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Abstract

Multimodal image registration is a class of algorithms to find correspondence from different 

modalities. Since different modalities do not exhibit the same characteristics, finding accurate 

correspondence still remains a challenge. In order to deal with this, mutual information (MI) based 

registration has been a preferred choice as MI is based on the statistical relationship between both 

volumes to be registered. However, MI has some limitations. First, MI based registration often 

fails when there are local intensity variations in the volumes. Second, MI only considers the 

statistical intensity relationships between both volumes and ignores the spatial and geometric 

information about the voxel. In this work, we propose to address these limitations by incorporating 

spatial and geometric information via a 3D Harris operator. Specifically, we focus on the 

registration between a high-resolution image and a low-resolution image. The MI cost function is 

computed in the regions where there are large spatial variations such as corner or edge. In 

addition, the MI cost function is augmented with geometric information derived from the 3D 

Harris operator applied to the high-resolution image. The robustness and accuracy of the proposed 

method were demonstrated using experiments on synthetic and clinical data including the brain 

and the tongue. The proposed method provided accurate registration and yielded better 

performance over standard registration methods.

Index Terms

Multimodal image registration; Mutual information; Harris operator

I. Introduction

Multimodal image registration is a basic yet important operation for many applications. 

Clinical research studies often involve large numbers of volumes taken from multiple 
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modalities. Different modalities provide diverse features, which can be used in a variety of 

theoretical and practical applications, such as relating function to anatomy or image guided 

surgery [1], [2].

Multimodal image registration still remains a challenge partly because different modalities 

to be registered exhibit different characteristics. For instance, the widely used modalities, 

structural imaging, such as Computed Tomography (CT), and high-resolution magnetic 

resonance imaging (MRI) (see Fig. 1(a, b)) depict detailed anatomical information. 

Functional or dynamic imaging, such as Positron Emission Tomography (PET) (see Fig. 

1(c)), Single Photon Emission Computed Tomography (SPECT), functional MRI (fMRI) 

contain information about changes in blood flow, metabolism, and regional chemical 

composition. Cine-MRI (see Fig. 1(d)) provides surface motion of anatomical structures. 

The benefits of using multimodal data have created a need for the development of highly 

accurate and robust multimodal image registration. In particular, multimodal image 

registration of high-resolution images (e.g., high-resolution MRI) with low-resolution 

images (e.g., PET) is often needed. Such registration is the main interest of this paper, as our 

method specifically exploits geometric information in the higher resolution image in the 

computation of the similarity measure.

Multimodal image registration is a class of algorithms to find correspondences between 

multiple datasets from the same subject, acquired using different imaging modalities [3]. 

The task of aligning two images is cast as an optimization problem: a common approach to 

registration is to deform one of the images so as to maximize its similarity to the other image 

while maintaining a “smoothness” in the estimated deformation field. Most of the similarity 

measures can be classified into two categories [4]: feature-based and intensity-based. The 

former usually requires four steps: (1) feature detection, (2) feature matching, (3) transform 

model estimation, and (4) resampling. In general, feature-based methods are 

computationally efficient compared to intensity-based methods; but manual intervention is 

often required to improve accuracy and efficiency.

Intensity-based methods have been shown to be more accurate than feature-based methods 

[5], but special assumptions on the intensities of the images are often required in order to 

achieve successful registration. For instance, while unimodal image registration is based on 

the assumption that corresponding pixels have similar intensity values, the same assumption 

does not hold in multimodal registration problems. This is because the two modalities may 

assign different intensities to the same structure. Mutual information (MI), therefore, has 

become the established intensity similarity measure in multimodal registration because it 

accommodates different intensities between the modalities provided that they are relatively 

consistent within each modality [6], [7]. MI has been extensively used for many applications 

including diagnosis [8], surgical planning [9], and radiation therapy [10].

Although MI is considered to be the gold standard similarity measure for multimodal image 

registration, there are two problems with the traditional method. First, the performance of 

MI degrades when there are local intensity variations; this happens because the joint 

histogram computation is adversely affected [11], [12]. Second, the conventional similarity 

measure only incorporates intensity information, which means that the spatial information 
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that may provide additional cues about the optimal registration is entirely ignored [13]. Fig. 

2 illustrates the problem with local intensity variations and demonstrates the improvement 

provided by our proposed approach.

Several previous methods incorporated spatial information in the computation of MI. Pluim 

et al. [13] combined spatial information by multiplying the MI with an external local 

gradient, and both gradient magnitude and orientation were incorporated into the calculation 

of MI. Rueckert et al. [14] proposed second-order MI to the problem of 2D registration by 

using a 4D joint histogram that considered the six nearest neighbors of each voxel to 

calculate MI. However, Rueckert et al. [14] required a large number of samples to compute 

the high-dimensional histogram, and therefore is not easily extended to 3D for 

computational reasons. As an extension of the second-order MI, Russakoff et al. [15] 

performed regional MI taking into account both corresponding pixels and their neighbors. 

