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Abstract—We introduce a machine learning approach to de-
mosaicing, the reconstruction of color images from incomplete
color filter array samples. There are two challenges to overcome
by a demosaicing method: first, it needs to model and respect
the statistics of natural images in order to reconstruct natural
looking images; second, it needs to be able to perform well in the
presence of noise. To facilitate an objective assessment of current
methods we introduce a public ground truth data set of natural
images suitable for research in image demosaicing and denoising.
We then use this large data set to develop a machine learning
approach to demosaicing. Our proposed method addresses both
demosaicing challenges by learning a statistical model of images
and noise from hundreds of natural images. The resulting model
performs simultaneous demosaicing and denoising. We show that
the machine learning approach has a number of benefits: 1. the
model is trained to directly optimize a user-specified performance
measure such as peak signal-to-noise ratio (PSNR) or structural
similarity (SSIM), 2. we can handle novel color filter array
layouts by retraining the model on such layouts, 3. it outperforms
the previous state-of-the-art, in some setups by 0.7dB PSNR,
faithfully reconstructing edges, textures, and smooth areas. Our
results demonstrate that in demosaicing and related imaging
applications, discriminatively trained machine learning models
have the potential for peak performance at comparatively low
engineering effort.

Index Terms—Demosaicing, denoising, regression tree fields.

I. INTRODUCTION

D IGITAL cameras capture images of the natural world by
projecting light through an optical system onto a focal

plane. At this focal plane, an array of photosensitive elements
converts photons into electrical charge that is then read and
digitized. To capture color images, most cameras place a color
filter array (CFA) pattern in front of the sensor elements. The
color filters absorb light with varying sensitivity, depending
on the wavelength of the light. As a result, for common CFA
choices, the light reaching the photosensitive sensor element
is predominantly either in the red, green, or blue spectrum.
This monochrome array of recorded responses, once digitized,
is known as the RAW image and can be saved in many high
quality cameras. The color filter array setup records different
colors, but it does so at different spatial locations. In order
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to reconstruct a color image, we apply image demosaicing:
for each sensor element, we reconstruct the missing color
filter array channels. For example, if we recorded only the red
wavelengths at an element, we would use the adjacent green and
blue recordings to reconstruct the two missing measurements
at that element.

The image demosaicing problem is important because almost
all digital color cameras in use today use an image demosaicing
algorithm to produce color images. There are natural questions
that can be asked, such as: 1. How should the color filter
array be designed? 2. What are the properties of a good
demosaicing algorithm? 3. What are properties of natural
images we could use for image demosaicing? For the color filter
array, the Bayer pattern remains the most popular pattern [1],
and most of the demosaicing methods are designed for this
pattern, which is shown in Fig. 2a. However, there has been
an increasing interest in using other CFA patterns, which
motivates universal demosaicing models or pattern-independent
demosaicing methods. A good demosaicing algorithm uses
the properties of natural images to produce natural looking
images. For example, a large area of any natural image
is typically smooth and of the same color, perhaps with a
slight gradient in brightness. Demosaicing in these parts of
the images is straightforward, and even simple interpolation
methods give satisfactory results. However, demosaicing is very
challenging at edges and corners, and characteristic artifacts
such as “zippering” and color tinting become a problem when
interpolating nearby values. A good demosaicing algorithm
makes use of the distribution of edges and corners in natural
images to avoid these artifacts, for example by not interpolating
across an edge.

We propose to use machine learning for demosaicing. By
training a machine learning method, we can learn to recognize
parts of the input signal, such as edges and corners, and produce
the demosaiced output accordingly to avoid artifacts. There
are three questions at this point: 1. How would we obtain
realistic training data without having to use a demosaicing
method? 2. What type of machine learning model is suitable
for demosaicing? 3. How is the quality of the method assessed
during training and testing?

To obtain the training data necessary, we propose a si-
multaneous downsampling and demosaicing method. Our
method produces a low-resolution image as if taken with a
sensor recording all color responses. We can then produce the
corresponding mosaiced input image by simply removing some
of the measurements. For machine learning, we draw on the
recently proposed Regression Tree Field model [2, 3], which is
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Fig. 1: A simplified camera pipeline. Many academic demosaicing algorithms work on fully developed sRGB images, masked
by a CFA pattern. Instead, a practical method must use raw linear-space images as its input (orange block), since the 3x3 color
transform to follow (green block) requires all missing measurements to have been filled in. Nonetheless, one should aim at
optimizing the quality of the output in sRGB space, where images are fully developed and ready to be viewed by a human.

a non-parametric random field model with efficient and exact
inference. The model is specific to each CFA pattern, i.e., a
single model is trained per given CFA pattern; and we can
support all known CFA patterns. It is therefore future-proof if
new types of CFA were developed. To assess image quality,
we adopt standard image quality measures for reference-image
quality assessment, such as PSNR [4] and structural similarity
(SSIM) [5]. Our contributions are the following:

1. An efficient non-parametric random field model for CFA
color demosaicing;

2. a novel method for generating ground truth data for
demosaicing research;

3. a new data set of natural images for demosaicing research
recorded in linear light space with realistic noise. 1

We first give an overview of the digital camera pipeline
and how it relates to the demosaicing problem. In Section III,
we discuss the most popular demosaicing methods. We give
details on our novel procedure to produce ground truth images
in Section IV. We describe our machine learning model in
Section V and wrap up with experiments in Section VI.

II. SYSTEM OVERVIEW

A typical digital camera pipeline [6] is depicted in Fig. 1. To
understand the place of demosaicing in the pipeline, we discuss
the processing that happens before demosaicing (the orange
box). The black-level adjustment and color scaling transfor-
mation shifts and multiplies each color channel of the RAW
recording separately by channel-specific constants. The color
scaling transformation compensates for different efficiencies
of the different color filter array channels, and the black-level
adjustment removes a constant signal arising from the read-out
mechanism used. Importantly, these transformations are carried
out independently for each recorded response. We call the
space of images after this adjustment the linear color-scaled
black-level adjusted light space or in short, the linear space.
The space is called linear because each sensel value is a linear
function of exposure time and photon rate. A mosaiced image
in linear space is the input to a demosaicing algorithm.

1Available at http://research.microsoft.com/en-us/um/cambridge/projects/
msrdemosaic/

A demosaicing algorithm now takes a mosaiced image in
linear space and produces a demosaiced image in linear space.
The resulting image is then transformed non-linearly to produce
an image in a standard color space such as sRGB [7] that can
be displayed or compressed.

Unfortunately, ignoring the reality of digital camera systems,
many researchers in the academic community design their
demosaicing algorithms with a mosaiced sRGB image in mind.
It is an artificial problem to demosaic a mosaiced sRGB image:
this problem does not exist in any real camera system because
in order to obtain sRGB colors one needs to transform the
demosaiced linear-space measurement. As a result, each color
channel in sRGB depends on all color channels of the linear
space. We discuss these academic methods in Section III.

