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Abstract— Even though image signals are typically defined on
a regular two-dimensional grid, there also exist many scenarios
where this is not the case and the amplitude of the image signal
only is available for a non-regular subset of pixel positions. In
such a case, a resampling of the image to a regular grid has
to be carried out. This is necessary since almost all algorithms
and technologies for processing, transmitting or displaying image
signals rely on the samples being available on a regular grid.

Thus, it is of great importance to reconstruct the image on this
regular grid so that the reconstruction comes closest to the case
that the signal has been originally acquired on the regular grid. In
this paper, Frequency Selective Reconstruction is introduced for
solving this challenging task. This algorithm reconstructs image
signals by exploiting the property that small areas of images
can be represented sparsely in the Fourier domain. By further
taking into account the basic properties of the Optical Transfer
Function of imaging systems, a sparse model of the signal is
iteratively generated. In doing so, the proposed algorithm is able
to achieve a very high reconstruction quality, in terms of PSNR
and SSIM as well as in terms of visual quality. Simulation results
show that the proposed algorithm is able to outperform state-of-
the-art reconstruction algorithms and gains of more than 1 dB
PSNR are possible.

I. INTRODUCTION

WHENEVER digital images are considered, it becomes

apparent that they are typically defined on a regular

two-dimensional grid. That is to say, the pixels are arranged

in a rectangular matrix. In many cases, but not necessarily,

this regular arrangement directly results from the acquisition

process. Aside from this, the positioning of the pixels on

a regular grid also is important for displaying images, and

especially for processing images.

However, there also exist many scenarios where the ampli-

tudes of an image are not available on a regular rectangular

grid, but rather only for a non-regular subset of pixel positions.

This might be implicitly caused by the acquisition system as

for example in the Optical Cluster Eye [1] or the Micro-Optical

Artificial Compound Eyes [2] which both aim at measuring the

light field. Besides this, directly sampling an image at non-

regular positions can also be used intentionally in order to

reduce the visible influence of aliasing [3], [4] or in order

to increase the spatial resolution of an imaging sensor [5]

and therewith achieve some kind of super-resolution. For this,
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Fig. 1. Example for the task of resampling images to a regular grid. Left:
Pixel information only available for a non-regular subset of pixel positions.
Right: Resampled image defined on a regular grid.

it is proposed in [5] to shield three quarters of every pixel

on the sensor non-regularly by an L-shaped mask of varying

orientation. This leads to an acquisition of the image on a

non-regular grid that has four times the effective resolution

as the originally underlying imaging sensor. Aside from this,

many other super-resolution algorithms [6] also cause that

the final image is not completely available, but rather only

a small number of pixels is available that form a non-regular

subset of positions with respect to the desired high-resolution

grid. In addition to this, there exist various other applications

where the image information is not available on a regular two-

dimensional grid, but rather only for a non-regular subset of

positions.

Independent of the actual reason for the pixels being only

available for a non-regular subset of positions, for further

processing such signals or displaying them, they have to

be resampled to a regular grid as most signal processing

algorithms cannot operate on non-regularly spaced data. This

task exemplarily is shown in Figure 1 where on the left

side an image is given whose pixels are only available on

a non-regular subset of positions. The task of the resam-

pling is then to recover the image on a regular grid, which

is shown on the right side. In this article, the Frequency

Selective Reconstruction (FSR) algorithm will be introduced

as a method for resampling images to a regular grid from a

non-regular subset of pixel positions. The algorithm is based

on Frequency Selective Extrapolation [7] and exploits the

existence of sparse Fourier domain representations for image

signals for the reconstruction.

The property of image signals that they can be sparsely

represented in different domains is a very fundamental one and

has been widely used in very different ways. One application

where it has become very popular in the recent years is

http://arxiv.org/abs/2204.12873v1
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Compressed Sensing (CS) [8], [9] where the sparsity property

directly is exploited during the acquisition process. Aside from

this, sparsity is an often used property for solving various

signal processing tasks [10], [11] as for example the denoising

of signals [12] or the deconvolution of signals [13].

