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On the efficiency of Angular Intra Prediction
José Prades Nebot, Member, IEEE.

Abstract—Angular Intra Prediction (AIP) is a coding tool that
has been incorporated into the video coding standards H.264/AVC
and HEVC. In this paper, we study how the efficiency of AIP
depends on its prediction parameters. To carry out this study, we
first theoretically analyze the variance of the error incurred when
a perfectly directional signal is predicted in a certain direction.
The results of this analysis are then used to study the efficiency
of AIP when it is applied to a distribution of directions. To
facilitate mathematical derivations, we make several assumptions
about the signal and the prediction process, and we use some
approximations. This allows us to obtain simple expressions for
the variance of the AIP prediction error as a function of signal
and prediction parameters. Finally, we compare our theoretical
results with the results obtained from the prediction of images
containing rectilinear edges. This comparison shows that our
theoretical expressions follow the main trends of the experimental
results except when AIP is performed with a very high accuracy.

EDICS: COM-LOC

I. INTRODUCTION

Video coding algorithms are crucial in today’s visual com-
munication since they reduce the huge bit rate of raw digital
video [1]–[3]. Most video coding algorithms use a block-
based hybrid coding approach. In this approach, each video
frame is partitioned into blocks which are encoded using
inter-frame coding (inter-blocks) or intra-frame coding (intra-
blocks). Since motion-compensated prediction cannot be used
in the encoding of intra-blocks, these are less efficiently
encoded than inter-blocks.

To achieve an efficient coding of intra-blocks, some video
coding algorithms use (spatially-based) intra prediction. In
this technique, the pixels of a block are predicted using
previously encoded and reconstructed neighboring pixels of
that block. Then, the residual block is computed and subse-
quently encoded using transform coding. In order to adapt
to the different structures that are present in images, a set
of different predictors or intra-prediction modes are available,
and, for each block, the prediction is switched to the mode
that provides the best coding efficiency. Since images often
contain locally rectilinear structures, some modes are chosen to
efficiently predict structures of this type. These modes predict
a block by propagating neighboring pixels inside the block in a
certain direction. The prediction provided by these directional
modes is called angular intra prediction (AIP) [4].

AIP was introduced in the video coding standard
H.264/AVC [1]. AIP contributed significantly to improving
the efficiency of H.264/AVC intra-frame coding with respect
to previous standards [5]. For this reason, AIP was also
used in subsequent standards such as the Audio-Video coding
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Standards (AVS) [2] and the High Efficient Video Coding
(HEVC) standard [3]. The use of AIP in these standards has
motivated us to study the prediction efficiency of this coding
tool.

The accuracy of AIP in the prediction of directional struc-
tures is determined by several factors such as the number
of directional modes and the block size. In this paper, we
study how these accuracy factors influence the prediction
efficiency of AIP. To perform the study, we model images
with one-dimensional random sequences that are translated
in a certain direction. These pure directional images can be
perfectly predicted using AIP with infinite accuracy. In this
paper, we study the error introduced when practical AIP (i.e.,
AIP with finite precision) is used to predict these signals.

We first consider the simple case in which a directional
image is predicted using an arbitrary direction. Using this
simple set-up, we show how the variance of the prediction
error depends on several signal and prediction parameters. The
results obtained allow us to extend the study to the variance of
the prediction error when images with a distribution of direc-
tions are predicted using AIP. By performing several approx-
imations and simplifications, we derive expressions that show
how prediction parameters influence AIP efficiency. Finally,
we compare our theoretical results with experimental results
obtained by predicting images with rectilinear edges. We show
that our theoretical expressions follow the main trends of the
experimental results except when AIP is performed with a very
high accuracy. Consequently, our expressions can help in the
design of AIP algorithms for future video coders.

The rest of the paper is organized as follows. In Section II,
we describe the AIP algorithm. In Section III, we study the
prediction error when a single directionality is predicted in a
certain angle. The results of this section are used in Section IV
to analyze the variance of prediction error in AIP. In Section V,
we compare our theoretical analysis with experimental results
obtained using synthetic images and comment on their similar-
ities and differences. Finally, Section VI concludes the paper.

Notation and definitions: Independent variables are enclosed
with parentheses in continuous signals (e.g., s(x, y)) and with
brackets in discrete signals (e.g., s[n,m]). Although we deal
with 2D signals, prediction often involves 1D processing in
only one variable. To highlight this fact, for a given m0 (n0),
the signal sm0

[n] (sn0
[m]) refers to the 1D signal s[m0, n]

(s[m,n0]). The autocorrelation of a real deterministic sequence
z[n] is rzz[k] =

∑∞
n=−∞ z[n+k]z[n]. If h[n] is the impulsive

response of a filter, its lth polyphase component (with respect
to M ) is hl[n] = h[nM + l] (0 ≤ l < M ). We denote
probability, expectation, and variance, as P {·}, E {·}, and
Var{·}, respectively.
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II. AIP

In this section, we describe the fundamentals of AIP. In
AIP, there is a set of directional modes each of which has a
prediction angle θ̃ (see Fig. 1(a)). For each block, the mode
that minimizes a rate-distortion cost function is selected for
prediction. This switched prediction adapts to the directional
features of each block. The larger the number of directional
modes, the more accurate the prediction (but the larger the
complexity of the search for the optimal mode). Apart from
the directional modes of AIP, intra-prediction algorithms also
include some non-directional modes for blocks without a
defined directionality (e.g., the DC and the Planar modes of
H.264/AVC and HEVC [1], [4]).

