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Worst-Case Linear Discriminant Analysis as
Scalable Semidefinite Feasibility Problems

Hui Li, Chunhua Shen, Anton van den Hengel, Qinfeng Shi

Abstract—In this paper, we propose an efficient semidefinite
programming (SDP) approach to worst-case linear discriminant
analysis (WLDA). Compared with the traditional LDA, WLDA
considers the dimensionality reduction problem from the worst-
case viewpoint, which is in general more robust for classifica-
tion. However, the original problem of WLDA is non-convex
and difficult to optimize. In this paper, we reformulate the
optimization problem of WLDA into a sequence of semidefinite
feasibility problems. To efficiently solve the semidefinite feasibility
problems, we design a new scalable optimization method with
quasi-Newton methods and eigen-decomposition being the core
components. The proposed method is orders of magnitude faster
than standard interior-point based SDP solvers.

Experiments on a variety of classification problems demon-
strate that our approach achieves better performance than
standard LDA. Our method is also much faster and more scalable
than standard interior-point SDP solvers based WLDA. The
computational complexity for an SDP with m constraints and ma-
trices of size d by d is roughly reduced from O(m3+md3+m2d2)
to O(d3) (m > d in our case).

Index Terms—Dimensionality Reduction, Worst-Case Linear
Discriminant Analysis, Semidefinite Programming

I. INTRODUCTION

Dimensionality reduction is a critical problem in machine
learning, pattern recognition and computer vision, which for
linear case learns a transformation matrix W∈ Rd×r (r ≤ d)
to project the input data x∈Rd to a lower-dimensional space
y = W>x ∈ Rr such that the important structure or geometry
of input data is preserved. It can help us to eliminate the
inherent noise of data, and improve the classification perfor-
mance. It can also decrease the computational complexities
of subsequent machine learning tasks. There are two classi-
cal dimensionality reduction methods used widely in many
applications, principal component analysis (PCA) and linear
discriminant analysis (LDA). PCA is an unsupervised linear
dimensionality reduction method, which seeks a subspace of
the data that have the maximum variance and subsequently
projects the input data onto it. PCA may not give good
classification performance due to its unsupervised nature. LDA
is in supervised fashion, which aims to maximize the average
distance between each two class means and minimize the
average distance between each two samples within the same
class. However, it has some limitations: 1) For c-class data,
the target dimension of the projected subspace is restricted
to be at most (c − 1). In this sense, LDA is suboptimal and
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may cause so called class separation problem that LDA tends
to merge classes which are close in the original space; 2)
It assumes that conditional probability density functions are
normally distributed, which does not hold in many cases; 3)
The scatter matrices are required to be nonsingular.

There are a large number of extension works to LDA and
PCA [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]. Among
these methods, our focus in this paper is on the discrimination
criterion of worst-case linear discriminant analysis (WLDA),
which was proposed by Zhang et al. [5]. Instead of using
average between-class and within-class distances as LDA,
WLDA considers scatter measures from the worst-case view,
which arguably is more suitable for applications like classi-
fication. Specifically, WLDA tries to maximize the minimum
of pairwise distances between class means, and minimize the
maximum of within-class pairwise distances over all classes.
Due to the complex formulation of its criterion, the problem
of WLDA is difficult to optimize.

In [5], the problem of WLDA was firstly relaxed to a metric
learning problem on Z=WW>, which can be solved by a se-
quence of SDP optimization procedures, where SDP problems
are solved by standard interior-point methods (We denote it
as Zhang et al. (SDP)). However, standard interior-point SDP
solvers scale poorly to problems with high dimensionality, as
the computational complexity is O(m3 +md3 +m2d2), where
d is the problem size, and m is the number of constraints in
SDP. An alternative optimization procedure was then proposed
in [5] for large-scale WLDA problems, in which one column
of the transformation matrix was found at each iteration while
fixing the other directions. We denote this method as Zhang et
al. (SOCP) since it was reformulated as a series of second-
order cone programming (SOCP) problems lastly. Typically,
this greedy method does not guarantee to find a globally
optimal solution.

In this paper we propose a fast SDP approach to solve
WLDA problem. The problem is converted to a sequence
of SDP feasibility problems using bisection search strategy,
which can find a globally optimal solution to the relaxed prob-
lem. More importantly, we adopt a novel approach to solve
SDP feasibility problem at each iteration. Motivated by [11],
a Frobenius-norm regularized SDP formulation is used, and
its Lagrangian dual can be solved effectively by quasi-Newton
methods. The computational complexity of this optimization
method is dominated by eigen-decomposition at each iteration,
which is O(d3). The proposed method is denoted as SD-
WLDA. The main contributions of this work are: 1) By
introducing an auxiliary variable, the original WLDA problem
is reformulated and can be solved via a sequence of convex

ar
X

iv
:1

41
1.

74
50

v1
  [

cs
.L

G
] 

 2
7 

N
ov

 2
01

4



MANUSCRIPT 2

feasibility problems, by which the global optimum can be
obtained for the relaxed metric learning problem. 2) By virtue
of the use of Frobenius norm regularization, the optimization
problem can be addressed by solving its Lagrange dual, where
first-order methods such as quasi-Newton can be used. This
approach is much faster than solving the corresponding primal
problem using standard interior-point methods, and can be
applied to large-scale problems. Next, we briefly review some
relevant work.

Dimensionality reduction In order to overcome the draw-
backs of LDA and improve the accuracy in classification,
many extensions have been proposed, such as relevant com-
ponent analysis (RCA) [1], neighborhood component anal-
ysis (NCA) [2], null space LDA (NLDA) [3], orthogo-
nal LDA (OLDA) [4], Enhanced fisher discriminant cri-
terion (EFDC) [6], Geometric mean-based subspace selec-
tion (GMSS) [7], Harmonic mean-based subspace selection
(HMSS) [8], and Max-min distance analysis (MMDA) [9].
Assuming dimensions with large within-class covariance are
not relevant to subsequent classification tasks, RCA [1] assigns
large weights to “relevant dimensions” and small weights to
“irrelevant dimensions”, where the relevance is estimated using
equivalence constraints. NCA [2] learns the transformation
matrix W directly by minimizing the expected leave-one-out
classification error of k-nearest neighbours on the transformed
space. Because the objective function to be optimized is not
convex, NCA tends to converge to a local optimum. NLDA [3],
OLDA [4] and EFDC [6] were proposed to address the
problem that standard LDA fails when scatter matrices are
singular. NLDA maximizes the between-class distance in the
null space of the within-class scatter matrix, while OLDA
calculates a set of orthogonal discriminant vectors by diag-
onalizing the scatter matrices simultaneously. The resulting
transformation matrices are both orthogonal for NLDA and
OLDA, and they are equivalent to each other under a mild
condition [12]. EFDC incorporates the intra-class variation
into the Fisher discriminant criterion, so that data from the
same class can be mapped to a subspace where both the intra-
class compactness and intraclass variation are well preserved.
In this way, this method is robust to the intraclass variation
and results in a good generalization capability. To avoid the
class separation problem of LDA, Tao et al. [13] proposed
a general averaged divergence analysis (GADA) framework,
which presented a general mean function in place of the
arithmetic mean used in LDA. By choosing different mean
functions, several subspace selection algorithms have been
developed. GMSS [7] investigates the effectiveness of the
geometric mean-based subspace selection, which maximizes
the geometric mean of Kullback-Leibler (KL) divergences be-
tween different class pairs. HMSS [8] maximizes the harmonic
mean of the symmetric KL divergences between all class
pairs. They adaptively give large weights to class pairs that
are close to each other, and result in better class separation
performance than LDA. Instead of assigning weights to class
pairs, MMDA [9] directly maximizes the minimum pairwise
distance of all class pairs in the low-dimensional subspace,
which guarantees the separation of all class pairs. However,
MMDA does not take into account of the within-class pairwise

distances over all classes. Recently, Bian et al. [10] presented
an asymptotic generalization analysis of LDA, which enriched
the existing theory of LDA further. They showed that the
generalization ability of LDA is mainly determined by the ratio
of dimensionality to training sample size, where both feature
dimensionality and training data size can be proportionally
large.

