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Optimized Kaiser–Bessel Window Functions
for Computed Tomography
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Abstract— Kaiser–Bessel window functions are frequently used
to discretize tomographic problems because they have two desir-
able properties: 1) their short support leads to a low computa-
tional cost and 2) their rotational symmetry makes their imaging
transform independent of the direction. In this paper, we aim at
optimizing the parameters of these basis functions. We present
a formalism based on the theory of approximation and point
out the importance of the partition-of-unity condition. While
we prove that, for compact-support functions, this condition
is incompatible with isotropy, we show that minimizing the
deviation from the partition of unity condition is highly
beneficial. The numerical results confirm that the proposed
tuning of the Kaiser–Bessel window functions yields the best
performance.

Index Terms— Kaiser-Bessel window function, approximation
theory, tomography, inverse problem, generalized sampling.

I. INTRODUCTION

IT IS highly desirable to reduce the radiation dose in
X-ray imaging modalities. This can be achieved in two

ways. The first solution involves a reduction in the intensity
of the X-ray but contaminates the data with physical noise.
The second solution involves a decrease in the number of
projection angles. The price to pay for this reduction is that
the reconstruction problem becomes ill-posed and can no
longer be solved using traditional direct methods. Instead, the
deployment of more sophisticated iterative schemes is needed.
In order to specify such methods, one first discretizes the
imaging operator and then selects a reconstruction scheme,
which typically involves the choice of a cost functional to
minimize. The second aspect is absolutely crucial when the
problem is ill-posed and is typically addressed by introducing
suitable regularization functionals such as sparsity or total-
variation regularization. This is the aspect of the problem that
is addressed primarily in the literature [1]–[10].
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In this paper we want to concentrate on the first aspect: the
choice of a suitable reconstruction space. This space is usually
determined as a set of functions of the form

f (x) =
∑

k∈Zd

c[k]ϕ
( x

T
− k

)
, (1)

where T is the sampling step. The reconstruction space is then
specified through the choice of the generating function ϕ.

In computed tomography, where the mathematical model is
based on the Radon transform and its variants, it is beneficial
to use a generating function that has two particular properties:
1) short support for fast computation and 2) rotational symme-
try for efficient computation of the imaging transform. Among
the functions satisfing these properties, Lewitt [11] intro-
duced generalized Kaiser-Bessel window functions (KBWFs)
as an optimal generating function to be used in the
context of computed tomography. These functions are
widely used in electron microscopy [12]–[14] and con-
ventional X-ray and differential phase-contrast computed
tomography [11], [15]–[18].

KBWFs involve three parameters that need to
be adjusted [11]. These parameters are empirically
tuned to improve the quality of reconstructed constant
images [19], [20]. In this paper, we investigate approximation-
theoretic properties of the basis functions, and we show how
to optimize the parameters for the best performance. We also
present experimental results that corroborate our theoretical
prediction. The three contributions of this paper can be briefly
summarized as follows:
• A measure to predict the performance of the generating

function used for discretizing the forward model.
• A method to compute the optimal parameters for a

generalized KBWF.
• An experimental validation of the proposed method.
The rest of this paper is organized as follows. In Section II,

we describe the discretization scheme of the imaging operator
and discuss the properties that should be satisfied by the
generating function to be used for discretizing the forward
model. In Section III, we study the KBWFs and propose new
parameters for their use in the discretization scheme. Then, in
Section IV, numerical experiments are presented to justify our
choices.

II. DISCRETIZATION SCHEME

We first explain how the discretization of the forward
model is intimately connected with the choice of a given
basis function. We then recall some fundamental results from
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approximation theory that ensure stability and allow one
to predict the expected discretization error. This will point
to the importance of the partition-of-unity property which,
unfortunately as we shall prove, is incompatible with the
compact-support and isotropy properties.