Let s[n,m] be a monochrome digital image. Let us consider
a block of B × B pixels of s[n,m] that, without loss of
generality, is formed by the pixels {(n,m) : 1 ≤ n,m ≤ B}
(see Fig. 1(b)). The directional prediction of a block is built
using previously coded and reconstructed pixels that belong
to the two 1D reference sequences of that block: its reference
row and its reference column. The reference row is the set
of pixels with coordinates {(n, 0) : 0 ≤ n ≤ 2B}, while
the reference column is the set of pixels with coordinates
{(0,m) : 0 ≤ m ≤ 2B}. Note that s[0, 0] belongs to both
reference sequences.

All or part of the pixels of a reference sequence may not
be available for prediction. Thus, blocks placed at the borders
of the frame may partially or completely lack one or both
reference sequences. Additionally, some pixels of the reference
row or column of a block may not have been encoded yet,
which prevents their use for closed-loop prediction. Thus, in
H.264/AVC, the pixels s[0,m] with B + 1 ≤ m ≤ 2B are
never used as reference since they are rarely available [1].

To derive the prediction with a certain angle θ̃ for a pixel,
the pixel position is projected in that angle towards one of
the two reference sequences. The reference sequence that is
chosen depends on θ̃. The pixel is projected towards the
reference row when θ̃ ∈ [−π4 , 0] and towards the reference
column when θ̃ ∈ [π2 ,

3π
4 ]. When θ̃ ∈ [0, π2 ], the projection

of a pixel position only crosses one of the two sequences,
and that sequence is used for that pixel (see Fig. 1(b)). If the
projection points to a pixel of the chosen reference sequence,
then that pixel is used as the prediction. Otherwise, the value
is interpolated (linear interpolation is normally used [1], [4]).

III. THE ERROR IN DIRECTIONAL PREDICTION

In this section, we study the error e[n,m] incurred when a
real random sequence s[n,m] that is perfectly directional with
an angle θ is directionally predicted with an angle θ̃. To mea-
sure the efficiency of this directional prediction in each pixel,
we consider the variance of e[n,m], dn,m = Var{e[n,m]}; to
globally measure the prediction efficiency in a block of B×B
pixels, we consider the average of dn,m over that block
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Fig. 1. AIP. (a) Prediction angles and directions for luma blocks in
H.264/AVC and AVS. (b) Reference sequences of a block (B = 4).
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Fig. 2. Projection of s(x, 0) in a certain direction v = tan θ.

A. Image Model

Let f(x) be a continuous and bandlimited wide-sense
stationary (WSS) random process. Consider a 2D continuous
signal s(x, y) that is obtained by displacing or projecting f(x)
with a certain angle θ (see Fig. 2) in such a way that

s(x, y) = f(x− vy) (2)

where v = tan θ.
Now, suppose we sample s(x, y) and that for simplicity the

sampling periods are Tx = Ty = 1. The resulting sequence
s[n,m] fulfills

s[n,m] = s (n−mv, 0) = f(n−mv). (3)

We refer to a sequence that fulfills (3) for some f(x) as a
directional sequence, and we refer to θ and v as its angle and
its direction, respectively.

Let us assume that the sampling of s(x, y) was performed
without aliasing and that we wish to predict any row sm[n]
(with m > 1) from the infinite-length reference row s0[n]
(s0[n] = s[0, n]). In the frequency domain, sm[n] and s0[n]
are related through [6]

Sm(ejω) = e−jmvωS0(ejω) (4)

which in the time domain provides

sm[n] = s0[n] ∗ sinc (n−mv) . (5)
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In other words, each row sm[n] can be predicted without error
by filtering s0[n] with a filter that implements a displacement
of mv samples.

From (2), we can also write s(x, y) = s (0, y − x/v) and,
after the sampling, sn[m] = s (0,m− n/v). Consequently,

sn[m] = s0[m] ∗ sinc (m− n/v) (6)

i.e., each column sn[m] can be obtained by filtering s0[m] with
a sinc filter. Therefore, we can perfectly predict s[n,m] using
either of the two reference sequences. In practice, however,
it is preferable to use the reference sequence that involves a
smaller displacement: s0[n] if θ ∈ [−π4 ,

π
4 ] and s0[m] if θ ∈

(π4 ,
3π
4 ]. In the rest of Section III, we assume that θ ∈ [−π4 ,

π
4 ]

and that s0[n] is used for prediction. Nevertheless, the results
obtained can be easily extended by symmetry to the case in
which θ ∈ (π4 ,

3π
4 ] and s0[m] is used.

A practical implementation of (5) requires estimating v
and approximating the sinc function with a finite-length filter.
Hence, a prediction error is generally introduced. Once the
statistics of f(x) are set, the prediction error only depends
on how accurately we estimate v and approximate the sinc
filter.1 Hence, our signal model allows us to study how the ac-
curacy of directional prediction influences performance. This
approach is similar to the framework used in the works of [7],
[8] where the efficiency of motion-compensated prediction in
hybrid video coding is analyzed. In these works, video frames
are modeled using a stationary random field s(x, y) and the
only difference between consecutive frames is a translatory
displacement.

In [9]–[12], the statistics of intra-prediction residuals are
analyzed in order to derive optimal transforms [9]–[11] or
to perform image partitions that improve the prediction [12].
These works disregards the implementation aspects of direc-
tional prediction and focus on the error introduced in the
prediction of a pure 2D random sequence. In our work, the
image model allows a theoretically exact prediction to be
made and the prediction error is caused by an inaccurate
implementation of (5).