This method also used a high-dimensional histogram, which may not be reliable when the 

number of samples is small. Yi et al. [16] proposed the inclusion of spatial variability via a 

weighted combination of normalized mutual information (NMI) and local matching 

statistics. Loeckx et al. [17] introduced conditional MI, which incorporates both intensity 

and spatial dimensions to express the location of the joint intensity pair. Zhuang et al. [18] 

proposed to unify spatial information into the computation of the joint histogram. This 

method used a hierarchical weighting scheme to differentiate the contribution of sample 

points to a set of entropy measures, which are associated to spatial variable values. In related 

developments, Myronenko et al. [19] presented a novel similarity measure, the residual 

complexity, that accounts for complex spatially-varying intensity distortions in mono-modal 

settings. However, this approach may not work well in multi-modal settings.

Our work shares the spirit of these past works in the sense that we include spatial 

information in the computation of MI, thereby incorporating both spatial and geometric 

information. However, one of the main contributions of this work is that our method 

involves a new approach that specifically exploits the higher resolution image. Specifically, 

we compute a structure matrix at each voxel and use the 3D Harris operator to decompose 

the image into three disjoint and geometrically distinct regions. These classes were then 

used to determine the relative contribution of each voxel’s intensity in the computation of 

the joint histogram. In this way, geometric structure from the high-resolution image 

influences the matching computation between the two images. A preliminary version [20] of 

this method was reported. Here we report the completed algorithm design and provide new 

validations on both synthetic and in vivo data including the tongue and the brain.

The remainder of this paper is organized as follows. Section II provides a background about 

maximization of MI and Harris corner detector. The proposed registration method with the 

3D Harris operator is described in Sec. III, followed by experimental results presented in 

Sec. IV. Finally, a discussion and concluding remarks are given in Secs. V and VI, 

respectively.
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II. Preliminaries

A. Maximization of Mutual Information

In this section, we describe the maximization of MI for multimodal image registration. We 

first define terms and notation used in this work. The images I1: Ω1 ⊂ ℝ3 → ℝ and I2: Ω2 ⊂ 

ℝ3 → ℝ, defined on the open and bounded domains Ω1 and Ω2, are the template and target 

images, respectively. Given two images, a deformation field is defined by the mapping 

u(x;μ): Ω2 ↦ Ω1. In our work, u is a B-spline transformation with associated parameters μ = 

(μ1, μ2, μ3, ···), containing the B-spline coefficients. The goal of registration is to find a 

deformation field at each pixel location x such that the deformed template I1(u(x)) aligns the 

underlying anatomy as closely as possible with I2(x) satisfying the given criterion. Since I1 

and I2 are considered to be different modalities, we focus on the MI criterion. The main idea 

is to find the deformation field û that maximizes the mutual information  contained in the 

distribution of paired image intensities of the aligned images. Accordingly,

(1)

where

(2)

Here, i1 and i2 are the image intensity values in I1(u(x)) and I2(x), respectively, and pI1 (i1) 

and pI2 (i2) are their marginal probability distributions while pu(i1, i2) is their joint 

probability distribution. All densities are computed using a Parzen window approximation 

[21] and the joint density is computed only over the overlap region.

B. Harris corner detector

The Harris corner detector [22] was first introduced to detect corner features that contain 

high intensity changes in both the horizontal and vertical directions. The Harris corner 

detector is a well established technique using linear filtering of an image. Given an image I, 

the autocorrelation matrix of the point l = (x, y) in the neighborhood N of l is given by

(3)

where Ix and Iy denote the partial derivatives of I in the x and y directions, respectively.

The Harris corner indicator H2 is then given by

(4)

where r is an arbitrary constant.
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III. Proposed Approach

In this section, we describe our proposed method. Our method is based on an iterative 

framework of computing MI incorporating spatial information and geometric cues. The 

underlying idea is to split the image into a set of non-overlapping regions using the 3D 

Harris operator derived from the higher resolution image and to perform registration on 

spatially meaningful regions. Additionally, we exploit structural information describing the 

gradient of the local neighborhood of each voxel to define structural similarity for MI 

computation.

A. Volume Labeling Using 3D Harris Operator

In this work, we extend the 2D Harris detector to three dimensions so that it can be used to 

define regions over which MI is more heavily weighted. The Harris operator is derived from 

the local autocorrelation function of the intensity. The autocorrelation function at a point (x, 

y, z) is defined as

(5)

where I(·, ·, ·) is the 3D image, (p, q, r) denote a neighborhood of (x, y, z) in the Gaussian 

function w(·, ·, ·) centered on (x, y, z). Using a first-order Taylor expansion, I(p + x, q + y, r 

+ z) is approximated by

(6)

f(x, y, z) can then be given by

(7)

(8)

Here the local structure matrix (x, y, z), which captures the intensity structure of the local 

neighborhood, is defined as

(9)
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where Ix, Iy, and Iz denote the partial derivatives of I in the x, y, and z directions, 

respectively. In analogy to the 2D Harris operator [22], we define the 3D Harris operator as

(10)

where k is an arbitrary constant. Each voxel can then be classified as one of three types 

using a threshold T and the following definitions

• Type 1: H3 ≥ T, voxel has significant local variation

• Type 2: H3 ≤ −T, voxel has moderate local variation

• Type 3: −T ≤ H3 ≤ T, voxel has small local variation

We assume that Type 1 and Type 2 regions have more structural and characteristic 

information compared to Type 3 (homogeneous) region to calculate local statistics. Thus we 

use Type 1 and Type 2 regions to calculate MI. One example result of the voxel labeling is 

shown in Fig. 3. It is worth noting that we perform the 3D Harris operator on higher 

resolution volumes such as hMRI only because the higher resolution image has more 

detailed anatomical information.