Many dimensionality reduction algorithm such as PCA
and LDA can be formulated into a trace ratio optimization
problem [14]. Guo et al. [15] presented a generalized Fisher
discriminant criterion, which is essentially a trace ratio. They
proposed a heuristic bisection way, which was proven to
converge to the precise solution. Wang et al. [16] tackled the
trace ratio problem directly by an efficient iterative procedure,
where a trace difference problem was solved via the eigen-
decomposition method in each step. Shen et al. [17] provided a
geometric revisit to the trace ratio problem in the framework of
optimization on the Grassmann manifold. Different from [16],
they proposed another efficient algorithm, which employed
only one step of the parallel Rayleigh quotient iteration at each
iteration. Kokiopoulou et al. [18] also treated the dimensional-
ity reduction problem as trace optimization problems, and gave
an overview of the eigenvalue problems encountered in dimen-
sionality reduction area. They made a comparition between
nonlinear and linear methods for dimensionality reduction,
including Locally Linear Embedding (LLE), Laplacean Eigen-
maps, PCA, Locality Preserving Projections (LPP), LDA, etc.,
and showed that all the eigenvalue problems in explicit linear
projections can be regarded as projected analogues of the so-
called nonlinear projections.

Different from the aforementioned methods, WLDA con-
siders the dimensionality reduction problem from a worst-case
viewpoint. It maximizes the worst-case between-class scatter
matrix and minimizes the worst-case within-class scatter ma-
trix simultaneously, which can lead to more robust classifica-
tion performance. The inner maximization and minimization
over discrete variables make it different from the general trace
ratio problem, and difficult to solve. The method of solving the
general trace ratio problem cannot be extended here directly.
Furthermore, different from the iterative algorithm for trace
ratio optimization problem [16], we formulate the WLDA
problem as a sequence of SDP problems, and propose an
efficient SDP solving method. The eigen-decomposition we
used is to solve the Lagrange dual gradient, which differs from
that employed in solving the trace ratio optimization problem.

Solving large-scale SDP problems Instead of learning the
transformation matrix W, quadratic Mahalanobis distance
metric learning methods (which are highly related to di-
mensionality reduction methods) optimize over Z = WW>,
in order to obtain a convex relaxation. The transformation
matrix W can be recovered from the eigen-decomposition of
Z. Because Z is positive semidefinite (p.s.d.) by definition,
quadratic Mahalanobis metric learning methods optimizing on
Z usually need to solve an SDP problem.

Xing et al. [19] formulated metric learning as a convex
(SDP) optimization problem, and a globally optimal solution
can be obtained. Weinberger et al. [20] presented a distance
metric learning method, which optimizes a Mahalanobis metric
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such that the k-nearest neighbours always belong to the same
class while samples from different classes are separated by
a large margin. In terms of SDP solver, they proposed an
alternate projection method, where the learned metric Z is
projected back onto the p.s.d. cone by eigen-decomposition
at each iteration. MMDA [9] was solved approximately by
a sequence of SDP problems using standard interior-point
methods. Shen et al. [21] proposed a novel SDP based method
for directly solving trace quotient problems for dimensionality
reduction. With this method, globally-optimal solutions can be
obtained for trace quotient problems.

As we can see, many aforementioned methods used standard
interior-point SDP solvers, which are unfortunately compu-
tationally expensive (computational complexity is O(m3 +
md3 +m2d2)) and scale poorly to large-scale problems. Thus
an efficient SDP optimization approach is critical for large-
scale metric learning problems.

There are many recent work to address large-scale SDP
problems arising from distance metric learning and other
computer vision tasks. Shen et al. [11] proposed a fast SDP
approach for solving Mahalanobis metric learning problem.
They introduced a Frobenius-norm regularization in the ob-
jective function of SDP problems, which leads to a much
simpler Lagrangian dual problem: the objective function is
continuously differentiable and p.s.d. constraints in the dual
can be eliminated. L-BFGS-B was used to solve the dual,
where a partial eigen-decomposition needed to be calculated
at each iteration. Wang et al. [22] also employed a similar
dual approach to solve binary quadratic problems for computer
vision tasks, such as image segmentation, co-segmentation,
image registration. SDP optimization method in [11], [22]
can be seen as an extension of the works in [23], [24],
which considered semidefinite least-squares problems. The key
motivation of [23], [24] is that the objective function of the
corresponding dual problem is continuously differentiable but
not twice differentiable, therefore first-order methods can be
applied. Malick [24] and Boyd and Xiao [23] proposed to
use quasi-Newton methods and projected gradient methods
respectively, to solve the Lagrangian dual of semidefinite least-
squares problems. Semismooth Newton-CG methods [25]
and smoothing Newton methods [26] are also exploited for
semidefinite least-squares problems, which require much less
number of iterations at the cost of higher computational com-
plexity per iteration (full eigen-decomposition plus conjugate
gradient).

Alternatively, stochastic (sub)gradient descent (SGD) meth-
ods [27] were also employed to solve SDP problems. Com-
bining with alternating direction methods [28], [29], SGD
can be used for SDP problems with inequality and equality
constraints. The computational bottleneck of typical SGD is
the projection of one infeasible point onto the p.s.d. cone at
each iteration, which leads to the eigen-decomposition of a
d × d matrix. A number of methods have been proposed to
speed up the projection operation at each iteration. Chen et
al. [30] proposed a low-rank SGD method, in which rank-
k stochastic gradient is constructed and then the projection
operation is simplified to compute at most k eigenpairs. In the
works of [31], [32], [33], [34], the distance metric is updated

by rank-one matrices iteratively, and no eigen-decomposition
or only one leading eigenpair is required. Note that SGD
methods usually need more iterations to converge than the
dual approaches based on quasi-Newton methods [11].

The most related work to ours may be Shen et al.’s [11].
We use similar SDP optimization technique as that in [11].
However, SDP feasibility problems are considered in our paper
while the work in [11] focuses on standard SDP problems with
linear objective functions.