A. Matrix Formulation

Reconstruction is usually formulated as a linear inverse
problem. To solve it, it is convenient to introduce discrete
representations of the object and the imaging operator. With-
out loss of generality, we consider an object in 2D. The
model of the object, from the perspective of generalized
sampling theory [21], [22], is obtained by specifying a suit-
able reconstruction space. Specifically, we select VT (ϕ) as
the principal shift-invariant space generated by the function
ϕ ∈ L2(R

2). This space is defined by

VT (ϕ) =
⎧
⎨

⎩
∑

k∈Z2

c[k]ϕ
( x

T
− k

)
: c ∈ �2(Z

2)

⎫
⎬

⎭, (2)

where x ∈ R
2. The corresponding orthogonal projection

operator PT : L2(R
2)→ VT (ϕ) is defined as

PT f = argmin
g∈VT (ϕ)

‖ f − g‖L2
. (3)

In practice, however, the values of c in (1) are determined
based on the solution of an inverse problem.

The mathematical model of many imaging modalities in the
context of X-ray computed tomography is based on the Radon
transform and its derivatives. Note that the Radon transform
is a linear and pseudo shift-invariant operator,

R{ϕ(x − k)}(y, θ) = R{ϕ(x)}(y − 〈k, θ〉 , θ), (4)

where θ = (cos θ, sin θ). Then, its application on a function
f ∈ VT (ϕ) is

R(n){ f }(y, θ) =
∑

k∈Z2

c[k]R(n){ϕT (x − T k)}(y, θ)

=
∑

k∈Z2

c[k]R(n){ϕT }(y − T 〈k, θ〉 , θ), (5)

where ϕT (x) = ϕ(x/T ), and

R(n) f (y, θ) = ∂nR f

∂yn
(y, θ),

with R : L2(R
2)→ L2(R×[0, π]) being the Radon-transform

operator.
The formulation of the reconstruction as a linear inverse

problem is usually stated as the matrix equation

g = Hc, (6)

where g is the measurement vector, H is the system matrix,
and c is the discrete representation of the object of interest.

Using (5), the matrix formulation can be obtained as
follows: The measurement vector g contains values of
the imaging transform R(n){ f }(y, θ) at the sampled points
y j = j�y and θi = i�θ , where i, j ∈ Z. The object f is

represented with its coefficients c within the space VT (ϕ). The
system matrix H is given by

[H](i, j ),k = R(n){ϕT }(y j − T 〈k, θ i 〉 , θi ). (7)

Note that, in order to compute the imaging operator, there
is no need to store the whole system matrix because it is
sufficient to have access to a lookup table that contains the
projection of one basis function along every direction.

B. Desirable Properties of the Basis Functions

We require the basis function ϕ to satisfy the following
four properties:

1) Riesz Basis: Every object f ∈ VT (ϕ) must be uniquely
specified by its coefficients c. This requires the existence of a
positive constant A such that

∀c ∈ �2, A · ‖c‖2�2
≤

∥∥∥∥∥∥

∑

k∈Z2

c[k]ϕ
( x

T
− k

)
∥∥∥∥∥∥

L2

. (8)

In addition, the representation should be stable. This requires
the existence of a positive constant B such that

∀c ∈ �2,

∥∥∥∥∥∥

∑

k∈Z2

c[k]ϕ
( x

T
− k

)
∥∥∥∥∥∥

L2

≤ B · ‖c‖2�2
. (9)

Together, these two conditions are equivalent to ϕ being a
Riesz basis of VT (ϕ).