B. Mutual Information Using the Local Structure Matrix

As shown in Eq. (2), MI provides a measure of image similarity using only the marginal and 

joint probability densities of the image intensities. Here, we incorporate spatial and 

geometric information into the calculation of MI by computing a weighted joint distribution 

similar to the work by Luan et al. [23] as follows

(11)

where φ is a Gaussian kernel, the overlap region V = Ω2 ∩ u−1(Ω1), ρ controls the width of 

window, and γ(x) is a weighting function that is large when local structure matrices are 

similar and is small otherwise. Specifically, we define this weighting function as

(12)

where Δ( (x), (x)) is a distance between two matrices, m is a normalization constant, and 

(x) and (x) are the local structure matrices of the corresponding pixels in I1(u(x)) and 

I2(x), respectively.

Since local structure matrices do not live in a vector space, the distance function Δ cannot be 

defined by a conventional Euclidean metric. The matrices are symmetric and positive 

semidefinite (like covariance matrices), however, and therefore belong to a connected 

Riemannian manifold that is locally Euclidean [24]. Accordingly, we can define the distance 

between two structure matrices as
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(13)

where N is the number of rows and columns in each matrix and λn are the generalized 

eigenvalues of (x) and (x) defined by

(14)

where xn, n = 1, …, N, are the corresponding generalized eigenvectors. This definition of 

distance satisfies the metric properties including symmetry, positivity, and the triangle 

inequality. An example of this distance, computed between aligned 2D cine-MRI and hMRI 

images, is shown in Fig. 4(c). This shows that the distance metric is small when there are 

regions of high geometric similarity, such as edges.

We write a modified MI criterion using the above weighting scheme as follows

(15)

where p̂I1 (i1) and p̂I2 (i2) are recomputed based on  as in [25]. Using this modified 

MI, the local structure matrices provide a geometric similarity measure while the image 

intensities continue to provide an appearance measure, thereby allowing us to find 

correspondence more reliably and address the limitation of the traditional MI-based 

registration. In summary, our registration approach seeks to maximize the image similarity 

given By

(16)

where M(x) is a mask comprising only the Type 1 and Type 2 voxels in the higher resolution 

image.

C. Transformation Model

Having defined an image similarity, we must now define a model for the spatial 

transformation that we will use. Here we follow a standard model [26],

(17)

where h1(x) and h2(x) are affine and deformable registrations, respectively. Affine 

registration accounts for large displacements including rotations, translations, and scalings. 

Deformable registration accounts for the finer details at a local level. We use free-form 

deformations (FFD) based on uniform cubic B-splines [26] to implement deformable 

registration. Therefore h2(x) can be written as the 3D tensor product of 1D cubic B-splines,
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(18)

where c denotes the control points and i, j, and k represent the index of the control point.

The B-spline transformation model has three desirable properties for the present application. 

First, estimated deformation field is easily regularized by controlling the control point 

separation [26]. We use this property to balance accuracy versus smoothness of the resulting 

deformation field. Second, B-splines are separable in multiple dimensions, providing 

computational efficiency. We refer the reader to [25], [27] for implementation details. 

Finally, optimization is inherently local, since changing the location of a single control point 

modifies only a local neighborhood of control point [28]. This permits additional 

computational efficiency since regions that have converged do not need further updating.

D. Optimization

The energy functional is minimized using a gradient descent method [29] defined by

(19)

where g(μk) is the derivative of the cost function evaluated at the current position μk. From 

our weighted joint distribution, we first re-compute the marginal probability distribution, pÎ1 
(i1). In calculating the gradient of the modified MI, we follow the work [25], [27]. We first 

derive a Taylor expansion of the modified MI as given by

(20)

We simplify the above equation by ignoring all terms above second-order as in [25]. Here 

the quadratic model yields the optimal solution when the Parzen window is a B-spline of 

degree m ≥ 3 [25].

We then calculate the gradient of the cost function, which is necessary for its efficient 

minimization. The gradient of the modified MI with respect to the parameter μ is given by

(21)

A single component of the gradient is found by

(22)
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Additionally, a multi-resolution scheme is used to represent coarse-to-fine details of both 

volumes for fast and robust registration [30].

IV. Experiments and Results

In this section, we present results of experiments on synthetic data, the brain data, and the 

tongue data, which together demonstrate the performance of the proposed method. Software 

was implemented using C++ with the Insight Segmentation and Registration Toolkit (ITK) 

[31], an open source library. For comparison, we used the MI registration algorithm 

described in Mattes et al. [25], which was also implemented in ITK. All experiments were 

performed on an Intel i7 CPU with a clock speed of 1.74 GHz and 8 GB memory.

A. Synthetic Data

In this experiment, we compared the performance of the proposed method to the 

conventional MI method on a pair of synthetic images at different noise levels, similar to the 

work by Fan et al. [32]. The synthetic images are shown in Figs. 5(a) and 5(b). The images 

in Figs. 5(c) and 5(d) are generated to test robustness of the methods against noise and 

spatial variation. In Fig. 5(c) the object is noisy and spatially variant; the background is 

spatially variant. The pattern is reversed in Fig. 5(d).

