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Compressive Sensing of Sparse Tensors
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Abstract—Compressive sensing (CS) has triggered enormous algorithm consists in searching for the sparsest vectar tha

research activity since its first appearance. CS exploits tsignal’s
sparsity or compressibility in a particular domain and integrates
data compression and acquisition, thus allowing exact rectstruc-
tion through relatively few non-adaptive linear measuremets.
While conventional CS theory relies on data representationn the
form of vectors, many data types in various applications sug as
color imaging, video sequences, and multi-sensor networksre
intrinsically represented by higher-order tensors. Application of
CS to higher-order data representation is typically performed
by conversion of the data to very long vectors that must be
measured using very large sampling matrices, thus imposing
a huge computational and memory burden. In this paper,

is consistent with the linear measurements. However, 4his
minimization problem is NP-hard in general and thus compu-
tationally infeasible. There are essentially two appreactor
tractable alternative algorithms. The first is convex rat@n,
leading to/;-minimization [?], also known as basis pursuit
[?], whereas the second constructs greedy algorithms. Beside
in image processing, the use of total-variation minimizati
which is closely connected t -minimization first appears in

[?] and is widely applied later on. By now basic properties
of the measurement matrix which ensure sparse recovery by

we propose Generalized Tensor Compressive Sensing (GTCS)—,-minimization are known: the null space property (NSP) [

a unified framework for compressive sensing of higher-order
tensors which preserves the intrinsic structure of tensor dta
with reduced computational complexity at reconstruction.GTCS
offers an efficient means for representation of multidimen®nal
data by providing simultaneous acquisition and compressio from
all tensor modes. In addition, we propound two reconstructbn
procedures, a serial method (GTCS-S) and a parallelizable
method (GTCS-P). We then compare the performance of the
proposed method with Kronecker compressive sensing (KCS)al
multi-way compressive sensing (MWCS). We demonstrate expe
imentally that GTCS outperforms KCS and MWCS in terms
of both reconstruction accuracy (within a range of compres®n

ratios) and processing speed. The major disadvantage of our

methods (and of MWCS as well), is that the compression ratios
may be worse than that offered by KCS.

Index Terms—Compressive sensing, compression ratio, convex

optimization, multilinear algebra, higher-order tensor, general-
ized tensor compressive sensing.

I. INTRODUCTION

Recent literature has witnessed an explosion of interest

sensing that exploits structured prior knowledge in theegain

form of sparsity, meaning that signals can be represented

only a few coefficients in some domain. Central to much

this recent work is the paradigm of compressive sensing,(C
also known under the terminology of compressed sensing

or compressive sampling?], [?], [?]. CS theory permits

relatively few linear measurements of the signal whilel stif

allowing exact reconstruction via nonlinear recovery pss

The key idea is that the sparsity helps in isolating the ori
inal vector. The first intuitive approach to a reconstructio

Copyright (c) 2013 IEEE. Personal use of this material isnyited.
However, permission to use this material for any other psegomust be
obtained from the IEEE by sending a request to pubs-peronis@ieee.org.

S. Friedland is with the Department of Mathematics, Statist Computer
Science, University of lllinois at Chicago (UIC), Chicagih, 60607-7045
USA. e-mail: friedlan@uic.edu. This work was supported [8MA\grant DMS-
1216393.

Q. Li is with PARC, Xerox Corporation, Webster, NY, 14580 USé&-
mail: Qun.Li@xerox.com. This work was done during her Phigtat UIC,
advised by Prof. Schonfeld.

D. Schonfeld is with the Department of Electrical and Coreputngi-
neering, University of lllinois at Chicago, Chicago, IL, @ USA. e-mail:
dans@uic.edu.

and the restricted isometry property (RIP].[

An intrinsic limitation in conventional CS theory is that
it relies on data representation in the form of vectors. In
fact, many data types do not lend themselves to vector data
representation. For example, images are intrinsicallyioes.
As a result, great efforts have been made to extend tradition
CS to CS of data in matrix representation. A straightforward
implementation of CS on 2D images recasts the 2D problem
as traditional 1D CS problem by converting images to long
vectors, such as in?]. However, despite of considerably
huge memory and computational burden imposed by the use
of long vector data and large sampling matrix, the sparse
solutions produced by straightforwarg-minimization often
incur visually unpleasant, high-frequency oscillatiomkis is
due to the neglect of attributes known to be widely possessed
by images, such as smoothness. ), [instead of seeking
sparsity in the transformed domain, a total variation-dase
rmnimization was proposed to promote smoothness of the
reconstructed image. Later, as an alternative for allmgahe
tE)u e computational and memory burden associated with image
vectorization, block-based CS (BCS) was proposed?|nip

CS, an image is divided into non-overlapping blocks and
acquired using an appropriately-sized measurement matrix
Another direction in the extension of CS to matrix CS gen-
ralizes CS concept and outlines a dictionary relating eptsc
rom cardinality minimization to those of rank minimizatio
?], [?], [?]. The affine rank minimization problem consists
f finding a matrix of minimum rank that satisfies a given set
of linear equality constraints. It encompasses commordy se
low-rank matrix completion problen®’] and low-rank matrix
approximation problem as special casej.f{rst introduced
recovery of the minimum-rank matrix via nuclear norm min-
imization. [?] generalized the RIP in?] to matrix case and
established the theoretical condition under which the earcl
norm heuristic can be guaranteed to produce the minimum-
rank solution.