The remainder of the article is organized as follows. In

the next section, an overview of various algorithms that can

be used for resampling images to a regular grid from a

non-regular subset of pixel positions is provided. Afterwards,

the proposed reconstruction algorithm is introduced. This is

followed by a section discussing how the proposed algo-

rithm can be interpreted within the CS framework, before

the performance of the proposed algorithm is demonstrated

in Section V. For assessing the reconstruction quality of

the proposed algorithm, this section also gives an extensive

comparison to alternative algorithms. Finally, the paper closes

with a summary and an outlook to further applications of the

reconstruction algorithm.

II. STATE-OF-THE-ART ALGORITHMS FOR RESAMPLING

IMAGES TO A REGULAR GRID

Independent of the actual reason for the image information

being only available on a non-regular subset of pixel positions,

for further processing or displaying, a resampling of the signal

to a regular grid is necessary. For this, the scenario is regarded

that the available non-regularly spaced signal samples snr [x, y]
result from subsampling at non-regularly spaced positions an

unavailable signal s [x, y] which is defined on a fine discrete

regular grid. In this context, x and y depict the spatial

variables. In doing so, the available signal snr [x, y] is defined

only on a non-regular subset of the positions with respect to

the unavailable signal s [x, y]. Depending on the generation

process of the available signal, it may also be possible that

the samples are located at spatially continuous positions. In

such a case, a quantization of the spatial positions to the fine

discrete grid would be necessary. Independent of the actual

origin,

snr [x, y] = s [x, y] b [x, y] (1)

can be regarded as generation process of the available sig-

nal with non-regularly spaced pixels. The subsampling mask

b [x, y] is one for all available samples and zero for all other

samples. The resampling process now aims at reconstructing

s [x, y] in the best possible way, based only on the samples

available in snr [x, y] and the known subsampling mask b [x, y].
In literature, there exist many different ways for addressing

this under-determined signal processing problem. One possi-

bility is to assume that the underlying signal was band-limited

to half of the average subsampling frequency, whereas the

latter is determined by the inverse of the average distance

between the available pixel positions. If this condition was

fulfilled, a perfect reconstruction would be possible [14], [15]

in the same way as the reconstruction of regularly subsampled

band-limited signals. The algorithms from Papoulis and Gerch-

berg [16], [17] can be regarded as two very early ones to solve

this problem. For this, they iteratively determine a solution

that fulfills the band limitation and at the same time fits the

sampled values. Besides these algorithms, many more [15],

[18], [19] have been proposed which also use this assumption

for the reconstruction but achieve the solution in different

ways. The reconstruction in shift-invariant spaces [20], [21]

can be regarded as a generalization for the reconstruction of

band-limited signals but with similar strict requirements on the

signal properties. Independent of the actually considered algo-

rithm, it can be discovered that the reconstruction performance

drops if the underlying assumption of a signal band-limited to

half the average sampling frequency is hurt.

Besides this group of algorithms, several others exist. For

achieving a very fast and computational efficient reconstruc-

tion, the Four-Nearest-Neighbors Interpolation [22] can be

used. This algorithm uses the weighted average of the four

nearest neighboring samples as estimate for the unknown

signal, while the weights depend on the distance to the known

neighbors. In a similar way, the Natural-Neighbor Interpola-

tion [23] also performs a weighted averaging of neighboring

samples, but with weights for the known samples based on a

Voronoi tessellation. A weighted averaging also is used in the

algorithm from [24] as intermediate step for a reconstruction

in the Wavelet domain. In addition to these, many classical

image reconstruction techniques like patch-based inpainting

[25] can be used for estimating the unknown samples on the

fine grid, as well.

An alternative approach is the approximation of the avail-

able samples with polynomial functions [26]. In this case, the

impact of the different functions decreases with increasing

distance to the available samples. In [27], multilevel B-splines

are used for generating a continuous surface which approxi-

mates the sampling points. Hence, for recovering the signal

on the regular grid, this continuous function would have to be

evaluated at the corresponding positions.

A technique which is often used for resampling an image

to a regular grid is variational calculus. Two algorithms which

make use of this concept are the ones from [28], [29]. There,

the smoothness of the estimated signal is used as regulariza-

tion term during the reconstruction process. A reconstruction

framework making use of total variation minimization has

been proposed in [30]. The variational calculus concepts can

further be combined with a reconstruction based on spline

interpolation [31]. A different algorithm which can also be

used for handling total variation regularization based problems

is the Constrained Split Augmented Lagrangian Shrinkage

Algorithm [32].