Fig. 6 shows the cost values of MI for the proposed method as a function of horizontal and 

vertical shifts ranging from −20 to 20 pixels. When Figs. 5(a) and 5(b) were used as 

template and target images, respectively, both methods found correct alignments as 

illustrated in Figs. 6(a) and 6(d). However, the MI failed to register as shown in Fig. 6(b) 

when Figs. 5(c) and 5(d) were used as template and target images, respectively. This is 

shown more clearly from Figs. 6(c) and 6(f) that the proposed method provided less 

dispersion of joint histogram compared to the MI after registration of Figs. 5(c) and 5(d) 

with initial misalignments of 5 and 5 pixels in x and y axes, respectively. The proposed 

method has good performance on both the noisy images as well as on the noiseless pair. It is 

observed from these examples that the proposed method provided robust and accurate 

results in the presence of noise and spatial variation. Although the intensity values inside the 

object are worsened due to the noise and spatial variance, the proposed method exploited the 

information from spatially salient regions, enabling the proposed method to find correct 

alignment and locating the peak value in the center as illustrated in Fig. 6(e). In these 

experiments, the number of histograms were set to 50 and 80% of the sample size in order to 

calculate MI. In this case, the 2D Harris operator was used to extract corner and edge 

information by setting k=0.05 and T=800.

Additional experiments were carried out to test robustness against different noise levels (see 

Figs. 6(c) and 6(d)) and different spatial variations inside the object and background (see Fig 

7), respectively. To generate the noise, we used Gaussian noise with standard deviation 

varied from 10% to 50% of the pixel value. Multiple registrations were performed with 

different initial positions ranging from −6 to 6 pixels in steps of 3 pixels in x and y directions 

(25 combinations in total per one noise level). A translation spatial transformation was used 

in these experiments and the root-mean-square (RMS) errors between corrected 

displacements and initial positions were used as a metric to measure the accuracy of the 
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registration. Registration was considered to be a success if the RMS error was less than 3 

pixels. Table I and Table II list the percentage of successful registrations for each method 

with different noise levels; Table III and Table IV show statistics of RMS error after 

registration for each method. The performance of the registration using the MI deteriorated 

as the noise or spatial variation were added whereas the proposed method demonstrated 

more robust and superior performance in these experiments.

B. In Vivo Brain Data

1) RIRE data—We used the publicly available brain data from the Retrospective Image 

Registration Evaluation (RIRE) project [34] to objectively evaluate the performance of the 

proposed method. The RIRE project provides ground truth transformation to evaluate rigid 

registration. In our experiments, we focus on the registration between (rectified) MR-T2 and 

PET datasets similar to [33]. The RIRE project provides one training data and seven testing 

data, five of which only have PET images. Thus we use five datasets for PET-MR 

registration (i.e., patient 001, patient 002, patient 005, patient 006, and patient 007). The 

voxel size is 1.25×1.25×4 mm3 for MR, and 2.59×2.59×8 mm3 for PET images.

2) Evaluation—In order to compare different statistical similarity measures, we used the 

results reported in [33] as they used the same data. Our method was compared with several 

entropy-based measures, including MI, normalized MI (NMI), entropy correlation 

coefficient (ECC), cumulative residual entropy correlation coefficient (CRECC), their 

modified overlap invariant measures (MMI, MECC, MCRECC) [35], and a learning based 

method [33]. Please note that we did not reimplement these algorithms but used the results 

in [33]. The accuracy of the registration was evaluated using target registration error (TRE) 

[36] provided by the RIRE project website. To obtain TRE, the physical coordinates of the 

transformed points were uploaded to the RIRE website, thus automatically computing and 

posting TRE on the website1. In our experiments, we set the number of histograms to 50, 

and used the entire volume as the sample size in order to calculate the modified MI. In 

addition, the 3D Harris operator was used to label the voxels by setting k=0.01 and 

T=50,000,000. These parameters were set empirically, but the same parameters were used 

throughout experiments using the RIRE data. The TRE results are shown in Table V. Our 

proposed method outperformed the other methods in terms of mean TRE. However, the 

worst case TRE of the learning based method provided a better result compared to the 

proposed method.

C. In Vivo Tongue Data

By using hMRI when the tongue is at rest, one can visualize details of this muscle anatomy 

(see Fig. 1(c)). The motion of the tongue during speech can be fast and quite complex, 

however, and unlike the heart, it is not periodic by default. These facts make tongue motion 

imaging during speech quite challenging. As a consequence, cine magnetic resonance 

images (cine-MRIs), are captured at movie frame rates but with low spatial resolution (see 

Fig. 1(d)). Since hMRI captures the structure of the tongue and cine-MRI captures the 

motion of the tongue, these two MRI “modalities” offer complementary information about 

1http://www.insight-journal.org/rire/
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the tongue. Our approach allows to further enhance their utility by registering the hMRI 

data, captured in a resting position, to the cine-MRI data.

1) Subjects and Task—Nine normal native American English speakers were subjects in 

this experiment. The speech task was “a geese”. The word was chosen because the motion is 

complex. The tongue moves from a neutral tongue shape in “a” to a high back tongue 

position for “g” which is followed by forward motion into “ee” and tongue body lowering 

for “s”. In addition, this word does not involve jaw opening, which would assist tongue 

motion. Therefore the functional load, creation of different vocal tract configurations, is 

placed entirely on the tongue.

