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Spectral Unmixing via Data-guided Sparsity
Feiyun Zhu, Ying Wang, Bin Fan, Shiming Xiang, Gaofeng Meng and Chunhong Pan

Abstract—Hyperspectral unmixing, the process of estimating a
common set of spectral bases and their corresponding composite
percentages at each pixel, is an important task for hyperspectral
analysis, visualization and understanding. From an unsupervised
learning perspective, this problem is very challenging—both the
spectral bases and their composite percentages are unknown,
making the solution space too large. To reduce the solution space,
many approaches have been proposed by exploiting various
priors. In practice, these priors would easily lead to some
unsuitable solution. This is because they are achieved by applying
an identical strength of constraints to all the factors, which does
not hold in practice. To overcome this limitation, we propose
a novel sparsity based method by learning a data-guided map
to describe the individual mixed level of each pixel. Through
this data-guided map, the `p (0 < p < 1) constraint is applied in
an adaptive manner. Such implementation not only meets the
practical situation, but also guides the spectral bases toward the
pixels under highly sparse constraint. What’s more, an elegant
optimization scheme as well as its convergence proof have been
provided in this paper. Extensive experiments on several datasets
also demonstrate that the data-guided map is feasible, and high
quality unmixing results could be obtained by our method.

Index Terms—Data-guided Sparse (DgS), Data-guided Map
(DgMap), Nonnegative Matrix Factorization (NMF), DgS-NMF,
Mixed Pixel, Hyperspectral Unmixing (HU).

I. INTRODUCTION

HYPERSPECTRAL imaging, the process of capturing a
3D image cube at hundreds of contiguous and narrow

spectral channels, has been used in a wide range of fields [1],
[2]. Although this type of images contains substantial infor-
mation, there are two underlying “problems”. One “problem”
is that as a 3D image cube, it is very hard for computers to
display [3], thus hampering human to understand this type
of images. Another “problem” is called “mixed” pixels—
due to the low spatial resolution of hyperspectral sensors,
the spectra of different substances would unavoidably blend
together [1], [4], [5], yielding a great number of mixed pixels
as shown in Fig. 1. To address the above two problems, various
Hyperspectral Unmixing (HU) methods have been proposed.
What is more, HU is essential for various hyperspectral
applications, such as sub-pixel mapping [6], hyperspectral
enhancement [7], high-resolution hyperspectral imaging [8],
detection and identification of ground targets [9].

Formally, the HU method takes in a hyperspectral image
with L channels and assumes that each pixel spectrum y is
a composite of K spectral bases {mk}Kk=1 ∈ RL+ [2], [10],
[11]. Each spectral base is called an endmember, representing
the pure spectrum, such as the spectra of “water”, “grass” etc.
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Figure 1. Two observations behind the figure: the mixed level of each pixel
varies over image grids; the pixels in the transition area are more likely to be
highly mixed. (a) Hyperspectral image and its close-ups. (b) Abundances of
two substances in (a), indicated by the proportions of red and green inks.

Specifically, the pixel spectrum y is generally approximated
by a nonnegative linear combination as

y =

K∑
k=1

mkak, s.t. ak ≥ 0 and
K∑
k=1

ak = 1, (1)

where ak is the composite percentage (i.e. abundance) of the
kth endmember. In the unsupervised setting, both endmembers
{mk}Kk=1 and abundances {ak}Kk=1 are unknown. Such case
makes the solution space really large [12]. Prior knowledge
is required to restrict the solution space, or even to bias the
solution toward good results.

To shrink the solution space, many methods have been
proposed by exploiting various constraints on abundances [9],
[11] and endmembers [13], [14]. Specifically, the sparse con-
straints [9], [12] and the spatial constraints [11], [15] are the
most popular ones. Unfortunately, all these methods exploit an
identical strength of constraints on all the factors, which may
not meet the practical situation. An example is illustrated in
Fig. 1, where the mixed level1 of each pixel varies over image
grids. Such an example indicates that it is better to impose the
sparse constraint of adaptive strengths for the pixels.

In this paper, we propose a Data-guided Sparsity regularized
Nonnegative Matrix Factorization (DgS-NMF) method for the
HU task. The basic motivation is that the mixed level of each
pixel might be different from each other, as shown in Fig. 1.
To give a more accurate model, a data-guided map (DgMap)
is incorporated into the NMF framework so as to adaptively
impose the sparse constraint for each pixel. First, via a two
step strategy, the DgMap is learned from the hyperspectral
image, describing the mixed level of each pixel. Given this
DgMap, the `p (0 < p < 1)-norm based sparsity constraint is
individually imposed. For each pixel, the choice of p is totally

1Note that a pixel with higher mixed levels should own the abundance
vectors of lower sparse levels, and vice versa.
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dependent on the corresponding DgMap value. Such case is
better suited to the practical situation, thus expected to achieve
better HU results. Besides, this adaptive sparsity constraint
would influence the estimation of endmembers, potentially,
guiding the endmembers toward the pixels under highly sparse
constraints. Extensive empirical results verify that our method
is highly promising for the HU task.

The rest of this paper is organized as follows: in Section II,
we briefly review several recent HU methods. Section III
presents how to learn DgMaps from the original hyperspectral
image cube. The DgS-NMF method as well as its properties
are given in Section IV. Then, extensive experiments and
detailed comparisons are provided in Section V. Finally, the
conclusion of this work is drawn in Section VI.

II. PREVIOUS WORK

The HU methods could be typically categorized into two
types: geometric methods [16], [17], [18] and statistical
ones [10], [19], [20], [21]. Usually, the geometric methods
utilize a simplex to describe the distribution of hyperspectral
pixels. The vertices of this simplex are viewed as the endmem-
bers. Perhaps, N-FINDR [22] and Vertex Component Analysis
(VCA) [16] are the most popular geometric methods. In N-
FINDR, the endmembers are identified by inflating a simplex
inside the hyperspectral pixel distribution and treating the ver-
tices of a simplex with the largest volume as endmembers [22].
While VCA [16] projects all pixels onto a direction orthogonal
to the simplex spanned by the chosen endmembers; the new
endmember is identified as the extreme of the projection.
Although these methods are simple and fast, they suffer from
the requirement of pure pixels for each endmember, which is
usually unavailable in practice.

Accordingly, a number of statistical methods have been
proposed for or applied to the HU task, among which the Non-
negative Matrix Factorization (NMF) [23] and its variants are
the most popular ones. As an unsupervised method, the goal
of NMF is to find two nonnegative matrices to approximate
the original matrix with their product [24]. Specifically, the
nonnegative constraint on the two factor matrices only allows
additive combinations, not subtractions, resulting in a parts-
based representation. This parts-based property could ensure
the representation results to be more intuitive and interpretable,
since psychological and physiological evidences have shown
that human brain works in a parts-based way [25], [26].

Although the NMF method is well suited to many ap-
plications, such as face analysis [27], [28] and documents
clustering [29], [30], the objective function of NMF is non-
convex, inherently resulting in large solution space [31]. Many
extensions have been proposed by exploiting various priors to
restrict the solution space. For the HU problem, these priors
are either imposed to the abundance matrix or to the endmem-
ber matrix. For example, the Local Neighborhood Weights
regularized NMF method (W-NMF) [15] assumes that the
hyperspectral pixels are on a manifold structure, which could
be transferred to the abundance space through a Laplace graph
constraint. Actually, this constraint has a smooth influence, and
eventually weaken the parts-based property of NMF.

Inspired by the MVC-NMF [13] method, Wan et al. [14]
proposed the EDC-NMF method. The basic assumption is that
due to the high spectral resolution of sensors, the endmember
spectra should be smooth itself and different as much as
possible from each other. However, in their algorithm, they
take a derivative of endmembers, introducing negative values
to the updating rules. To make up this drawback, the elements
in the endmember matrix are required to project to a given
nonnegative value after each iteration. Consequently, the reg-
ularization parameters could not be chosen freely, limiting the
efficacy of this method.