2) Partition of Unity: It is constructive for such a discretiza-
tion scheme that the model approximate any input function as
closely as desired by choosing a sufficiently small sampling
step. More precisely, the approximation error should vanish
whenever the sampling step T tends to zero. We thus require
that

lim
T→0

{‖ f − PT f ‖L2

} = 0. (10)

Theorem 1 [23]: The L2-approximation error of the oper-
ator PT : L2 → VT (ϕ) can be written, for f ∈ L2(R

2), by

ε f (T ) = ‖ f − PT f ‖L2

=
(∫

R2
Eϕ(Tω)| f̂ (ω)|2 dω

2π

)1/2

+ εcorr, (11)

where εcorr is a correction term, and Eϕ is the error kernel
defined in the least-squares case as

Eϕ(ω) = 1− |ϕ̂(ω)|2∑
k∈Z2 |ϕ̂(ω + 2kπ)|2 , (12)

where ϕ̂ is the Fourier transform of ϕ. Specifically,
if f ∈ Wr

2 (Sobolev space of order r) with r > 1/2, then
|εcorr | < γ T r‖ f (r)‖L2 , where γ is some constant.

Under the regularity assumption that f and its first order
derivative are in L2(R

2), the asymptotic convergence

lim
T→0

ε f (T ) = 0 (13)

is achieved if and only if the basis function ϕ satisfies the
partition-of-unity condition [21, Appendix B]

∑

k∈Z2

ϕ(x + k) = 1, ∀x ∈ R
2. (14)
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The equivalent formulation of the partition of unity in the
frequency domain is

ϕ̂(2πn) = δ[n], ∀n ∈ Z
2, (15)

where δ is the 2D Kronecker delta function.
3) Compact Support: The basis function ϕ should be

compactly supported in order to reduce the computational cost
and also for localization in the spatial domain.

4) Isotropy: For the implementation of the imaging
operator, it is required to store the values of its application on
the basis function along different directions. If the basis func-
tion is isotropic, its projections do not depend on the direction,
which leads to simplicity and efficiency of implementation.

C. Incompatible Properties

There is a negative result that is considered in the following
theorem:

Theorem 2: The following properties are mutually exclusive
for an isotropic basis function:

1) compact support;
2) partition of unity.

Proof: The proof is given in Appendix A. Here, we
provide only a sketch of the argument. The partition-of-unity
condition implies the configuration (15) of zeros of the Fourier
transform of the basis function. At the same time, the Hankel
transform of an even compactly supported function is an entire
function of finite exponential type. Jensen’s theorem provides
a contradiction between these two properties.

D. Revisiting Optimality in the Projection Domain

We now bound the error of approximation incurred by
RT f = R{PT f }. It can be extended to any derivative
of the Radon transform through the Fourier-slice theorem
since ||R(n) f ||L2 = ||RF−1{|ω|n f̂ (ω)}||L2 . To this end,
we use the Sobolev norm ‖·‖2

W 1/2
2

in the projection domain.

If g ∈ L2(R
2), then

‖g‖2
W 1/2

2
=

∫ 2π

0

∫ ∞

0
(1+ ω2)

1
2 |̂g(ω, θ)|dθdω, (16)

where ĝ(ω, θ) is the polar form of the Fourier transform of g.
Theorem 3: Let the Sobolev approximation error of

the operator RT for f ∈ L2(R
2) be εR f (T ) =

‖R f −RT f ‖
W 1/2

2
. Then, there exist positive constants

r1, R1 > 0 such that

r1ε f (T ) ≤ εR f (T ) ≤ R1ε f (T ). (17)

Lemma [25, Sec. II.5]: Let � ⊂ R
2 be a compact domain.

Then, there exist positive constants r2 and R2 such that, for
any L2(R

2) function f that is supported on �, it holds that

r2 ‖ f ‖L2
≤ ‖R f ‖

W 1/2
2
≤ R2 ‖ f ‖L2

. (18)

Proof of Theorem 3: By letting f ← ( f − PT f ) in (18),
we obtain (17). �

This theorem implies that the average error over all angles is
small in the transform domain when the error of approximation
is small in the object domain. While the theorem is an

average result that involves a continuum of angles, it is still
useful practically because it gives us the approximation error
in the transform domain over a family of images that would
correspond to all rotated versions of a given reference image.

III. OPTIMIZED KAISER-BESSEL WINDOW FUNCTION

The generalized family of KBWFs is isotropic, which
makes it advantageous for the representation of the imaging
operator. Our goal here will be to determine the optimal set
of parameters to best match the partition-of-unity condition
which is so fundamental to approximation theory.