We believe the misplaced focus of the academic community
on this artificial setting is due to two reasons. First, it is difficult
to obtain realistic data sets for demosaiced images in linear
space. We propose a procedure to provide such a data set for
demosaicing research. Second, although demosaicing should
not be done in sRGB, it might be a good idea to assess image
quality in one of the final stages of the camera pipeline, e.g.
sRGB because it is a color space exhibiting greater perceptual
uniformity. This makes designing a demosaicing method for
the linear space more challenging because it requires the color
transformation (green box); our method works in linear space
but optimizes quality in sRGB space. Specifically, we optimize
with respect to the PSNR measure in sRGB space. However,
using the machinery that we introduce, this optimization can be
done using arbitrary performance measures, and at any stage of
the camera pipline, so long as the transformation is continuous
and twice differentiable.

III. RELATED WORK

A. Related Demosaicing Algorithms

Prior work often assumes the demosaicing problem is to
be solved for the Bayer RGGB pattern [1], even though there
are many cameras which follow other CFA patterns [8, 9].
Therefore, demosaicing methods that are not specific to any
particular pattern or are easy to generalize to different patterns
are preferable. It is worth mentioning that many of these

http://research.microsoft.com/en-us/um/cambridge/projects/msrdemosaic/
http://research.microsoft.com/en-us/um/cambridge/projects/msrdemosaic/
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Fig. 2: (a) The Bayer pattern. (b) A window of size 4× 4.

alternative CFAs are designed based on the performance of
demosaicing of sRGB images, for example [9]; By offering
the potential to learn demosaicing methods for any type of
CFA, our work may enable future unconventional CFA patterns.
In the remainder of the paper, we always refer to the Bayer
RGGB pattern and use the term CFA for all possible color
filter arrays, not necessarily in the RGGB layout.

In almost all CFA patterns, the easiest way to fill in the
missing values is via bilinear interpolation on the neighboring
values for a given pixel, for each channel separately. There are
two problems with this approach. First, it ignores the correlation
of values between different channels and therefore does not
use all information in the signal. Second, along high frequency
signal changes such as edges and corners, the interpolated
averages exhibit color artifacts or zippering due to the spatial
offset of the individual color channels.

In order to create smooth images, this inter-channel correla-
tion must be taken into account. One approach to make better
use of the correlation structure of the signal is based on the
observation that typical CFAs have one of the colors sampled
more often than the other colors. For example, the sampling
rate for the green channel in the Bayer pattern (Fig. 2a) is
twice that of the red and blue channels. This motivates doing
interpolation on the green channel first, and using the results for
finding better interpolations for the other channels [10]. There
are many other ways to model the correlation between channels;
for example smooth-hue assumption in Cok’s work [11], which
interpolates the ratio of samples from different colors, i.e. G/R
and G/B. Hamilton and Adam [12], as well as Laroche and
Prescott [13], are using the assumption that the differences
between channels, that is G−R and G−B, are smooth. In
the work by Lukac et al. [14] and Kimmel [15] it is assumed
that the intensity-ratio image between different channels is
smooth. Too much smoothing will result in edge artifacts,
and more recent methods attempt to create a balance between
smoothness from intra-channel correlation and inter-channel
averaging, while being sensitive to edge orientations.

To address the artifacts at edges and corners, a common
idea is to estimate the direction of an edge and interpolate only
along the edge orientation, rather than across it. There are many
variations of edge-based methods, with the differences being
in the edge direction estimation. For example, Hibbard [16]
uses the first order derivative as estimated in a 3×3 window
of the green channel along horizontal and vertical directions.
The direction with the smallest derivative is the estimated
edge direction, along which interpolation is performed. Both
Hamilton and Adams [12], and Laroche and Prescott [13], use
the second derivative to estimate the interpolation direction.
Hirakawa and Parks [17] choose the direction based on a local

measure of similarity between pixels along two directions in the
CIELAB color space. More sophisticated directional averaging
schemes are suggested by Menon et al. [18] and, Zhang and
Wu [19].

A number of demosaicing methods employ a sequential
estimation or iterative refinement of the demosaiced image. To
construct an initial solution some methods start from the most
frequently sampled channel [12, 13, 20]. This initial solution
is then iteratively refined. For example Gunturk et al. [10]
solve the demosaicing problem as an alternating correction
of channels, given the current estimate of the other channels,
in the form a projection onto a suitable chosen set. In more
recent work, Lu et al. [21] extend the alternating projection
method [10] by solving a constrained quadratic optimization
at increased computational cost.

Another successful class of methods is based on frequency
domain filtering of different image components. Alleysson et
al. [22] have shown that any Bayer CFA can be represented as
the combination of a luminance component at baseband and
two modulated components. Using this interpretation of Bayer
samples, as well as the repetition of information in the chroma
component of such a decomposition, Dubois [23] provided a
better demosaicing algorithm. Later Dubois [24] introduced a
least-squares method for filter-bank design of such models. In
Dubois’s later work [25] the model is generalized to arbitrary
sensor patterns.

Recent demosaicing methods have explored the use of
compressive sensing and sparse representation for solving
under-determined systems of linear equations, such as the
ones arising from CFA sample reconstruction under certain
conditions [26, 27, 28, 29].

Other recent methods are based on using self-similarity of
the signal by means of intelligent signal-adaptive smoothing,
identifying dominant edge directions [30, 31, 32, 33].

To the best of our knowledge, there are few learning-
based approaches to demosaicing. A Markov random field
of separable filter banks has been introduced by Sun and
Tappen [34]. One recent learning-based approach is by He et
al. [35], which uses Support Vector Regression (SVR), where
the input mosaiced images are used to create training data.
To create the ground-truth images, an initial demosaicing is
performed, followed by downscaling. This procedure is repeated
several times to obtain images at different scales, which are
then used in SVR training. One problem with this approach is
that artifacts present in the initial demosaicing remain in the
training data. Our approach is also based on using downscaling
to produce ground truth data, but in our procedure such artifacts
are avoided by taking into account the spatial position of
different sensor elements.

B. Noise in Demosaicing

Digital complementary-metal-oxide semiconductor (CMOS)
and charge-coupled-device (CCD) sensor recordings are cor-
rupted with noise arising from a number of sources. The
two most important sources are the shot noise and read
noise [38]. Shot noise arises from the random variation of
photon counts. To high accuracy, the true signal λ plus shot
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Method and reference Abbreviation
Bilinear Interpolation [36] BI

Matlab demosaic(.) function MBI
Directional MMSE [19] D-MMSE

Weighted Edge and Colors Difference [30] WECD
One Step AP [21] OS-AP

Alternating Projections [10] AP
Posterior Directional Filtering [18] PDF

Non-Local Adaptive Thresholding [31] NAT
Non-Local Means [31] NLM

Adaptive Homogeneity-Directed Demosaicing [17] AHD
Adaptive color plan interpolation (Hamilton & Adams) [12] HA

Local Polynomial Approximation [37] LPA
Contour Stencils [33] CS

Regression Tree Field (this work) RTF

TABLE I: Abbreviation of the methods used in comparisons

noise together follow a Poisson distribution, Poisson(λ). For
larger values of λ this is approximately equal to Normal(λ, λ),
and this is often used as practical approximation. Read
noise arises from inefficiencies during reading and converting
the amount of electrical charge into a digital count. This
noise is approximately normally distributed, Normal(0, σ2

r).
The measured signal is then approximately distributed as
X ∼ Normal(λ, λ+ σ2

r), see [38].
Noise affects demosaicing algorithms in a number of ways.