Other algorithms assume that in hyperspectral images most
pixels are mixed by only a few endmembers, hence exploiting
various kinds of sparse constraints on the abundance [4].
Specifically, the `1/2-NMF [9] is a very popular sparsity regu-
larized NMF method. It is an improvement from Hoyer’s lasso
regularized NMF method [32]. There are two advantages of
the `1/2-NMF over the lasso regularized NMF. One advantage
is that the lasso constraint [33], [34] could not enforce further
sparse when the full additivity constraint is used, limiting the
effectiveness of this method [9]. Another advantage is that Fan
et al. [35] has proven that the `p (0 < p < 1) constraint could
obtain sparser solutions than the `1 norm does.

Our method is also derived from the sparse assumption
on the abundance. Different from the existing methods, the
strength of sparse constraints is learned from the data itself and
applied in an adaptive way. Such improvement not only meets
the practical situation better, but also help the optimization
process to reach a more suitable local minimum.

III. DATA-GUIDED MAP (DGMAP)

Generally, the Data-guided Map (DgMap) is a map learnt
from the hyperspectral image that describes the strength of
priors (constraints) for each factor. In this work, the DgMap
depicts the mixed level of each pixel. It comes from two
observations that: 1) in the local image window, the mixed
level of each pixel might be more or less different from each
other as shown in Fig. 1; 2) in the whole image, the pixels
in the transition area are very likely to be highly mixed (c.f.
Footnote 1). For the second idea, Fig. 1 illustrates an example,
where there are two targets (i.e. “tree” and “soil”) in the scene.
The pixels in the transition area are very likely to be mixed
by spatially neighboring pixels from these two targets, thus,
yielding a great number of mixed pixels. Therefore, these
pixels in the transition area should receive weaker sparse
constraint than pixels in the other areas. In the following,
we would elaborate how to learn such a DgMap from the
hyperspectral image via a two step strategy.

A. Initial Data-guided Map

Suppose we are given a hyperspectral image {yn}Nn=1∈RL+
with N pixels and L channels. It is reasonable to assume that
the pixels in the transition area are more or less different from
their spatial neighbors as shown in Fig. 1. For this reason, the
initial DgMap h(0) ∈ RN+ could be learnt by measuring the
uniformity of neighboring pixels over the entire image, i.e.
h(0) =f (y1, · · · ,yN ). In this way, the inhomogeneous areas
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are treated as the transition ones. For the ith pixel, its value
in the DgMap could be estimated by measuring the similarity
between spatially neighboring pixels as follows:

h
(0)
i =

∑
j∈Ni

sij , (2)

where Ni is the neighborhood of the ith pixel that includes
four neighbors; sij is the similarity between the ith pixel and
its neighboring pixel yj by the dot-product metric

sij =
yTi yj

‖yi‖ · ‖yj‖
, (3)

which is a classic measure in the HU study [9], [12], or by
the heat kernel similarity metric

sij = exp

(
−
‖yj − yi‖22

σ

)
. (4)

The value of σ controls the constrast of DgMaps. Generally,
a smaller σ results in a DgMap with higher constrast. In all
the experiments, σ is set as σ ∈ [0.005, 0.08].

To evaluate the effectiveness of the definition of DgMaps
in (2), we collect a set of 36 hyperspectral images2 and
calculate their DgMaps according to the similarity measures
in (3) and (4). The results are plotted in Fig. 2, showing
the histogram of DgMap values over all the 36 images. As
Fig. 2a shows, it is of little effect by using the dot-product
measure—up to 99.61% guided values are located in a narrow
range of [0.95, 1]. Such case suggests that almost all the pixels
have similar DgMap values, lacking of guided information.
Contrarily, the DgMaps from the heat kernel measure contain
more information, as shown in Figs. 2b. Therefore, we choose
the heat kernel measure to learn the initial DgMap.

B. Fine Tuned Data-guided Map

Through the local uniformity assumption and the heat kernel
measure, the learned DgMap does not have the global consis-
tency over the entire image. Therefore, we further propose a
fine tuning step to refine the initial DgMap. For this purpose,
the closed-form method [36], [37] is adopted. The advantages
are in two folds: 1) this fine tuning process not only propagates
the guidance information over the entire image, but also
maintains the structures latent in the original hyperspectral
data cube [38], [39]; 2) according to our experiments, the fine
tuned DgMap further improves the HU performance although
the initial DgMap already outperforms the state-of-the-art.

Specifically, the closed-form method is based on the as-
sumption that in each small window, the data-guided values
come from the same projection as [36]:

hj = wT
i yj + bi, for j ∈ Ni, i ∈ {1, · · · , N} ,

where yi is the ith pixel; Ni is the eighborhood of yi3; wi is
the projection vector and bi is a bias term. The local adjustment

2This image set includes hyperspectral scenes of urban areas, suburbs areas,
farmland areas, mine areas, airports and so on. In average, there are 369×369
pixels and 193 channels in a hyperspectral image.

3Note that the neighborhood Ni defined here is different from the neigh-
borhood Ni used in Section III-A.
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Figure 2. Histogram of DgMap values learnt from 36 hyperspectral images
respectively by: (a) dot-product measure (3) and (b) heat kernel measure (4).

from the initial DgMap
{
h
(0)
j

}N
j=1

is formulated as

h∗j ← arg min
hj

(
α
(
hj − h(0)j

)2
+
(
hj −wT

i yj − bi
)2)

,

∀ j ∈ Ni, i ∈ {1, 2, · · · , N} .

The local window is placed in an overlapping manner. This
case ensures the property of propagating guidance informa-
tion between neighboring pixels [36]. The bigger the local
window is, the wider the propagation could spread. Besides,
in each local window, the gradient field of the DgMap is
linearly related to the corresponding image gradient field as
∇hj = wT

i ∇yj ,∀j ∈ Ni, i ∈ {1, · · · , N}, transferring the
gradient distributions as well as the transition information
latent in the original hyperspectral image into the newly learnt
DgMap [40], [39]. As a result, we could refine the DgMap
according to the structures latent in the original image cube.

Considering all the local minimizing problems together as
well as the numerical stability, we can fine tune the DgMap
by minimizing the following quadratic function [40], [36]:

E (h,w, b) =α
∥∥∥h− h(0)

∥∥∥2
2

+

N∑
i=1

(
ε ‖wi‖22

+
∑
j∈Ni

(
hj −wT

i yj − bi
)2)

, (5)

where h(0) =
[
h
(0)
1 , · · · , h(0)N

]T
∈RN+ is the initial DgMap; ε ∈

[10−7, 10−4] controls the smooth level of the refined DgMap
h; α ∈

[
10−6, 10−4

]
controls the strength of the fine tuning

process. A smaller α corresponds to a stronger refinement.
The objective function above could be further simplified

by setting ∂E
∂w = 0, ∂E∂b = 0 and substituting their solutions

into (5), yielding a compact objective function as:

E (h) = α
∥∥∥h− h(0)

∥∥∥2
2

+ hTLh, (6)

where L is a highly sparse matrix that has been proven to be
a graph Laplacian by [41]. It is defined as

L =

N∑
n=1

STi LiSi, (7)

where STi is the ith column selection matrix that selects
the pixels in the ith local window from the whole hyper-
spectral image as Yi = YSTi , Li = GiGi, in which
Gi =

(
P− ȲT

i

(
ȲiȲ

T
i + εI

)−1
Ȳi

)
, P = I − 1

|Ni|11
T is
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3. (a) The abundance map of the hyperspectral image in Fig. 1, where
the proportions of red and green inks represent the abundances of two targets.
(b) The initial DgMap from the heat kernel measure. (c) Fine tuned DgMap
learnt by 3×3 window. (d) Fine tuned DgMap learnt by 7×7 window. (e)-(h)
are the close ups of (a)-(d) respectively. (Best viewed in color)

the centering matrix with |Ni|×|Ni| elements and Ȳi=YiP
contains the zero mean pixels in Ni [42], [43].