Real-world signals of practical interest such as color imag
ing, video sequences and multi-sensor networks, are ysuall
generated by the interaction of multiple factors or multi-
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media and thus can be intrinsically represented by high&@uter product and tensor product The operator denotes
order tensors. Therefore, the higher-order extension of @® tensor product between two vectors. In linear algebrs, t
theory for multidimensional data has become an emergingter product typically refers to the tensor product betwee
topic. One direction attempts to find the best rank-R tenstwo vectors, that isyov = uv . In this paper, the terms outer
approximation as a recovery of the original data tensor psoduct and tensor product are equivalent. The Kronecker
in [?], they also proved the existence and uniqueness mfoduct and the tensor product between two vectors arecklat
the best rank-R tensor approximation in the case of 30y uov=u®uv'.
order tensors under appropriate assumptions.?ln rhulti-
way compressed sensing (MWCS) for sparse and low-ra
tensors suggests a two-step recovery process: fitting a |
rank model in compressed domain, followed by per-mo .
decompression. Hovsever, the performance of MyWFéZS relidg X - X Nii X Jx Niga X... X Na. Element-wise, the mode-
highly on the estimation of the tensor rank, which is an Nlﬁ_p]\r]?duct can be written &Y x; U)a,....ai1.d.aisr,mca =
hard problem. The other directior?][[?] uses Kronecker Dai=1 oo aa o
product matrices in CS to act as sparsifying bases thatyoiniode-i fiber and mode-i unfolding A mode-i fiber of a ten-
model the structure present in all of the signal dimensiogg, y — [Zas s ) € RVDXXNixxNa s obtained by
as well as to represent the measurement protocols usedilthg every index buta;. The mode-i unfoldingX ;, of X
distributed settings. However, the recovery procedure, @u arranges the mode-i fibers to be the columns of the resulting
the vectorization of multidimensional signals, is rathenet  n;, « (N, ..... N;_; - Ny ... Ny) matrix.
consumi_ng and not applicable in practicg. We proposed’]in.[. — Xx1Urx.. . xqUg i equivalent td,) = U; X ;) (Us®
Generalized Tensor Compressive Sensing (GTCS)-a unified U1 ®Uin1 ®...0U1)T.
framework for compressive sensing of higher-order tendors
addition, we presented two reconstruction proceduresiial seCore Tucker decomposition [?] Let X € RN*xNa with
method (GTCS-S) and a parallelizable method (GTCS-P). Bxode-i unfoldingX ;) € RN:* (V- Nici-Nigr-.-Na) Denote
perimental results demonstrated the outstanding perfocemaby Ri(X) C R™: the column space ok, whose rank is
of GTCS in terms of both recovery accuracy and speed. In this Létci1, ..., ¢, ; be a basis inl?;(X). Then the subspace
paper, we not only illustrate the technical details of GTC¥ (X) := Ri(X) o ... 0 Rq(X) C RN+>-*Na containsX.
more thoroughly, but also further examine its performanédearly a basis iV consists of the vectors;, 1 0...0¢;,.4
on the recovery of various types of data including spar¥éere i; € [r;] and j € [d]. Hence the core Tucker
image, compressible image, sparse video and compressiggomposition oft’ is
video comprehensively.

The rest of the paper is organized as follows. Section X = Z &i1,eeryigCin,1 © - - - O Ciy d- 1)
M briefly reviews concepts and operations from multilinear ij€lr;],5€d]
algebra used later in the paper. It also introduces conven- . o .
tional compressive sensing theory. Secfioh Ill propose€&T A spgmal case of core Tucker_o!ecomposmon 's the higher-
theorems along with their detailed proofs. Sectiod IV the?lmler 2|nxgulxa]\r] value decqmposmon (HOSVD). Any tensor
compares experimentally the performance of the propos%/dE RFTwXX7¢ can be written as
method with existing methods. Finally, Sectiomh V concludes
the paper. X=8x1U1 x...xqUy, (2)

Il. BACKGROUND

Throughout the discussion, lower-case characters represéhereUs = [u;---uy,] is orthogonal fori € [d] and S is
scalar valuega, b, . ..), bold-face characters represent vectolc/led tr;e core tensgr which can be obtained easilySby
(a,b,...), capitals represent matricdsi, B,...) and calli- ¢ *1Ui x...xaUy. -
graphic capitals represent tens@ss, B, ...). Let [N] denote ~ There are many ways to get a weaker decomposition as
the set{1,2,..., N}, whereN is a positive integer. K
A. Multilinear algebra X = Zagl) o..0a? AP eRix)jeld. @)