2) Recording and Procedure—Both types of MRI datasets—hMRI and cine-MRI—

were recorded in the same session using a head and neck coil. Cine-MRI datasets were 

collected with a 6 mm slice thickness and had an in-plane resolution of 1.875 mm/pixel. 14 

axial slices were acquired. hMRI datasets were 3 mm thick with an in-plane resolution of 

0.94 mm/pixel. 24 axial slices were acquired. The subjects were required to remain still from 

1.5 to 3 minutes for each plane. The datasets were aligned such that one cine slice contained 

two hMRI slices. University of Maryland MRI facilities have an MRI trigger system that 

uses acoustic cues to synchronize speech utterance repetitions with MRI acquisition. The 

protocol for synchronized auditory cueing is based on the method of Masaki and colleagues 

[37]. Cine-MRI datasets were collected in multiple planes, while the subject repeated speech 

tasks (“a geese”) to the beat of the auditory rhythm cue. To collect the datasets, the subject 

repeated the speech task 4 times per slice. A 15-minute training protocol, with feedback 

from the experimenter, was developed using the subjects. Due to the training, excellent cine 

images are obtained for naive subjects and patients even with long repetition sets. Recording 

time can take up to 1 hour and 15 minutes.

3) Evaluation on Simulated Tongue Data—We first validated the accuracy of the 

proposed method on simulated tongue MR images. Low-resolution MR images were 

generated by downsampling the hMRI by a factor of 2. Low-resolution MR images were 

then deformed artificially using randomly generated transformations by setting maximum 

displacements from 5 to 15 mm. In order to ensure regularity, the transformations were 

smoothed by a Gaussian kernel with standard deviation σ=2. Fig. 9 shows an example of the 

pair of hMRI and a deformed low-resolution MR image, and the ground truth deformation, 

respectively.

Registration of hMRI (template) with the low-resolution MR image (target) was then 

performed using MI-based registration and the proposed method. The obtained deformations 

were compared with the ground truth deformations using the RMS error. We tested the two 

methods on three subjects and the results are shown in Table VI. It is clearly observed from 

the results that the proposed approach offers more accurate registration than the MI-based 

method in all three cases.

4) Evaluation on Real Data—Registration was performed on the two static volumes: (1) 

the first time frame of the axial cine-MRI that was acquired during speech task of “a geese” 

and (2) the axial hMRI volume that was acquired at rest. We used first time frame of cine-
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MRI and hMRI for our registration since first frame of cine-MRI is neutral (schwa position) 

and therefore the position is close to the resting tongue position found in the hMRI data. The 

registration methods used affine registration as an initialization, followed by the deformable 

registration using the proposed and MI-based method using FFD. In our experiments, we set 

the number of histograms to 30, and used 80% of the entire volume as the sample size. We 

used control point spacings of 16 mm in each axis. For the 3D Harris operator, we set k = 

0.001 and T = 50, 000, 000. The parameters were chosen empirically to provide the best 

registration performance. The method stops when the movement is less than 0.001 mm or 

iteration reaches the predefined iteration number 200 in both methods.

To evaluate the accuracy and robustness of the proposed method, we performed two 

experiments on the nine pairs of 3D axial MRI volumes described above. The first 

experiment assessed the accuracy of the registration method using TRE. Two expert 

observers independently selected three corresponding anatomical landmarks from each 

volume including tongue tip, lower lip, and posterior pharynx as illustrated in Fig. 8. Table 

VII lists the mean and standard deviation of TRE and inter-observer variability using both 

methods. In all cases, the original data misalignments were larger than 3.5 voxels. Affine 

registration and further deformable registration using MI and proposed method reduced the 

mean TRE to 2.7 and 2.1 voxels, respectively (p<0.05). The TRE results show that the 

proposed method provided accurate results compared to the traditional MI-based method. In 

addition, the TRE results obtained from the proposed method were not much different from 

the observer variability (p = NS). Fig. 10 shows one result of the first experiment. It is 

apparent in the figure that the proposed method has better alignment.

The second experiment further demonstrated the performance of the registration method. 

Three different levels of intensity non-uniformity (bias) were generated including small 

(20%), medium (40%), and large (60%) bias fields (see Fig. 11). In these experiments, we 

also used TRE to measure the performance of the methods. As shown in Table VIII, the 

results of the proposed method were superior to the MI-based registration and were also 

robust against the bias fields.

V. Discussion

We used a 3D Harris operator to characterize and label the tissue into three disjoint regions 

and the local structure matrix was used in the calculation of a modified MI image similarity 

criterion. It is possible to use other image descriptors to label the tissue. For example, scale 

invariant feature transform (SIFT) [38] or maximally stable extremal regions (MSER) [39] 

are likely to give similar pixel labeling results. However, the local structure matrix defined 

at each voxel offers information about the local geometry, which we were able to exploit in 

a new weighted MI image similarity computation. As demonstrated in the synthetic 

experiments, the capture range may not be wide, compared to the MI. However, in practice, 

we used affine registration as an initialization to further perform deformable registration and 

therefore the capture range did not affect the results greatly.