Notation We use a bold lower-case letter x to denote a
column vector, and a bold capital letter X to denote a matrix.
X> is the transposition of X. Rm×n indicates the set of m×n
matrices. In represents an n × n identity matrix. X < Y
indicates that the matrix X − Y is positive semidefinite.
〈·, ·〉 denotes the inner product of two matrices or vectors.
Tr(·) indicates the trace of a matrix. ‖ · ‖F is the Frobenius
norm of a matrix. diag(·) returns a diagonal matrix with
the input elements on its main diagonal. Suppose that the
eigen-decomposition of a symmetric matrix X ∈ Rn×n is
X = Udiag(λ1, λ2, . . . , λn)U>, where U is the orthonormal
matrix of eigenvectors of X, and λ1, . . . , λn are the corre-
sponding eigenvalues, we define the positive and negative parts
of X respectively as

(X)+ = Udiag(max(λ1, 0), . . .max(λn, 0))U>, (1)

(X)− = Udiag(min(λ1, 0), . . .min(λn, 0))U> (2)

It is clear that X = (X)+ + (X)− holds.

II. WORST-CASE LINEAR DISCRIMINANT ANALYSIS

We briefly review WLDA problem proposed by [5] firstly.
Given a training set of n samples D = {x1, . . . ,xn} (xn ∈
Rd), which consists of c ≥ 2 classes Πi, i = 1, . . . , c, where
class Πi contains ni samples. As we mentioned before, the aim
of linear dimensionality reduction is to find a transformation
matrix W ∈ Rd×r with r ≤ d.

We define the within-class scatter matrix of the kth class
Πk as

Sk =
1

nk

∑
xi∈Πk

(xi −mk)(xi −mk)>, (3)

which is also the covariance matrix for the kth class, and
mk = 1

nk

∑
xi∈Πk

xi is the class mean of the kth class Πk.
The between-class scatter matrix of the ith and jth classes is
defined as

Sij = (mi −mj)(mi −mj)
>. (4)

Unlike LDA which seeks to minimize the average within-
class pairwise distance, the within-class scatter measure used
in WLDA is defined as

ρw = max
1≤k≤c

{
Tr(W>SkW)

}
, (5)

which is the maximum of the within-class pairwise distances
over all classes.

On the other hand, the between-class scatter measure used
in WLDA is defined as

ρb = min
1≤i<j≤c

{
Tr(W>SijW)

}
. (6)
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ρb uses the minimum of the pairwise distances between class
means, instead of the average of distances between each class
mean and the sample mean employed in LDA.

The optimality criterion of WLDA is defined as to maximize
the ratio of the between-class scatter measure to the within-
class scatter measure:

max
W

ρb
ρw
, (7a)

s.t. W>W = Ir. (7b)

As stated in [5], this problem (7) is not easy to optimize
with respect to W, so a new variable Z = WW> ∈ Rd×d
is introduced, and the problem (7) is formulated as a metric
learning problem.

Theorem 2.1. Define sets Ω1 = {WW> : W>W = Ir,W ∈
Rd×r}, and Ω2 = {Z : Z = Z>,Tr(Z) = r,0 4 Z 4 Id}.
Then Ω1 is the set of extreme points of Ω2, and Ω2 is the convex
hull of Ω1.

This theorem has been widely used and its proof can be
found in [35]. According to Theorem 2.1, the orthonormal
constraint on W can be relaxed to convex constraints on Z =
WW>, and the problem (7) can be relaxed to the following
problem defined on a p.s.d. variable Z [5]:

max
Z

min1≤i<j≤c{Tr(SijZ)}
max1≤k≤c{Tr(SkZ)}

, (8a)

s.t. Tr(Z) = r, (8b)
0 4 Z 4 Id. (8c)

Once the optimal solution Z? is obtained, the optimal W?

for problem (7) can be recovered using the top r eigenvectors
of Z?.

In [5], Zhang et al. proposed two methods to solve (7), as
we stated in Section I. In the first one, an iterative algorithm
was presented to solve the relaxed problem (8), where an SDP
problem needs to be solved at each step by standard SDP
solver. This method is not scalable to problems with high
dimensionality or large training data points. The second one
is based on a greedy approach, which cannot guarantee to find
a globally optimal solution.

Hence, in the next section, we will describe our algorithm
(so called SD-WLDA) of finding the transformation matrix
Z = WW> that maximizes (8), and demonstrate how to solve
it using an efficient approach.

III. A FAST SDP APPROACH TO WLDA

In this section, problem (8) is firstly reformulated into a
sequence of SDP optimization problems based on bisection
search. Then, a Frobenius norm regularization is introduced
and the SDP problem in each step is solved through La-
grangian dual formulation. With this SD-WLDA method, the
global optimum can be acquired for the relaxed problem
(8). The computational complexity can be reduced as well
by solving the dual problem using quasi-Newton methods,
compared with solving the primal problem directly using
interior-point based algorithm.

Algorithm 1 Solving problem (9) by bisection search.
Input: δl: the lower bound of δ; δu: the upper bound of δ;

and the tolerance σ > 0.
while |δu−δl|

δl
> σ do

1). δ◦ = δl+δu
2 .

2). Solve SDP feasibility problem (10)
if (10) is feasible then

Get the feasible solution Z, δl = δ◦;
else
δu = δ◦.

end if
end while
3). δ? = δ◦, and save the corresponding Z?.

Output: Z?,δ?.

A. Problem Reformulation

By introducing an auxiliary variable δ, problem (8) can be
rewritten as

max
δ,Z

δ, (9a)

s.t. Tr(SijZ) ≥ δTr(SkZ), ∀1 ≤ i < j ≤ c, 1 ≤ k ≤ c,
(9b)

Tr(Z) = r, (9c)
0 4 Z 4 Id. (9d)

There are two variables δ,Z to be optimized in problem
(9), but we are interested in finding Z that can maximize
δ. Problem (9) is clearly non-convex with respect to δ and
Z since the constraint (9b) is not convex. However, noting
that (9b) will become linear if δ is given, we employ the
bisection search strategy and convert the optimization problem
(9) into a set of convex feasibility problems, by which the
global optimum can be computed effectively.

Let δ? denote the optimal value of (9a). Given δ◦ ∈ R, if
the convex feasibility problem

find Z, (10a)
s.t. Tr(SijZ) ≥ δ◦Tr(SkZ), ∀1 ≤ i < j ≤ c, 1 ≤ k ≤ c,

(10b)
Tr(Z) = r, (10c)
0 4 Z 4 Id, (10d)

is feasible, then δ? ≥ δ◦. Otherwise, if the above problem is
infeasible, then δ? < δ◦.

Algorithm 1 shows the bisection search based optimization
process. Once a feasible solution Z? is obtained which maxi-
mize δ, Z? will be the globally optimal solution to the relaxed
problem (8). The optimal W? for problem (7) can be acquired
using the top r eigenvectors of Z?.

B. Lagrangian Dual Formulation

Algorithm 1 shows that an SDP feasibility problem needs
to be solved at each step during the bisection search process.
Considering that standard interior-point SDP solvers have a
computational complexity of O(m3 + md3 + m2d2), where
d is the dimension of input data, and m is the number of
constraints in SDP, it becomes quite expensive for processing
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high-dimensional data. In this subsection, we reformulate the
feasibility problem (10) into a Frobenius norm regularized
SDP problem, which can be efficiently solved via its La-
grangian dual using first-order methods like quasi-Newton.
The computational complexity will be reduced to O(d3). The
primal solution Z? can then be calculated from the dual
solution based on Karush-Kuhn-Tucker (KKT) [36, p. 243]
conditions.