A. Generalized Kaiser-Bessel Window Functions

The generalized KBWF, defined as

ϕ(x) =
⎧
⎨

⎩

(√
1−(‖x‖/a)2

)m
Im

(
α
√

1−(‖x‖/a)2
)

Im (α)
0 ≤ ‖x‖ ≤ a

0 otherwise,

(19)

is specified by three parameters: 1) the order m of the modified
Bessel function Im ; 2) the window taper α; 3) the support
radius a of the function. The parameter m allows us to
control the smoothness of the function and the parameter α
determines its shape. This function is isotropic, which makes
the computation of the imaging operator significantly faster.
However, it is worth noting that this function does not satisfy
the partition of unity (see Theorem 2).

B. Measure of Optimality of a Basis Function

If a basis function satisfies the partition-of-unity condition,
then, as the sampling step vanishes, the error of approximation
tends to zero. For those bases that do not satisfy the partition
of unity, we define the residual error

Aϕ = sup
f ∈L2

‖ f ‖−1
L2

lim
T→0

ε f (T ) (20)

for f ∈ L2(R
d), which shows the deviation from the partition

of unity. A basis function ϕ with lower residual error is more
desirable as a generating function for the reconstruction space.

Theorem 4: The residual error of a function ϕ ∈ L2(R
d ) is

the quantity

Aϕ =
∑

n 
=0|ϕ̂(2πn)|2
|ϕ̂(0)|2 . (21)

Proof: We assume the regularity condition that f and its
first order derivative are in L2. From (11), we have a formula
for ε f in terms of Eϕ as defined in (12). We represent Eϕ
using its Taylor series

Eϕ(T ω) =
N∑

|n|=0

∂n Eϕ(0)
n! (Tω)n + o(

∥∥∥T N+1ω

∥∥∥
N+1

), (22)

where n = (n1, n2, . . . , nd ) with nonnegative integer values,
|n| = ∑d

i=1 ni , ω = (ω1, ω2, . . . , ωd ), n! = n1!n2!...nd !,
ωn = ωn1

1 ω
n2
2 ...ω

nd
d , and

∂n Eϕ(0) = ∂n1

ω1

∂n2

ω2
· · · ∂

nd

ωd
Eϕ(0). (23)
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Therefore, we can rewrite the approximation error ε f as

ε f (T ) = ‖ f − PT { f }‖L2

=
⎛

⎝
∫

Rd

⎛

⎝
N∑

|n|=0

∂n Eϕ(0)
n! (T ω)n

⎞

⎠ | f̂ (ω)|2 dω

2π

⎞

⎠
1/2

+ ε,

(24)

where ε = o(T N+1 ‖ω‖N+1) + εcorr . Then, Fubini’s theorem
implies that

ε f (T ) =
⎛

⎝
N∑

|n|=0

∂n Eϕ(0)
n! T |n|

∫

Rd
ωn| f̂ (ω)|2 dω

2π

⎞

⎠
1/2

+ ε

=
⎛

⎝
N∑

|n|=0

∂n Eϕ(0)
n! T |n|

∥∥∥ f (n/2)
∥∥∥

2

L2

⎞

⎠
1/2

+ ε, (25)

where

f (n) = ∂n1

∂x1

∂n2

∂x2
· · · ∂

nd

∂xd
f. (26)

We now have that

lim
T→0

ε f (T ) = Eϕ(0)1/2 ‖ f ‖L2
. (27)

Therefore,

sup
f ∈L2

‖ f ‖−2
L2

(
lim

T→0
ε f (T )

)2

= sup
f ∈L2

Eϕ(0)

=
∑

n 
=0|ϕ̂(2πn)|2
|ϕ̂(0)|2 . (28)

C. Optimal Parameters for the Kaiser-Bessel
Window Function

There are three parameters that describe KBWFs. The radius
parameter a determines its support. We set it to a = 2;
this allows us to compare the optimal KBWF with the cubic
B-spline. The order of the modified Bessel function is set
to m = 2.