A tensor is a multidimensional array. The order of a tensor i=1
is the number of modes. For instance, tengog RN1 > Na
has orderd and the dimension of its’* mode (also called
modei directly) is N;.

de-i product The mode-i product of a tensoX =
1riag] € RNDXXNix.xNa gnd a matrixU =
ios] € R7*Niis denoted byXx x; U and is of size

A simple constructive way is as follows. First decompa&e)
as X() = Z;;l cj71g;1 (e.g. by singular value decomposi-
tion (SVD)). Now eachg; ; can be represented as a tensor of
Kronecker product The Kronecker product of matrice$ € orderd — 1 € Ro(X) o...0 Ryq(X) C RN2*--xNa_Unfold
R’/ and B € R**" is denoted byA ® B. The result is a eachg; , in mode2 to obtaing; 1 ,, and decomposg; 1, =
matrix of sizé€l - K') x (J - L) defined by Sz diogfl, diny € Ro(X)fia; € Ry(X)o...0
auB @B -+ 6B R4(X). By successively unfolding and decomposing each
a21B apB -+ aB remaining tensor mode, a decomposition of the form in Eqg. (3)
: : . : is obtained. Note that ifY is s-sparse then each vector in
anB apB -+ apB R;(X) is s-sparse and; < s for i € [d]. HenceK < s?~1.

A®B =



CANDECOMP/PARAFAC decomposition [?] For a tensor where A € R™*" is generated randomly as stated above,
X € RN1x--xNa the CANDECOMP/PARAFAC (CP) decom-m is the number of measurements, afidis some constant.

position isx ~ [\; AM), ..., A@D] =8 )\Tagl_)o. . .o_ai‘i), This provides theoretical foundation for CS of compressibl
where A = [A\;...Az]T € RE and A®) = [a{"...alY] € signals.
RN %R for i € [d]. Consider the case where the observatjois noisy. For a

given integers, a matrix A €¢ R™*V satisfies the restricted
B. Compressive sensing isometry property (RIP) if

Compressive sensing is a framework for reconstruction of (1 —=0)[x[l2 < |Ax|l2 < (1 + d5)[x]l2
signals that have sparse representations. A vectar RY
is called s-sparse if it has at most nonzero entries. The
CS measurement protocol measures the signabith the
measurement matrid € R™*Y wherem < N and encodes
the information asy € R™ wherey = Ax. The decoder
knows A and attempts to recover from y. Sincem < N,
typically there are infinitely many solutions for such an erd
constrained problem. However sifis known to be sufficiently |t js known that if A satisfies the RIR property withd,, €
sparse, then exact recovery-ofs possible, which establishesy /2 — 1), then
the fundamental tenet of CS theory. The recovery is achieved
by finding a solutionz* € R satisfying £ — x|ja < Che, whereCs — 4v1 + das . (®)

1 — (14 v/2)das

Recently, the extension of CS theory for multidimensional
Suchz* coincides withx under certain condition. The fol- signals has become an emerging topic. The objective of our
lowing well known result states that easksparse signal can paper is to consider the case where theparse vectorx

for all s-sparsex € R and for some’; € (0,1). Given a
noisy observatiory with bounded errog, an approximation
of the signalx, f* € R¥, can be obtained by solving the
following relaxed recovery problen?],

f* = argmin{|[f[|1, [|Af —yll2 < €}. ()

z* = argmin{||z||;, Az =y}. 4

be recovered uniquely ift satisfies the null space property ofis represented as agsparse tensoX = [z, i, ] €
orders, denoted as NSPThat is, if Aw = 0, w € RV \ {0}, RN1xNa2x..xNa gpecifically, in the sampling phase, we con-
then for any subsef C {1,2,..., N} with cardinality|S| = s struct a set of measurement matridés, Us, ..., U} for all

it holds that||vs|; < |[vge]1, wherevg denotes the vector tensor modes, wher@; € R™*Y: for i € [d], and sampleY

that coincides withv on the index sef and is set to zero on to obtain)y = X x1 Uy xaUs X ... xqUyg € R™M1Xm2X...Xmaq,

Se. Note that our sampling method is mathematically equivalent
One way to generate suchis by sampling its entries usingto that proposed in7], where A is expressed as a Kronecker

numbers generated from a Gaussian or a Bernoulli distdbuti productA := U; ® Us ® . .. ® Uy, Which requiresn to satisfy

This matrix generation process guarantees that theresexist 4

universal constant such that if m > 2cs(—Ins + Zln N;). 9)

m > 2csIn E, (5) =t
§ We show that if eacll/; satisfies the NSPproperty, then

then the recovery of using [4) is successful with probabilitywe can recovert’ uniquely from)’ by solving a sequence
greater than — exp(—4*) [?]. of /1 minimization problems, each similar to the expression