The problem (10) can be expressed equivalently in the
following form:

find X =

[
Z 0
0 Q

]
, (11a)

s.t. Tr(S̄ijkX) ≥ 0, ∀1 ≤ i < j ≤ c, 1 ≤ k ≤ c, (11b)
Tr(ĪdX) = r, (11c)

Tr(H>stX) = Id(s, t), ∀1 ≤ t ≤ s ≤ d, (11d)
X < 0, (11e)

where S̄ijk =

[
Sij − δ◦Sk 0

0 0

]
, Īd =

[
Id 0
0 0

]
, and

Hst(p, q) =


1 p = s, q = t; or p = t, q = s;

or p = s+ d, q = t+ d;

or p = t+ d, q = s+ d;

0 Otherwise.

.

In the above formulation, the variable 0 4 Z 4 Id is

replaced by X =

[
Z 0
0 Q

]
< 0, where Q = Id − Z. The

constraints (11b) and (11c) correspond to (10b) and (10c),
respectively. The constraints (11d) stem from the fact that
Q + Z = Id.

Proposition 3.1. Given δ◦ ∈ R, if the problem (10) and
equivalently (11) is feasible, one feasible solution exists for the
following semidefinite least-squares problem:

min
X

1

2
‖X‖2F , (12a)

s.t. Tr(S̄ijkX) ≥ 0, ∀1 ≤ i < j ≤ c, 1 ≤ k ≤ c, (12b)
Tr(ĪdX) = r, (12c)

Tr(H>stX) = Id(s, t), ∀1 ≤ t ≤ s ≤ d, (12d)
X < 0, (12e)

If the problem (12) is feasible, its optimal solution X? can
be used as a feasible solution to (11), and one solution Z? to
problem (10) can be acquired as well.

The problem (12) is a standard semidifinite least-square
problem and can be solved readily by off-the-shelf SDP
solvers. However, as we mentioned before, the computational
complexity is really high if we solve the primal problem
directly by standard interior-point SDP solvers. It will greatly
hamper the use of WLDA in large-scale problems. Thanks
to the Frobenius norm regularization in the objective function
of (12), we can use Lagrangian dual approach to solve the
problem easily.

Introducing the Lagrangian multipliers u ∈ R 1
2 (c3−c2), v ∈

R, p ∈ R 1
2 (d2+d) corresponding to the constraints (12b)-(12d),

and a symmetric matrix Y ∈ Rd×d corresponding to the p.s.d.
constraint (12e), the following result can be acquired.

Proposition 3.2. The Lagrangian dual problem of (12) can be
simplified in the following form:

min
u,v,p

1

2
‖(Ā)+‖2F − vr −

d∑
s=1

pss, s.t. u ≥ 0, (13)

where
Ā =

∑
i,j,k

uijkS̄ijk + vĪd +
∑
s,t

pstH
>
st. (14)

Furthermore, the optimal solution to problem (12) is X? =
(Ā?)+, where Ā? =

∑
i,j,k u

?
ijkS̄ijk + v?Īd +

∑
s,t p

?
stH
>
st,

which is calculated based on the optimal dual variables u?, v?,
and p?.

From the definition of Ā? and the operator (·)+, X? is
forced to be p.s.d. and block-diagonal, so the optimal solution
Z? to problem (10) can be acquired easily. In addition, it is
noticed that the objective function of (13) is differentiable (but
not necessarily to be twice differentiable), it allows us to solve
the dual problem efficiently using first-order methods, such as
quasi-Newton methods.

The gradient of the objective function in problem (13)

is g(u, v,p) =

 〈Ā+, Sijk〉, ∀1 ≤ i < j ≤ c, 1 ≤ k ≤ c
〈Ā+, Id〉 − r
〈Ā+, H

>
st〉 − θ, ∀1 ≤ t ≤ s ≤ d

,

where θ =

{
1 s = t;

0 s 6= t.

C. Feasibility Condition

As stated in Proposition 3.1, if (10) is feasible, a solution
can be found by solving the problem (12). During running
quasi-Newton algorithms to solve the problem (12), an infea-
sibility condition of the problem (10) needs to be checked
iteratively, which is presented here:

Proposition 3.3. If the following conditions are satisfied{ ‖(Ā)+‖F
|vr+

∑d
s=1 pss|

< ε,

vr +
∑d
s=1 pss > 0,

(15)

then the problem (10) is considered as infeasible.

This infeasibility condition can be deduced from a general
conic feasibility problem presented in [37]. Explanations are
presented in detail in the appendix. We check this condition
at each iteration of quasi-Newton algorithms. Ā+ is evaluated
during calculating the dual objective function, so it will not
bring extra computational cost. Once the condition (15) is
satisfied, problem (10) (equivalently (11)) is not feasible and
quasi-Newton algorithms will be stopped. Otherwise, quasi-
Newton algorithms keep running until convergence, and then
a feasible solution X? = (Ā?)+ to the problem (11) is found.

D. Solving the Feasibility Problem

In this subsection, we summarize the procedure of solving
the problem (10) by our fast SDP optimization algorithm. It
has been domenstrated that we can find the feasible solution
to (10) by solving the dual problem (13) with quasi-Newton
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Algorithm 2 Optimization procedure for solving problem (10).
Input: δ◦, flag = 1. Initialize dual variables u, v, p.

1). Solve the dual (13) using L-BFGS-B.
repeat

1.1). Calculate the objective and gradient of the objective
function in (13).
1.2). Check the feasibility condition (15):
if the condition (15) is satisfied then

flag = 0 and break.
end if
1.3). Update dual variables u, v, p.

until L-BFGS-B is converged.
2). Compute X? by eigen-decomposition.
3). Decompose Z? from X?.

Output: Z?, flag (1: feasible, 0: infeasible).

methods. In this work, we use L-BFGS-B [38], [39], a limited-
memory quasi-Newton algorithm package, which can handle
the problem with box constraints. Here we only need to
provide the callback function to L-BFGS-B, which calculates
the objective function of (13) and its gradient. The procedure
of finding the feasible solution Z is described in Algorithm 2.

E. Computational Complexity Analysis

The computational complexity of L-BFGS-B is O(Km),
where K is a moderate number between 3 to 20, m =
1
2 (c3 − c2) + 1 + 1

2 (d2 + d) is the problem size to be solved
by L-BFGS-B, which is equal to the number of constraints in
the primal SDP problem (12). At each iteration of L-BFGS-
B, the eigen-decomposition of a 2d × 2d matrix is carried
out to compute Ā+, which is used to evaluate all the dual
objective values, gradients, as well as the feasibility conditions
(15). The computational complexity is O(d3). Hence, the
overall computational complexity of our algorithm SD-WLDA
is O(Km + d3). Since Km � d3, eigen-decomposition
dominates the most computational time of SD-WLDA, which
is O(d3). On the other hand, solving an SDP problem using
standard interior-point methods needs a computational com-
plexity of O(m3 + md3 + m2d2). Since m > d in our case,
our algorithm is much faster than interior-point methods, and
can be used to large-scale problems.