Aside from these, statistical modeling can also be used

for estimating the samples on the regular grid. In [33], a

statistical modeling framework is proposed which can use non-

parametric kernel regression or a steering kernel regression for

recovering the signal on a regular grid. An alternative method

is presented in [34] where a hybrid image reconstruction

algorithm is proposed that uses parametric and non-parametric

modeling of the image signals. There, the strengths of both

approaches are put together in a multi-scale framework for

image reconstruction.

As mentioned in the previous section, the property that

sparse representations exist for image signals can be exploited

in very different areas and hence also for the resampling of

images to a regular grid. Two of the algorithms that exploit this
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property are the sparse reconstruction with operator learning

from [35] and the Morphological Component Analysis from

[36]. There, the objective is to decompose the image signal

into its underlying atomic functions based only on the available

samples.

III. RESAMPLING IMAGES TO A REGULAR GRID BY

FREQUENCY SELECTIVE RECONSTRUCTION

As has been shown in the previous section, in literature,

there already exist many algorithms for recovering image

signals on a regular grid from a non-regular subset of pixel

positions. The objective of any algorithm for reconstructing an

image signal on a fine regular grid can be regarded as follows.

Considering the generation model (1), the available signal

snr [x, y] results from subsampling the desired signal s [x, y]
on a non-regular grid while the desired signal is defined on a

fine regular grid. Thus, the resampling process always aims at

generating ŝ [x, y] as estimate for the unknown signal s [x, y]
in such a way that the error becomes as small as possible.

The algorithms mentioned above have quite different origins

and exploit different signal properties for solving the under-

determined problem of estimating the missing samples on

the fine regular grid. However, unfortunately most of the

algorithms mentioned above are only able to recover low

frequency content at a high quality and have problems if

the signal to be recovered contains high frequency content.

In this article, Frequency Selective Reconstruction (FSR) is

introduced which exploits the property that for image signals

sparse representations in the Fourier domain exist. In doing

so, FSR is able to even resample images with high frequency

content. Before FSR is outlined in the second half of this

section in detail, the impact of non-regular subsampling on the

spectrum of a signal and the general reconstruction principle

of FSR is discussed in the next subsection.

A. Consequences from Non-Regular Subsampling and Fre-

quency Selective Reconstruction Principle

If image signals are regarded, it is widely known that

they can be sparsely represented in the Fourier domain [37].

That is to say that most signal energy is concentrated into

a small number of transform coefficients while all other

coefficients are equal or close to zero. However, since the

content of images can vary strongly, image signals are quite

non-stationary and the sparsity assumption only holds if image

patches are considered where the signal can be regarded as

stationary. In order to account for this, the later introduced

FSR performs a block-wise processing of the image as will

be shown in the next subsection.

Hence, for discussing the reconstruction principle, the image

block f [m,n] of size M ×N and with spatial coordinates m

and n is considered. This block is located at position (xo, yo)
in the image signal s [x, y] which is defined on a regular grid.

The block can be extracted from the image signal according

to

f [m,n] = s [xo +m, yo + n] . (2)
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Fig. 2. Comparison of a non-regular subsampling mask with a density of
25% and its corresponding absolute spectrum (normalized to maximum) to a
regular subsampling with density 25%.

Signal f [m,n] can also be decomposed into Fourier basis

functions and can be written as

f [m,n] =
∑

(k,l)∈D

c(k,l)ϕ(k,l) [m,n] (3)

with the Fourier basis functions

ϕ(k,l) [m,n] = e
2πj

M
kme

2πj

N
ln (4)

and the corresponding expansion coefficients c(k,l). Set D
subsumes the indices k, l of all possible basis functions. If

f [m,n] is sparse in the Fourier domain, most c(k,l) are equal

to zero or contribute only negligibly to the signal.