Since the objective function (6) is quadratic in h, it can
be solved by setting the derivative to zero as ∇E (h) = 0,
yielding a highly sparse linear equation

(L + αI)h = αh(0), (8)

which could be efficiently solved [36]. In order to simplify the
incorporation of the learnt DgMap into the `p(0<p<1) norm,
the data-guided values are resized into the range of (0, 1) as

hn ←
hn −min (h)

max (h)−min (h) + β
, n = 1, 2, · · · , N,

where β = 10−8 is a small value used to prevent {hn}Nn=1

being equal to 1, ensuring the numerical stability for the sparse
constraint in the next section.

To study the influence of the local window size, we conduct
an experiment as illustrated in Fig. 3, where Fig. 3a shows the
reference abundance map, Fig. 3b shows the initial DgMap,
Fig. 3c shows the refined DgMap with 3 × 3 local window,
followed by the fine tuned result with 7× 7 local window in
Fig. 3d. As Fig. 3 shows, the 3× 3 local window is sufficient
to get suitable result at low computational costs. Therefore,
the 3× 3 local window size is chosen in this work.

IV. DATA-GUIDED SPARSE NMF (DGS-NMF)

A. Data-guided Regularization and DgS-NMF Model

Based on the linear combination model in (1), a hyperspec-
tral image Y , [y1,y2, · · · ,yN ] ∈ RL×N+ , with L channels
and N pixels, could be approximated by two factor matrices:

Y = MA + E, (9)

where M , [m1, · · · ,mK ] ∈ RL×K+ is the endmember
matrix including K spectral vectors, K � min{L,N};
A , [a1, · · · ,aN ] ∈ RK×N+ is the corresponding abundance
matrix, whose nth column vector an contains all the K
abundances at pixel yn; E is a residual term. Specifically, (9)
could be naturally translated into the Nonnegative Matrix
Factorization [23] (NMF) problem by strictly constraining the

−1 1

1

Penalty

`0.2
`0.4
`0.6
`0.8
`1.0

Figure 4. The shape of the `p-norm with different p ∈ (0, 1], indicating
that a smaller p tends to find a sparser solution [35].

nonnegative property of both factors, i.e. M≥0,A≥0, which
agrees with the nonnegative requirement on both endmembers
and abundances. Such case suggests that NMF is physically
suitable for the HU task.

Suppose we are given the fine tuned DgMap h ∈ RN+ .
Different from the traditional sparse regularization [32], [9]
that constrains all factors {an}Nn=1 at the same sparse level as

J (A) =

N∑
n=1

‖an‖1 , J (A) =

N∑
n=1

‖an‖1/21/2 , (10)

where ‖a‖pp =
∑
k |ak|

p
(∀0 < p < 1), this paper proposes a

novel data-guided constraint as

J (A) =

N∑
n=1

‖an‖1−hn

1−hn
=

N∑
n=1

(
K∑
k=1

|Akn|1−Hkn

)
, (11)

where Hkn is the (k, n)-th element in the matrix H=1KhT .
The elements in the same column of H are identical to each
other, i.e. H1,n=H2,n · · · =HK,n=hn,∀n∈{1, · · · , N}.

In this way, all the abundance factors {an}Nn=1 are con-
strained in the `p (0<p<1)-norm. For each factor, the level
(strength) of sparse constraint is closely related to the choice
of p—a smaller p corresponds to a sparser constraint [35]
(cf. Fig. 4). This amounts to the dependence on the DgMap
value hn, as shown in (11). So, for instance, a pixel for which
hn = 0.2 will be constrained by a weak sparsity regularization
in the `0.8-norm, whereas one for which hn = 0.8 will be
constrained by the `0.2 regularization and so will enjoy a heavy
sparsity constraint (cf. Fig. 4). Additionally, the DgMap values
in the transition areas are generally small (cf. Fig. 3c). As
a result, they will be constrained at relatively low levels of
sparsity constraints, conforming to their mixed properties.

Compared with the traditional regularization (10), the ad-
vantages of our constraint (11) lie in three aspects: 1) as the
fine tuned DgMap describes the mixed level over the entire
image, our constraint is more agreeable with the practical
mixed property of each pixel; 2) with the careful constraint
in (11), the non-convex objective function (12) is more likely
to converge to some suitable local minima; 3) although the
adaptive sparsity regularization is constrained on the abun-
dance factors, it would explicitly influence the estimation of
endmembers, guiding the endmembers toward the pixels with
highly sparse constraint. This doesn’t mean that the pixels
with highly sparse constraints are endmembers. Many pixels
with highly sparse constraints compete for the endmember, and
some trade-off spectra could also be endmembers.
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Apart from the advantages above, it is easy to find that
the traditional sparse constraints (10) are special cases of
our adaptive sparse constraint (11). Given a constant DgMap
with each pixel {hn}Nn=1 equal to zero, the adaptive sparse
constraint degrades into the `1 regularization, i.e. J (A) =∑
n ‖an‖

1−hn

1−hn
=
∑
n ‖an‖1; whereas if each element in the

DgMap is equal to 1/2, the adaptive sparse constraint turns
into the `1/2 regularization. Moreover, for the HU task, all
the elements in A are within the range of (0, 1) [12], [9].
Thus, once allowed the limit hn → −∞, the adaptive sparse
constraint would degrade into the non-regularization case, i.e.
J (A)→ 0, since for any a ∈ (0, 1), we have a1+∞ → 0.

To obtain the optimal factor matrices, we model the matrix
representation problem (9) as the Data-guided Sparsity regular-
ized Nonnegative Matrix Factorization (DgS-NMF) objective

O (M,A) =
1

2
‖Y −MA‖2F + λ

N∑
n=1

K∑
k=1

|Akn|1−Hkn (12)

s.t. M ≥ 0,A ≥ 0,

where λ ≥ 0 is a balancing parameter that controls the average
sparsity of the factor representation. In the next subsection, the
optimization for the DgS-NMF problem will be analyzed.

B. Updating Rules for DgS-NMF

Akin to NMF [31] and EM [44], the objective function
in (12) is non-convex for M and A together. No global min-
ima could be reached. Alternatively, we propose an iterative
algorithm that alternately updates M and A at each iteration.
It has the ability to arrive at some local minima after finite
iterations, which will be proved in Section IV-C.

Specifically, the Lipschitz constant [45] of the data-guided
constraint (11) will be infinity for Akn = 0,∀k, n. To ensure
the Lipschitz condition, we reformulate our model (12) as

O (M,A) =
1

2
‖Y −MA‖2F + λ

N∑
n=1

K∑
k=1

(Akn + ξ)
1−Hkn

s.t. M ≥ 0,A ≥ 0, (13)

where ξ is a small positive value to ensure the numerical
condition. It is obvious that the objective (13) is reduced to
(12) when ξ → 0. For simplicity, we use A + ξ= [Akn + ξ]
to expresses the idea of adding ξ to every entry Akn,∀k, n.

Considering the constraints of M≥0,A≥0, the objective
function (13) could be rewritten as the Lagrange Multiplier:

L =
1

2
‖Y −MA‖2F + λ

N∑
n=1

K∑
k=1

(Akn + ξ)
1−Hkn

+ Tr
(
ΨMT

)
+ Tr

(
ΓAT

)
, (14)

where ψlk, γkn are the lagrange multipliers for the inequality
constraints Mlk≥0 and Akn≥0 respectively, and Ψ=[ψlk]∈
RL×K+ , Γ = [γkn] ∈ RK×N+ are the lagrange multipliers in
matrix format. To find the local minima, one intuitive approach
is to differentiate (14) and set the partial derivatives to zero.
This amounts to solving the following linear equations

∇ML = MAAT −YAT + Ψ = 0 (15)

Algorithm 1 for DgS-NMF
Input: the hyperspectral image Y ∈ RL×N+ , the number of
endmembers (i.e. K) and the penalty parameters λ.
Output: two factor matrices M∈RL×K+ and A∈RK×N+ .