IV. EXPERIMENTS

In this section, experiments are performed to verify the
performance of SD-WLDA. We conduct comparisons between
SD-WLDA and other methods on both classification per-
formance and computational complexity. The classification
performance is contrasted between SD-WLDA and LDA,
LMNN, OLDA. We also compare the performance of our SD-
WLDA with both optimization methods proposed by Zhang et
al. in [5] (Zhang et al. (SDP) and Zhang et al. (SOCP)
receptively). This can be used to verify the correctness of
our algorithm. The computational complexity is compared
between SD-WLDA, standard interior-point algorithms to
solve our SDP formulation (SDPT3 [40] and SeDuMi [41]),

Zhang et al. (SDP) which uses SDPT3 as well, and Zhang et
al. (SOCP).

All algorithms are tested on a 2.7GHz Intel CPU with
20G memory. The SD-WLDA algorithm is implemented in
Matlab, where the Fortran code of L-BFGS-B is employed to
solve the dual problem (13). The Matlab routine “eig” is used
to compute eigen-decomposition. The tolerance setting of L-
BFGS-B is set to default. The tolerance σ in Algorithm 1 is set
to 1e−3, and the parameter ε in the feasibility condition (15)
is set to 1e−3.

A. Experiments on UCI Datasets

Some UCI datasets [42] are used here firstly. We perform 30
random splits for each dataset, with 70% as training samples
and 30% as test samples. The classification performance is
evaluated based on 5 nearest neighbour (5-NN) classifier. For
fair comparison with LDA, the final dimension is set to (c−1).

The experimental results are presented in Table I, where
the baseline results are obtained by applying 5-NN classifier
on the original feature space directly. For each dataset, the
experiment runs 30 times, and the error rate is reported by
the mean error as well as the standard deviation. The smallest
classification error is shown in bold. The results illustrate that
WLDA gives smaller classification error rates compared to
other algorithms in most datasets. The classification results
by our fast SDP solving algorithm SD-WLDA and Zhang et
al. (SDP) are quite similar, with small difference coming from
numerical error during computation. The error rates calculated
by Zhang et al. (SOCP) are sometimes quite different from that
by Zhang et al. (SDP) and SD-WLDA, e.g., on “Heart” and
“Waveform” datasets, which results from different relaxation
methods and optimization procedures employed.

In terms of computational speed, SD-WLDA approach is
much faster than other methods. Zhang et al. (SDP), which
is also solved by standard interior-point algorithm SDPT3, is
faster than Ours (SDPT3), because of different SDP problem
formulations. The merit of SD-WLDA on computation is even
more dramatic for high dimensional problems. For example,
we compare the computational speeds of SD-WLDA and
SDPT3 on the datasets of “Iris” and “Waveform”, which
have the same number of classes. SD-WLDA is about 5
times faster than Zhang et al. (SDP), and 20 times faster
than Ours (SDPT3) on “Iris” which has 105 training samples
with the input dimension as 4, whereas it becomes 12 times
quicker than Zhang et al. (SDP), and 300 times quicker
than Ours (SDPT3) on “Waveform” which has 3500 training
samples with the input dimension as 40. The computational
time increases more significantly for SeDuMi with respect
to input dimension. Zhang et al. (SOCP) has no compu-
tational advantage on solving problems with few training
samples and low dimensionality. The computational supe-
riority appears when dimensionality increases, referring to
the results on “Waveform” dataset, which is quicker than
Zhang et al. (SDP). Because of the column-wise iteration
solving method of Zhang et al. (SOCP), the computational
complexity of Zhang et al. (SOCP) relates closely with the
final dimension. That is why Zhang et al. (SOCP) is quite



MANUSCRIPT 7

TABLE I
TEST ERRORS AND COMPUTATIONAL TIME OF DIFFERENT METHODS ON UCI DATASETS WITH 5-NN CLASSIFIER. THE TEST ERROR IS THE AVERAGE

OVER 30 RANDOM SPLITS, WITH STANDARD DEVIATION SHOWN IN THE BRACKET. THE COMPUTATIONAL TIME IS ALSO THE AVERAGE OVER 30 RUNS.
SD-WLDA IS EFFICIENT IN COMPUTATION, AND GIVES COMPARABLE CLASSIFICATION PERFORMANCE COMPARED TO OTHER METHODS.

Heart Waveform Iris Balance Sonar Ionosphere
# Train 206 3500 105 438 146 246
# Test 88 1500 45 187 62 105
# Classes 5 3 3 3 2 2
Input Dim. 13 40 4 4 60 34
Final Dim. 4 2 2 2 1 1
Error Rates (%)
Euclidean 45.58 (3.66) 18.44 (0.94) 3.26 (1.82) 15.03 (1.94) 25.00 (4.76) 16.19 (2.26)
LDA 36.10 (3.14) 15.60 (0.65) 3.19 (1.62) 10.88 (1.85) 27.10 (3.94) 15.43 (2.34)
LMNN 41.33 (3.43) 14.27 (0.92) 3.26 (1.62) 11.50 (6.25) 49.73 (6.17) 20.86 (3.40)
OLDA 36.36 (3.52) 15.58 (0.63) 3.19 (1.72) 10.90 (2.20) 26.61 (3.25) 16.14 (3.23)
Zhang et al. (SDP) 35.38 (4.09) 15.49 (0.96) 2.89 (1.67) 10.86 (2.49) 27.10 (3.47) 15.70 (3.21)
Zhang et al. (SOCP) 37.12 (3.68) 17.34 (2.10) 2.96 (1.78) 10.43 (2.19) 26.83 (2.87) 15.70 (3.39)
SD-WLDA 35.57 (4.64) 15.47 (1.01) 2.89 (1.67) 10.80 (2.23) 26.94 (3.32) 15.43 (2.34)
Computation Time
Ours (SDPT3) 57.3s 16m40s 8.7s 11.1s 53m2s 5m20s
Ours (SeDuMi) 23.5s 1h31m 3.7s 5.2s 12h30m 30m10s
Zhang et al. (SDP) 16.5s 37.0s 2.3s 2.0s 21.6s 58.2s
Zhang et al. (SOCP) 71.8s 36.0s 26.2s 27.9s 14.1s 13.9s
SD-WLDA 9.9s 3.0s 0.4s 0.9s 3.9s 1.2s

fast on “Sonar” and “Ionosphere” datasets, which set the final
dimension to 1. However, it still slower than SD-WLDA.

To prove the robust classification performance of SD-
WLDA, we change the ratio of training samples α from 20%
to 80% on datasets “Sonar” and “Ionosphere”. For each value
of α, we calculate the average test error as well as the standard
deviation across 10 trials by SD-WLDA and LDA respectively.
The results in Fig. 1 demonstrate that SD-WLDA is more
superior than LDA when there is small number of training
samples. This phenomenon illustrates that WLDA alleviates
the dependence of classification performance on large number
of training samples.

LDA requires the data to map to at most (c−1) dimension,
while SD-WLDA, which is based on an SDP optimization
method, does not have such a restriction. Here we perform
another experiment by SD-WLDA on “Heart” dataset, with
different final dimensions. The result in Table II shows that
(c − 1) is not the best final dimension for “Heart”. So SD-
WLDA algorithm is more flexible.