In the context of 3D imaging, Matej and Lewitt [19]
empirically tune the window taper parameter α to improve
the quality of reconstructed constant images. In contrast, we
base our analysis on approximation-theoretic properties and
determine α to minimize the residual error Aϕ . Interestingly,
this leads to a condition similar to the complicated criterion
of [19]. But we go one step farther and provide a simpli-
fied equivalent condition in (21). The measure for different
values α is depicted in Fig. 1(b). This plot indicates that values
of α in the range [6, 11.2] are good choices for reconstruction,
with two local optima of α = 7.05, 10.45 of comparable
magnitude. The latter value is very close to 10.4, which is
the value proposed in [19].

There are modalities where the reconstruction problem
is separable into a set of independent 2D problems: X-ray
parallel-beam tomography, transmission electron microscopy
with single-axis tilting, 2D positron emission tomography
systems with septa, and single-photon emission computed

Fig. 1. The Kaiser-Bessel window taper parameter is denoted by α in
the Figure. Optimality measure with respect to different values of α in the
(a) 2D and (b) 3D domains.

tomography with parallel or fan-beam collimators. Then it is
worthwhile to evaluate the optimal parameters for 2D KBWFs.
We illustrate in Fig. 1(a) the residual error with respect to the
parameter α in a 2D space. Again, it appears that values of α
in the range [7, 11.5] are good choices for 2D reconstruction,
with α = 7.91, 10.83 being the two best choices.

IV. NUMERICAL EVALUATION

We now present experiments where we numerically evaluate
the discretization scheme based on KBWFs, with the parame-
ters suggested in this paper.

A. Influence of the Discretization Step

By definition the optimal reconstruction in the least-square
sense is the orthogonal projection of the sample on the
reconstruction space, independently of the chosen algorithm.
To investigate the dependence upon the grid size, we compute
the optimal reconstruction with respect to different grid sizes
when the generating function of the reconstruction space is
a KWBF with different parameters. The reference object and
signal-to-noise (SNR) computations are defined with respect to
the fine grid. The SNR is defined as the relative mean-square
with respect to the reference (oracle),

SNR(oracle,reconstruction)

= 20log

( ||oracle||L2

||oracle-reconstruction||L2

)
. (29)

The grid size is progressively increased, which shows the
dependences upon the sampling rate.

We choose two medical samples: a coronal section of a
human lung and a coronal section of a rat brain. Also, a region
of interest has been chosen as shown in Figs. 2(a) and 2(b).
We first tested the KBWF with α = 2, which is well outside
of the optimal interval [7, 11.5], and the results were very
poor (SNR = 4 dB). We then compared the performance
for the value α = 5 and α = 7.91. The former is close
to, but outside of the optimal interval, while the latter is
the first of our proposed choices. Their performances are
depicted in Figs. 2(c) and 2(d). It confirms that using KBWFs
with the proposed parameter has better optimal reconstruction
compared to α = 5 for different grid sizes. This experiment
shows that the “optimal choice” based on the asymptotical
behavior (see (20)) is also always better for different grid
sizes. The results for four times coarser grid representation
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Fig. 2. (a) Coronal section of a human lung and region of interest.
(b) Coronal section of a rat brain and region of interest. The performance
of the optimal solution with respect to the grid size is depicted in (c) and (d).

Fig. 3. The orthogonal projection of the coronal section of a human lung
and region of interest using KBWFs with (a) α = 5 and (b) α = 7.91 in
4 times coarser grid. The orthogonal projection of the coronal section of a
rat brain and region of interest using KBWFs with (c) α = 5 and (d) α = 7.91
in 4 times coarser grid.

are depicted in Fig. 3. The artifacts are highlighted by
yellow arrows.