1: Calculate initial DgMap h(0)∈RN+ according to Eq. (2).
2: Get the fine tuned DgMap h by solving the highly sparse

linear equation (8). Calculate H = 1KhT ∈ RK×N .
3: Initialize the factor matrices M and A.
4: repeat
5: update A by the updating rule (20).
6: update M by the updating rule (19).
7: scale M and A by Eq. (21) after each iteration.
8: until convergence
9: Output M and A as the final unmixing result.

∇AL =MTMA−MTY + Γ+

λ (1−H) ◦ (A + ξ)
−H

= 0, (16)

where ◦ is the Hadamard product between matrices; AH =[
(Akn)

Hkn

]
∈RK×N+ is an elementwise exponential operation.

Based on the Karush-Kuhn-Tucker conditions ψlkMlk=0 and
γknAkn= 0, we could simplify (15) and (16) by multiplying
both sides with Mlk and Akn respectively, yielding(

MAAT
)
lk
Mlk −

(
YAT

)
lk
Mlk = 0 (17)(

MTMA
)
kn
Akn −

(
MTY

)
kn
Akn+

λ
(

(1−H) ◦ (A + ξ)
−H
)
kn
Akn = 0. (18)

Solving Eqs. (17) and (18), we get the updating rules as

Mlk ←Mlk

(
YAT

)
lk

(MAAT )lk
(19)

Akn ← Akn

(
MTY

)
kn(

MTMA + λ (1−H) ◦ (A + ξ)
−H
)
kn

. (20)

However, if M and A form the solution of NMF, DU
and U−1A are the solution for any positive diagonal matrix
U [24], [4]. To get rid of this kind of uncertainty, one intuitive
method is to scale each row of A or each column of M to be
unit `1-norm or `2-norm [29] as follows

Mlk ←Mlk

(
N∑
n=1

|Akn|

)
, Akn ←

Akn∑N
n=1 |Akn|

. (21)

Similarly, we scale M and A by (21) after each iteration.
The algorithm for DgS-NMF is summarized in Algorithm 1.

For the updating rules in (19) and (20), we have the following
theorem, which will be proven in the next section, as

Theorem 1. The objective function (12) is non-increasing
under the updating rules (19) and (20).

C. Convergence Proof for DgS-NMF

To ensure the reliability of (19) and (20), the convergence
proofs of both updating rules are discussed. Fortunately, the
convergence proof of (19) could be eliminated since it has been
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analyzed in [31]. A common skill used in EM [44], [46] and
NMF [31] is employed by introducing an auxiliary function:

Definition 2. G (A,A′) is an auxiliary function of O (A) if
the following properties are satisfied,

G (A,A′) ≥ O (A) , G (A,A) = O (A) . (22)

Lemma 3. By minimizing the energy of G (A,A′) given by

A(t+1) = arg min
A

G
(
A,A(t)

)
,

we can obtain a solution A(t+1) that makes O (A) non-
increasing at each iteration, i.e. O

(
A(t+1)

)
≤ O

(
A(t)

)
.

Finally, O (A) will converge after finite iterations.

Proof: This is because of the following inequalities:

O
(
A(min)

)
≤ · · · ≤ O

(
A(t+1)

)
≤ G

(
A(t+1),A(t)

)
≤ O

(
A(t)

)
≤ · · · ≤ O

(
A(0)

)
Now we consider the objective function (13) with A as the

only variable:

O (A) =
1

2
‖Y−MA‖2F+λ

N∑
n=1

K∑
k=1

(
A

(t)
kn + ξ

)1−Hkn

. (23)

Specifically, it is approximately a quadratic function as follows

O (A) ≈O
(
A(t)

)
+ Tr

(
CT∇O

(
A(t)

))
+

1

2

[
Tr
(
CT

(
MTM

)
C
)
− λF (A)

]
, (24)

where C =
(
A−A(t)

)
and

F (A) =
∑
n,k

Hkn (1−Hkn)
(
A

(t)
kn + ξ

)−(Hkn+1)

C2
kn.

To prove the convergence property of (20), we have to find an
auxiliary function of (24), by which the updating rule (20)
could be obtained by differentiating this auxiliary function
and setting the derivatives to zero. Conversely, a function
constituted based on the updating rule (20) is given by

G
(
A,A(t)

)
=O

(
A(t)

)
+ Tr

(
CT∇O

(
A(t)

))
+

1

2

K∑
k=1

N∑
n=1

QknC
2
kn, (25)

where

Qkn =

(
MTMA(t) + λ (1−H) ◦

(
A(t) + ξ

)−H)
kn

A
(t)
kn

.

It could be separated into two parts Qkn = Q
(1)
kn + λQ

(2)
kn as

Q
(1)
kn =

(
K∑
l=1

(
MTM

)
kl
A

(t)
ln

A
(t)
kn

)

Q
(2)
kn =

(1−Hkn)
(
A

(t)
kn + ξ

)−Hkn

A
(t)
kn

.

Since

(
A

(t)
kn+ξ

)−Hkn

A
(t)
kn

>
(
A

(t)
kn + ξ

)−(Hkn+1)

, we have

Q
(2)
kn > (1−Hkn)

(
A

(t)
kn + ξ

)−(Hkn+1)

. (26)

Specifically, we have to prove the following lemma:

Lemma 4. The function G
(
A,A(t)

)
defined in (25) is an

auxiliary function for O (A) defined in (24).

Proof: On the one hand, the equation O (A) =
O
(
A(t)

)
= G

(
A,A(t)

)
holds for any A = A(t), i.e. C = 0.

On the other hand, when A 6= A(t), i.e. C 6= 0 we have to
prove O

(
A(t)

)
≤ G

(
A,A(t)

)
.

Since the constant term and linear term in (24) are identical
to their counterparts in (25), Lemma 4 could be proven by
only comparing the quadratic terms as

K∑
k=1

N∑
n=1

QknC
2
kn ≥ Tr

(
CT

(
MTM

)
C
)
− F (A) . (27)

The inequality above could be expressed as two terms

∑
k,n

Q
(1)
knC

2
kn − Tr

(
CTMTMC

)
︸ ︷︷ ︸

first term

+λ

∑
k,n

Q
(2)
knC

2
kn + F (A)


︸ ︷︷ ︸

≥ 0.

second term
(28)

We could prove the inequality (28) by verifying that both terms
are greater than or equal to zero. Therefore, the inequality (28)
could be proven by comparing the first term [4]

f1 =
∑
k,n,l

((
MTM

)
kl
A

(t)
ln

A
(t)
kn

C2
kn − CknCln

(
MTM

)
lk

)

=
∑
k,n,l

(
MTM

)
kl

2A
(t)
knA

(t)
ln

(
A

(t)
ln Ckn −A

(t)
knCln

)2
≥ 0. (29)

Then considering the inequality (26), the second term becomes

f2 >
∑
k,n

(1−Hkn)
(
A

(t)
kn + ξ

)−(Hkn+1)

C2
kn+

∑
k,n

Hkn (1−Hkn)
(
A

(t)
kn + ξ

)−(Hkn+1)

C2
kn

=
∑
k,n

(
1−H2

kn

) (
A

(t)
kn + ξ

)−(Hkn+1)

C2
kn, (30)

where C2
kn is undoubtedly nonnegative. Since any element

Hkn lies in the range of (0, 1), this ensures the nonnegative
property of (1−H2

kn). The expression (A
(t)
kn + ξ)−(Hkn+1) is

positive as A(t)
kn+ξ is always positive. Therefore, f2 ≥ 0 holds

for any condition. We have proven the inequality (27) or (28)
by proving f1 ≥ 0 and f2 ≥ 0. In consequence, G

(
A,A(t)

)
is an auxiliary function of O (A).