For the class of interpolation based methods, Takamatsu et
al. [39] show that interpolation decreases the noise power,
i.e. the noise variance diminishes in the blocks which are
averaged, while it remains the same in the blocks which are
captured directly. This procedure changes the noise distribution
in a complicated way and general purpose image denoising
methods based on assuming iid Gaussian noise may no longer
work, resulting in artifacts which are hard to remove after
demosaicing [40].

It is therefore surprising that many published demosaicing
methods discussed in the previous section are designed for
demosaicing noise-free images in sRGB space. Our proposed
method performs simultaneous denoising and demosaicing.

A number of demosaicing methods have explicitly addressed
noisy input images. Hirakawa and Parks [41] modeled the
noisy signal as y = x + (a0 + a1n), where n ∼ N (0, 1)
and experiments are conducted on sRGB images. Leung et
al. [42] argue that the noise in color-balanced gamma-corrected
(sRGB) space could be modeled as white Gaussian noise,
with different variances for different channels. In much of the
previous work on denoising with demosaicing, e.g. [40, 43,
44, 45], the task is performed in the synthetic setting of sRGB
images contaminated with stationary white noise of known
noise level. This prior work does not address the realistic
problem of demosaicing a noisy image: demosaicing does not
happen in sRGB and the noise model in linear space is not
stationary Gaussian.

A more satisfactory treatment of demosaicing noisy images
is given in work by Kalevo and Rantanen [46], where the effect
of denoising before and after demosaicing is analyzed and it
is experimentally confirmed that denoising is preferably done
before demosaicing. There is a line of work that shows how
to systematically perform denoising before demosaicing [47,
44, 48]. In the work by Menon and Calvagno [45], as well
as Zhang et al. [49], the authors argue and show that joint
demosaicing and denoising will yield better results. The total

least square (TLS) denoising technique introduced by Hirakawa
and Parks [50] is extended by the same authors [41] by applying
CFA pattern constraints.

Some of the proposed methods for denoising and demosaic-
ing are designed for the Bayer pattern. For example Zhang
et al. [40] first estimate the color difference images with a
minimum squared error method. During this procedure, both
spectral and spatial content are used to suppress noise. Using
the difference channels the method interpolates the full green
channel, followed by wavelet-based denoising to eliminate
channel-dependent noise. Finally, the blue and red channels
are recovered. Similarly, Paliy et al. [37] suggest a spatially
adaptive nonlinear filter by using local polynomial approxi-
mations, to eliminate the demosaicing noise generated in the
demosaicing process. The model by Menon and Calvagno [45]
utilizes space-varying filters, the parameters of which are
optimized with a quadratic regularization term. Denoising is
done by thresholding the coefficients of a wavelet transformed
image. Taking inspiration from similar denoising algorithms,
Zhang et al. [49] use principal component analysis to remove
or reduce noise. More specialized algorithms, such as the
one introduced by Danielyan et al. [44], extend denoising
methods to the demosaicing setting; in this case the block
matching 3D denoising method, by directly modelling cross-
channel correlations. In the model by Chatterjee [48] denoising
precedes demosaicing. Their model first identifies similar
patches on the noisy observations, and uses the same patches to
construct the denoised images from the noisy inputs, followed
by demosaicing. In the method by Condat [51], the image is
first separated into different frequency channels and denoising
is performed on luminance. This approach is extended in the
author’s more recent work [43] by minimizing a total variation
objective with additional consistency constraints to preserve
smoothness of chrominance and sharpness of edges. In the
work by Jeon and Duboi [52], the luma-chroma demosaicing
method [42] is adapted to the demosaicing of noisy white-
balanced gamma-corrected CFA images. The filters in their
model are trained on a set of images with added artificial
Gaussian noise. In many of these models, the underlying ideas
are not limited to the Bayer pattern, but generalizing to other
CFA patterns is not trivial.

IV. GENERATING GROUND TRUTH FROM RAW IMAGES

Demosaicing algorithms must work on the linear response
space before the 3x3 transform, as shown in Figure 1. In order
to assess the quality of demosaicing algorithms, or to use
machine learning to learn a demosaicing algorithm, we need to
provide pairs of mosaiced and “perfectly demosaiced” images
in linear response space. While it is clear that we can obtain
the mosaiced image by processing suitable RAW images from
digital cameras, it is not obvious how we could obtain a fully
observed output image, that is, an image that has all colors
measured at all sensels.

It is important not to use sRGB images for demosaicing
research. There are two reasons why we should instead work
in the linear representation. For one, demosaicing algorithms
work in the linear representation, which is the key reason. Even
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Fig. 3: The averaging blocks with W = 2.

obtaining a single sRGB channel per pixel already requires
demosaicing. It is somewhat surprising to see that much of the
academic demosaicing research has adopted mosaiced sRGB
input images. A second reason why the linear representation
should be used is that any sRGB image is the result of a
demosaicing algorithm. Therefore, using sRGB images for
research may treat demosaicing artifacts of existing algorithms
as ground truth.

We generate ground truth data by downsampling the linear
response image. The basic idea is to construct a larger “virtual
sensel” composed of a large number of physical sensels. This
virtual sensel has all color responses, each of which is a suitably
chosen weighted combination of the physical sensel responses.
By selecting the weights accordingly, we reduce or remove
spatial bias arising from the physically different positions of
different color filters on the sensel array.

Downsampling may change the structure of the signal in
three ways. First, because natural images depict physical objects
of the world, downsampling may change the signal statistics
such as frequencies of different edges in different orientations.
We argue that this effect is negligible because of the known
scale-invariance of natural images [53]. Second, most digital
cameras have optical low pass filters to avoid aliasing artifacts.
In addition, most images have out-of-focus blur in some parts
of the image. The downsampling method we describe below
produces aliasing as would be obtained without a low pass
filter. While our method can be adapted to not produce these
artifacts, we argue that aliased input signals are intrinsic to the
demosaicing problem and should be handled by a demosaicing
method. In fact, recent cameras such as models by Pentax, Fuji,
and Nikon have removed the optical low pass filter to increase
fidelity.2 Third, downsampling forms linear combinations of
sensel measurements, thereby reducing the image noise. We
analyze this effect in detail and use a recent noise model by Foi
et al. [38] to add realistic noise to our downsampled images.
We now discuss our proposed procedure.

A. Naive Block Downsampling

Consider the Bayer pattern shown in Figure 2b. One
straightforward idea to simultaneously downscale and demosaic
the image is to define a block of Bayer patterns as one
new virtual sensel. In this sensel, all color measurements are
available. For example, we can select non-overlapping blocks
of even size 2W × 2W , and average the values of each color
channel inside the block. This is shown in Figure 3 for W = 2,

2For example, the Nikon D7100 introduced in February 2013 and the Fuji
X20 introduced in April 2013 use no optical low pass filter, and the Pentax
K-3 introduced in October 2013 allows disabling the low pass filter.

resulting in blocks of 4× 4 sensels for averaging; we average
the values for each channel, i.e., green, blue and red, and put
together these values to create a new picture with height and
width one fourth its original size. One sample result of doing
this is depicted in the left-most column of Figure 4.

