaker form of the core Tucker
decomposition. We varym from 1 to 13.

Figure 6(a) depicts PSNR of the first non-zero frame recov-
ered by all three methods. Please note that the PSNR values
of different video frames recovered by the same method are
the same. All methods exhibit an abrupt increase in PSNR at
m = 10 (using 0.07 normalized number of samples). Also,
Figure 6(b) summarizes the recovery time. In comparison
to the image case, the time advantage of GTCS becomes
more important in the reconstruction of higher-order tensor
data. We specifically look into the recovered frames of all
three methods whenm = 12. Since all the recovered frames
achieve a PSNR higher than 40 dB, it is hard to visually
observe any difference compared to the original video frame.
Therefore, we display the reconstruction error image defined
as the absolute difference between the reconstructed imageand
the original image. Figures 7(a), 7(b), and 7(c) visualize the
reconstruction errors of all three methods. Compared to KCS,
GTCS-S achieves much lower reconstruction error using much
less time.

To compare the performance of GTCS-P with MWCS, we
examine MWCS with various tensor rank estimations and
Figure 8(a) and Figure 8(b) depict its PSNR and reconstruction
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(b) Reconstruction error of GTCS-P
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(c) Reconstruction error of KCS

Fig. 7. Visualization of the reconstruction error in the recovered video frame 9 by GTCS-S (PSNR = 130.83 dB), GTCS-P (PSNR = 44.69 dB) and KCS
(PSNR = 106.43 dB) whenm = 12, using 0.125 normalized number of samples.

(a) GTCS-S, m= 46, PSNR =
20.21 dB

(b) GTCS-S, m = 63, PSNR =
30.88 dB

(c) GTCS-P/MWCS, m = 46,
PSNR = 21.84 dB

(d) GTCS-P/MWCS, m = 63,
PSNR = 35.95 dB

(e) KCS, m = 46, PSNR = 21.79
dB

(f) KCS, m = 63, PSNR = 33.46
dB

Fig. 5. Reconstructed cameraman images. In this two-dimensional case,
GTCS-P is equivalent to MWCS.

time respectively. The straight line marked GTCS is merely
used to indicate the corresponding performance of GTCS-P
with the same amount of measurements and has nothing to do
with various ranks.

D. Compressible video representation

We finally examine the performance of GTCS, KCS and
MWCS on compressible video data. Each frame of the video
sequence is preprocessed to have size24× 24 and we choose
the first 24 frames. The video data together is represented
by a 24 × 24 × 24 tensor. The video itself is non-sparse,
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(b) Recovery time comparison

Fig. 6. PSNR and reconstruction time comparison on sparse video.
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(b) Recovery time comparison

Fig. 8. PSNR comparison of GTCS-P with MWCS on sparse video when
m = 12, using 0.125 normalized number of samples. The highest PSNRof
MWCS with estimated tensor rank varying from 1 to 24 appears when Rank
= 16.

yet compressible in three-dimensional DCT domain. In the
decomposition stage of GTCS-P, we employ a decomposition
described in Section II-A to obtain a weaker form of the
core Tucker decomposition and denote this method by GTCS-
P (CT). We also test the performance of GTCS-P by using
HOSVD in the decomposition stage and denote this method
by GTCS-P (HOSVD) hereby.m varies from 1 to 21. Note
that in GTCS-S, the reconstruction is not perfect at each mode,
and becomes more and more noisy as the recovery by mode
continues. Therefore the recovery method byℓ1-minimization
using (4) would be inappropriate or even has no solution at
certain stage. In our experiment, GTCS-S by (4) works form



from 1 to 7. To use GTCS-S form = 8 and higher, relaxed
recovery (7) could be employed for reconstruction. Figure 9(a)
and Figure 9(b) depict PSNR and reconstruction time of all
methods up tom = 7. Form = 8 to 21, the results are shown
in Figure 9(c) and Figure 9(d).

We specifically look into the recovered frames of all meth-
ods whenm = 17 and m = 21. Recovered frames 1,
9, 17 (originally as shown in Figure 10) are depicted as
an example in Figure 11. As shown in Figure 12(a), the
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(d) Recovery time comparison
Fig. 9. PSNR and reconstruction time comparison on susie video.

(a) Original frame 1 (b) Original frame 9 (c) Original frame 17

Fig. 10. Original video frames.

performance of MWCS relies highly on the estimation of the
tensor rank. We examine the performance of MWCS with
various rank estimations. Experimental results demonstrate
that GTCS outperforms MWCS not only in speed, but also
in accuracy.

V. CONCLUSION

Extensions of CS theory to multidimensional signals have
become an emerging topic. Existing methods include Kro-
necker compressive sensing (KCS) for sparse tensors and
multi-way compressive sensing (MWCS) for sparse and low-
rank tensors. We introduced the Generalized Tensor Compres-
sive Sensing (GTCS)–a unified framework for compressive
sensing of higher-order tensors which preserves the intrinsic
structure of tensorial data with reduced computational com-
plexity at reconstruction. We demonstrated that GTCS offers

(a) GTCS-P(HOSVD)
reconstructed frame 1

(b) GTCS-P(HOSVD)
reconstructed frame 9

(c) GTCS-P(HOSVD)
reconstructed frame 17

(d) GTCS-P(CT) recon-
structed frame 1

(e) GTCS-P(CT) recon-
structed frame 9

(f) GTCS-P(CT) recon-
structed frame 17

(g) KCS reconstructed
frame 1

(h) KCS reconstructed
frame 9

(i) KCS reconstructed
frame 17

(j) MWCS reconstructed
frame 1

(k) MWCS reconstructed
frame 9

(l) MWCS reconstructed
frame 17

Fig. 11. Reconstructed video frames when m = 21 using 0.67 normalized
number of samples by GTCS-P (HOSVD, PSNR = 29.33 dB), GTCS-P (CT,
PSNR = 28.79 dB), KCS (PSNR = 30.70 dB) and MWCS (Rank = 4, PSNR
= 22.98 dB).
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Fig. 12. PSNR comparison of GTCS-P with MWCS on compressiblevideo
when m = 17, using 0.36 normalized number of samples andm = 21,
using 0.67 normalized number of samples. The highest PSNR ofMWCS
with estimated tensor rank varying from 1 to 24 appears when Rank = 4 and
Rank = 7 respectively.

an efficient means for representation of multidimensional data
by providing simultaneous acquisition and compression from
all tensor modes. We introduced two reconstruction proce-
dures, a serial method (GTCS-S) and a parallelizable method
(GTCS-P), and compared the performance of the proposed
methods with KCS and MWCS. As shown, GTCS outperforms
KCS and MWCS in terms of both reconstruction accuracy
(within a range of compression ratios) and processing speed.



The major disadvantage of our methods (and of MWCS as
well), is that the achieved compression ratios may be worse
than those offered by KCS. GTCS is advantageous relative
to vectorization-based compressive sensing methods such as
KCS because the corresponding recovery problems are in
terms of a multiple small measurement matricesUi’s, instead
of a single, large measurement matrixA, which results in
greatly reduced complexity. In addition, GTCS-P does not
rely on tensor rank estimation, which considerably reducesthe
computational complexity while improving the reconstruction
accuracy in comparison with other tensorial decomposition-
based method such as MWCS.
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