B. Practical directional prediction

We can approximate the filtering in (5) using the scheme
shown in Fig. 3, which implements a fractional displace-
ment of mN/M samples [13]. This scheme facilitates the
analysis of the prediction error; however, practical directional
prediction is implemented in a simpler way [4]. In Fig. 3,
N and M are two coprime integers with M > 0 and
|N | ≤ M , and h[n] is an interpolation filter of factor M .
This scheme first interpolates s0[n] by a factor M so that
the required displacement can be implemented with an integer
displacement (z−mN ); the final downsampling by M restores
the initial sampling frequency. Note that h[n] is fixed and that
adapting the prediction to each m only requires changing the
integer displacement z−mN .

1If sampling introduces aliasing in s0[n], sm[n] cannot be generally
recovered from s0[n] using (5). In this case, we should also consider the
error due to aliasing.

↓M s̃m[n]H(z)↑Ms0[n] z−mN

Interpolation

Fig. 3. Practical directional prediction of sm[n] in a direction ṽ = N/M .

h[nM ]↑M ↓M ≡h[n]

Fig. 4. Multirate identity.

Using the multirate identity shown in Fig. 4 (see [14], pp.
133), the prediction for the mth row s̃m[n] can be expressed
as

s̃m[n] = s0[n] ∗ h[nM −mN ]. (7)

Let ṽ = N/M and hI[n] = sinc (n/M). If h[n] = hI[n] and
ṽ = v, then

h[nM −mN ] = sinc (n−mv) , (8)

and hence s̃m[n] = sm[n] (i.e., sm[n] is predicted without
error). When ṽ 6= v or h[n] 6= hI[n], the prediction incurs an
error em[n] = sm[n]− s̃m[n]. From (5) and (7), we have

em[n] = s0[n] ∗ (sinc (n−mv)− h[nM −mN ]) . (9)

To gain insight into the causes of error in directional predic-
tion, we express em[n] as the sum of two components:

em[n] = epm[n] + eim[n], (10)

where epm[n], which is called the projection error, is

epm[n] = s0[n] ∗ (sinc (n−mv)− sinc (n−mṽ)) (11)

and eim[n], which is called the interpolation error, is

eim[n] = s0[n] ∗ (sinc (n−mṽ)− h[nM −mN ]) . (12)

The projection error appears when ṽ 6= v causing s0[n] to
be projected in direction ṽ instead of in direction v. The
interpolation error appears when h[n] 6= hI[n] and it introduces
distortion in the interpolation stage (see Fig. 3).

In the following sections, we study the variance of each of
these errors. We will focus on the case where s0[n] is AR(1)
with a first-step correlation coefficient ρ that is close to 1, since
this type of process has been widely used in the modeling of
rows and columns of digital images [15].

C. Variance of the projection error

When h[n] = hI[n] and ṽ 6= v, only the projection error is
introduced (em[n] = epm[n]). This situation is only possible if
ṽ ∈ {−1, 0, 1}; otherwise hI[n] has infinite length. Let s0[n]
be a WSS process with variance σ2

s and autocovariance Css[k].
For each m, epm[n] is a WSS process with zero mean and
variance (see Appendix A)

dpm = 2σ2
s

(
1−

∞∑
k=−∞

css[k] sinc (k −m|ε|)

)
(13)
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(css[k] = 0.9|k|), its bandlimited reconstruction (css(τ)), and ρ|τ |.

where css[k] is the normalized autocovariance of s0[n]
(css[k] = Css[k]/σ2

s ) and ε = v − ṽ. Note that dpm does not
depend on n (for this reason, we have dropped n from dpn,m)
nor does it depend on the mean of s0[n] (if there is a DC
component, it is always perfectly predicted). Since the ideal
band-limited reconstruction of s0[n] (with sampling period
1) is a zero-mean WSS continuous process with normalized
autocovariance

css(τ) =

∞∑
k=−∞

css[k] sinc (k − τ) , (14)

we can also express (13) as

dpm = 2σ2
s (1− css(m|ε|)) . (15)

When s0[n] is AR(1) with ρ close to 1, css(τ) can be
considered to be a monotonic decreasing function of |τ | (see
Fig. 5), and, consequently, dpm increases with increasing m and
tends to 2σ2

s . The higher the |ε|, the faster dpm increases with
m (see Fig. 6). Hence, the average variance of dpm over a block
of B × B pixels increases with both |ε| and B. Since dpm is
independent of n, prediction is more efficient in a rectangular
block of KB ×B/K pixels (with K > 1) than in a block of
B × B pixels. This is the base of the block-splitting scheme
proposed in [12].

D. Variance of the interpolation error

When ṽ = v and h[n] 6= hI[n], only the interpolation error is
introduced (em[n] = eim[n]). In this case, the error is caused
by the use of a filter that is different to hI[n]. The filters
used in image interpolation are short-length FIR filters with
the following properties: (i) they are zero-phase filters (i.e.,
h[n] = h[−n]); (ii) they are M th band filters (i.e., h[Mn] =
δ[n]); (iii) the frequency response of any polyphase component
at ω = 0 is equal to 1 [16]. The ideal interpolation filter hI[n]
has these three properties (see Appendix B-A), and throughout
the remainder of this paper we will assume that h[n] also has
them.