Through the theoretical analyses above, we have proven
Theorem 1. In addition, the empirical convergence property
of DgS-NMF will be analyzed in Section V-G.
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(a) Samson (b) Jasper Ridge (c) Urban (d) Cuprite

Figure 5. The four real hyperspectral images, i.e. Samson, Jasper Ridge, Urban and Cuprite respectively, used in the experiments.

Table I
COMPUTATIONAL OPERATION COUNTS FOR NMF AND DGS-NMF AT EACH ITERATION.

Methods Arithmetic Operations in float-point format OverallAddition Multiplication Division Exponent

NMF 2LNK + 2K2 (L+N) 2LNK + 2K2 (L+N)
K (L+N) – O (KLN)−2K (N + L)− 2K2 +K (L+N)

DgS-NMF 2LNK + 2K2 (L+N) 2LNK + 2K2 (L+N)
K (L+N) KN O (KLN)−K (N + 2L)− 2K2 +K (L+ 3N)

Table II
PARAMETERS USED IN COMPUTATIONAL COMPLEXITY ANALYSIS.

Parameters Description
K number of endmembers
L number of channels
N number of pixels in hyperspectral image
t number of iterations

q (= 9) number of pixels in the local window

D. Computational Complexity Analysis for DgS-NMF

Speed is important for algorithms [47], [48]. For this reason,
the computational complexity of DgS-NMF is thoroughly
analyzed by comparing with that of NMF. Since both al-
gorithms are iteratively updated, the complexity is analyzed
by summarizing the arithmetic operations at each iteration,
then considering the iteration steps. For convenience, the
parameters used here are listed in Table II.

In the updating rules (19) and (20), there are four kinds of
arithmetic operations, i.e. addition, multiplication, division and
exponent respectively. Table I summaries the counts of each
arithmetic operation as well as the overall cost. In terms of the
four operations, the differences between DgS-NMF and NMF
are limited: DgS-NMF requires KN more additions, 2KN
more multiplications and KN more exponents. Nevertheless,
both methods have a O (KLN) overall cost at one iteration
step, as shown in the last column of Table I.

Apart from the updating costs, the DgS-NMF method
requires O (qLN) to obtain the initial DgMap and
O
(
q2LN +

(
2
√
q − 1

)2
N
)

[49], [50], [51] to get the fine
tuned one. Thus, if both methods needs t iterations, the total
computational complexities are O (tKLN) for NMF and

O
(
tKLN + qLN + q2LN + (2

√
q − 1)

2
N
)

for DgS-NMF. For the HU task, we have N �
max (K,L, t, q), thus, indicating that the computational com-
plexity of DgS-NMF is a only bit more than that of NMF, but
still in the same order of magnitude.

V. EVALUATION

In this section, we evaluate the performance of the proposed
method for the HU task. Several experiments are carried out to
show that DgS-NMF is successfully adapted to the HU task.

A. Real Hyperspectral Images

This section introduces the information of four hyperspec-
tral data used in the experiment. Specifically, the ground truth
is achieved via the method introduced in [52], [53], [54].

Samson, as shown in Fig. 5a, is an simple data available
on http://opticks.org/confluence/display/opticks/Sample+Data.
There are 952×952 pixels in it. Each pixel is observed at 156
channels covering the wavelength from 0.401 to 0.889µm. As
a result, the spectral resolution is highly up to 3.13nm. The
original image is very large, which could be computationally
expensive for the HU study. A region of 95× 95 pixels is
considered, whose first pixel corresponds to the (252, 332)-th
pixel in the original image. There are three endmembers in
this image, i.e. ‘#1 Soil’, ‘#2 Tree’ and ‘#3 Water’.

Jasper Ridge, as shown in Fig. 5b, is a popular hyperspec-
tral data used in [55], [4]. There are 512 × 614 pixels in it.
Each pixel is recorded at 224 channels ranging from 0.38 to
2.5µm. The spectral resolution is up to 9.46nm. Since this
hyperspectral image is too complex to get the ground truth,
we consider a subimage of 100 × 100 pixels. The first pixel
starts from the (105, 269)-th pixel in the original image. After
removing the channels 1–3, 108–112, 154–166 and 220–224
(due to dense water vapor and atmospheric effects), we remain

http://opticks.org/confluence/display/opticks/Sample+Data
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Figure 6. The average performances (i.e. SAD and RMSE) of eight methods on the three datasets: Samson, Jasper Ridge and Urban, respectively.

198 channels (this is a common preprocess for HU analyses).
There are four endmembers latent in this data: ‘#1 Tree’, ‘#2
Soil’, ‘#3 Water’ and ‘#4 Road’, as shown in Fig. 5b.

Urban is one of the most widely used hyperspectral data
used in the HU area [12], [9], [54]. There are 307×307 pixels
in it, each of which corresponds to a 2 × 2m2 area. In this
image, there are 210 wavelengths ranging from 0.4 to 2.5µm,
resulting in a spectral resolution of 10nm. After the channels
1–4, 76, 87, 101–111, 136–153 and 198–210 are removed
(due to dense water vapor and atmospheric effects), we remain
162 channels. There are four endmembers: ‘#1 Asphalt’, ‘#2
Grass’, ‘#3 Tree’ and ‘#4 Roof’ as shown in Fig. 5c.

Cuprite is the most benchmark dataset for the HU re-
search [11], [12], [9], [14], [16] that covers the Cuprite in
Las Vegas, NV, U.S. There are 224 channels, ranging from
0.37 to 2.48µm. After removing the noisy channels (1–2
and 221–224) and water absorption channels (104–113 and
148–167) [11], [9], we remain 188 channels. In this paper,
a region (cf. Fig. 5d) of 250 × 190 pixels is considered,
where there are 14 types of minerals [16]. Since there are
minor differences between variants of the same mineral, we
reduce the number of endmembers to 12. Note that there are
small differences in the setting of endmembers among the
papers [11], [12], [9], [14], [16]. Thus, the results of the same
method in their papers might be slightly different from each
other, as well slightly different from ours.

B. Compared Algorithms

To verify the performance, the proposed method is com-
pared with seven related methods. The information of all these
methods are summarized as follows:

1) Our algorithm: Data-guided Sparse regularized NMF
(DgS-NMF) is a new method proposed in this paper.

2) Vertex Component Analysis [16] (VCA) is a classic
geometric method. The code is available on http://www.
lx.it.pt/bioucas/code.htm.

3) Nonnegative Matrix Factorization [23] (NMF) is a
benchmark statistical method. The code is obtained from
http://www.cs.helsinki.fi/u/phoyer/software.html.

4) Nonnegative sparse coding [32] (`1-NMF) is a classic
sparse regularized NMF method. The code is available
from http://www.cs.helsinki.fi/u/phoyer/software.html.

5) `1/2 sparsity-constrained NMF [9] (`1/2-NMF) is a state-
of-the-art method that could get sparser results than `1-
NMF. Since the code is unavailable, we implement it.

6) Graph regularized NMF [24] (G-NMF) is a good algo-
rithm that transfer graph information latent in data to
the new representation. The code is obtained from http:
//www.cad.zju.edu.cn/home/dengcai/Data/GNMF.html.

7) Local Neighborhood Weights regularized NMF [15] (W-
NMF) is a graph based NMF method. It integrates
the spectral information and spatial information when
constructing the weighted graph. Since the code is
unavailable from the author, we implement it.

8) Endmember Dissimilarity Constrained NMF [14] (EDC-
NMF) urges the endmember to be smooth and different
from each other. The code is implemented by ourself.

There is no parameter in VCA and NMF. For the other six
methods, there is mainly one parameter. In the next subsection,
we will introduce how to set the parameter for each algorithm.