B. Experiments on Face, Object and Letter Datasets

As shown before, SD-WLDA algorithm can be used to solve
large-scale problems due to its efficiency on computation. In
this section, experiments are carried out on face, object and
letter image datasets, which have high input dimension and
more classes. The images are resized to different resolution
before experiments, as shown in Table III. PCA has been
applied beforehand to reduce the original dimension and also
to remove noises. The final dimension is still set to be (c−1)
for fair comparison to LDA.

1) Face recognition: four face databases are employed
here. ORL [43] consists of 400 face images of 40 individuals,
each with 10 images. We randomly choose 70% of the
samples for training and the remaining 30% for test. The Yale
dataset [44] contains 165 grey-scale images of 15 individuals,
11 images per subject. We split them into training and test
sets by 7/3 sampling as well. PIE dataset (Pose C29) [45] has
40 subjects, and 24 images for each individual. 80% of the
samples are chosen randomly for training. UMist dataset [46]
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Fig. 1. Test errors of SD-WLDA and LDA on “Sonar” and “Ionosphere”
datasets, with different sizes of the training set. The test error is shown by
marker, which is the average error of 10 trails for each split. The vertical bar
represents the standard deviation. SD-WLDA produces significantly smaller
errors than LDA with less number of training samples.

contains 564 grayscale images of 20 different people. We only
use 30% of the samples for training to test the performance
of SD-WLDA.

Experimental results in Table III show that SD-WLDA
gives better classification performance for all datasets. The
classification error rates by SD-WLDA and Zhang et al. (SDP)
are identical with each other, as PCA used before has already
removed the noises, which proves the correctness of our
algorithm. However, SD-WLDA is much faster than Zhang et
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TABLE II
IN CONTRAST TO LDA, SD-WLDA CAN BE USED TO PROJECT DATA TO FINAL DIMENSION LARGER THAN (c− 1). THE TEST ERROR IS BY SD-WLDA

WITH 5-NN CLASSIFIER ON “HEART” DATASET USING DIFFERENT FINAL DIMENSION. THE TEST ERROR IS THE AVERAGE ERROR OF 10 RUNS, WITH
STANDARD DEVIATION IN THE BRACKET.

Final Dim. 4 6 7 8 9
SD-WLDA (%) 32.84 (3.95) 28.41 (2.94) 28.41 (2.29) 31.82 (3.88) 34.09 (4.84)

al. (SDP) method. For example, SD-WLDA runs almost 14
times faster than Zhang et al. (SDP) on Yale dataset. The
error rates calculated by Zhang et al. (SOCP) are rather
larger, which result from the non-globally optimal solution the
algorithm reached. The computational superiority of Zhang et
al. (SOCP) does not show up as well.

In order to illustrate the computational speed of SD-WLDA
and both methods in [5] with respect to the number of classes
and the input data dimension (here it refers to the dimension
after PCA) respectively, more experiments are performed on
Yale dataset. Firstly, we set the dimension after PCA to be 50,
and change the number of classes from 9 to 15. Experimental
results in Fig. 2(1) demonstrate that compared with the other
methods, the speed of SD-WLDA is less sensitive to the
increase of the amount of classes. Since the final dimension r
is set to be (c− 1), the computational complexity of Zhang et
al. (SOCP) jumps up obviously with the increase of classes.
Secondly, we use all classes, and let the dimension after PCA
change from 30 to 115. Experimental results in Fig. 2(2)
show that the computational cost of SD-WLDA rises up pretty
slower with the growth of input dimension, in contrast to
Zhang et al. (SDP). Zhang et al. (SOCP) becomes faster
than Zhang et al. (SDP) when input dimension is larger than
90. This phenomenon certifies that Zhang et al. (SOCP) is
more suitable for processing high dimensional datasets than
Zhang et al. (SDP), as [5] presented. However, this method
cannot guarantee to find a global optimal solution. Finally, we
test on Yale dataset with an even high input dimension as 800.
Experimental results in Table IV demonstrate that SD-WLDA
is absolutely faster than Zhang et al. (SDP), both of which
lead to similar classification error rates. Although Zhang et
al. (SOCP) is comparable with SD-WLDA on computational
time, the error rate it obtained is relatively bigger.

In addition, to show the superiority of SD-WLDA on clas-
sification, another experiment is conducted using SD-WLDA
and LDA on Yale dataset, with the dimension after PCA as
50 and 15 classes. We reduce the final dimension from (c−1)
to 1. The test results shown in Fig. 3 demonstrate that SD-
WLDA always gives lower test error than LDA, which further
proves the good classification performance of SD-WLDA.

2) Object recognition: Three datasets are used here:
Coil20 [47], Coil30 [48], and ALOI [49]. Coil20 dataset
contains 1440 grey-scale images with black background for
20 objects, with each containing 72 different images. Coil30
dataset consists of 750 RGB images for 100 objects. We
choose the first 30 objects and convert them into greyscale
images in our experiment. ALOI dataset consists of 1000
objects taken at varied viewing angles, illumination angles,
etc.. We use the first 25 objects here, with 24 images for
every object. Different training and test splitting ratios are
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Fig. 2. Computational time of different SDP optimization methods with the
increase of number of classes and input dimensionality, respectively. The
computational time is the average time of 10 trials for each setting. SD-
WLDA is more efficient than Zhang et al. (SDP) and Zhang et al. (SOCP) on
computation. The computational complexity of SD-WLDA is less sensitive
to the increase of number of classes and input dimensionality, compared to
Zhang et al. (SOCP) and Zhang et al. (SDP) respectively.

adopted for different datasets in order to test the performance
under different situations, which can be found in Table III. The
experimental results demonstrate that SD-WLDA is better in
computational speed. Although OLDA produces the smallest
classification error on Coil20 (2.91%), SD-WLDA gives a
comparable result (3.14%).

3) Letter recognition: The Binary Alphadigits dateset [50]
is employed here. The dataset BA1 contains 10 digits of
0 to 9, and BA2 contains 15 capital letters A through O.
Experimental results in Table III present that WLDA produces
better classification performance on both databases. Zhang et
al. (SDP) and SD-WLDA give similar classification results,
while Zhang et al. (SOCP) lead to much larger error rates. In
terms of computational speed, SD-WLDA runs 5 times faster
than Zhang et al. (SDP) on BA1, and more than 9 times faster
than Zhang et al. (SDP) on BA2, which has more training
samples and number of classes. This experiment demonstrates
again that SD-WLDA is more efficient in processing large-
scale datasets.
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TABLE III
TEST ERRORS AND COMPUTATIONAL TIME OF DIFFERENT METHODS ON LAGER-SCALE DATASETS WITH 5-NN CLASSIFIER. PCA IS APPLIED FIRSTLY.

THE TEST ERROR IS THE AVERAGE ERROR WITH STANDARD DEVIATION IN THE BRACKET. THE COMPUTATIONAL TIME IS THE AVERAGE TIME TOO.
SD-WLDA GIVES BETTER CLASSIFICATION PERFORMANCE AND FASTER COMPUTATIONAL SPEED THAN OTHER ALGORITHMS.