If the corresponding block fnr [m,n] from the non-regularly

subsampled image snr [x, y] is regarded, its generation process

can be described similarly to (1) by

fnr [m,n] = f [m,n] q [m,n] (5)

with q [m,n] being the corresponding block from mask b [x, y].
Taking a look at the Fourier-transform of f [m,n], the corre-

sponding spectrum

F [k, l] = F {f [m,n]} =
∑

∀(m,n)

f [m,n]ϕ∗

(k,l) [m,n] (6)

results from the scalar product between the spatial domain

signal and the basis functions. If the generation process (5)

of the non-regular subsampling is taken into account, the

spectrum

Fnr [k, l] = F {fnr [m,n]} (7)

=
1

MN
F [k, l]⊛Q [k, l] (8)

of the non-regularly subsampled signal can be defined ac-

cordingly, but can also be regarded as the two-dimensional

circular convolution (denoted by ⊛) of spectrum F [k, l] with

the Fourier-transform

Q [k, l] = F {q [m,n]} (9)

of the mask q [m,n].
Regarding the spectrum of the mask q [m,n], it can be seen

that the spectrum exhibits a dominant peak at frequency zero
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while the contribution of all other frequencies is very small

and can be regarded as a noise-like floor. In Figure 2, a mask

for a non-regular subsampling with a density of 25% is shown

together with its corresponding spectrum. There, the dominant

peak at the origin as well as the noise-like floor can be seen

quite well. The level of the noise-like floor would increase, or

respectively decrease, according to the subsampling density,

while the main peak always remains. In addition to the non-

regular subsampling pattern, the figure also shows a regular

subsampling pattern with a density of 25% which would be

equal to a reduction of the number of samples by a factor of 2
in horizontal and vertical direction. This spectrum exhibits four

equally strong peaks at zero and half the maximum frequencies

in both directions. These four peaks would cause the aliasing

in the case of a regular subsampling of the signal f [m,n],
resulting in the fact that if the original spectrum F [m,n] was

convolved with the spectrum of this mask, ambiguities occur

and the different frequencies get superimposed on each other.

This especially harms high frequencies which are superim-

posed by the typically more dominant low frequencies, heavily

distorting fine structures.

However, in case of a non-regular subsampling, a different

aliasing occurs than in the case of regular subsampling.

While regular subsampling causes a repetition of the original

spectrum shifted according to the subsampling frequency, in

the case of non-regular subsampling the aliasing looks similar

to a noise-like contribution in the frequency domain. That

is to say, every originally present frequency causes a small

additional contribution to all other frequencies. This property

becomes very important if considered together with the as-

sumption that the image patch can be sparsely represented

in the Fourier domain. If this is true, the dominant basis

functions survive the subsampling process and can still be

identified in the available signal fnr [m,n] of non-regularly

spaced samples. To illustrate this, Figure 3 shows the impact

of non-regular subsampling on the signal f [m,n] and the

corresponding spectrum F [k, l]. As the generation process for

a non-regular subsampling consists of the multiplication of the

theoretical signal on the fine grid with the subsampling mask,

the original spectrum gets convolved with the spectrum of the

subsampling mask. However, as long as the original signal

is sparse in the Fourier domain, the dominant frequencies,

or respectively, basis functions remain dominant in the non-

regularly subsampled signal. This can also be discovered in

the figure. Even though the non-regular subsampling causes a

strong noise-like floor in the spectrum F [k, l], the frequencies

which were strongly present in the original spectrum still tower

above this floor.

Thus, the reconstruction process has to aim at identifying

the dominant frequencies in the spectrum of the non-regularly

subsampled signal and estimate the appropriate weights. This

is a challenging task, since the amplitude of every frequency

in the transformed non-regularly subsampled signal consists of

two portions. This is always the actual weight of the regarded

frequency and the contributions from all other frequencies,

superimposed due to the convolution of the original spectrum

with the transformed mask. In the case that the spectrum

exhibits very strong frequencies, it may occur that their impact
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Fig. 3. Impact of non-regular subsampling on image patch f [m,n] and the
corresponding spectrum F [k, l].

on other frequencies becomes larger than the actual weights

of the latter. In order to account for this, we propose to

use an iterative procedure for the reconstruction in which in

every iteration the strongest present frequency is determined

and its weight is estimated. Afterwards, the influence of this

frequency on all other frequencies can be taken into account

and therewith reducing the superimposed aliasing-like noise

term for the estimation of the successive components.

In this context, it has to be noted that the objective of

the reconstruction is not to model the available non-regularly

spaced samples best by generating the sparse model. Instead,

the reconstruction aims at estimating the original frequency

weights as good as possible. A way how to exploit this effec-

tively is outlined in the next subsection where the proposed

algorithm is presented in detail.