0 20 40 60 80 100

0.5

1

1.5

2

m

d
p m

 

 

|ǫ| = 7/8
|ǫ| = 1/8

Fig. 6. Variance of epm[n] when s0[n] is AR(1) (σ2
s = 1 and ρ = 0.9) for

|ε| = 7/8 and |ε| = 1/8.

Let us define

um[n] = hI[nM −mN ]− h[nM −mN ]. (16)

Since hI[nM −mN ] = sinc (n−mṽ), we can rewrite (12) as

eim[n] = s0[n] ∗ um[n]. (17)

It can be shown (see Appendix B-B) that for each m, eim[n]
is a zero-mean WSS random process. Its variance dim is given
by [17]

dim =

∞∑
k=−∞

Css[k] rumum [k]. (18)

Sequence dim has the following properties:
1) dim is periodic with period M .
2) dimM = 0.
3) dikM+l = di(k+1)M−l for 0 ≤ l < M and any k ∈ N.

The proofs can be found in Appendix B-C.
Fig. 7 shows dim (0 ≤ m ≤ 15) when s0[n] is AR(1) (with

σ2
s = 1 and ρ = 0.9), N = 1, M = 8, and for the filters

used in linear interpolation, third-order cubic interpolation,
and fourth-order cubic interpolation [16], [18]. These three
filters represent different trade-offs between computational
complexity and accuracy in approaching hI[n]; the linear filter
requires the lowest number of computations and the fourth-
order cubic filter is the one that best approaches hI[n] [16],
[18]. Note that the three curves in Fig. 7 exhibit the properties
mentioned above. Also note that the better h[n] approaches
hI[n], the smaller the dim. Moreover, dim � dpm except when
m|ε| is close to zero (compare Figs 6 and 7). In summary, dim
is periodic and small and mainly depends on h[n].

E. Variance of the prediction error

When ṽ 6= v and h[n] 6= hI[n], both the interpolation and
the projection errors are present and they are correlated. If we
define

zm[n] = sinc (n−mv)− h[nM −mN ] (19)

then we can write (9) as em[n] = s0[n] ∗ zm[n]. By following
similar steps as for epm[n] and eim[n], it can be shown that for
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each m, em[n] is a zero-mean WSS process whose variance
dm is given by

dm =

∞∑
k=−∞

Css[k] rzmzm [k]. (20)

Fig. 8 shows dm when s0[n] is AR(1) (with σ2
s = 1 and ρ =

0.9) and v = −1/8; the function is plotted for the three filters
of Fig. 7 and for three values of ṽ: −5/8 (ε = 1/2), −1/4 (ε =
1/8), and −5/32 (ε = 1/32). Note that, like dpm, dm increases
with m (the larger the |ε|, the faster the increase). In contrast
to dpm, however, dm is not monotonically increasing. When
m|ε| ≈ 0, em[n] ≈ eim[n] and, hence, dm ≈ dim. Therefore,
dm is approximately periodic when m|ε| ≈ 0 (for instance,
when |ε| = 1/32 and 1 ≤ m ≤ 8). Also note in Fig. 8 that the
cubic filters perform almost equally and that the linear filter
outperforms the other two for most values of m.

The two terms of zm[n], sinc (n−mv) and h[nM −mN ],
are centered around n = mv and n = mN/M , respectively.
When m|ε| ≈ 0, both terms are approximately aligned. In that

case, the closer h[n] is to hI[n], the more h[nM−mN ] cancels
sinc (n−mv) in (19), and the smaller the dm. Consequently,
when m|ε| ≈ 0, those filters that better approach hI[n]
provide the smallest dm. As m increases, sinc (n−mv) and
h[nM −mN ] separate, and h[nM −mN ] progressively loses
its capacity to cancel sinc (n−mv). Hence, using a filter
that approaches hI[n] does not guarantee a smaller dm when
m|ε| is not close to zero. Thus, when |ε| = 1/32, the fourth-
order cubic filter (very slightly) outperforms the other two for
1 ≤ m ≤ 6, while the linear filter is the best for m ≥ 11.
However, when |ε| = 1/2, the linear filter is the best for any
m > 0 (in that case, m|ε| is never close to 0). In fact, when
m|ε| > 1/2, the filter hI[n] performs worse than any of the
three filters in most samples. Consequently, cubic or higher
order interpolation filters should be avoided unless both B
and |ε| are very small.

F. Approximate expression for dm
In this section, we derive an approximate expression for

dm when s0[n] is AR(1) with ρ close to 1. Although our
approximation d̂m may incur large errors, it notably facilitates
the study of the AIP efficiency that is presented in Section IV.

To derive d̂m, we first approximate dm with

dm ≈ 2σ2
s (1− css(m|ε|)) (21)

≈ 2σ2
s

(
1− ρm|ε|

)
(22)

=: dm. (23)

In (21), we neglect the interpolation error, and hence dm ≈
dpm. This approximation removes the oscillatory behavior of
dm. In (22), we approximate css(x) with ρ|x| (see Fig. 5).
As shown in Fig. 9, dm increases monotonically with m and
incurs large relative errors when mε ≈ 0.

Finally, d̂m is the first-order Taylor approximation of dm at
m|ε| = 0:

d̂m = 2σ2
s ln ρ−1m|ε|. (24)

The reason of using this approximation is that, generally, in
image coding, B is chosen small enough so that dm be small
in 1 ≤ m ≤ B. Moreover, as shown in Section V, d̂m is a
better approximation than dm when the directional sequence
s[n,m] is a rectilinear edge.