A careful look at this downscaling strategy makes it clear
that it suffers from a systematic spatial shift between colors.
In the case of the Bayer pattern, this happens for the red and
the blue sensel because the spatial averages of their locations
within a block differ. This shift is visible in the images shown
in Figure 4. Note that this systematic shift appears only in
even-sized blocks for the Bayer pattern. In the next section,
we devise two ways to compensate for this shift.

B. Maximum Entropy Downsampling

Consider again a windows of size 2W × 2W , for example
W = 2 as shown in Figure 2b. To compensate for the effect
of the shift inside each color channel, we would like to select
non-negative weights for each sensel contribution, so that we
align the center of mass of each color channel at the center of
the block. For the case W = 2, the center of mass would be
(2.5, 2.5), as shown in Figure 2b.

There are many possible weightings possible that satisfy
this constraint. We therefore make two additional assumptions.
First, the weights should correspond to a distribution and sum
to one. Second, among all such possible distributions, we would
like to pick the least concentrated distribution, as measured by
the entropy. This is the principle of maximum entropy, and the
resulting distribution is uniquely determined.

For each color channel c ∈ {r, g, b}, we solve one problem
of the following form:

max
pc

−
∑
x,y

pc(x, y) log pc(x, y) (1)

sb.t.
∑
x,y

pc(x, y) = 1,∑
x,y

x pc(x, y) =W + 0.5, ∀y, (2)∑
x,y

y pc(x, y) =W + 0.5, ∀x, (3)

pc(x, y) ≥ 0, ∀x, y,
pc(x, y) = 0, ∀(x, y) /∈ Sc. (4)

In general, the center point for a block of size 2W × 2W is
at (W + 0.5,W + 0.5), and the pair of constraints (2) and (3)
ensure that the spatial average is at the center of the block.
For a suitably large block size, a solution to the problem is
guaranteed to exist. Note that by constraint (4) the weights
are zero for positions where the different color filters are used,
that is when (x, y) /∈ Sc, where Sc denotes the set of all sensel
positions of a color filter type c.

We solve (1) for each channel separately. An exemplary
solution for the block in Figure 2b gives the following weights,
for pr, pg , and pb, respectively:

1
16

 1 0 3 0
0 0 0 0
3 0 9 0
0 0 0 0

 , 1
8

 0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 , 1
16

 0 0 0 0
0 9 0 3
0 0 0 0
0 3 0 1

.
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Fig. 4: Comparison between different downsampling methods: uniform averaging (left) results in a red/blue color bias. This
effect is stronger in the edges, where there is a sharp color change. In the left figure, one can see the red shade below and to
the right of edges, and the blue shade above and to the left of edges. This color bias is caused by the bias between the colors
of the CFA; the phenomenon is substantially reduced in the center and right figures.

Fig. 5: Averaging with odd windows, with W = 1 (left) and
W = 2 (right), where the window size is (2W+1)×(2W+1).

The result of using these weights for downscaling is shown in
Figure 4. Comparing MaxEnt downscaling with the uniform
downscaling scheme, we see that MaxEnt reduces the bias
between colors inside the CFA. In general, the artifacts are
reduced as the size of the averaging blocks is increased.

C. Odd Block Downsampling

Another way to downscale the linear-mosaiced images is to
consider averaging blocks with odd sizes. Examples of such
blocks are shown in Figure 5 for the cases W = 1 and W = 2,
resulting in block sizes of (2W + 1)× (2W + 1). In the left
rectangle in Figure 5, we consider averaging for each 3 × 3
block. In other words, each 3× 3 block will be replaced with
one single full RGB triple. Note that for odd windows, contrary
to even-blocks, the center of mass for each channel lies at the
center of each block; hence odd block averaging is a special
case of the maximum entropy scheme, resulting in perfectly
uniform weights. Averaging in such blocks does not create
color shift. Also note that the pattern of colors change for each
neighboring 3× 3 block (and gets repeated every 6× 6 block).
Although the patterns change and may create some variation
between neighboring blocks, this effect becomes negligible
when the block size is large enough.

Some images obtained using this procedure are shown in the
right column of Figure 4. The results are visually similar to the

MaxEnt results, and the remaining artifacts decrease rapidly
with increased block size. In particular, the visible blue/red
patterns in high frequency areas are a result of small block sizes.
Both the MaxEnt method and the odd block downsampling
improve on the naive downsampling approach.

D. Image Noise
Downsampling images through weighted combinations of

measurements reduces image noise. While desirable for gener-
ating low-noise ground truth images, we eventually will have
to demosaic noisy images and hence need to produce an input
mosaiced image with realistic noise characteristics in our data
set. A simple argument for analyzing the change in the noise
distribution is given by Takamatsu et al. [39], assuming the
noise is Gaussian. Then, the variance of the average gets n-
times smaller when uniformly averaging n samples.

The same argument can be generalized to the non-Gaussian
case and to weighted averages: for a set of sensel mea-
surements yi = xi + εi with underlying signal xi and
spatially uncorrelated zero-mean noise εi of variance σ2

i ,
we can analyze the effect of taking weighted averages by a
simple argument due to Bienaymé’s formula. In particular, the
weighted average z =

∑
i wiyi has variance V[z] =

∑
i w

2
i σ

2
i ,

so that with uniform weights wi = 1/n this would yield
V[z] = (

∑
i σ

2
i )/n

2. For the special case of uniform noise
σi = σ this produces V[z] = σ2/n. Hence, for odd block
averaging with large block sizes the resulting downsampled
images are almost noise-free.

Since our goal is to create ground-truth images for training
and evaluating demosaicing methods on the original linear
mosaiced images, we devise a procedure for adding back
realistic noise into the images. The noise models of RAW
image samples are generally known to be accurately modeled
as a combination of Poisson and Gaussian distribution. We
use an established model for estimating the noise distribution
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Fig. 6: Samples of downsampled images using MaxEnt strategy with window of size W = 8. The images are processed in
linear space, but shown in sRGB. For large block sizes the downscaling method produces no visible color artifacts.

directly from a RAW image [38].3 Once the noise model
has been fitted to an input image, we then simulate additive
noise from the estimated noise distribution and add it to the
downsampled images. We show example images illustrating
the process in Figure 7.

E. Camera Pipeline Simulation

To produce a data set for demosaicing research, we need to
be able to process raw images in a realistic camera pipeline.
To this end, we use dcraw,4 a popular software package for
raw image processing in academia and industry. Using dcraw
and its camera pipeline, we design our own pipeline, enabling
us to transfer the images up to any arbitrary processing stage.

Our procedure for creating the ground-truth images is summa-
rized in Figure 8. The procedure mirrors the canonical camera
pipeline, with two differences: (1) instead of demosaicing, we
perform downscaling; and (2) we can add simulated noise
to the demosaiced images. Although not strictly required for
producing the data set, we would like to transfer the linear-
space images to sRGB in order to visualize the outputs and we
include a model of the gamma transformation for this purpose.

Once we have produced these ground truth images in linear
space, we can create mosaiced input images by simply leaving
out the corresponding measurements from the ground truth
image. This enables us to produce input images for different
color filter array patterns, despite having created the ground
truth images from a Bayer CFA.