C. Parameter Settings

Similar to `1-NMF and `1/2-NMF, there is one essential
parameter λ in DgS-NMF controlling the average sparsity of
the new representation. To estimate an optimal parameter, two
steps are required. First, an parameter range of [λmin, λmax]
is carefully determined by trying the values at very large
steps. Second, given this parameter range, we search the best
parameter by densely searching the range of [λmin, λmax]
at a number of equally spaced values. The parameter value
that helps to achieve the best result is treated as the optimal
parameter setting. For the other methods, the parameters are
determined similarly. Specifically, for our method, the optimal
λ is located in the range of [0.005, 0.9] on all the datasets.

D. Evaluation Metrics

To assess the quantitative HU performance, two bench-
mark metrics are introduced, i.e. the Spectral Angle Distance

http://www.lx.it.pt/bioucas/code.htm
http://www.lx.it.pt/bioucas/code.htm
http://www.cs.helsinki.fi/u/phoyer/software.html
http://www.cs.helsinki.fi/u/phoyer/software.html
http://www.cad.zju.edu.cn/home/dengcai/Data/GNMF.html
http://www.cad.zju.edu.cn/home/dengcai/Data/GNMF.html
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Table III
THE SADS AND RMSES, AS WELL AS THEIR STANDARD DERIVATIONS, ON THE SAMSON DATA. FOR EACH TARGET, THE RESULTS ARE ARRANGED IN
ROWS, WHERE THE RED VALUE CORRESPONDS TO THE BEST RESULT, WHILE THE BLUE VALUE IS THE SECOND BEST ONE. (BEST VIEWED IN COLOR)

1

End.
Spectral Angle Distance SAD

(×10−2
)

VCA NMF ℓ1-NMF ℓ1/2-NMF G-NMF W-NMF EDC-NMF DgS-NMF

#1 7.47±12.50 6.47±7.34 6.40±7.33 6.21±7.31 6.55±7.58 6.71±7.75 6.29±7.27 5.64±7.36

#2 4.96±0.04 5.57±0.33 5.44±0.27 5.23±0.28 5.66±0.35 5.92±0.40 5.56±0.34 4.80±0.27

#3 12.87±0.55 14.85±1.84 14.39±1.72 11.97±2.11 14.79±1.85 14.75±1.86 13.94±1.70 4.70±0.34

Avg. 8.43±4.20 8.96±1.76 8.74±1.82 7.80±2.13 9.00±1.83 9.12±1.86 8.60±1.79 5.05±2.42

Root Mean Square Error RMSE
(×10−2

)
#1 17.06±2.53 9.05±3.16 9.06±3.11 8.58±3.33 9.08±3.24 9.30±3.23 8.82±3.16 7.77±3.78

#2 13.35±4.51 7.64±3.62 7.63±3.57 7.44±3.66 7.67±3.70 7.97±3.71 7.59±3.64 7.74±3.63

#3 21.31±3.78 6.82±0.45 6.63±0.43 5.55±0.88 6.82±0.46 6.84±0.44 6.36±0.73 2.70±0.91

Avg. 17.24±3.54 7.84±2.18 7.77±2.23 7.19±2.40 7.86±2.24 8.03±2.23 7.59±2.06 6.07±2.76

Table IV
THE SADS AND RMSES, AS WELL AS THEIR STANDARD DERIVATIONS, ON THE JASPER RIDGE DATA. FOR EACH TARGET, THE RESULTS ARE ARRANGED
IN ROWS, WHERE THE RED VALUE CORRESPONDS TO THE BEST RESULT, WHILE THE BLUE VALUE IS THE SECOND BEST ONE. (BEST VIEWED IN COLOR)

End.
Spectral Angle Distance SAD

(×10−2)
VCA NMF ℓ1-NMF ℓ1/2-NMF G-NMF W-NMF EDC-NMF DgS-NMF

#1 68.87±5.13 21.40±0.28 21.29±0.28 15.10±0.33 21.51±0.23 25.53±0.45 19.71±0.25 4.66±0.21

#2 22.70±0.01 12.09±0.41 7.41±0.47 6.16±0.50 12.03±0.43 25.15±0.78 10.84±0.48 5.66±0.24

#3 24.08±1.87 18.58±0.23 6.37±0.04 4.60±0.05 18.61±0.21 20.28±0.28 15.54±0.16 4.60±0.01

#4 23.09±2.02 18.48±0.13 7.05±0.10 9.81±0.08 18.50±0.13 21.00±0.35 18.16±0.08 6.73±0.08

Avg. 34.69±1.38 17.64±0.16 10.53±0.08 8.92±0.14 17.66±0.16 22.99±0.43 16.06±0.10 5.41±0.10

Root Mean Square Error RMSE
(×10−2)

#1 34.39±3.45 18.80±0.44 14.93±0.64 16.16±0.46 18.89±0.41 17.69±0.32 19.16±0.44 11.66±0.36

#2 19.40±1.27 20.14±0.39 16.41±0.73 17.02±0.44 20.23±0.36 18.89±0.31 20.04±0.44 11.13±0.32

#3 13.75±0.98 11.69±0.06 5.41±0.01 5.57±0.03 11.71±0.06 12.45±0.10 10.46±0.05 4.13±0.01

#4 21.60±3.08 12.22±0.20 4.84±0.11 6.73±0.21 12.24±0.18 13.45±0.29 11.78±0.16 5.68±0.10

Avg. 22.28±1.87 15.71±0.18 10.40±0.33 11.37±0.23 15.76±0.17 15.62±0.24 15.36±0.20 8.15±0.18

1

(SAD) [12], [16], [11] and the Root Mean Square Error
(RMSE) [12], [9], [56]. SAD is used to evaluate the estimated
endmembers. It is defined as

SAD (m, m̂) = arccos

(
mT m̂

‖m‖ · ‖m̂‖

)
, (31)

where m̂ is the estimated endmember and m is the corre-
sponding ground truth. As the metric above describes the angel
distance between two vectors, a smaller SAD corresponds to
a better performance. To assess the estimated abundance, we
employ the RMSE metric, which is given by

RMSE (z, ẑ) =

(
1

N
‖z− ẑ‖22

)1/2

, (32)

where N is the number of pixels in the image, ẑ (a row vector
in the abundance matrix Â) is the estimated abundance map,
and z is the corresponding ground truth. In general, a smaller
RMSE corresponds to a better result.

E. Performance Evaluation

To verify the performance of our method, eight experiments
are carried out. Each experiment is repeated 20 times. The
mean results as well as their standard deviations are reported.
The evaluation includes two parts: quantitative comparisons
and visual comparisons.

1) Quantitative Comparisons: The quantitative results are
summarized in Tables III, IV, V, VI and plotted in Fig. 6.
In Table III, there are two sub-tables that show SADs and
RMSEs respectively on Samson. In the sub-table, each row
shows the performances of one endmember, i.e. ‘#1 Soil’, ‘#2
Tree’ and ‘#3 Water’ in sequence. The last row shows the
average performance. In each category, the value in the red
ink is the best, while the blue value is the second best. As
Table III shows, our method generally achieves the best results,
and in a few cases it achieves comparable results with the best
results of other methods. Such case is better illustrated in the
1st subfigure of Fig. 6, where DgS-NMF is the best method
that reduces 35.3% for SAD and 15.6% for RMSE according
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Table V
THE SADS AND RMSES, AS WELL AS THEIR STANDARD DERIVATIONS, ON THE URBAN DATA. FOR EACH TARGET, THE RESULTS ARE ARRANGED IN
ROWS, WHERE THE RED VALUE CORRESPONDS TO THE BEST RESULT, WHILE THE BLUE VALUE IS THE SECOND BEST ONE. (BEST VIEWED IN COLOR)

1

Endm.
Spectral Angle Distance SAD

(×10−2
)

VCA NMF ℓ1-NMF ℓ1/2-NMF G-NMF W-NMF EDC-NMF DgS-NMF

#1 21.10±2.34 17.87±0.27 16.98±0.36 6.06±0.22 17.98±0.21 20.68±0.16 14.88±0.34 5.86±0.09