B. Reconstruction of an Analytical Phantom

As data, we use the 2D synthetic phantom presented in [7]
and shown in Fig. 4. (a). The analytical formula for computing
imaging transforms of the phantom is given in [7, Sec. 4.4].

Fig. 4. The Kaiser-Bessel window taper parameter is denoted by α in the
Figure. (a) 2D analytical phantom with isotropic elements. (b) Zoomed version
of the proposed measure. The accuracy of the reconstruction of the analytical
phantom versus the window taper parameter of KBWFs is shown in (c). Its
Radon- transform error in the same coarse grid is depicted in (d).

1) Conventional Tomography: The size of the phantom for
the first experiment is (2,048× 2,048) pixels. The sinogram
of the phantom is computed analytically with 1,800 viewing
angles that are chosen uniformly between 0 and π ;
it comprises the measurements. Note that the resolution of
the reconstruction in the fine grid is the same as the resolution
of the measurements (detector pixel size). As there is a large
number of views for the reconstruction, we minimize the least-
squares error

J (c) = ‖Hc− g‖2L2
, (30)

where g is the measurement vector.
The object is reconstructed on a grid that is (4× 4) times

coarser than the discretization grid. Then, the basis
function is used to resample the object on a finer grid.
We use the conjugate-gradient algorithm for the minimization.
As the number of directions is on the order of the size of the
object, we do not use any regularization. The signal-to-noise
ratio (SNR) of the reconstructions and the projection versus
different values of the window taper of KBWFs are shown
in Fig. 4(c) and 4(d). The best performance is obtained by
using a KBWF with α = 7.75, which is very close to the first
minimum of our criterion function in Fig. 1. However, values
of α in the range [7, 11.5] do also perform reasonably well,
which is consistent with theoretical analysis of Section III-C.

2) Differential Phase-Contrast Tomography: We evaluate
the performance of KBWFs with the proposed parameters in
X-ray differential phase-contrast tomography. The mathemati-
cal model of this imaging modality is based on the derivative
of the Radon transform.

The differentiated sinogram of the phantom with
size (512 × 512) pixels is again computed analytically
with 1,800 viewing angles that are chosen uniformly
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Fig. 5. The Kaiser-Bessel window taper parameter is denoted by α in the
Figure. Performance of the (a) reconstruction and (b) projection using KBWFs
for differential phase-contrast tomography versus the window taper parameter.

TABLE I

COMPARISON OF THE PROJECTION AND RECONSTRUCTION ACCURACY

USING CUBIC B-SPLINES AND KBWFs WITH THE PARAMETERS

PROPOSED IN [18]

between 0 and π ; it comprises the measurements. As there is
a large number of views for the reconstruction, we minimize
the least-squares error (30) for the reconstruction. This
is done for different discretizations of the forward model
using KBWFs with different taper parameters. Therefore,
the quality of the reconstructed image depends on how well
the discretization scheme represents the imaging operator,
as shown in Fig. 5(a). We also compute the SNR in the
transform domain (Fig. 5(b)). The results validate the
importance of using KBWFs with optimized parameters in
order to improve the reconstruction performance. We also
repeated those experiments with measurements corrupted by
additive Gaussian noise with different noise levels (10 dB,
20 dB, 30 dB). The results suggest that using KBWF with
the proposed parameters results in better performance. The
SNR of the reconstructions was improved by close to 3 dB
with respect to α = 5.

For the reconstruction of X-ray differential phase-contrast
tomograms, it was shown in [7] that using cubic B-splines
results in better performance than using KBWFs, with the
parameters chosen as in [19]. Here, we compare the per-
formance of three basis functions for the phantom with size
(2,048 × 2,048) pixels. The projection operator is computed
using KBWFs with the parameter proposed in [11] (α = 10.4)
and with the parameter suggested in Fig. 5 (α = 7.95);
furthermore, we also perform the comparison with cubic
B-splines. The computed SNR shown in Table I suggests that
the proposed parameter provides a significantly better perfor-
mance in computing the projection operator in comparison
with the others.