In the experiments we are interested in solving two tasks:
1) Demosaicing in linear-space: the ground-truth image

and the corresponding mosaiced input are obtained by
running our pipeline in Fig. 8 without noise addition.

2) Simultaneous demosaicing and denoising in linear-space:
the ground-truth images are the noise-free linear-space
image as in the previous task, but the input images are
noisy in linear-space, and obtained from our pipeline
with noise addition as explained in Section IV-D.

The second task corresponds to the realistic demosaicing task
in a digital camera. We now introduce our model for these
tasks, followed by experimental evaluation.

3We used the version 2.22 from http://www.cs.tut.fi/∼foi/sensornoise.html
4Available at http://www.cybercom.net/∼dcoffin/dcraw/

V. REGRESSION TREE FIELDS FOR DEMOSAICING

Regression Tree Fields (RTF) are a recently proposed non-
parametric random field model [3, 2] shown to be effective in
low-level image processing applications. The model combines
non-parametric regression tree models with Gaussian condi-
tional random fields (CRF), for simultaneous prediction of a
large number of dependent variables. Each ”tree” is a binary
decision tree that is trained in a greedy fashion, jointly with the
parameters of the Gaussian random field, which are assigned
to the leaves of the tree.

To make this more concrete, let us denote the observation
variables with x ∈ X , and let us write the predicted output
variables as y ∈ Y . These sets of variables are related by
means of an energy function that defines a jointly Gaussian
density over the output variables,

p(y|x;Θ) ∝ exp{−E(y|x;Θ)}. (5)

The energy function is specified by means of a factor graph [54]
in which factors define interactions between pairs of output
variables yi, yj . Typically the factors are between variables
that are spatially close in the image plane. We use a regular
homogeneous structure in that we define a set of factor types
that are instantiated around each output variable [55, 56]. We
denote the set of factors of type t by Ft. For each type t there
is a regression tree defined, parameterized with Θt. The tree
of factor type t defines a set of leaves referred to by a set of
indices It, such that each leaf corresponds to one leaf index
i(t,xF ) ∈ It. Each factor F acts on a set of output variables
which we denote by yF , and a set of input variables of possibly
different size xF . Any leaf with index i(t,xF ) ∈ It contains
a set of parameters {Qi(t,xF ),Li(t,xF )}. The set of parameters
for the tree of type t consists of all parameters stored at the
leaves of that tree, i.e., Θt = {Qi(t,xF ),Li(t,xF )}i(t,xF )∈It .

We can now write the energy function additively over
energies relating to each factor individually. Each such local
energy function is a quadratic function in yF ,

Et(yF |xF ;Θt) =
1

2
y>F Qt(xF ;Θt)yF−y>F Lt(xF ;Θt)bt(xF ),

(6)
where we define bt(xF ) ∈ RBt as a set of linear basis vectors
specific to each factor type t. From the decomposition into

http://www.cs.tut.fi/~foi/sensornoise.html
http://www.cybercom.net/~dcoffin/dcraw/
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Fig. 7: Adding simulated noise to the downsampled linear images. We estimate the noise model on linear mosaiced images
using the model and code of Foi et al. [38]. We then add simulated noise to the linear demosaiced images after downsampling.
For each linear-space image we also show its sRGB-space visualization. Note the strong noise in the low-light areas of the
right-most column (best viewed zoomed-in).

Raw image

Noise estimation

Image correction (3x3
color transform and
gamma correction)

Camera
output

Down-scaling Noise addition

Color-scaled black-adjusted
linear light space (linear-space)

Linear color
scaling

Raw space Fully developed
(sRGB space)

Fig. 8: Our proposed procedure for creating the ground truth demosaiced images.

local energy functions, the overall energy emerges as the sum
over all factor energies,

E(y|x;Θ) =
∑
t

∑
F∈Ft

Et(yF |xF ;Θt). (7)

A regression tree field is then of the form (6) and (7),
where each energy function Et is determined by evaluating
a regression tree on the observed image x. We achieve this
by storing one pair of quadratic and linear forms, Qi and Li,
at leaves of the regression tree. Evaluating the regression tree
on the image observation xF yields a leaf index i(t,xF ) that
identifies the respective parameters. Thus,

Qt(xF ;Θ) = Qi(t,xF ), and Lt(xF ;Θ) = Li(t,xF ).

Given this definition, the minimizer of the overall energy (7)
is uniquely determined by

µ = [Q(x;Θ)]
−1

L(x;Θ)b(x), (8)

where Q(x;Θ) is the quadratic form defined by summation
of Qt(xF ;Θ) over all types t and factors F . Notably, µ is
the mean of the Gaussian distribution, whereas [Q(x;Θ)]−1

describes its covariance. The prediction of a regression tree
field is thus determined as the mean of the Gaussian random
field instantiated by its trees.

The role of the trees is to provide additional flexibility
to the model, by instantiating different groups of parameters
depending on the image context around the factors.

Regression tree fields support parameter estimation using
either maximum likelihood [2], or empirical risk minimization
(ERM) with arbitrary loss functions. The latter was recently
shown to be preferable for image restoration [3].

The basic RTF model we use, as well as its risk minimization
training algorithm, follow the presentation of Jancsary et al. [3].
However, to successfully apply the model to demosaicing, one
needs to take into account the specific properties of this problem.
In particular, we will use ERM with loss functions specifically
designed for demosaicing, which reflect our model of the
camera pipeline (cf. Figure 8). That is, we directly optimize the
model parameters to provide optimal demosaicing performance.
Moreover, compared to the generic image restoration tasks
considered by [3], we use different types of features due to the
different nature of the problem (e.g., the missing input values).
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A. RTF Model for Demosaicing

To specialize the RTF model to the demosaicing problem
we incorporate three demosaicing-specific features.

First, the model should have enough flexibility to represent
different types of color filter arrays. In other words, each factor
needs to know about the color at its spatial location. Since
the regression trees determine the effective parameters of each
factor, we can achieve this by using a group of color-sensitive
branching features: Any (perfect) binary tree with k− 1 nodes
has k leaves. For a CFA of size k× k, ignoring all symmetries
in the CFA, we hence include 2× (k − 1) branching features,
k − 1 for each x– and y–dimension.

Second, the factors must be sensitive to the edge directions
in the mosaiced image. To achieve this, we allow further
regression tree splits on responses of the RFS filterbank.5

This filterbank includes 38 filters that correspond to derivatives
of different directions and scales, computed on the mosaiced
input image, as well as on a version of the image with missing
values obtained through bilinear interpolation.

Third, we specify the basis functions L used in the linear
term of the energy function. For the basis functions, we include
the neighboring pixels in a neighborhood of size 5× 5 around
each pixel. This basis already allows learning of arbitrary linear
filters in the neighboring window. In addition, we also include
the RFS filter responses as basis functions.