From (24), the variance of the prediction error averaged over
a block of B ×B pixels d is approximately

d̂ =
1

B2

B∑
n=1

B∑
m=1

d̂m = 2σ2
s ln ρ−1(B + 1)|ε|. (25)

Therefore, when s0[n] is AR(1) with ρ close to 1, the efficiency
of directional prediction is approximately determined by the
product (B + 1)|ε|.

IV. VARIANCE OF THE PREDICTION ERROR IN AIP

In Section III, we studied the case where a directional
sequence is predicted with a certain angle using its reference
row. In this section, we extend the study by considering
the prediction of directional sequences using AIP. Our study
focuses on two distinctive features of AIP: the use of one or
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two reference sequences depending on the prediction angle
(Section IV-A), and the switching between a set of predefined
prediction angles to adapt to any directional sequence (Sec-
tion IV-B).

A. The use of one or two reference sequences in AIP

Depending on the value of θ̃, one or both reference se-
quences are used for prediction in AIP. In the following, we
study how this affects the efficiency of prediction. Consider
a directional sequence s[n,m] of angle θ ∈ [−π4 ,

π
4 ] and

assume that s0[n] is AR(1) with ρ close to 1. In this case,
the normalized autocovariance of s0[m] is approximately that
of an AR(1) process with correlation coefficient ρ|v| (see
Appendix C). When θ̃ ∈ [−π4 , 0], AIP only uses the reference
row s0[n] and, hence, we can approximate dn,m with (24). In
that case, d̂n,m is independent of n and grows linearly with m
(see Fig. 10(a)). The case θ̃ ∈ (0, π4 ] is a bit more complicated
since AIP uses s0[n] or s0[m] depending on the pixel position.
When n ≥ mṽ, AIP uses s0[n] and, therefore, dn,m can be
approximated with (24). When n < mṽ, AIP uses s0[m], and
by symmetry with the previous case,

dn,m ≈ 2σ2
s ln ρ−v | cot θ − cot θ̃|n (26)

= 2σ2
s ln ρ−1ṽ−1|ε|n. (27)

Summarizing, when θ̃ ∈ (0, π4 ], dn,m is approximately

d̂n,m =

{
2σ2

s ln ρ−1|ε|m, n ≥ mṽ

2σ2
s ln ρ−1ṽ−1|ε|n, n < mṽ

. (28)

Hence, when θ̃ ∈ [0, π4 ), d̂n,m depends on both n and m
(see Fig. 10(b)). Similar expressions can be easily derived by
symmetry when θ̃ ∈ (π4 ,

3π
4 ] and s0[m] is an AR(1) process

with ρ close to 1.
Let us now compare the prediction efficiency of using one

or both reference sequences. Consider two pairs of angles,
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Fig. 10. Function d̂n,m for σ2
s = 1, ρ = 0.9, B = 8 when θ = −0.124

and θ̃ = −0.464 (a), and when θ = 0.124 and θ̃ = 0.464 (b)..
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θ = 0.124, θ̃ ∈ [0,π/4]
θ = −0.124, θ̃ ∈ [0,−π/4]

Fig. 11. Approximate average variance of the prediction error d̂ as a function
of θ̃ for two values of θ when s0[n] is AR(1) (σ2

s = 1, ρ = 0.9) and B = 8.
Both curves match when |θ̃| < 0.124 because, for these angles, n ≥ mṽ for
1 ≤ n,m ≤ 8.

(θ, θ̃) and (−θ,−θ̃), such that 0 ≤ θ, θ̃ < π
4 . From (24) and

(28), we can write{
d̂n,m(θ, θ̃) = d̂n,m(−θ,−θ̃), n ≥ m tan θ̃

d̂n,m(θ, θ̃) < d̂n,m(−θ,−θ̃), n < m tan θ̃
(29)

and, consequently, d̂(θ, θ̃) ≤ d̂(−θ,−θ̃). Hence, even though
|ε| has the same value in both pairs of angles, using both ref-
erence sequences equals or improves the prediction efficiency
with respect to using only one. For a given value of |ε|, the
improvement increases when θ̃ approaches π

4 (see Fig. 11).

B. The use of switched prediction in AIP

In each block, AIP selects the optimal prediction direction.
In this way, prediction is adapted to the directional features
of each block. In this section, we study the efficiency of the
switched prediction performed by AIP.

Let s[n,m] be a directional signal with angle θ ∈ [−π4 ,
π
4 )

whose reference row s0[n] is AR-1 with ρ close to 1. Let us
assume that s[n,m] is predicted using s0[n] irrespective of θ̃.2

Consequently, we can approximate dn,m with d̂m and d with
d̂. To predict s[n,m] (where 1 ≤ n,m ≤ B), AIP considers a
set of directions {ṽk}Lk=1 and performs the prediction in the

2Even though this is not true when θ̃ ∈ [0, π
4

), this simplification of the
prediction process greatly facilitates mathematical derivations.
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Fig. 12. Quantization of v. (a) General quantization. (b) Uniform quantization.

direction that minimizes d. If we approximate d with d̂, the
optimal direction is

ṽ∗k = argmin
ṽk

d̂ = argmin
ṽk

|v − ṽk|. (30)

Hence, ṽ∗k is the prediction direction that is closest to v.
Selecting ṽ∗k can be seen as a scalar quantization of v [19] (see
Fig. 12(a)). The reproduction values of the implicit quantizer
are the directions {ṽk}Lk=1; its thresholds are

tk =
ṽk + ṽk+1

2
, 1 ≤ k < L, (31)

with t0 = −1 and tL = 1; and the quantization rule is: Q(v) =
ṽk if v ∈ [tk−1, tk).