In fact, most signals of practical interest are not realgrsp in (). This approach is advantageous relative to vecttioaa
in any domain. Instead, they are only compressible, meanibgsed compressive sensing methods because the corragpondi
that in some particular domain, the coefficients, when sorteecovery problems are in terms 6f’s instead ofA, which
by magnitude, decay according to the power I1&)v (Given a results in greatly reduced complexity. If the entries (&f
signalx € RY which can be represented Byc RY in some are sampled from Gaussian or Bernoulli distributions, the
transformed domain, i.ex = ®6, with sorted coefficients such following set of condition needs to be satisfied:
that ([0 1y > ... > [|0]| (), it obeys that]f]|,) < Rn~» for N
eachn € [N], where0 < p < 1 and R is some constant. m; > 2csln ?Z, i € [d]. (10)
According to [?], [?], when A is drawn randomly from a ) ) ) o )
Gaussian or Bernoulli distribution arielis an orthobasis, with OPserve that the dimensionality of the original signEl

overwhelming probability, the solutiog* € RN to namelyN = Ny -...-Ng, is compressed tor = m; -...-ma.
Hence, the number of measurements required by our method
. . must satis
g" = argmin{||g[|;, APg =y} (6) fy T
d i
is unique. Furthermore, denote by the recovered signal m 2 (2¢s) Hln?’ (11)
via x4 = ®g, with a very large probability we have the =1
approximation which indicates a worse compression ratio than that ffidm (9)
m 1 Note that[(I1L) is derived under the assumption that each fiber
Ix — x4]]2 < CR( )2 e, has the same sparsity as the tensor, and hence is very loose.

InN



We propose two reconstruction procedures, a serial method'heorem 3.2 (GTCSS): Let X = [x;,...i,] € RN1%...xNa
(GTCS-S) and a parallelizable method (GTCS-P) in ternte s-sparse. Let/; € R™*Ni and assume thal; satisfies
of recovery of each tensor mode. A similar idea to GTCShe NSR property fori € [d]. Define
P, namely multi-way compressive sensing (MWCS) for
sparse and low-rank tensors, also suggests a two-step R¥-= [Yir,..jal =X X1 U1 X ... xa Uy € Rz (15)
covery process: fitting a low-rank model in_ the compresseﬁlenx can be recovered uniquely as follows. Unfaiin
domain, followed by per-mode decompression. However, tlﬂ?odel,
performance of MWCS relies highly on the estimation of
the tensor rank, which is an NP-hard problem. The proposed Yi) = UlX(l)[®i:dUk]T e RmM X(ma-..ma)

GTCS manages to get rid of tensor rank estimation and

thus considerably reduces the computational complexity ¢t ¥1,- -, ¥ms-...m, b€ the columns off(;). Theny; =
comparison to MWCS. Uiz;, where eaclr; € R is s-sparse. Recover eaeh using
@). Let Z = X xo Uy X ... xq Uy € RN1Xm2X..xma ith jts
mode-1 fibers being;, ..., zmn,....m,. Unfold Z in mode 2,

IIl. GENERALIZED TENSOR COMPRESSIVE SENSING

_ _ . Z() = Ua X () [®}_gUs @ I]T € RM2*(Nrms-oma),
In each of the following subsection, we first discuss our ) 2X ()@=l ® 1]

method for matrices, i.ed = 2 and then for tensors, i.e.,Letwy,..., Wy, .m;....m, b€ the columns of 5. Thenw; =
d>3. Usv;, where eachv; € R is s-sparse. Recover each;
using [4). X can be reconstructed by successively applying

. : : _ ) the above procedure to tensor modes. ., d.
A. Generalized tensor compressive sensing with serial recov- The proof follows directly that of Theorem 3.1 and hence

ery (GTCS9 is skipped here.

Theorem 3.1: Let X = [z;;] € RN1*N2 pe s-sparse. Let  Note that although Theorem 8.2 requir€s to satisfy the
U; € R™*Ni and assume thdf; satisfies the NSPproperty NSP, property fori € [d], such constraints can be relaxed if

for i € [2]. Define each mode-fiber of X x; 1 U; 1 X ... xqUy IS s;-sparse for
. e i € [d — 1], and each modé-fiber of X is s4-sparse, where
Y = [ypg] = U1 XU, € R™ 7™, (12) &, < s, fori e [d]. In this case, it follows from the proof of

. Theoren{ 3R thaf can be recovered as long &5 satisfies
Then X can be recovered uniquely as follows. LeEhe NSR. property, fori € [d]

Yi,---,¥m, € R™ be the columns ofY. Let z; € RM
be a solution of B. Generalized tensor compressive sensing with parallelizable
. . . recovery (GTCSP
z; = min{||z;||1, U1z; = yi}, @€ [ma). (13) y( )

Employing the same definitions f andY as in Theorem
Then eache} is unique ands-sparse. LetZ € R™**™ be the [3, consider a rank decomposition &fwith rank (X) = r,
matrix with columnszy, ... z5 . Let w{,...,w} be the X = >, z;u], which could be obtained using either Gauss
row of elimination or SVD. After sampling we have,