B. Frequency Selective Reconstruction Algorithm

The now introduced Frequency Selective Reconstruction

(FSR) is based on Frequency Selective Extrapolation [38]

which is a quite general approach for signal extrapolation. This

algorithm has received several enhancements [7], [39], [40] in

order to improve the extrapolation quality and has been applied

to several signal extrapolation tasks in the area of image and

video signal processing. To name just a few, this has been

applications like error concealment in video communication

[41] or defect pixel compensation [42]. However, unfortu-

nately Frequency Selective Extrapolation is not suited that

well for the considered resampling task. Thus, the proposed
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FSR incorporates a novel processing order, which accounts

for the local density of the available samples and, even more

important, considers the Optical Transfer Function of imaging

systems for avoiding ambiguities during the modeling.

For resampling an image from a non-regular subset of

pixel positions to a regular grid, FSR splits the image into

blocks which are processed consecutively. In doing so, the

reconstruction can account for the instationarity of typical

image signals and the property that an image block can be

sparsely represented in the Fourier-domain can be exploited.

Additionally, by processing the image blocks one after the

other, the content of one image block can be utilized for the

reconstruction of the next block and therewith improving the

overall reconstruction quality.

In general, there exist many different possibilities for the

actual order for processing the image blocks. The most obvious

order would be to process the blocks of an image in line scan

order. However, this order is not suited well for reusing already

extrapolated areas and does not take into account the structure

of the signal to be reconstructed. In [40] an optimized process-

ing order is proposed which is better suited for reusing already

reconstructed samples and it exhibits a superior behavior over

line scan order. However, this processing order was originally

designed for extrapolating large areas of missing samples and

is not suited that well for the considered scenario of resampling

images from non-regularly spaced positions. Thus, a new

processing order is proposed which takes the characteristics

of the signal reconstruction problem into account. As typically

blocks with many known samples can be reconstructed more

accurately than blocks with few, the former one should be

processed first and therewith support the reconstruction of the

latter one.

In order to account for this, the local density of avail-

able samples is considered. Therefore, the subsampling mask

b [x, y] is lowpass filtered with a two-dimensional gaussian

window d [x, y] leading to the filtered mask

b̃ [x, y] = b [x, y] ∗ d [x, y] . (10)

In this process, the half width of the gaussian window is

selected to be of the same size as the used block size.

Afterwards, all the values of b̃ [x, y] within each block are

summed up and the blocks get processed in decreasing order

of the result of the summation. In order to illustrate the

computation of the processing order, Figure 4 shows a small

example of a subsampling mask, the corresponding filtered
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mask and the final processing order. It can be recognized

well that areas with many available samples exhibit a high

local density, resulting in an early processing whereas blocks

with few samples are processed at a later stage. The filtering

process is necessary, as for very low subsampling densities

it might happen that there exist several neighboring blocks

that all contain no known samples. By applying the filtering

operation first, it can be assured that these large areas without

known samples get closed from the outer margin to the center.

After the processing order of the blocks has been deter-

mined, the reconstruction of the individual blocks starts. If

an image block is to be reconstructed by FSR, the block

actually to be reconstructed always is regarded together with

a spatial neighborhood as shown in Figure 5 as an example.

This neighborhood is a stripe of samples and the width of this

stripe is called border width. Together with its neighborhood,

the block forms the so-called reconstruction area L. If the

available signal is not of rectangular shape, or respectively,

if the reconstruction should be carried out on a larger area,

the signal can be padded with samples of arbitrary amplitude,

accordingly. All the samples in area L can be divided into three

groups. First, all originally known samples are subsumed in

area A while all unknown samples are subsumed in area B. If

values have been padded to extend the signal, these samples

also belong to set B. Since all the samples that may have

been used for padding the signal are regarded as unknown

and do not contribute to the modeling, any amplitude can

be assigned to them. As neighboring blocks might already

have been processed before, there exists a reconstruction for

the unknown samples. These previously reconstructed samples

can be used for the reconstruction of the samples in the

currently regarded block and are subsumed in area R of

already reconstructed samples. Due to the reuse of already

reconstructed samples, the signal in area L slightly differs

from the definition in the preceding subsection and thus

is depicted by f̄nr [m,n]. Nevertheless, the properties and

concepts for the reconstruction do not change.