ORL Yale PIE UMist Coil20 Coil30 ALOI BA1 BA2
# Train 280 120 760 174 580 390 300 120 180
# Test 120 45 200 401 860 360 300 270 405
# Classes 40 15 40 20 20 30 25 10 15
Input Dim. 32× 32 32× 32 64× 64 112× 92 64× 64 64× 64 58× 77 20× 16 20× 16
Dim. after PCA 100 50 60 100 100 80 100 80 80
Final Dim. 39 14 39 19 19 29 24 9 14
# Runs 5 10 5 10 10 5 5 10 10
Error Rates (%)
Euclidean 12.50 (3.39) 37.11 (5.35) 19.50 (2.12) 19.40 (2.58) 7.09 (0.98) 9.89 (0.84) 4.33 (2.01) 18.07 (1.86) 23.46 (0.55)
LDA 3.00 (2.01) 19.78 (4.74) 7.00 (2.12) 3.44 (0.76) 3.26 (1.29) 5.67 (1.53) 1.67 (0.84) 18.07 (2.30) 22.62 (2.27)
LMNN 3.67 (1.26) 30.89 (11.01) 10.00 (0.71) 6.18 (2.48) 2.91 (0.35) 6.00 (1.14) 3.00 (0.98) 17.41 (3.39) 21.83 (1.63)
OLDA 2.67 (1.24) 20.22 (5.59) 6.50 (2.21) 2.79 (0.41) 3.26 (0.99) 5.17 (0.87) 2.00 (0.72) 18.21 (1.94) 22.02 (1.95)
Zhang et al. (SDP) 1.83 (0.91) 18.44 (3.64) 6.25 (1.43) 2.94 (0.65) 3.14 (0.51) 4.22 (1.60) 1.67 (0.96) 16.22 (1.73) 21.48 (2.10)
Zhang et al. (SOCP) 6.67 (1.26) 28.44 (4.27) 9.50 (2.36) 8.58 (2.40) 5.56 (2.04) 5.28 (1.69) 4.13 (1.57) 27.48 (2.93) 24.74 (1.24)
SD-WLDA 1.83 (0.91) 18.44 (3.64) 6.25 (1.43) 2.94 (0.65) 3.14 (0.51) 4.17 (1.61) 1.67 (0.96) 16.22 (1.73) 21.58 (2.23)
Computational Time (Once)
Ours (SDPT3) > 48h 2h41m 30h41m 29h50m 29h10m 30h17m > 48h 5h 5h50m
Ours (SeDuMi) > 48h 12h58m > 48h > 48h > 48h > 48h > 48h 27h47m 30h33m
Zhang et al. (SDP) 1h4m 2m44s 20m 13m30s 22m40s 15m52s 28m20s 2m38s 4m33s
Zhang et al. (SOCP) 2h24m 12m29s 1h45m 26m 1h25m 1h11m 52m40s 6m11s 10m51s
SD-WLDA 4m34s 11.3s 1m44s 2m52s 1m57s 2m33s 6m31s 28.3s 29.3s

TABLE IV
CLASSIFICATION PERFORMANCE AND COMPUTATIONAL SPEED OF DIFFERENT METHODS ON YALE DATASET, WITH HIGH INPUT DIMENSION. (120

TRAINING SAMPLES, 45 TEST SAMPLES, 15 CLASSES, DIMENSION AFTER PCA IS 800, FINAL DIMENSION IS (c− 1)). SD-WLDA PRESENTS FASTER
COMPUTATIONAL SPEED THAN ZHANG et al. (SDP) AND BETTER CLASSIFICATION PERFORMANCE THAN ZHANG et al. (SOCP).

Error Rates (%) Computational Time (Once)
SD-WLDA 16.00 (5.96) 36m40s
Zhang et al. (SDP) 16.89 (5.35) 4h15m
Zhang et al. (SOCP) 22.22 (5.56) 41m20s

TABLE V
TEST ERRORS OF SD-WLDA AND LDA ON ORL DATASET WITH 5-NN CLASSIFIER USING DIFFERENT NUMBER OF CLASSES (200 TRAINING SAMPLES,
200 TEST SAMPLES, DIMENSION AFTER PCA IS 60, FINAL DIMENSION IS (c− 1)). SD-WLDA PRESENTS BETTER CLASSIFICATION PERFORMANCE

ESPECIALLY FOR LARGE NUMBER OF CLASSES.
# Classes c 5 10 20 25 30 35 40
SD-WLDA(%) 2.22 (4.97) 4.00 (2.39) 5.50 (1.20) 5.12 (1.84) 3.87 (1.52) 4.57 (1.81) 3.00 (1.97)
LDA (%) 2.22 (4.97) 3.75 (1.98) 4.75 (2.31) 4.32 (2.57) 4.40 (0.60) 4.91 (2.00) 4.50 (2.43)

TABLE VI
TEST ERRORS OF SD-WLDA AND LDA ON COIL20 DATASET WITH 5-NN CLASSIFIER, USING DIFFERENT NUMBER OF CLASSES (580 TRAINING
SAMPLES, 860 TEST SAMPLES, DIMENSION AFTER PCA IS 60, FINAL DIMENSION IS (c− 1)). SD-WLDA PRESENTS BETTER CLASSIFICATION

PERFORMANCE ESPECIALLY FOR LARGE NUMBER OF CLASSES.
# Classes c 5 8 11 14 17 20
SD-WLDA(%) 1.58 (1.17) 3.14 (0.78) 3.47 (1.09) 1.83 (0.73) 2.03 (0.88) 3.30 (0.30)
LDA (%) 1.58 (1.56) 3.14 (1.06) 3.94 (1.43) 2.53 (1.24) 2.27 (0.95) 3.39 (0.64)

4) Classification performance regarding to number of
classes: It has been validated that SD-WLDA can give smaller
classification errors than LDA using a small size of training
set. In this section, we evaluate the classification performance
of SD-WLDA and LDA with respect to the number of classes
c. Take the datasets ORL and Coil20 as examples. The exper-
imental settings for each dataset are shown in the captions of
Table V and VI respectively. We choose different numbers of
classes from each dataset, and compare the test errors of SD-
WLDA and LDA. The results in Tables V and VI demonstrate
that when the number of classes is small, SD-WLDA and
LDA have comparable classification results, whereas when
the number of classes increases, SD-WLDA shows better
classification performance.

V. CONCLUSION

In this work, an efficient SDP optimization algorithm has
been proposed to solve the problem of worst-case linear
discriminant analysis. WLDA takes into account the worst-
case pairwise distance between and within classes, which
achieves better classification performance than conventional
LDA. In order to reduce the computational complexity so that
it can be applied to large-scale problems, a fast algorithm has
been presented by introducing the Frobenius norm regular-
ization, and its Lagrangian dual can be simplified. Using our
algorithm, the global optimum can be obtained in O(d3) time.
The algorithm is simple to implement and much faster than
conventional SDP solvers. Experimental results on some UCI
databases as well as face and object recognition tasks show the
effectiveness on classification performance and the efficiency
on computation of SD-WLDA.
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Fig. 3. Test errors of SD-WLDA and LDA on Yale dataset with 5-NN
classifier using different final dimension (120 training samples, 45 test
samples, 15 classes, and dimension after PCA is 50). Test error is expressed
by marker, which is the average error of 10 trials. The vertical bar represents
the standard deviation. SD-WLDA always produces lower test errors than
LDA in this experiment.
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A.6. PROOF OF THE PROPOSITION 3.2
This section presents the derivation of Proposition 3.2.