As in the work by Schmidt et al. [57], we use a cascade
of RTF models, where models are organized sequentially and
each model receives as input the mosaiced input image as well
as the demosaiced output of the previous model. Intuitively,
the demosaiced output of a previous model will enable more
reliable edge direction estimation in following cascade stages,
thus improving demosaicing results. We treat the number of
cascade layers as a hyper-parameter of the model that is chosen
based on the best performance achieved on a validation set.
Empirically, we observed monotonic performance improve-
ments up to a certain number of cascade stages, after which
the performance started declining again due to overfitting. For
simultaneous demosaicing and denoising task we use the same
model setup as for demosaicing, that is, we do not need to
separate denoising from demosaicing [46, 47, 49, 48]. The
RTF model learns the characteristics of imaging noise from
the training data and does not require separate noise variance
estimation prior to its use. However, if the noise characteristics
were to change drastically, say if a much smaller sensor were
to be used, this might require recreating a training set with
matching noise characteristics.

B. Loss Functions for Demosaicing

The RTF model for demosaicing is trained to produce optimal
results as measured with a specific loss function such as PSNR
or mean absolute error. It is not apriori clear which loss
functions best correspond to high visual image quality. By
designing sensible loss functions it may be possible to improve
the qualitative results produced by the model.

Although demosaicing happens in linear-space, images are
displayed in a perceptually meaningful color space such as

5Available at http://www.robots.ox.ac.uk/∼vgg/research/texclass/filters.html

sRGB. We therefore propose to define the loss function in
sRGB while performing demosaicing in linear-space. Because
the linear-to-sRGB transformation can be specified as a non-
linear differentiable function, we can still employ the standard
RTF training procedure [3]. The differentiable transformation
is given by f : L→ I, where L is the “linear response space
image” which is mapped to I, i.e. the sRGB space. Real camera
response functions differ among camera vendors [58].

As an example, consider the squared error (SE) loss function
for linear space, `(L)

SE : L× L→ R. It is defined as

`
(L)
SE (L, L̃) =

∑
i∈{R,G,B}

∑
x,y

(Li
x,y − L̃i

x,y)
2.

We now define the SE in image space (sRGB), `(I)SE : I×I→ R.
We compose the response function with the SE loss,

`
(I)
SE (L, L̃) = (`SE ◦ f)(L, L̃) (9)

=
∑

i∈{R,G,B}

∑
x,y

(f(Li
x,y)− f(L̃i

x,y))
2. (10)

For the response function we define a differentiable approxi-
mation using the imaging pipeline of dcraw, as

f(Lx,y) = γ(T [LR
x,y, L

G
x,y, L

B
x,y]
>),

where T is the average 3× 3 color transformation matrix over
all training images and γ : [0, 1] → [0,∞) is the average
gamma curve used by dcraw for our training images.

VI. EXPERIMENTS

To evaluate the performance of our models, we compute two
performance measures commonly used in demosaicing research:
peak signal-to-noise ratio (PSNR) and structural similarity
(SSIM) [5]. We report PSNR as the average per-image PSNR
values. For computing SSIM, we use the code provided by
the original authors with default parameters.6 Since SSIM is
designed for grayscale images, we measure SSIM per channel
and then take the average over all color channels.

For each experiment, we choose the RTF model achieving
the best PSNR (or SSIM) on the validation data, and report
its performance on the test images. The best RTF model is
chosen among several models of different tree depth, cascade
depth, and connectivity; each trained according to Section V.

We create our reference demosaicing data set using the pro-
cedure explained in Section IV, using MaxEnt downsampling
for the creation of ground-truth images. In total, we use 500
natural images captured in both indoor and outdoor situations
using a Panasonic Lumix DMC-LX3 CCD camera with Bayer
CFA. We randomly partition the image set into 200 images for
training, 100 for validation, and 200 for testing. The validation
set is used to select hyper-parameters and the test set is used
only once for reporting the results. In our experiments, we use
a 16-bit range for the downsampled images. The dataset of our
images will be released with the publication of this paper.

We compare our performance against a wide variety of
methods from the literature. For some of these methods,
we found considerable artifacts at the image margins, for

6Available at https://ece.uwaterloo.ca/∼z70wang/research/iwssim/

http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html
https://ece.uwaterloo.ca/~z70wang/research/iwssim/
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PSNR/Linear PSNR/sRGB SSIM/Linear SSIM/sRGB
BI 30.86 ± 0.325 24.94 ± 0.238 0.882 0.727

MBI 35.22 ± 0.313 27.92 ± 0.225 0.960 0.881
D-MMSE 38.82 ± 0.313 31.71 ± 0.241 0.979 0.932

WECD 38.62 ± 0.321 31.50 ± 0.250 0.977 0.936
OS-AP 38.29 ± 0.324 31.07 ± 0.253 0.976 0.930

AP 38.19 ± 0.314 31.05 ± 0.242 0.976 0.929
PDF 38.09 ± 0.313 30.94 ± 0.241 0.976 0.922
NAT 37.64 ± 0.327 31.62 ± 0.250 0.973 0.929
NLM 38.42 ± 0.335 32.09 ± 0.255 0.978 0.939
HA 36.69 ± 0.327 29.97 ± 0.243 0.968 0.907

AHD 37.23 ± 0.326 31.26 ± 0.258 0.971 0.929
CS 39.41 ± 0.318 32.89 ± 0.238 0.980 0.939

LPA 39.24 ± 0.316 32.40 ± 0.249 0.981 0.944
PSNR-RTF 39.39 ± 0.323 32.63 ± 0.257 0.980 0.942

TABLE II: Results of demosaicing on linear-space noise-free
images (strongest method shown bold). “Linear” columns:
values calculated and optimized on linear-space images. “sRGB”
columns: values calculated and optimized in sRGB space. We
report PSNR along with the standard error. PSNR-RTF has 7
cascade stages, 3x3 connectivity and a tree depth of 13.

example in the output of BI [36], D-MMSE [19], AP [10],
and OS-AP [21]. Therefore, so as not put these methods at a
disadvantage, we crop a margin of 7 pixels at the image edges
before evaluating the performance. Our model does not exhibit
such artifacts specific to image boundaries.

A. Demosaicing Noise-free Images in Linear-space

In this first experiment, we evaluate the demosaicing perfor-
mance of different methods in the noise-free case. Although the
assumption of noise-free input is unrealistic, it is an interesting
“pure” form of the demosaicing problem. We include it because
many of the competing methods do not explicitly handle noisy
images and it may therefore be perceived unfair to evaluate
on the noisy input images.

The results are depicted in Table II. Since the images are
in linear response space, we report each measure both in the
original linear responses as well as in transformed sRGB. Since
this conversion is not the same for each image, it can change
the relative ordering of the methods. Comparing the results,
we see that our proposed RTF model is a very competitive
model for demosaicing.

B. Joint Denoising and Demosaicing of Noisy Images

In this experiment, we demonstrate the effectiveness of
our model for the task of simultaneous denoising and de-
mosaicing. The inputs are linear-space images with synthetic
Poissonian-Gaussian noise added. Following our explanations
in Section IV-D, we estimate the noise level on the original
raw images, using an established method for noise estimation
on RAW images [38]. As such, we do not report any noise
levels here, since the noise distribution varies from one image
to another. For a detailed explanation regarding the generation
of this dataset, we refer the reader to the Section IV-D.