We conclude that a KBWF with the proposed parameters
improves the performance of the discretization scheme in
comparison with [11], [19]. In addition, its performance is

as good as that of cubic B-splines in terms of quality, while
its isotropy allows for a drastic reduction in its computational
costs.

V. CONCLUSION

The projections of isotropic functions are independent
of the viewing angle. Therefore, they are attractive
candidates as generating functions of principal shift-invariant
spaces for discretizing the imaging operators. The generalized
Kaiser-Bessel window function is a member of this family that
is widely used. In this paper, we proposed a measure to deter-
mine the performance of a basis function for the discretization
scheme. Furthermore, we suggested a method to optimize the
parameters of the KBWF based on this measure. By numerical
experiments, we confirmed that using the proposed method
improves the performance of the discretization scheme.

APPENDIX

PROOF OF THEOREM 2

For the proof, we recall the following theorem.
Theorem 5 [26] (J.L. Griffith): Let ν > −1/2 and 1/p +

1/q = 1. Let f be an even entire function of exponential
type 1. If 1 < p ≤ 2 and tν+1/2 f (t) ∈ L p(0,∞), then f can
be represented by

f (z) =
∫ 1

0
(xz)−ν Jν(xz)φ(x)dx (z ∈ C), (31)

with x−ν−1/2φ(x) ∈ Lq(0, 1). Conversely, if f has this
representation and x−ν−1/2φ(x) ∈ L p(0, 1), 1 < p ≤ 2, then
f is an even entire function of exponential type 1 such that
tν+1/2 f (t) ∈ Lq(0,∞).

We prove Theorem 2 using a proof by contradiction.
We suppose that there is a compactly supported isotropic
function φ that satisfies the partition-of-unity condition. Then,
using Jensen’s theorem, we obtain a contradiction.

Without loss of generality, let us assume that φ(x) = 0,
for ‖x‖ ≥ 1. We have the following:
• The function φ is isotropic, so its Fourier transform is

the Hankel transform of the function φ(x) = φ(‖x‖) with
x = ‖x‖. We write

F{φ}(ω) = 2π
∫ ∞

0
xφ(x)J0(‖ω‖)dx . (32)

• We define

f (z) = 2π
∫ ∞

0
xφ(x)J0(z)dx, (33)

so f (‖ω‖) = F{φ}(ω). According to Theorem 5
(with ν = 0),

f (z) =
∫ ∞

0
ψ(x)J0(zx)dx, (34)

where ψ(x) = 2πxφ(x). Since x− 1
2ψ(x) ∈ L2(0, 1),

f is an even entire function of exponential type 1.
• Satisfying the partition of unity is equivalent to having

the equality in the Fourier domain

φ̂(2πn) = δ[n], (35)
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where n ∈ Z
2 and δ is the 2D Kronecker-delta function.

It means that the set of zeros of f (z) is
{z = 2π ‖n‖ ,∀n ∈ Z

2 \ {0}}. Therefore,

n(R) ≥ cR2, (36)

where n(R) is the number of zeros in the circle with
radius R and c is a positive constant.

• Jensen’s theorem implies the inequality
∫ R

0

n(t)

t
dt ≤ max|z|=R

log| f (z)|. (37)

This inequality restricts the number of zeros inside the
disc. We have that

n(R/2)log2 =
∫ R

R/2

n(R/2)

t
dt

≤
∫ R

R/2

n(t)

t
dt

≤ max|z|=R
log| f (z)|. (38)

• Since f is of exponential type 1, it implies that
| f (z)| ≤ Ae|z|. Therefore,

max|z|=R
log| f (z)| ≤ C R, (39)

where C is a positive constant.
• Equations (36), (38), and (39) imply that

c(R/2)2log2 ≤ n(R/2)log2

≤ max|z|=R
log| f (z)|

≤ C R. (40)

Taking R sufficiently large, we reach a contradiction.
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