’“mo
rows of Z. Thenuj € RNz, the transpose of th@”ll

X, is the solution of

T
. . Y = Uiz;)(Uzuy) " 16
u; = min{||u;ll1, Upu; = wy}, j€[N]. (14) ;( 12;) (U2wy) (16)
Proof: Let Z = XU, € RM>m2 Assume that We first show that the above decomposition af
zj,...,z,,, are the columns oZ. Note thatz; is a linear is also a rank:- decomposition, i.e.U;z,...,U;z, and
combination of the columns aoX. zf has at mosk nonzero Usuy,...,Usu, are two sets of linearly independent vectors.

coordinates, because the total number of nonzero elements iSince X is s-sparserank (Y) < rank (X) < s. Further-
X is s. SinceY = U, Z, it follows thaty; = U,z;. Also, since more, denote by?(X) the column space ok, both R(X)
U, satisfies the NSPproperty, we arrive af (13). Observe thahnd R(X ") are vector subspaces whose elements a@arse.
Z' =U,XT; hence,w; = Uu}. SinceX is s-sparse, then Note thatz; € R(X),u; € R(X ). SinceU; and U, satisfy
eachu is s-sparse. The assumption tti& satisfies the NSP  the NSR property, thendim(U; R(X)) = dim(U2R(X ")) =
property implies[(I4). This completes the proof. B rank (X). Hence the above decomposition Bfin (16) is a
If the entries ofU; and U, are drawn from random distri- rank+ decomposition of".
butions as described above, then the set of conditions fronTTheorem 3.3: Let X = [z;;] € RM*M2 pe s-sparse. Let
(10) needs to be met as well. Note that although Thegrem 371 c RN and assume thdf; satisfies the NSPproperty
requires bothl/; and U, to satisfy the NSP property, such for i € [2]. If Y is given by [I2), thenX can be recovered
constraints can be relaxed if each row)ofis s,-sparse, where uniquely as follows. Consider a rank decomposition (e.g.
s2 < s, and each column ok U{ is s1-sparse, wherg; < s.  SVD) of Y such that
In this case, it follows from the proof of Theordm3.1 thét K
can be recovered as long &s and U, satisfy the NSB, and v — Zb(_l)(b(_z))T 17)
the NSR, properties respectively. P v ’



where K = rank (V). Let ng)* € R be a solution of

(3)*

wi* = min{|w?||;, U;w? = b{},

K3

i€ [K],je€ 2.

Thus eachng)* is unique ands-sparse. Then,

K
X =3 wi (w7
=1

Proof: First observe thaR(Y) c U1 R(X)andR(Y ") C
U;R(XT). Since [(IV) is a rank decomposition &f and
U, satisfies the NSPproperty fori € [2], it follows that
bl" € U;R(X) and b® € U,R(XT). Hencew!"* ¢
R(X),w @ ¢ R(XT) are unique and-sparse. LetX :=
SE m*(wf)*)T. Assume to the contrary thaf— X +# 0.
Clearly R(X ——X)ClﬂX%}ﬁXT——XT)CIdXTyLm

S uf ()T

X - X =
X - X. Henceugl),.. (1) € R(X) and uf),...,uff) €

(18)

R(XT") are two sets ofJ linearly independent vectors.

Since each vector either iMR(X) or in R(X") is s-

sparse, and/, Ug satisfy the NSP property, it follows that
,Up u(] are linearly independent fgre [2]. Hence

Ulugj), ..
the matrix Z S (U)(Uu?)T has raka. In
particular,Z # 0. On the other handZ = Uy (X — X)U, =

Y — Y = 0, which contradicts the previous statement. So Sincel,,u,

X = X. This completes the proof. ]

To showZ = X, assume a slightly more general scenario,
where eachR;(X) C V,; c RY, such that each nonzero
vector in'V; is s-sparse. Thek;()) C U;R;(X) C U,;V;
for j € [d]. Assume to the contrary that # Z. This
hypothesis can be disproven via induction on madeas
follows.

Suppose

(X—Z)XmUmX...XdUdZO. (24)

Unfold X and Z in modem, then the column (row) spaces
of X(,,) and Z,,, are contained ifV,,, (V.,, := Vio...
V,—10 Vm+1 0...0 Vd) SInCEX # Z, Xm) — Z(m) #

0. Then X(m) — Z(m) = Zp RLIAZ Whererank( (m) —
Z(m)) = p, anduy, ..., u, € Vm,vl,...,vp € V,, are two

be a rank decomposition of Sets of linearly independent vectors.

Since(X — 2) X, Up, X ... xq Uy =0,

0= Um(X(m) — Z(m))(Ud ®...
= Un(X(m) = Z(m))Unm,

p
T
§ mul mvz .