As in the previous experiment, we report performance both
in linear response space, as well as in sRGB space. To compare
with previous work, we need a method that performs denoising
on the mosaiced RAW images (rather than full sRGB images).
Therefore, many of the academic denoising methods cannot be
used because they are designed for full sRGB denoising. As

PSNR/Linear PSNR/sRGB SSIM/Linear SSIM/sRGB
BI 30.40 ± 0.296 24.09 ± 0.219 0.859 0.649

MBI 33.90 ± 0.258 26.62 ± 0.218 0.926 0.792
D-MMSE 36.65 ± 0.251 29.94 ± 0.243 0.949 0.864

WECD 36.38 ± 0.255 29.75 ± 0.244 0.947 0.867
OS-AP 36.09 ± 0.253 29.34 ± 0.243 0.944 0.860

AP 36.03 ± 0.250 29.23 ± 0.240 0.943 0.854
PDF 35.99 ± 0.252 29.14 ± 0.242 0.943 0.846
NAT 36.05 ± 0.270 29.78 ± 0.249 0.947 0.854
NLM 36.46 ± 0.269 30.06 ± 0.254 0.949 0.862
HA 35.02 ± 0.273 28.21 ± 0.245 0.936 0.823

AHD 35.59 ± 0.271 29.66 ± 0.248 0.943 0.866
CS 37.17 ± 0.256 30.93 ± 0.246 0.953 0.875

LPA 36.88 ± 0.250 30.37 ± 0.247 0.950 0.872
PSNR-RTF 37.78 ± 0.280 31.48 ± 0.246 0.961 0.897

TABLE III: Results of demosaicing on noisy images (strongest
method is shown bold). “Linear” columns: values calculated
and optimized on linear-space images. “sRGB” columns: values
calculated and optimized in sRGB space. PSNR-RTF has 7
cascade stages, 1x1 connectivity, and a tree depth of 9.

PSNR/Linear PSNR/sRGB SSIM/Linear SSIM/sRGB
BI 30.40 ± 0.296 24.54 ± 0.212 0.860 0.679

MBI 34.16 ± 0.267 27.31 ± 0.212 0.934 0.818
D-MMSE 36.67 ± 0.252 29.96 ± 0.243 0.949 0.865

WECD 36.51 ± 0.261 30.02 ± 0.237 0.949 0.875
OS-AP 36.25 ± 0.262 29.66 ± 0.239 0.949 0.870

AP 36.13 ± 0.258 29.60 ± 0.235 0.947 0.867
PDF 36.16 ± 0.261 29.47 ± 0.238 0.947 0.857
NAT 36.11 ± 0.274 29.98 ± 0.248 0.949 0.862
NLM 36.56 ± 0.275 30.28 ± 0.254 0.951 0.870
HA 35.19 ± 0.280 28.66 ± 0.244 0.940 0.842

AHD 35.77 ± 0.279 29.95 ± 0.243 0.947 0.874
CS 37.27 ± 0.261 31.06 ± 0.235 0.955 0.879

LPA 37.00 ± 0.256 30.59 ± 0.247 0.953 0.878
PSNR-RTF 37.78 ± 0.280 31.48 ± 0.246 0.961 0.897

TABLE IV: Results of demosaicing on noisy images with
additional denoising preprocessing: for methods other than RTF,
the images are first denoised (with the noise level estimated
from RAW images, cf. Section VI-B), and then the method is
applied. “Linear” columns: values calculated and optimized on
linear-space images. “sRGB” columns: values calculated and
optimized in sRGB space. Same RTF model as in Table III.

such, we chose the popular wavelet-based denoising algorithm
implemented in dcraw, variations of which are widely used in
the industry. For existing methods, we report two performance
numbers: one with, and one without input images pre-processed
by denoising. For all existing methods, when using denoising
as preprocessing, we use the dcraw wavelet-based denoiser
with 10 different parameter values and pick the parameter with
the best performance on the validation data. One parameter
value corresponds to “no denoising”. In practice, this parameter
would need to be determined manually or using noise level
estimation, a limitation that is not shared by our approach.

We report the results of this experiment in Table III (without
prior denoising) and Table IV (with prior denoising). The
results reveal the strong performance of our joint demosaicing
and denoising model. In our current C++ implementation, the
model in Tables III–IV takes about 0.15 seconds per stage to
process a 220× 132 image patch (as used in our dataset) on
a 3.2 GHz Intel Core i5 machine. We expect further speed-
up from an optimized implementation, possibly leveraging
GPU hardware. To get a better sense of the output of different
algorithms, we show a few output samples in Figure 9. In
Section VI-E, we visualize real demosaiced images.
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Fig. 9: Sample output images, for a few methods shown in Table IV.

Fig. 10: Fujifilm X-Trans CFA pattern.

C. Demosaicing of Fuji X-Trans CFA Images

We now evaluate our model on another, less conventional
CFA pattern. We use the Fuji X-Trans CFA pattern, which has
recently been introduced.7 The pattern is shown in Figure 10
and consists of a 6 × 6 pattern. To adapt our model to this
CFA, we only need to produce a suitable training data set and
specify the CFA pattern size. We generate training data by
leaving out the corresponding color measurements according
to the X-Trans pattern.

For this experiment, we evaluate on the noise-free linear-
space images. We report the results in Table V. The results show
that our approach generalizes to new patterns while retaining
much of its performance. Because there are no competing
methods for the X-Trans pattern, we provide a simple baseline
similar to bilinear interpolation. We call this baseline “Neighbor
Averaging” (NA) because for each position (x, y) it simply
averages the color channels of neighboring samples within a
rectangle of size 3× 3 centered at (x, y).

Our system improves substantially on the simple baseline,
which indicates that our learning-based approach to demo-
saicing is a promising way to rapidly produce competitive
demosaicing methods for future CFA patterns.

7www.fujifilm.com/products/digital cameras/x/fujifilm x pro1/features/

PSNR/Linear PSNR/sRGB SSIM/Linear SSIM/sRGB
NA 26.81 ± 0.296 21.06± 0.248 0.803 0.631

PSNR-RTF 36.94 ± 0.466 30.56 ± 0.409 0.960 0.908

TABLE V: Results of demosaicing for Fuji X-Trans CFA
pattern and linear-space noisy images. PSNR-RTF has 7 cascade
stages, 3x3 connectivity, and tree depth 4.

D. Camera-independence of the Model

Our model applies to different cameras based on the
assumption that colors in RAW images behave similarly once
black level correction and linear scaling have been performed.
This assumption is likely valid because consumer cameras of
leading vendors have very similar spectral sensitivities [59].

In this experiment, we verify the assumption by testing the
performance of our method on images from a different camera
vendor. The ground truth data is captured using a Panasonic
Lumix DMC-LX3, but we evaluate the performance on a Canon
650D, also known as Canon Rebel T4i. If the performance
remains competitive, we can reasonably assume that other
Canon cameras would also work well. We use our trained
model from Section VI-B and test it on a ground truth data set
generated from 57 images of the Canon camera. We create the
images using the same procedure as before and add synthetic
noise. As in Section VI-B, we first perform dcraw wavelet
denoising, and then perform demosaicing. We report the results
in Table VI.