The basic idea of FSR is to generate the sparse model

g [m,n] =
∑

(k,l)∈K

ĉ(k,l)ϕ(k,l) [m,n] (11)
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of the signal as weighted superposition of Fourier basis

functions, based on the known samples. The basis functions

ϕ(k,l) [m,n] are defined according to (4) and ĉ(k,l) depict the

corresponding expansion coefficients to be determined. The

set K contains the indices of all basis functions to be used.

As proposed in the preceding subsection, an iterative pro-

cedure should be used for the reconstruction. Accordingly, the

model is generated iteratively and in every iteration, one basis

function is selected and the corresponding weight is estimated.

Initially, the model g(0) [m,n] is set to zero. Thus, the residual

r(ν) [m,n] = f̄nr [m,n]− g(ν) [m,n] (12)

between model and available samples for iteration ν, becomes

r(0) [m,n] = f̄nr [m,n] (13)

prior to the first iteration. For generating the model over the

iterations, the weighted residual energy

Ew =
∑

(m,n)∈L

∣∣f̄nr [m,n]− g [m,n]
∣∣2 w [m,n] (14)

is considered. In this context, the weighting function

w [m,n]=






ρ̂

√

(m−
M−1

2 )
2
+(n−N−1

2 )
2

for (m,n) ∈ A
δρ̂

√

(m−
M−1

2 )2+(n−N−1

2 )2 for (m,n) ∈ R
0 for (m,n) ∈ B

,

(15)

originally introduced in [38], is used to assign different

weights to different regions. In doing so, it can be achieved

that different samples obtain different influence on the model

generation, depending on their position. Thus, starting from

the center an exponentially decreasing weighting is assigned

to all available samples. The speed of the decay is controlled

by factor ρ̂. As the already reconstructed samples in area R
are not as reliable as originally available ones, their weight

is further reduced by a factor δ from the range between zero

and one. Since the samples in B are unknown, they cannot

contribute to the model generation and are weighted by zero,

accordingly.

For determining which basis function to add in iteration ν,

a weighted projection of the residual r(ν−1) [m,n] from the

preceding iteration is carried out onto all basis functions, as

proposed in [38], [40]. For this, the weighted residual energy

Ẽ
(ν)
w,(k,l)=

∑

(m,n)∈L

∣∣∣r(ν−1) [m,n]− p
(ν)
(k,l)ϕ(k,l) [m,n]

∣∣∣
2

w [m,n]

(16)

with respect to basis function ϕ(k,l) [m,n] is regarded. The

projection coefficient p
(ν)
(k,l) minimizes Ẽ

(ν)
w,(k,l) for the consid-

ered basis function and can be calculated by setting the partial

derivatives

∂Ẽ
(ν)
w,(k,l)

∂p
(ν)
(k,l)

!
= 0 and

∂Ẽ
(ν)
w,(k,l)

∂p
(ν)∗
(k,l)

!
= 0 (17)

to zero. This yields

p
(ν)
(k,l) =

∑

(m,n)∈L

r(ν−1) [m,n]ϕ∗

(k,l) [m,n]w [m,n]

∑

(m,n)∈L

ϕ∗

(k,l) [m,n]w [m,n]ϕ(k,l) [m,n]
(18)
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Fig. 6. One-dimensional normalized Optical Transfer Function (OTF)
and frequency weighting function between direct component and maximum
possible spatial frequency.

which is calculated for all (k, l).

As shown in [7], the calculations can be efficiently imple-

mented in the frequency domain. Thus (18) can be expressed

in the frequency domain by

p
(ν)
(k,l) =

R
(ν−1)
w [k, l]

W [0, 0]
(19)

with R
(ν−1)
w [k, l] being the Fourier-transform of the weighted

residual

r(ν−1)
w [m,n] = r(ν−1) [m,n] · w [m,n] (20)

and W [k, l] the transformed weighting function.