Multimodal image registration has been explored in great detail (see [3], [4], [11] and 

references therein); however, only a few methods have been proposed for tongue images. 
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Yang and Stone [40] proposed to reconstruct 3D tongue motion by aligning temporal data 

from ultrasound images. Li et al. [41] performed tongue motion averaging to provide best 

representation of speech motion from several repetitions. Singh et al. [42] proposed to 

register multiple swallows for generating high temporal resolution in MRI videos. Aron et 

al. [43] investigated registration of multimodal data including ultrasound, and stereovision 

data within MRI.

The tongue has three orthogonal muscle fiber directions and extensive fiber inter-digitation 

and it has no bones or joints. Therefore MRI is an excellent tool because it images soft tissue 

very well; however, there are challenges. hMRI, collected when the tongue is at rest, can 

visualize the muscle anatomy in great detail, as shown in Fig. 1(b). Cine-MRI captures 

tongue motion at movie frame rates, providing good temporal resolution, but with low 

spatial resolution, as shown in Fig. 1(d). Moreover, these two modalities are different 

enough that their registration is more akin to multimodal registration than unimodal 

registration. Our three dimensional registration approach successfully registered the two 

datasets. A second challenge is that the motion of the tongue during speech can be fast and 

quite complex unlike the heart and it is not periodic by default. These facts make high 

quality tongue image analysis during speech quite challenging. Nonetheless, our method 

provided registered complementary information: temporal and spatial.

The current study registered cine-MRI to hMRI. This is useful for comparing multiple 

subjects in the same spatial coordinate space, such as, high-resolution atlas space [44]. In the 

future, registration from hMRI to cine-MRI is planned. The goal is to incorporate high-

quality muscle definition into cine-MRI to better interpret tongue muscle motion from cine-

MRI data.

To validate the proposed method, experiments with both synthetic and in vivo human 

datasets including the tongue and the brain were performed. Experiments with synthetic 

datasets allowed evaluation of the accuracy and robustness of the proposed method to 

different noise levels. Experiments with human tongue datasets allowed the evaluation of 

both accuracy and robustness in images with different magnitudes of intensity non-

uniformity. Experiments with brain datasets allowed to comparisons of several entropy-

based measures used in [33], [35] and allowed to objectively compare the similarity measure 

itself. This is because the evaluation focused on the rigid transformation and thus the TRE 

results were independent of the choice of the transformation models or different 

regularization methods. It was observed that the proposed method provided superior 

performance even when noise level or the intensity non-uniformity became stronger. Also 

the proposed method outperformed entropy-based similarity measures such as MMI, ECC, 

MECC, CRECC, MCRECC [35], and the learning based method [33].

In our method, the choice of T determines how much anatomical detail is included in the 

registration, which will be different from one application to another. In our case, anatomical 

details are captured in Type 1 and 2 regions and Type 3 captures a homogeneous region. In 

the registration process, Type 1 and 2 regions are combined; therefore we chose T based on 

the Type 3 homogeneous region. Once we set T, we used the same parameters within the 

same experiments as the anatomical details are similarly presented in the images. The 
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choices of the associated weights of Type 1 and 2 and the parameters for the Harris operator 

are subject to modification. Although in this work we used spatially meaningful regions (i.e., 

Type 1 and 2) with the same weights, this can be improved by a mechanism to incorporate 

importance of each region in an adaptive manner such as the work by Yi et al. [16].

The choice of the width of the Parzen window in estimating MI could influence the 

registration performance. While a large width will over-smooth the density estimation and 

mask the structure of the data, a small width will yield a density estimation that is noisy. In 

our work, we used MI metric available in ITK, which used a third order B-spline function as 

the Parzen window [31]. The use of B-spline function satisfies the constraint for the partition 

of unity, while remaining positive, thus being an admissible Parzen window [25], [27]. In 

addition, in the ITK implementation, in calculating the probability density function, the 

image intensity values are linearly scaled between zero and one. Thus, in order to handle 

image data with varying magnitude and range, a fixed B-spline kernel bandwidth of one is 

used [31].

A challenge for the method to be applied in large population studies and routine clinical 

practice is the computational cost. It takes on average 1–2 hours for the in vivo tongue 

experiments on an Intel i7 CPU with a clock speed of 1.74 GHz. This could sped up by 

either implementing the method with GPU or using parallel computing. In addition, more 

sophisticated optimization schemes such as gradient descent with backtracking line search 

could be employed to improve the convergence speed.

Validation of any registration algorithm is a challenging task. Compared to brain 

registration, both tongue image registration and its validation are inherently more difficult 

due to the movement of tongue. Therefore, selecting anatomical landmarks is of great 

importance and, at the same time, a challenging task even for humans, in assessing the 

accuracy of the registration method. This is because there is no true gold standard other than 

visual judgment, which is marred by inter-observer variability. The chosen landmarks are 

soft tissue points that abut the pharyngeal airway. They were chosen because they are visible 

on both datasets; we did not choose other landmarks due to differences in spatial resolution 

of muscles, slice thickness, and T2-weighting. For example, the hinge point of the soft 

palate is not used as a landmark because the hinge point of the soft palate is not comparable 

in the two datasets and the high-resolution dataset captures quiet breathing and the soft 

palate is open. The cine dataset captures speech and the soft palate is closed. Therefore the 

hinge is not the same tissue point in the two datasets. The chosen landmarks are tongue tip, 

lower lip, and posterior pharynx. In the present study, the inter-observer variability was high 

especially in the lower lip but the overall TRE was comparable to inter-observer variability 

(p = NS).