Proof: With the Lagrangian dual multipliers u, v, p and Y,
the Lagrangian function of the primal problem (12) can be
written as

L(X,u, v,p,Y)

=
1

2
‖X‖2F −

∑
i,j,k

uijkTr(S̄ijkX)

−vTr(ĪdX) + vr −
∑
s,t

pstTr(H>stX)

+
∑
s,t

pstId(s, t)− 〈X,Y〉

=
1

2
‖X‖2F − 〈X,Y〉+ vr +

d∑
s=1

pss − 〈Ā,X〉,(A16)

with u ≥ 0, Y < 0 and Ā defined as (14).
Based on KKT conditions for convex problems, we have

∂L(X,u?, v?,p?,Y?)/∂X = 0 at the X?, where X?, u?,
v?, p? and Y? stand for primal and dual optimal variables,
respectively. Then the relationship between primal and dual
optimal variables is:

X? = Y? + Ā?. (A17)

Substituting the expression for X back into the Lagrangian
(A16), the dual problem is formulated as

max
u,v,p,Y

− 1

2
‖Y + Ā‖2F + vr +

d∑
s=1

pss, (A18a)

s.t. u ≥ 0,Y < 0. (A18b)

Given fixed u, v, p, problem (A18) can be simplified to

min
Y
‖Y + Ā‖2F , s.t. Y < 0, (A19)

which is equivalent to projecting the matrix (−Ā) to the
positive semidefinite cone. The closed-form solution to (A19)
is:

Y? = (−Ā?)+. (A20)

Substituting this solution Y back into the dual problem
(A18), the simplified dual problem can be expressed as (13)
presented.

Once the optimal solutions u?, v? and p? are obtained by
solving (13), we can obtain the primal optimal variable X?

based on (A17) and (A20):

X? = (−Ā?)+ + Ā? = (Ā?)+. (A21)

�

A.7. EXPLANATION ON THE FEASIBILITY CONDITION

In this part, we will briefly review a feasibility condition to
a conic feasibility problem described in [37], and then extend
it to our feasibility problem (10).

Consider a conic feasibility problem of finding a point x ∈
Rn such that {

Ax ≥ b,
x ∈ K,

(A22)

where A ∈ Rm×n and b ∈ Rm are given. Ax = b defines an
affine subspace A, and K ∈ Rn is a convex cone.

Defining the polar cone of K as the set of points whose
projection into K is 0, i.e.,

K◦ := {z ∈ Rn : z>x ≤ 0, x ∈ K}, (A23)

Henrion and Malick [37] proposed the following proposition.

Proposition 7.1. If there exists a point y ∈ Rm such that the
following conditions {

A>y ∈ K◦,
b>y > 0,

(A24)

are satisfied, there would be no feasible solution to (A22).

Based on this proposition, we can get a feasible condition
to our problem (10). In our problem, K is the set of positive
semidefinite matrices, and the polar cone of K is the set of
negative semidefinite matrices. Then the feasibility problem{

Ā 4 0,

vr +
∑d
s=1 pss > 0,

(A25)

gives the certificate of infeasibility of problem (11) which is
equivalent to (10). That is to say, if there is a feasible solution
to (A25), there is no feasible solution to (10). We formalize
this result in the following remark.

Proposition 7.2. (i) If problem (11) is feasible, then (A25) is
infeasible;
(ii) If there exists u, v and p such that (Ā)+ = 0, vr +∑d
s=1 pss > 0, then there is no feasibility solution to (11).

Proof: (i) Suppose that there is a feasible solution u, v and
p to (A25), and take a feasible point X < 0 of the problem
(11). Ā 4 0 implies that 〈Ā,X〉 ≤ 0, i.e.,∑
i,j,k

uijk〈S̄ijk,X〉+v〈Īd,X〉+
∑
s,t

pst〈H>st,X〉 ≤ 0. (A26)

Observing that X satisfying the constraints in (11), the above
inequality (A26) is equivalent to

∑
i,j,k

uijk〈S̄ijk,X〉+ vr +

d∑
s=1

pss ≤ 0. (A27)

Since Tr(S̄ijkX) ≥ 0, and vr +
∑d
s=1 pss > 0, the above

inequality (A27) cannot hold at all, which means there is no
feasible solution to (A25).

(ii) (Ā)+ = 0 is equivalent to Ā 4 0. Combining
with the condition vr +

∑d
s=1 pss > 0, (A25) is feasible.

Therefore problem (11) would be infeasible according to the
contrapositive of (i).

�

(Ā)+ = 0 is also equivalent to ‖(Ā)+‖F = 0. Due to
numerical reasons, the latter ε is adopted in the feasibility
condition (15).
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A.8. DATA VISUALIZATION

This section presents the experimental results of data vi-
sualization. The input data is projected to two dimensional
subspace using the linear transformation matrix learned by
PCA, LDA, OLDA and the proposed algorithm SD-WLDA.
The data distributions after projection are shown in Fig. A4.
Several datasets are evaluated: Yale face dataset [44] with 5
classes (5th to 9th) adopted, ALOI object dataset [49] with 5
classes (10th to 14th) used, Coil20 object dataset [47] with 10
classes (1st to 10th) employed, and the Binary Alphadigits
dateset [50] with images of digits 3, 4 and 5 used. As
shown in Fig. A4, SD-WLDA separates data better than
PCA, LDA and OLDA on those datasets. PCA (unsupervised)
preserves directions with the largest variance but much of the
discriminant information is lost. LDA (supervised) considers
the scatter measure in the average view, so the poor separations
of two classes are probably to be concealed by other good
separations. For example, in Fig. A4 (6), LDA separates most
of classes, but fails to separate one pair. Because some classes
are separated far from each other, the LDA criterion cannot
demonstrate the fact that one pair of classes have not been
separated yet. OLDA solved the nonsingularity limitation of
scatter matrices in LDA, however, the scatter measures are still
from the average viewpoint. Alternatively, SD-WLDA tries to
separate data from the worst-case viewpoint, so the separation
of every class-pair is taken into account.
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(1) PCA, Yale (2) PCA, ALOI (3) PCA, Coil20 (4) PCA, BA1

(5) LDA, Yale (6) LDA, ALOI (7) LDA, Coil20 (8) LDA, BA1

(9) OLDA, Yale (10) OLDA, ALOI (11) OLDA, Coil20 (12) OLDA, BA1

(13) SD-WLDA, Yale (14) SD-WLDA, ALOI (15) SD-WLDA, Coil20 (16) SD-WLDA, BA1

Fig. A4. Visualization of dimensionality reduction results of PCA, LDA, OLDA and SD-WLDA applied to (from left) the Yale, ALOI, Coil20 and BA1
datasets. The feature dimensions are reduced from 50, 100, 50 and 80 (which have been processed by PCA in advance) respectively to 2. The figures show
explicitly that the best classification results are achieved by SD-WLDA.
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