Now, let us model the direction of s[n,m] as a continuous
random variable V with probability density function (PDF)
fV (v) and domain [−1, 1]. Since dn,m and d̂m are functions
of V , they are also random variables. Then,

E {dn,m} ≈ E

{
d̂m

}
(32)

= 2σ2
s ln ρ−1m

∫ 1

−1
fV (v)|v − ṽk| dv (33)

= 2σ2
s ln ρ−1m

L∑
k=1

∫ tk

tk−1

fV (v)|v − ṽk| dv. (34)

Given fV (v) and L, the optimal set {ṽk}Lk=1 minimizes
(34). The optimal {ṽk}Lk=1 are equally spaced when fV (v)
is uniform [20]. This is not the case for typical images where
vertical and horizontal edges appear much more frequently
than the rest edges [21]. In AVS-Part 2, prediction directions
are equally spaced ∆ = 1; however, the outer directions share
the same prediction mode 3 (see Fig. 1(a)) [2]. In H.264/AVC
and AVS-Part 7, the ṽk for predicting 4 × 4 luma blocks
are equally spaced ∆ = 1/2 [1], [2]. In HEVC, the ṽk
are unequally spaced to adapt to the orientation statistics of
images. Thus, in this standard, the minimum spacing is 1/16
(in the horizontal and vertical directions) and the maximum is
3/16 (in the diagonal directions) [4].

We can approximately solve (34) when Q is uniform with
step size ∆ = 2/L (see Fig. 12(b)) and fV (v) is approximately

constant in each interval. 3 In this case,

E

{
d̂m

} (a)
≈ 2σ2

s ln ρ−1m

L∑
k=1

fV (ṽk)

∫ tk

tk−1

|v − ṽk| dv

(b)
= 0.5σ2

s ln ρ−1m∆

L∑
k=1

fV (ṽk)∆

(c)
≈ 0.5σ2

s ln ρ−1m∆

∫ 1

−1
fV (v) dv

(d)
= 0.5σ2

s ln ρ−1m∆ =: D̂m. (35)

In (a), the PDF is approximated by a constant (its midpoint
value) in each interval; in (b) we solve the integral; in (c) we
use the fact that

∑L
k=1 fV (ṽk)∆ is an approximation of the

integral of fV (v); and, finally, in (d) we use the fact that the
integral of any PDF is unity.

Let us now consider that θ ∈ (π4 ,
3π
4 ]. If we assume

hypotheses similar to those used to derive (35), 4 by symmetry
with the previous case, dn,m is a random variable whose mean
is approximately

D̂n = 0.5σ2
s ln ρ−1n∆. (36)

Finally, if θ ∈ [−π4 ,
3π
4 ], the approximate variance of the

prediction error at pixel (n,m) is given by

D̂n,m = prD̂m + pcD̂n (37)

where

pr = P

{
−π

4
≤ θ̃ ≤ π

4

}
and pc = P

{
π

4
< θ̃ ≤ 3π

4

}
.

Finally, by substituting (35) and (36) into (37), we obtain

D̂n,m = 0.5σ2
s ln ρ−1∆ (prm+ pcn) . (38)

Function D̂n,m is a 2D function that increases linearly with
both n and m. This contrasts with the distribution of the error
variance in conventional motion-compensated prediction for
video where variance is almost constant at the center of the
block but increases when approaching each block border [22].

The average of D̂n,m over all the pixels of a block is

D̂ =
1

B2

B∑
n=1

B∑
m=1

D̂m,n (39)

= 0.25σ2
s ln ρ−1∆(B + 1). (40)

Hence, apart from the signal parameters (σ2
s and ρ), prediction

efficiency is determined by the product ∆(B + 1). From a
coding perspective, the larger the B, the smaller the number
of overhead bits and the greater the energy compaction of the
transform; however, according to (40), the larger B is, the
less efficient the prediction is. Nevertheless, we can increase
B and still keep D̂ constant if ∆ is decreased so that ∆(B +
1) remains constant. Thus, in those coders that use variable

3The hypotheses and the steps performed to derive (35) are similar to
the ones assumed to obtain the high-resolution formula for uniform quan-
tizers [19].

4The hypotheses are: only s0[m] is used for prediction; s0[m] is AR-1
with ρ close to 1, Q is uniform without step size ∆ = 2/L, and fV (v) is
approximately constant in each quantization interval.
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I1 I2 I3

Fig. 13. Synthetic images used to experimentally test prediction efficiency.

block-size partitioning, constant prediction efficiency can be
achieved if a different number of prediction directions are used
for each block size. This, however, increases the algorithmic
complexity of coding, especially when the number of block
sizes is large [3], [4].

V. EXPERIMENTAL RESULTS

In this section, we present the results obtained after applying
directional prediction and AIP to three directional images.
We also compare these experimental results with the results
of Sections III and IV in order to asses how accurately
our theoretical expressions model the efficiency of practical
prediction algorithms.