The tongue moves during speech, therefore, different anatomical features including the 

tongue surface and velum move on cine time frames. As a result, there could be geometrical 

ambiguities in finding the correct features to match between hMRI and cine-MRI images. 

Thus, we aligned the hMRI data to the first time frame of the cine image because the tongue 

is in a relatively neutral position due to the “uh” speech sound being made. The position of 
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the tongue and surrounding structures should be close to the resting tongue position found in 

hMRI data.

To our knowledge, this is the first report addressing registration of hMRI and cine-MRI in 

tongue images. These images are multimodal in a certain sense and a method to provide 

routine coregistration could yield a unique resource in the scientific research of speech 

science and speech-related disorders. The proposed work holds promise to bridge the two 

modalities, thereby enriching the information for further tongue image and motion analyses.

VI. Conclusion

In this work, we presented a novel multimodal image registration algorithm. In order to 

address limitations of the MI, we utilized structural information computed from the 3D 

Harris operator to encode spatial and geometric cues into the computation of MI. The 

proposed method was validated extensively on synthetic data, tongue and brain data to 

demonstrate the benefit of its novel features.
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Fig. 1. 
Examples of multimodal images: (a) an MR-T2 image of the brain, (b) a high-resolution 

MRI (hMRI) of the tongue that was acquired at rest, (c) a PET image of the brain, and (d) 

the first time frame of cine-MRI of the tongue. These images differ considerably in spatial 

resolution.
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Fig. 2. 
When the two circles in (a) are to be aligned, the conventional MI objective function in (b) 

fails to show a peak at the correct point of alignment, whereas the proposed method in (c) 

has the desired peak. Note that the values in (b) and (c) are plotted with respect to the x and 

y translation of the dark circle (top (a)) against the gray circle (bottom (a)).
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Fig. 3. 
Examples of voxel labeling using the 3D Harris operator. (a) An axial image of hMRI. In 

(b–d), white voxels represent (b) Type 1 - high variability, (c) Type 2 - moderate variability, 

and (d) Type 3 - small variability.
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Fig. 4. 
Distance calculated between structure matrices in hMRI and cine-MRI. (a) 2D slice of cine 

(left) and high-resolution (right) MR images. (b) First order derivatives with respect to x and 

y axes of 2D cine (top) and high-resolution (bottom) MR slices. (c) Distance between 

structure matrices defined in Eq. (13).
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Fig. 5. 
Synthetic images: (a) and (b) are original images and backgrounds. (c) and (d) show spatial 

gradient or gradient plus noise imposed on the figure or on the background (Image size is 

210×300).

Woo et al. Page 22

IEEE Trans Image Process. Author manuscript; available in PMC 2015 June 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
Comparison between MI (top row) and proposed method (bottom row) on synthetic datasets. 

(a) and (d) represent the cost value plots between Figs. 5(a) and 5(b) as a function of 

horizontal and vertical shifts. (b) and (e) show the cost value plots between Figs. 5(c) and 

5(d). (e) and (f) show the joint histograms plotted after performing registration with initial 

misalignments of 5 and 5 pixels in x and y axes.
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Fig. 7. 
Synthetic images with different spatial variations: (a) low spatial variation, (b) intermediate 

spatial variation, and (c) high spatial variation (Image size is 210×300).
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Fig. 8. 
Anatomical landmarks used for validation shown in one example case with images from 

hMRI (top row) and images from a cine-MRI (bottom row). We have obtained independent 

sets of anatomical landmarks from two expert observers. Red crosses indicate the positions 

of landmarks, including tongue tip, lower lip, and posterior pharyns.
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Fig. 9. 
Synthetic simulation using tongue data. (a) high-resolution MRI, (b) artificially deformed 

downsampled hMRI, and (c) the ground truth deformation. The maximum displacement of 

the ground truth deformation is 15 mm in this case.
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Fig. 10. 
One example of the results: (a) template image (hMRI) (b) volume labeling of the template 

image using the Harris operator, (c) a resulting image using MI-based registration, (d) a 

resulting image using the proposed method and (e) the target image (cine-MRI). The red 

arrows show that (d) and (e) are better aligned than (c) and (e) in terms of vocal tract edge.
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Fig. 11. 
Different non-uniformity fields: (a) original image (b) small bias field (20%), (c) medium 

bias field (40%), (d) large bias field (60%).
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TABLE I

Success rate for both methods on synthetic data (noise)

Noise Level MI Proposed method

0% 90% 100%

10% 72% 100%

20% 40% 100%

30% 32% 100%

40% 28% 92%

50% 32% 92%
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TABLE II

Success rate for both methods on synthetic data (spatial variation)

Spatial Variation MI Proposed method

Low 90% 90%

Intermediate 24% 68%

High 16% 52%
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TABLE III

RMS error (pixel) after registration for both methods on synthetic data (noise)

Noise level
MI Proposed method

Mean±SD Max Mean±SD Max

0% 2.28±1.23 6.45 0.06±0.01 0.06

10% 2.48±1.48 7.34 0.07±0.01 0.07

20% 3.42±1.79 6.64 0.20±0.01 0.21

30% 4.07±1.70 6.65 0.24±0.01 0.24

40% 3.87±1.45 6.61 0.69±1.32 5.54

50% 3.73±1.53 6.49 0.79±1.58 6.47
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TABLE IV