QUm+1 ® I)T

,Unu, are linearly independent, it follows
that U,,v; = 0 for 1 € [p]. Therefore,

The above recovery procedure consists of two stages,

namely, the decomposition stage and the reconstructige sta

where the latter can be implemented in parallel for each|matl(X(m) - Z(m)
mode. Note that the above theorem is equivalent to multi-way
compressive sensing for matrices (MWCS) introduced?]n |
Theorem 3.4 (GTCSP): Let X = [z;,,. 4,] € RN >--xNa
be s-sparse. Let/; € R™*N: and assume thal/; satisfies
the NSR property fori € [d]. Definey as in [15), thent
can be recovered as follows. Consider a decompositia}t of

p

Zul m = Z ui(ljmbvi)T = Oa
=1

which is equivalent to (in tensor form, after folding)

(X_Z) Xm Im Xm+1 Um+1 X oo, XdUd

=(X = 2) Xmt1 U1 X ... xqUg =0, (25)

such that, wherel,, is the N, x N,,, identity matrix. Note tha{{24) leads
K ) @ ) to (28) upon replacind/,,, with I,,,. Similarly, whenm = 1,
y=> bilo..ob? b’ eR;(V) CUR;(X), U, can be replaced witth, in (23). By successively replacing
o=t Up, With I,, for 2 <m < d,
j e ld. (19)
. X —-Z Uy x ... U
Let w* € R;(X) c RY: be a solution of ( )1l xaUa
) ) ) ) :(X—Z) ><1[1>< .XdId
w" = min{|w” [y, Uyw!? =b{}, i€ [K], —x-z—o,
jeld. (20) . .
() which contradicts the assumption th¥t£ Z. Thus,X = Z.
Thus eachw;””™ is unique ands-sparse. Then, This completes the proof. m
K ‘ Note that although Theorem 8.4 requirgs to satisfy the
X = ngl)*o w* w9 ¢ R;(X),j € [d]. (21) NSP, property fori € [d], such constraints can be relaxed
i=1 if all vectorse R;(X) are s;-sparse. In this case, it follows

Proof: Since X' is s-sparse, each vector iR;(X) is s-
sparse. If eaclt/; satisfies the NSﬁthenwE‘”* € Rj(X)is
unigue ands-sparse. Define

K
2= wio ow™  wieR;x),jeld (22)
=1
Then
(X—Z)Xlle...XdUd:O. (23)

from the proof of Theorerh 3.4 that can be recovered as
long asU; satisfies the NSP, for ¢ € [d]. As in the matrix
case, the reconstruction stage of the recovery processean b
implemented in parallel for each tensor mode.

The above described procedure allows exact recovery. In
some cases, recovery of a raRkapproximation of¥, X =
SR wilo . ow!®, suffices. In such scenarioy, in (I9)
can be replaced by its ranR-approximation, namely) =
Zf;l bil) o.. .obﬁd) (obtained e.g., by CP decomposition).



C. GTCS reconstruction with the presence of noise outperforms several other methods including independeat m

We next briefly discuss the case where the observatiSfréments and partitioned measurements in terms of recon-
is noisy. We state informally here two theorems for matrigiruction accuracy in tasks related to compression of mul-
case. For a detailed proof of the theorems as well as fig@imensional signals. A more recently proposed method is
generalization to tensor case, please refefloAssume that MWCS, which stands out for its reconstruction efﬁqency.
the notations and the assumptions of Theofem 3.1 hold. L&' the above reasons, we compare our methods with both
Y = Y+E = UlXUQT—i—E Y € R™*m2_ HereE denotes KCS and MWCS. Our experiments use theminimization
the noise matrix, and E||r < ¢ for some real nonnegativesowers from P]. We set the same threshold to determine the
numbere. termination of¢;-minimization in all subsequent experiments.

Our first recovery result is as follows: assume that that eaff] Simulations are executed on a desktop with 2.4 GHz Intel
U, satisfies the RIR property for somed,, € (0,42 — Coreis CPU and 8GB RAM.

1). Then X can be recovered uniquely as follows. Let
c1(Y'),...,cm, (Y') € R™ denote the columns of’. Let A Sparse image representation

z; € R™ be a solution of - . L
As shown in Figurg 2(f), the original black and white image

z7 = min{||z;||1, |c;(Y') — Urzillo < e}, i€ [ma]. (26) is of size64 x 64 (N = 4096 pixels). Its columns are 4-
sparse and rows af&-sparse. The image itself i8-sparse.
8ne let the number of measurements evenly split among the
two modes, that is, for each mode, the randomly constructed

Define Z € RM*™2 tg pe the matrix whose columns ar
z},...,z5, . According to[(8),)c;(Z) —ci (XU, |2 = ||zF —

» “mo

. T _ T ) . . .
Cl(XQ2 )2 < CQE.THebncetL\Z IXU2 HFf;TV ?ﬁOQE‘*Let Gaussian matrix/ is of size m x 64. Therefore the KCS
c1(Z7),...,en,(Z7) be the columns ofZ . enu; < measurement matrid @ U is of sizem? x 4096. Thus the total

N .
R™, the solution of number of samples is?. We define the normalized number of

ut = min{||u,||1, lc;(Z7)=Uou;l2 < /maCoc}, j € [IV,], Samples to béx-. For GTCS, both the serial recovery method
’ B (27) GTCS-S and the parallelizable recovery method GTCS-P are
is the j*» column of X 7. Denote byX the recovered matrix, Implemented. In the matrix case, GTCS-P coincides with

then according to{8), MWCS and we simply conduct SVD on the compressed
. image in the decomposition stage of GTCS-P. Although the
|X — X||p < vV/maN:1Cie. (28) reconstruction stage of GTCS-P is parallelizable, we here