The experimental results were obtained by using three
synthetic digital images, I1, I2, and I3, which contain rec-
tilinear edges (see Fig. 13). We used this type of images
because strong directional edges are the main structures that
are targeted by AIP [3]. These three images were generated
by performing squared zero-order hold filtering, rectangular
sampling (with Tx = Ty = 1), and 8-bit uniform quantization
over rectilinear 2D step functions of different angles.5 I1 and
I2 contain a single edge of contrast 100 and angles θ = −0.124
and θ = 0.124, respectively. I3 contains 61 edges with equally-
spaced angles between −π4 and π

4 (the contrast of each edge
is 35). The edge spacing guarantees that when I3 is divided
into square blocks of B×B pixels, any block contains at most
one edge if B ≤ 64.

The process to generate the results of this section is the
following. First, an image is first partitioned into blocks
of B × B pixels. Then, each block is predicted from its
reference sequences using directional prediction or AIP. Those
blocks that have incomplete reference sequences are discarded.
Finally, the prediction error is obtained and the mean squared
(prediction) error (MSE) is computed. The reference sequences
contain original pixel values rather than decoded values as
happens in video coding. The linear interpolation filter is used
unless otherwise stated. AIP predictions are performed using
the algorithm of Section II with equally spaced prediction di-
rections and selecting the direction that provides the minimum
MSE.

Fig. 14 shows the MSE as a function of m obtained when
I1 is directionally predicted with B = 64 and with the same
directions and filters of Fig. 8. Note that Fig. 14 is similar to
Fig. 8 except for the fact that, in Fig. 14, the MSE increases
indefinitely with m instead of tending to a fixed value. Hence,
d̂m is more appropriate than dm to approximate dm when
the blocks to be predicted contain a single edge. Similarly
to Fig. 8, the two cubic filters perform almost equally and

5A 2D step u(x, y) of angle θ is defined as u(x, y) = u(x−tan θ) where
u(x) is the 1D step (i.e., u(x) = 0 for x < 0 and u(x) = 1 for x ≥ 0.)
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Fig. 15. MSE of each block pixel (B = 8) when I1 (a) and I2 (b) are
predicted using θ̃ = −0.464 and θ̃ = 0.464, respectively.

the linear filter outperforms the other two except when m|ε|
is close to 0. Thus, when |ε| = 1/32, the fourth-order cubic
filter is the best for 1 ≤ m ≤ 6 while the linear filter is the
best for m ≥ 16. However, when |ε| = 1/2, the linear filter
is the best for any m > 0. These results confirm that linear
filtering should be used unless both B and |ε| are very small.

Fig. 15 shows the MSE of each block pixel obtained when
I1 and I2 are directionally predicted using θ̃ = −0.464
and θ̃ = 0.464, respectively. In both cases, B = 8. Since
the values of θ̃ and θ in Fig. 15 are the same as those in
Fig. 10, both figures show the same main trends. Nevertheless,
Fig. 10 does not exhibit the oscillations of Fig. 15 because
the approximation d̂m neglects the interpolation error. As
expected, the MSE averaged over all block pixels is greater
in I1 (3.08) than in I2 (2.65) since I2 benefits from being
predicted using both reference sequences.

Fig. 16(a) shows the MSE of each block pixel obtained
when I3 is predicted using AIP with B = 8 and ∆ = 1/4. Note
that the MSE depends on m, but it also depends slightly on n,
while D̂m only depends on m. The reason for this discrepancy
is that AIP uses both s0[m] and s0[n] for predicting blocks
with θ ∈ [0, π4 ], whereas D̂m was derived by assuming that
only s0[n] is used in those blocks. From the MSE of Fig. 16(a),
we can obtain the MSE of predicting 121 equally-spaced
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Fig. 16. MSE of each block pixel when using AIP with B = 8 and ∆ = 1/4
over I3 (a). MSE for 121 equally spaced edges between −π
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Fig. 17. MSE (in dB) as a function of B and for several values of ∆ obtained
when I3 is predicted using AIP.

angles between −π4 and 3π
4 , which is shown in Fig. 16(b).6

When pr = pc, D̂n,m is a 2D linear function that increases
equally fast with n and m. Note that this is approximately the
behavior of the MSE in Fig. 16(b).

Fig. 17 shows the MSE (in dB) as a function of B and for
several values of ∆ obtained when I3 is predicted using AIP.
The minimum and maximum values of B and ∆ have been
chosen to cover the range of values that these two parameters
have in H.264/AVC, AVS, and HEVC. Note that, as in D̂,
the MSE is essentially determined by the product (B + 1)∆
(those points (B,∆) with similar values of (B + 1)∆ also
have similar MSE values). According to D̂, the MSE should
increase approximately 3 dB when doubling B or halving ∆.
In Fig. 17, this increase is larger than 3 dB except when both
B and ∆ are small. Thus, passing from (4, 1

16 ) to (8, 1
16 ) or

to (4, 18 ) only increases the MSE by approximately 1.1 dB.
In such highly accurate predictions, the interpolation error is
not negligible, and, consequently, D̂ incurs large errors. In
fact, when B = 4 and ∆ = 1/16 (i.e., |ε| ≤ 1/32), the
projection error is negligible in relation to the interpolation
error (see Fig. 8). Consequently, decreasing ∆ below 1/16
for such a small block cannot significantly decrease the MSE
(we obtained a decrease of only 0.35 dB with ∆ = 1/32).

6If MSE(n,m) is the MSE of I3 at each block pixel, then
0.5 (MSE(n,m) + MSE(m,n)) is the MSE of predicting 121 equally-
spaced angles between −π

4
and 3π

4
.