RMS error (pixel) after registration for both methods on synthetic data (spatial variation)

Spatial Variation
MI Proposed method

Mean±SD Max Mean±SD Max

Low 2.16±0.46 3.25 1.40±1.52 5.90

Intermediate 3.42±0.63 4.82 1.98±1.95 8.10

High 3.69±1.42 9.88 3.31±2.94 11.45

IEEE Trans Image Process. Author manuscript; available in PMC 2015 June 14.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Woo et al. Page 33

T
A

B
L

E
 V

PE
T

-M
R

 r
eg

is
tr

at
io

n 
er

ro
rs

 u
si

ng
 th

e 
R

IR
E

 d
at

a

T
R

E
 (

m
m

)
M

I
M

M
I

N
M

I
E

C
C

M
E

C
C

C
R

E
C

C
M

C
R

E
C

C
L

ea
rn

in
g-

ba
se

d 
M

et
ho

d 
[3

3]
P

ro
po

se
d 

M
et

ho
d

M
ea

n
8.

19
3.

00
3.

20
3.

10
2.

96
3.

34
3.

29
2.

60
2.

44

M
ed

ia
n

5.
16

2.
37

2.
64

2.
54

2.
40

3.
01

2.
95

2.
52

1.
81

M
ax

37
.1

8
7.

71
7.

57
7.

65
7.

50
7.

53
7.

47
4.

81
5.

81

IEEE Trans Image Process. Author manuscript; available in PMC 2015 June 14.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Woo et al. Page 34

T
A

B
L

E
 V

I

R
M

S 
er

ro
r 

(m
m

) 
be

tw
ee

n 
gr

ou
nd

 tr
ut

h 
an

d 
re

co
ve

re
d 

de
fo

rm
at

io
ns

 u
si

ng
 s

yn
th

et
ic

 to
ng

ue
 s

im
ul

at
io

n.

M
ax

Su
b 

1
Su

b 
2

Su
b 

3

M
I

P
ro

po
se

d
M

I
P

ro
po

se
d

M
I

P
ro

po
se

d

15
1.

16
7

0.
95

9
1.

27
5

1.
23

0
1.

36
1

1.
19

0

14
1.

13
4

0.
93

9
1.

22
3

1.
17

5
1.

38
0

1.
19

9

13
1.

10
2

0.
90

4
1.

19
4

1.
12

2
1.

28
5

1.
11

2

12
1.

08
0

0.
86

9
1.

15
3

1.
08

6
1.

25
7

1.
06

1

11
1.

03
5

0.
82

6
1.

08
9

1.
01

3
1.

18
9

0.
98

6

10
1.

02
7

0.
78

5
1.

06
6

0.
97

1
1.

15
4

0.
93

4

9
1.

00
3

0.
74

5
1.

03
8

0.
95

6
1.

12
7

0.
90

1

8
0.

98
4

0.
71

9
0.

99
4

0.
88

4
1.

11
8

0.
85

2

7
0.

96
8

0.
68

2
0.

98
0

0.
87

6
1.

05
8

0.
80

0

6
0.

94
7

0.
65

1
0.

96
3

0.
82

9
1.

03
6

0.
77

0

5
0.

95
2

0.
63

5
0.

94
0

0.
80

2
0.

99
7

0.
73

1

IEEE Trans Image Process. Author manuscript; available in PMC 2015 June 14.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Woo et al. Page 35

T
A

B
L

E
 V

II

R
eg

is
tr

at
io

n 
er

ro
rs

 a
nd

 o
bs

er
ve

r 
va

ri
ab

ili
ty

 (
vo

xe
l)

T
R

E
 (

vo
xe

l)
B

ef
or

e 
R

eg
is

tr
at

io
n

A
ff

in
e 

R
eg

is
tr

at
io

n
M

I
P

ro
po

se
d 

m
et

ho
d

O
bs

er
ve

r 
V

ar
ia

bi
lit

y

T
on

gu
e 

T
ip

6.
2±

3.
7

3.
8±

1.
4

3.
6±

1.
8

2.
5±

1.
2

1.
8±

1.
3

L
ow

er
 L

ip
3.

9±
1.

8
2.

8±
1.

1
2.

6±
1.

4
1.

8±
1.

2
2.

7±
1.

7

Po
st

er
io

r 
ph

ar
yn

x
3.

9±
5.

8
1.

9±
0.

9
1.

5±
0.

7
1.

5±
0.

9
1.

4±
1.

3

A
ve

ra
ge

4.
7±

4.
0

3.
1±

2.
8

2.
7±

2.
6

2.
1±

1.
2

2.
0±

1.
4

IEEE Trans Image Process. Author manuscript; available in PMC 2015 June 14.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Woo et al. Page 36

TABLE VIII

Registration errors in different non-uniformity fields (voxel)

TRE (voxel) Affine Registration MI Proposed method

Small bias field (20%) 3.8±1.6 3.5±2.6 2.3±1.2

Medium bias field (40%) 3.7±1.3 3.6±2.6 2.4±1.2

Large bias field (60%) 3.8±1.5 3.8±2.5 2.7±1.5
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