.recover each vector in series. We comprehensively examine
e performance of all the above methods by varyindgrom

that the entries of2 adhere to a specific type of distribution.1 10 45

Let E = [e1,...,emn,]|- Suppose that each entry &f is an : . . .
independent random variable with a given distribution hgvi Figure[1{a) and 1{b) compare the peak signal to noise ratio

: PSNR) and the recovery time respectively. Both KCS and
. heflls < —= ( .
zero mean. Then we can assume they|; < vma' which GTCS methods achieve PSNR over 30dB when= 39.

implies that||E|| < e. In such casellX — X || < CZe. Note that at this turning point, PSNR of KCS is higher than
Our second recovery result is as follows: assume that that of GTCS, which is consistent with the observation that
satisfies the RIR property for som@y, € (0,v/2-1),4i € [2.  GTCS usually requires slightly more number of measurements
Then X can be recovered uniquely as follows. Assume #iat {5 achieve the same reconstruction accuracy in comparison
is the smallest betweenand the number of singular values ofyith kcs. Asm increases, GTCS-S tends to outperform KCS
Y’ greater than’-. Let Y, be a best rank* approximation , terms of both accuracy and efficiency. Although PSNR of
of Y": , GTCS-P is the lowest among the three methods, it is most
time efficient. Moreover, with parallelization of GTCS-Ret

S

o ~ -~ ~ ~\T

Yo = Z;( o) (Voivi) - (29) recovery procedure can be further accelerated consigerabl

) = The reconstructed images when = 38, that is, using 0.35
ThenX =37 Lx;y; " and normalized number of samples, are shown in Figure]2(b),
' . [2(c], and 2(d). Though GTCS-P usually recovers much noisier
X — X||p < C%, (30) image, it is good at recovering the non-zero structure of the

where original image.
* : ) ~ 1. . €
xi = min{|xillr, ot = Uixis < \/g}’ B. Compressible image representation
y; = min{||y:|1, |7:V;i — U2yill2 < L},i € [s]. As shown in Figurg¢ 3(&), the cameraman image is resized
V2s to 64 x 64 (N = 4096 pixels). The image itself is non-sparse.

However, in some transformed domain, such as discreteeosin
transformation (DCT) domain in this case, the magnitudes of

We experimentally demonstrate the performance of GTQBe coefficients decay by power law in both directions (see
methods on the reconstruction of sparse and compressiBigure[3(D)), thus are compressible. We let the number of mea
images and video sequences. As demonstrate®]inK[CS surements evenly split among the two modes. Again, in matrix

IV. EXPERIMENTAL RESULTS
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Fig. 4. PSNR and reconstruction time comparison on comimiessnage.

(a) The original sparse image (b) GTCS-S recovered image
L! I c . center of the video tensor data and the rest are set to zero.
Therefore, the video tensor itself 24 6-sparse and its mode-
fibers are all6-sparse fori € [3]. The randomly constructed
Gaussian measurement matrix for each mode is now of size
m x 24 and the total number of samplesrig’. Therefore, the
normalized number of samples %3 In the decomposition
(c) GTCS-P recovered image (d) KCS recovered image stage of GTCS-P, we employ a decomposition described in
Fig. 2. The original image and the recovered images by GTGBSNR = Section[II-A to obtain a weaker form of the core Tucker
22.28 dB), GTCS-P (PSNR = 23.26 dB) and KCS (PSNR = 22.28 dBnwh decomposition. We varyn from 1 to 13,
m = 38, using 0.35 normalized number of samples.
Figure[6(d) depicts PSNR of the first non-zero frame recov-
ered by all three methods. Please note that the PSNR values

data case, MWCS concurs with GTCS-P. We exhaustively va different video frames rgcpvered by the same T“eth"d are
m from 1 to 64. the same. All methods exhibit an abrupt increase in PSNR at

Figure[4(@) and 4(b) compare the PSNR and the recmﬁ%: 10 (using 0.07 normalized number of samples). Also,
time respectively. Unlike the sparse image case, GTCS- ;Jhre[__g@l) summarltzhes t’_the re((j:ovetry t|mef. (Isr_lré:gmbpanson
shows outstanding performance in comparison with all oth%)r € Image case, the time advantage o ecomes

methods, in terms of both accuracy and speed, followddere important in the reconstruction of higher-order tenso

by KCS and then GTCS-S. The reconstructed images wh %ta. We specifically look into the recovered frames of all

m = 46, using 0.51 normalized number of samples and whé ree methods whem = 12. Since all the recovered frames

m = 63, using 0.96 normalized number of samples are sho hieve a PSNR higher than 40 dB, it is hard to visually
in Figur'eIB observe any difference compared to the original video frame