The results demonstrate that the method performs robustly
despite using images from a different camera. It indicates that
our model has learned to demosaic and denoise by learning
about natural image statistics instead of using camera-specific
properties of the input signal.

 www.fujifilm.com/products/digital_cameras/x/fujifilm_x_pro1/features/
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PSNR/Linear PSNR/sRGB SSIM/Linear SSIM/sRGB
BI 32.31 ± 0.606 24.88 ± 0.356 0.901 0.650

MBI 36.37 ± 0.558 28.08 ± 0.376 0.951 0.813
D-MMSE 39.48 ± 0.559 31.38 ± 0.445 0.968 0.872

OS-AP 38.99 ± 0.556 31.00 ± 0.468 0.964 0.881
AP 38.74 ± 0.552 30.70 ± 0.441 0.963 0.876

PDF 38.82 ± 0.567 30.51 ± 0.466 0.962 0.850
NAT 38.21 ± 0.595 30.61 ± 0.457 0.965 0.861
NLM 38.81 ± 0.601 31.21 ± 0.502 0.966 0.874
HA 37.43 ± 0.614 29.50 ± 0.463 0.958 0.844

AHD 38.42 ± 0.608 31.51 ± 0.486 0.964 0.890
CS 39.81 ± 0.543 32.18 ± 0.468 0.968 0.872

LPA 39.64 ± 0.563 31.85 ± 0.489 0.968 0.886
PSNR-RTF 40.35 ± 0.552 32.87 ± 0.439 0.973 0.904

TABLE VI: Testing our RTF model, trained on Panasonic
images, on Canon images: for methods other than RTF, the
images are first denoised (with the noise level estimated from
RAW images, cf. Section VI-B), and then the method is applied.
“Linear” columns: values calculated and optimized on linear-
space images. “sRGB” columns: calculated and optimized on
sRGB-space images. Same RTF model as in Table III.

E. Visual Quality on Real RAW Images

We demonstrate our method on real RAW images; because
there is no ground truth available for quantitative evaluation,
we show visual results in Figure 11. The RAW image was
captured by a Panasonic Lumix LX3, to a size of 3983× 2249
pixels. Next to the original image, we include zoomed versions
of the output at important areas. The zoomed-in areas contain
high-frequency contents that are hard to demosaic. Yet, our
system produces convincing output, see Figure 11.

VII. CONCLUSION

We demonstrated a machine learning approach to the
demosaicing problem that is versatile in that it can be applied
to arbitrary tiled CFA patterns. The experiments validate the
superior performance when the input signal is corrupted by
noise. While the machine learning approach increases the
reconstruction fidelity, it does so by adapting to the specific
signal; in turn, this may mean that it is less robust than
existing approaches in case the characteristics of the camera
are changed. Synthesizing a suitable training set then requires
an accurate characterization of the camera. In future work, we
will investigate further demosaicing-specific loss functions.

ACKNOWLEDGMENT

The authors would like to thank Bruce Lindbloom for
providing feedback on the project and the manuscript.

REFERENCES

[1] B. E. Bayer, “Color imaging array,” Jul. 20 1976, US
Patent 3,971,065.

[2] J. Jancsary, S. Nowozin, and C. Rother, “Regression
tree fields—An efficient, non-parametric approach to
image labeling problems,” in Computer Vision and Pattern
Recognition (CVPR). IEEE, 2012.

[3] ——, “Loss-specific training of non-parametric image
restoration models: a new state of the art,” in European
Conference on Computer Vision (ECCV). Springer, 2012,
pp. 112–125.

[4] Q. Huynh-Thu and M. Ghanbari, “Scope of validity of
PSNR in image/video quality assessment,” Electronics
letters, vol. 44, no. 13, pp. 800–801, 2008.

[5] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli,
“Image quality assessment: From error visibility to struc-
tural similarity,” Image Processing, IEEE Transactions
on, vol. 13, no. 4, pp. 600–612, 2004.

[6] H.-C. Lee, Introduction to Color Imaging Science. Cam-
bridge University Press, 2009.

[7] M. Stokes, M. Anderson, S. Chandrasekar, and R. Motta,
“A standard default color space for the internet — sRGB,”
http://www.color.org/contrib/sRGB.html, 1996.

[8] Y. Li, P. Hao, Z. Lin, Y. Li, P. Hao, and Z. Lin,
“Color filter arrays: Representation and analysis,” Dept.
of Science, Queen Mary, Univ. London (QMUL), London,
UK, Tech. Report no. RR-08-04, 2008.

[9] J. Wang, C. Zhang, and P. Hao, “New color filter arrays of
high light sensitivity and high demosaicking performance,”
in International Conference on Image Processing (ICIP).
IEEE, 2011, pp. 3153–3156.

[10] B. K. Gunturk, Y. Altunbasak, and R. M. Mersereau,
“Color plane interpolation using alternating projections,”
Image Processing, IEEE Transactions on, vol. 11, no. 9,
pp. 997–1013, 2002.

[11] D. R. Cok, “Signal processing method and apparatus for
producing interpolated chrominance values in a sampled
color image signal,” Feb. 10 1987, US Patent 4,642,678.

[12] J. F. Hamilton Jr and J. E. Adams Jr, “Adaptive color
plan interpolation in single sensor color electronic camera,”
May 13 1997, US Patent 5,629,734.

[13] C. A. Laroche and M. A. Prescott, “Apparatus and
method for adaptively interpolating a full color image
utilizing chrominance gradients,” Dec. 13 1994, US Patent
5,373,322.

[14] R. Lukac, K. N. Plataniotis, and D. Hatzinakos, “Color
image zooming on the Bayer pattern,” Circuits and
Systems for Video Technology, IEEE Transactions on,
vol. 15, no. 11, pp. 1475–1492, 2005.

[15] R. Kimmel, “Demosaicing: image reconstruction from
color CCD samples,” Transactions on Image Processing,
vol. 8, no. 9, pp. 1221–1228, 1999.

[16] R. H. Hibbard, “Apparatus and method for adaptively
interpolating a full color image utilizing luminance
gradients,” Jan. 17 1995, US Patent 5,382,976.

[17] K. Hirakawa and T. W. Parks, “Adaptive homogeneity-
directed demosaicing algorithm,” IEEE Transactions on
Image Processing, vol. 14, no. 3, pp. 360–369, 2005.

[18] D. Menon, S. Andriani, and G. Calvagno, “Demosaicing
with directional filtering and a posteriori decision,” Image
Processing, IEEE Transactions on, vol. 16, no. 1, pp.
132–141, 2007.

[19] L. Zhang and X. Wu, “Color demosaicking via directional
linear minimum mean square-error estimation,” Image
Processing, IEEE Transactions on, vol. 14, no. 12, pp.
2167–2178, 2005.

[20] D. Taubman, “Generalized Wiener reconstruction of
images from colour sensor data using a scale invariant
prior,” in International Conference on Image Processing



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. X, JULY 2013 13

!

Fig. 11: Sample output of our model on a real RAW image, of size 3983× 2249 pixels. Several important areas are zoomed in.

(ICIP), vol. 3. IEEE, 2000, pp. 801–804.
[21] Y. M. Lu, M. Karzand, and M. Vetterli, “Demosaicking

by alternating projections: theory and fast one-step
implementation,” Image Processing, IEEE Transactions
on, vol. 19, no. 8, pp. 2085–2098, 2010.

[22] D. Alleysson, S. Susstrunk, and J. Hérault, “Linear
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