#2 35.35±4.42 21.89±0.40 23.45±0.35 20.05±0.37 22.05±0.37 23.40±0.46 22.35±0.37 13.69±0.23

#3 28.95±6.54 10.43±0.04 4.05±0.02 3.71±0.03 10.53±0.03 11.45±0.04 10.16±0.03 4.12±0.01

#4 76.98±0.09 25.67±0.21 17.06±0.35 14.22±0.19 25.72±0.22 27.30±0.26 25.45±0.20 10.54±0.28

Avg. 40.59±1.82 18.96±0.10 15.38±0.07 11.01±0.09 19.07±0.11 20.71±0.14 18.21±0.08 8.55±0.08

Root Mean Square Error RMSE
(×10−2

)
#1 28.22±5.50 14.16±0.09 18.97±0.09 14.77±0.14 14.09±0.08 14.60±0.09 13.38±0.07 13.18±0.06

#2 35.24±8.38 16.22±0.12 18.17±0.13 16.16±0.20 16.11±0.10 16.73±0.09 15.97±0.09 12.95±0.05

#3 28.35±3.33 13.34±0.14 14.02±0.18 12.65±0.16 13.28±0.12 13.52±0.11 13.14±0.09 9.57±0.12

#4 18.73±3.32 9.49±0.03 5.89±0.06 6.90±0.12 9.49±0.02 9.85±0.01 9.40±0.02 6.27±0.06

Avg. 27.64±3.62 13.30±0.09 14.26±0.07 12.62±0.11 13.24±0.07 13.67±0.07 12.97±0.06 10.49±0.06

Table VI
THE SADS AND THEIR STANDARD DERIVATIONS OF 6 METHODS ON THE CUPRITE DATASET. THERE ARE 12 KINDS OF endmembers. FOR EACH

endmember, THE RESULTS ARE ARRANGED IN ROWS, WHERE THE RED VALUE IS THE BEST ONE. (BEST VIEWED IN COLOR)

Endmembers
Spectral Angle Distance SAD

(×10−2)
NMF ℓ1-NMF ℓ1/2-NMF EDC-NMF W-NMF DgS-NMF

#1 Alunite 16.00±2.19 16.22±2.05 14.64±1.80 14.32±4.58 15.88±3.08 12.48±1.85

#2 Andradite 10.52±3.13 10.15±3.02 7.86±1.37 9.32±0.84 9.75±3.35 7.59±1.19

#3 Buddingtonite 12.50±7.73 12.50±7.51 11.84±5.62 11.20±4.84 11.68±6.81 10.81±3.18

#4 Dumortierite 13.83±5.56 13.07±5.31 11.53±3.22 12.82±2.33 12.59±5.49 11.01±2.15

#5 Kaolinite1 9.52±1.98 9.42±1.82 9.68±2.30 8.74±2.02 9.75±2.20 9.02±2.86

#6 Kaolinite2 10.17±2.76 9.84±2.72 7.24±0.96 7.80±0.77 8.78±2.17 7.42±1.22

#7 Muscovite 28.89±8.56 29.86±7.37 25.12±5.51 24.31±7.18 20.89±10.43 20.51±6.02

#8 Montmorillonite 10.48±4.41 10.27±4.70 7.46±1.50 8.42±1.36 8.42±2.70 7.27±1.25

#9 Nontronite 12.69±4.16 12.80±4.06 9.54±2.35 9.73±1.69 12.69±4.56 8.88±1.71

#10 Pyrope 8.84±3.44 8.12±1.87 8.94±5.22 8.64±6.18 10.75±4.47 8.82±5.01

#11 Sphene 10.97±3.35 11.03±3.34 7.91±2.54 8.88±6.70 10.45±4.58 8.15±2.14

#12 Chalcedony 13.48±6.08 13.72±6.00 13.76±6.37 12.84±5.86 13.85±7.94 13.62±6.33

Avg. 13.16±1.25 13.08±1.16 11.29±0.99 11.42±0.88 12.12±1.39 10.46±0.58

1

to the results of the second best method, i.e. `1/2-NMF.
Table IV summaries the performances of eight methods on

Jasper Ridge. The rows show the results of four targets, i.e.
‘#1 Road’, ‘#2 Soil’, ‘#3 Water’ and ‘#4 Tree’ respectively.
Generally, the sparsity constrained methods, i.e. `1-NMF, `1/2-
NMF and DgS-NMF, achieve better results than other meth-
ods. This is since sparse constraints tend to find expressive
endmembers [27], which might be more reliable for the HU
task. The average performances (i.e. SAD and RMSE) are
illustrated in the 2nd subfigure of Fig. 6. As we shall see, our
method obtains extraordinary advantages—compared with the
second best methods, i.e. `1/2-NMF and `1-NMF, DgS-NMF
reduces 39.3% and 21.6% respectively for SAD and RMSE.

The results on Urban are illustrated in Table V, where the
rows contain results of ‘#1 Asphalt’, ‘#2 Grass’, ‘#3 Tree’
and ‘#4 Roof’ respectively. It can be seen that apart from our
method, `1/2-NMF, `1-NMF and EDC-NMF generally achieve
better results than the others. However, in general, DgS-NMF

obtains the best performance. In Fig. 6, the 3rd subfigure shows
the average performances. Compared with the second best
methods, i.e. `1/2-NMF, our method reduces 22.3% and 16.9%
for SAD and RMSE respectively.

For the former three datasets, the number of endmembers
is small, i.e. K is small. To verify the performance of our
method on a dataset with large K, we carry out an experiment
on the Cuprite dataset. It is worth mentioning that the Cuprite
is the most important benchmark dataset for the HU research
[9], [14]. As the ground truth for the abundance is unavailable,
only the results of endmembers are reported in Table VI. As we
shall see, our method generally obtains the best performance.
Besides, the sparsity constrained methods, i.e. `1/2-NMF and
`1-NMF, usually achieve relatively good results.

2) Visual Comparisons : In order to give an intuitive HU
comparison, we illustrate the abundance maps in two ways: in
pseudo color and in gray scale. Fig. 8a illustrates an example
of the pseudo color manner, where there are mainly four color
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Figure 7. The abundance maps in pseudo color on the Samson data. There are seven columns and two rows in this figure. From the 1st to the 6th column,
each column shows the result of one algorithm. The last column shows the ground truth. The second row shows the absolute difference between the estimated
result Â and the ground truth A, i.e.

∣∣∣A− Â
∣∣∣ ∈ RK×N

+ . For each subfigure, the proportions of Red, Green and Blue inks associated with each pixel
represent the abundances of ‘Soil’, ‘Tree’ and ‘Water’ in the corresponding pixel. (Best viewed in color)

inks. Through these colors, we could represent the fractional
abundances Akn associated with pixel yn by plotting the
corresponding pixel using the proportions of red, blue, green
and black inks given by Akn for k = 1, 2, 3, 4, respectively.
So, for instance, a pixel for which A2n = 1 will be colored
blue, whereas one for which A1n=A2n=0.5 will be colored
with equal proportions of red and blue inks and so will appear
purple. Figs. 7, 8a and 9a are obtained in this way.

For the Samson dataset, because of the high quality of all
the estimated abundances, the abundance maps in gray scale
might be very similar. For this reason, we only illustrate the
pseudo color version. The results are illustrated in Fig. 7.
The top row shows the abundance maps in pseudo color, and
the bottom row shows the absolute difference between the
estimated results Â and the ground truth A, i.e.

∣∣∣A− Â
∣∣∣ ∈

RK×N+ . As Fig. 7 shows, in general, the DgS-NMF method
achieves the minimal difference according to the ground truth.