Therefore, we display the reconstruction error image ddfine

] . as the absolute difference between the reconstructed iaraye

C. Sparse video representation the original image. Figures 7{4), 7(b), and J(c) visualize t
We next compare the performance of GTCS and KCS eaconstruction errors of all three methods. Compared to ,KCS

video data. Each frame of the video sequence is preproces&ddCS-S achieves much lower reconstruction error using much

to have size24 x 24 and we choose the first 24 frames. Théess time.

video data together is represented bg4ax 24 x 24 tensor ~ To compare the performance of GTCS-P with MWCS, we

and hasV = 13824 voxels in total. To obtain a sparse tensogxamine MWCS with various tensor rank estimations and

we manually keep only6 x 6 x 6 nonzero entries in the Figure[8(d) and Figufe 8(b) depict its PSNR and reconstmcti
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dB dB MWCS with estimated tensor rank varying from 1 to 24 appednienRank

Fig. 5. Reconstructed cameraman images. In this two-dimeals case, = 16.

GTCS-P is equivalent to MWCS.

time respectively. The straight line marked GTCS is mereglet compressible in three-dimensional DCT domain. In the
used to indicate the corresponding performance of GTCSascomposmon stage of GTCS-P, we employ a decomposition

: : scribed in Sectiofi TI7A to obtain a weaker form of the
with the same amount of measurements and has nothing to do - .

. . cOre Tucker decomposition and denote this method by GTCS-
with various ranks.

P (CT). We also test the performance of GTCS-P by using

) ) ) HOSVD in the decomposition stage and denote this method

D. Compressible video representation by GTCS-P (HOSVD) herebyn varies from 1 to 21. Note
We finally examine the performance of GTCS, KCS anthat in GTCS-S, the reconstruction is not perfect at eachanod

MWCS on compressible video data. Each frame of the videmd becomes more and more noisy as the recovery by mode
sequence is preprocessed to have 8ize 24 and we choose continues. Therefore the recovery method/pyminimization
the first 24 frames. The video data together is representesing [4) would be inappropriate or even has no solution at
by a 24 x 24 x 24 tensor. The video itself is non-sparsegertain stage. In our experiment, GTCS-S Ry (4) worksrfor



from 1 to 7. To use GTCS-S fan = 8 and higher, relaxed
recovery[(¥) could be employed for reconstruction. Figued 9
and Figurg 9(B) depict PSNR and reconstruction time of ¢
methods up ton = 7. Form = 8 to 21, the results are shown

in Figure[9(c) and Figurg 9(d). H

We specifically look into the recovered frames of all meth(;1 ) GTCS-P(HOSVDYb) GTCS-P(HOSVDXG) GTCS-P(HOSVD)
ods whenm = 17 and m = 21. Recovered frames 1, reconstructed frame 1 reconstructed frame 9 reconstructed frame 17
9, 17 (originally as shown in Figure_110) are depicted ¢
an example in Figur€11. As shown in Figyre IP(a), tr
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performance of MWCS relies highly on the estimation of the (@) PSNR comparison (b) Recovery time comparison

tensor rank. We examine the performance of MWCS with

various rank estimations. Experimental results demotestr&'ﬁ- 12. P81N7R Compa(;ISS%n of GTlf?S-dF’ WlthbMW<f35 on ?Oml;:;fﬂh;o
. enm = , using 0. normalizea number ol samples = y

that GTCS outperforms MWCS not only in speed, but al ing 0.67 normalized number of samples. The highest PSNRIWICS

in accuracy. with estimated tensor rank varying from 1 to 24 appears whankR= 4 and
Rank = 7 respectively.

V. CONCLUSION

Extensions of CS theory to multidimensional signals have
become an emerging topic. Existing methods include Kran efficient means for representation of multidimensiomhd
necker compressive sensing (KCS) for sparse tensors dnydproviding simultaneous acquisition and compressiomfro
multi-way compressive sensing (MWCS) for sparse and low tensor modes. We introduced two reconstruction proce-
rank tensors. We introduced the Generalized Tensor Comprésres, a serial method (GTCS-S) and a parallelizable method
sive Sensing (GTCS)-a unified framework for compressif&TCS-P), and compared the performance of the proposed
sensing of higher-order tensors which preserves the sitrinmethods with KCS and MWCS. As shown, GTCS outperforms
structure of tensorial data with reduced computational -col{CS and MWCS in terms of both reconstruction accuracy
plexity at reconstruction. We demonstrated that GTCS sffefwithin a range of compression ratios) and processing speed



The major disadvantage of our methods (and of MWCS as
well), is that the achieved compression ratios may be wor :
than those offered by KCS. GTCS is advantageous relati «

to vectorization-based compressive sensing methods ssict @
KCS because the corresponding recovery problems are

terms of a multiple small measurement matri€gs, instead ‘1‘
of a single, large measurement matrk which results in
greatly reduced complexity. In addition, GTCS-P does not
rely on tensor rank estimation, which considerably redtiees |55 authored over 170
computational complexity while improving the reconstiaot

accuracy in comparison with other tensorial decomposition

based method such as MWCS.
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