VI. CONCLUSION

In this paper, we have studied the efficiency of AIP in
the prediction of directional images. First, we have studied
the error incurred when a directional image is predicted in a
certain direction. We show how the variance of the prediction
error depends on factors such as the pixel position and the error
in estimating the direction of the image. The results of this
study have allowed us to analyze the efficiency of AIP in the
prediction of images with a distribution of directions. By using
some approximations, we have obtained simple expressions for
the variance of the prediction error in AIP. Finally, we have
compared these expressions with experimental results obtained
from the prediction of rectilinear edges. This comparison has
shown how accurately our theoretical expressions model AIP
efficiency.
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APPENDIX A
STATISTICAL PROPERTIES OF THE PROJECTION ERROR

If we define

pm[n] = sinc (n−mv)− sinc (n−mṽ) (41)

then epm[n] = s0[n]∗pm[n]. Thus, for each m, epm[n] is a WSS
random process. The mean of epm[n] is [17]

E {epm[n]} = E {s0[n]} Pm(ej0), (42)

and since Pm(ej0) = 0 for any m, E {epm[n]} = 0. The
variance of epm[n], denoted dpm, is [17]

dpm = σ2
s

∞∑
k=−∞

css[k] rpmpm [k] (43)

where css[k] = Css[k]/σ2
s . The autocorrelation of pm[n] is

rpmpm [k] = 2δ[k]− sinc (k −mε)− sinc (k +mε) (44)

where ε = v − ṽ. By substituting (44) into (43), we obtain

dpm = σ2
s

(
2−

∞∑
k=−∞

css[k](sinc (k −mε) + sinc (k +mε))

)
(45)

and, as css[k] and sinc (x) are even functions, we finally have

dpm = 2σ2
s

(
1−

∞∑
k=−∞

css[k] sinc (k −m|ε|)

)
. (46)

APPENDIX B
STATISTICAL PROPERTIES OF THE INTERPOLATION ERROR

A. Properties of hI[n]

Since sinc (n/M) is an even function, hI[n] has zero phase.
Since hI[nM ] = sinc (n) = δ[n], hI[n] is an M -th band
filter. The lth polyphase component of hI[n] is hI,l[n] =
sinc (n+ l/M) and its frequency response is HI,l(e

jω) =
ejωl/M . Consequently, HI,l(e

j0) = 1 for any l.

B. Mean of eim[n]

Given a positive integer M , any integer n can be expressed
as

n = q(n)×M + ((n))M (47)

where
((n))M = n modulo M (48)

is always an integer between 0 and M − 1 and q(n) =
⌊
n
M

⌋
.

Using (47), we can write

h[nM −mN ] = h[M(n+ q(−mN)) + ((−mN))M ], (49)

i.e., h[nM − mN ] is a polyphase component of h[n] trans-
lated q(−mN) samples. Since the Fourier transform of any
polyphase component of h[n] is 1 at ω = 0, the Fourier trans-
form of h[nM −mN ] is also 1 at ω = 0. A similar reasoning
is valid for hI[nM − mN ]. Consequently, Um(ej0) = 0 for
any m, and hence, E

{
eim[n]

}
= 0.

C. Proof of the properties of dim
Property 1. From (16), we can easily derive

ui+kM [n] = ui[n− kN ] (50)

for any integers i and k. Using (47) and (50), we obtain

um[n] = u((m))M [n− bm/McN ] (51)

for any m ≥ 0. As eim[n] = s0[n] ∗ um[n], we can write

eim[n] = ei((m))M
[n− bm/McN ]. (52)

Finally, since displacing a WSS process does not alter its
variance, dim = di((m))M

, i.e., dim is periodic with period M .
Property 2. Since h[n] is assumed to be an M -th band filter

(h[nM ] = δ[n]), we have u0[n] = sinc (n) − h[nM ] = 0.
Hence, di0 = 0, and using Property 1, we obtain dimM = 0.

Property 3. Consider two integers k and l with 1 ≤ l ≤
M − 1. Then,

u(k+1)M−l[N(2k + 1)− n]
(a)
= ul−(k+1)M [n−N(1 + 2k)]

(b)
= ukM+l[n]. (53)

In (a), we have used the fact that since sinc (x) and h[n] are
even functions, then um[n] = u−m[−n]; and in (b) we have
used (50). Then,

ei(k+1)M−l[N(2k + 1)− n] = eikM+l[n] (54)

and since inverting and displacing a WSS process does not
alter its variance, we finally obtain

di(k+1)M−l = dikM+l. (55)

APPENDIX C
CORRELATION COEFFICIENTS OF s0[m] AND s0[n]

Let sr(x) = s(x, 0) and sc(y) = s(0, y), and let csrsr(τx)
and cscsc(τy) be the normalized autocovariances of sr(x) and
sc(y), respectively. Since sc(y) = sr(−vy), we have

cscsc(τy) = csrsr(−vτy). (56)

When, s0[n] is AR(1) with ρ close to 1, csrsr(τx) ≈ ρ|τx| (see
Fig. 5). In this case, from (56) we obtain

cscsc(τy) ≈ ρ|v||τy|. (57)

Finally, since s0[m] = sc(y)|y=m, the normalized autocovari-
ance of s0[m] is approximately ρ|v||m|, which is the autoco-
variance of an AR(1) process with correlation coefficient ρ|v|.