For the Jasper Ridge data, the abundance maps in pseudo
color and in gray scale are both provided in Fig. 8. There are
four targets, i.e. ‘#1 Tree’, ‘#2 Soil’, ‘#3 Water’ and ‘#4 Road’
respectively, the fractional abundances of which are illustrated
by the proportions of red, blue, green and black inks associated
with each pixel, as shown in Fig. 8a. As can be seen, the sparse
constraint methods, i.e. `1-NMF, `1/2-NMF and DgS-NMF,
get better results than the other methods. Specifically, DgS-
NMF achieves extraordinary results—the absolute difference
map in the (2, 6)-th subfigure is the minimal one.

In Fig. 9, the abundance maps in pseudo color and in gray
scale are shown for the Urban data. The four targets are as
follows: ‘#1 Asphalt’, ‘#2 Grass’, ‘#3 Tree’ and ‘#4 Roof’.
The abundances of these targets are equal to the proportions
of red, green, blue and black inks at each pixel. Similar to the
results in Figs. 7 and 8, our method achieves the best result
in terms of the absolute difference map as shown in the 6th

subfigure in the second row in Fig. 9a.

F. Influences of Varying Parameters

To test the stability of our method, the influences of parame-
ters are evaluated. Nine experiments have been conducted with
respect to nine varying parameters: λ=0.2λ0, · · · ,1.8λ0. Here,

λ0 is the optimal parameter for each algorithm; it might be
different either for different algorithms or on different datasets.
To reduce the randomness, each experiment is repeated ten
times and the mean results are reported.

The quantitative performances are summarized in Fig. 10,
where there are two rows and three columns. The top row
shows the average SADs, while the bottom row displays
the average RMSEs. Each column shows the results on one
dataset. As can be seen, the curves of NMF and EDC-NMF
are plain. For the former method, there is no parameter in
it. For the latter one, we fix λ at the optimal parameter λ0.
This is because the parameter in EDC-NMF can not be set
freely; too big parameter value would lead to failure updating.
In general, the sparse constraint methods achieve better results
for all tested parameter values. Additionally, for most cases,
DgS-NMF achieves great advantages.

G. Convergence Study

In Section IV-C, it has been proven that the objective (12)
could converge to a minimum by using the updating rules (19)
and (20). To verify this conclusion, we study the empirical
convergence property of DgS-NMF by comparing its conver-
gence curves with that of NMF (a benchmark method). As
shown in Fig. 11, there are three subfigures, each of which
shows the results on one dataset. In each subfigure, the X-
axis shows the number of iteration t, and the Y-axis illustrates
the relative decrement of the objective energy, i.e. (Ot−Ot+1)

Ot
,

of NMF and DgS-NMF. All values in Fig. 11 are nonnegative,
indicating that the objective energy of both methods decrease
at each iteration. Besides, DgS-NMF converges to a local
minimum with comparable iteration steps as NMF. In this way,
we’ve proven Theorem 1 via empirical results.

H. Influences of DgMaps

This section gives two kinds of evaluations: 1) to evaluate
the estimated DgMaps, 2) to evaluate the contribution of the
fine tuning step proposed in Section III-B. Both visual and
quantitative comparisons have been introduced.

Obviously, the mixed level of each pixel is closely related
to the sparse level of the corresponding abundance vector. It is
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(a) Abundance maps in pseudo color.

(b) Abundance maps in gray scale.

Figure 8. The abundance maps on the Jasper Ridge data: (a) in pseudo color and (b) in gray scale. There are two rows in (a). The second row shows the
absolute difference between the estimated result Â and the ground truth A, i.e.

∣∣∣A− Â
∣∣∣ ∈ RK×N

+ . For each subfigure in (a), the proportions of Red, Blue,
Green and Black inks associated with each pixel represent the fractional abundances of ‘Tree’, ‘Water’, ‘Soil’ and ‘Road’ in the corresponding pixel. There
are four rows and seven columns in (b). Each row shows the abundance maps of one target. From the 1st to the 6th column, each column illustrates the results
of one algorithm. The last column shows the ground truth. (Best viewed in color)

reasonable to assess an estimated DgMap by comparing with
the corresponding sparse map of abundances from the ground
truth. Specifically, given abundance vectors {an}Nn=1 ∈ RK+ ,
the nth value in the sparse map is obtained by measuring the
sparsity [57], [9] of ak:

Sn =

√
K − ‖an‖1 / ‖an‖2√

K − 1
, ∀n ∈ {1, 2, · · ·N} , (33)

where K is the number of elements in the abundance vector.

The visual comparisons of the fine tuned DgMap and the
sparse map from ground truths are illustrated in Fig. 12.
As we shall see, the estimated DgMap is generally good. It
achieves very good results in the sudden change areas, while
in the smooth areas our method fails to capture the mixed

information.
To study the quantitative evaluations, the HU performances4

are summarized in Table VII and visualized in Fig. 13. There
are three kinds of results of DgS-NMF with respect to three
maps: 1) “map1” is the initial DgMap; 2) “map2” denotes the
fine tuned DgMap; and 3) “map3” means the sparse map from
ground truths. As we shall see, in most cases, the results of
“map3” are the best, and the results of “map2” are the second
best. Such observations are better illustrated in Fig. 13. These
observations above imply that:
• the results of the proposed data guided sparse model

(DgS-NMF) is quite promising. One can expect an even

4Since the standard variation of each method is similar, only the average
HU performances are provided.
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(a) Abundance maps in pseudo color.

(b) Abundance maps in gray scale.

Figure 9. The abundance maps on the Urban data: (a) in pseudo color and (b) in gray scale. There are two rows in (a). The second row shows the absolute
difference between the estimated result Â and the ground truth A, i.e.

∣∣∣A− Â
∣∣∣ ∈ RK×N

+ . For each subfigure in (a), the proportions of Red, Blue, Green
and Black inks associated with each pixel represent the fractional abundances of ‘Asphalt’, ‘Tree’, ‘Grass’ and ‘Roof’ in the corresponding pixel. There are
four rows and seven columns in (b). Each row shows the abundance maps of one target. From the 1st to the 6th column, each column illustrates the results
of one algorithm. The last column shows the ground truths. (Best viewed in color)

better result with a better estimation of DgMap.
• although the initial DgMap helps DgS-NMF to achieve

good HU results, the fine tuning process could further
improve the HU performances very much.

There are mainly two contributions of this paper. First, we
propose a data-guided sparsity model for the HU task. We
have verified its effectiveness by a heuristic DgMap estimation
method. If we can obtain a more accurate DgMap, the result
can be further improved. Second, our work introduces a
new and open problem for the hyperspetral image: how to
effectively estimate a DgMap from a hyperspetral image cube?
This problem has never been considered in this area. Owing to
the encouraging result obtained by introducing the data guided
sparsity, we would like to do some further research to make

it sound. The learning based methods might be exploited to
estimate better DgMaps. Besides, the accelerating techniques
used in [10] will be considered as well.

VI. CONCLUSIONS

In this paper, we have provided a novel Data-guided Sparse
NMF (DgS-NMF) method by deriving a data-guided map
from the original hyperspectral image. Through this data-
guided map, the sparse constraint could be applied in an
adaptive manner. Such case not only agrees with the practical
situation but also leads the endmember toward some spectra
resembling the highly sparse regularized pixel. What is more,
experiments on the four datasets demonstrate the advantages
of DgS-NMF: 1) under the optimal parameter setting, DgS-
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Figure 10. Performance vs. parameter λ. There are two rows and three columns. The top row shows SADs and the bottom row shows RMSEs. Each column
shows the performance on one dataset. In each subfigure, λ0 on the X-axis donates the best parameter setting for each algorithm. (Best viewed in color)
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Figure 11. Relative decrement of the objective energy, i.e. (Ot−Ot+1)
Ot

, of NMF and DgS-NMF on the three datasets: Samson, Jasper Ridge and Urban.

NMF achieves better results than all the other methods in
terms of both quantitative and visual performances; 2) when
the parameter varies, in most cases, our method achieves
remarkable advantages over its competitors. Besides, both
theoretic proof and empirical results verify the convergence
ability of our method.
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