After the weighted projection of the residual onto all basis

functions has been carried out, the one to be added to the

model in the current iteration has to be determined. In the

original Frequency Selective Extrapolation, the basis function

ϕ(k,l) [m,n] is selected that minimizes the weighted distance

between the residual and the according projection, that is to

say the one which minimizes (16). However, this criterion

is not feasible for the considered reconstruction task. The

problems that come up with this criterion are that ambiguities

may arise due to the small number of available data points

and therewith high-frequency basis functions that do not fit

the actual content may get selected instead of a better fitting

low frequency basis function. This leads to annoying ringing

artifacts as shown in [5]. In order to cope with this, FSR

uses a different selection criterion that is inspired by optical

systems that have been used for acquiring the image. Looking

at the Optical Transfer Function (OTF) as Fourier-transform

of the point-spread function of a diffraction limited optical

system, it can be seen that it is monotonically decreasing from

the direct component to the maximally possible frequency.

Figure 6 shows exemplarily the normalized OTF of the airy

disk from a diffraction limited lens in one dimension. This

transfer function also implies that high-frequency content gets

attenuated more by the optical system than low-frequency one.

This knowledge is now used to solve the ambiguities that

may arise during the reconstruction process by introducing

a multiplicative frequency weighting into the basis function

selection process for taking the different probabilities of the

individual basis functions into account.
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Thus, the following frequency weighting function

wf [k, l] =


1−

√
2

√
k̃2

M2
+

l̃2

N2




2

(21)

is used during the selection process with the two substitutions

k̃ = M
2 −

∣∣k − M
2

∣∣ and l̃ = N
2 −

∣∣l − N
2

∣∣ in order to

allow for a compact representation. A one-dimensional plot of

this frequency weighting function also is shown in Figure 6.

Defining wf [k, l] in this way has two advantages. First of all

it can be regarded as an approximation of the OTF of an ideal

system. An exact reproduction of the OTF is not necessary

anyway since no optical system is ideal and typically, the exact

parameters of the optical system are commonly not known. Of

course, exploiting the exact OTF of the imaging system for the

reconstruction would be beneficial. Nevertheless, the approxi-

mated OTF assures that high frequency ringing artifacts can be

avoided by favoring low frequency basis functions over high

frequency ones. However, if the latter ones are sufficiently

dominant in the signal, they can still get selected as well and

therewith allowing for the reconstruction of fine structures. In

addition to this, as will be shown later, if the selection process

is also carried out in the frequency domain, it results that the

square root of wf [k, l] is used which is nothing else than a

linearly decreasing function over the whole frequency support

as shown in Figure 7. This assignment is quite convenient since

it requires no additional parametrization and also represents

well the different occurrence probabilities of the individual

frequencies.

Using the frequency weighting function, the selection pro-

cess results in

(u, v) = argmax
(k,l)

(∣∣∣p(ν)(k,l)

∣∣∣
2

wf [k, l] ·
∑

(m,n)∈L

ϕ∗

(k,l) [m,n]w [m,n]ϕ(k,l) [m,n]

)
(22)

with (u, v) being the index of the basis function to be added.

This can also be expressed in the frequency domain by

(u, v) = argmax
(k,l)

wf [k, l]

∣∣∣R(ν−1)
w [k, l]

∣∣∣
2

W [0, 0]
(23)

= argmax
(k,l)

√
wf [k, l]

∣∣∣R(ν−1)
w [k, l]

∣∣∣ (24)

where the linearly decreasing
√
wf [k, l] can be used by

exploiting the property that the argmax operation can be eval-

uated over the square root of the argument, here. Apparently,

by further removing the constant W [0, 0] from the argmax
calculation, the calculation of the basis function to be added

in iteration ν can be expressed very compactly and calculated

quite efficiently.

After the basis function to be added has been selected, its

corresponding weight has to be estimated. This is achieved by

ĉ
(ν)
(u,v) = γp

(ν)
(u,v) = γ

R
(ν−1)
w [u, v]

W [0, 0]
(25)
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Fig. 7. Square root of frequency weighting function wf [k, l] for frequency-
domain basis function selection.

where γ is the orthogonality deficiency compensation factor

used for obtaining a stable estimation and reducing interfer-

ence between the different basis functions. This compensa-

tion is necessary since the basis function are not orthogonal

anymore, if evaluated together with the weighting function

w [m,n]. As shown in [39], a constant γ could be used as

a good approximation for the elaborate compensation of the

orthogonality deficiency which is proposed in [43].

After basis function selection and weight estimation, all

samples of the model generated so far are updated according

to

g(ν) [m,n] = g(ν−1) [m,n] + ĉ
(ν)
(u,v)ϕ(u,v) [m,n] (26)

which can also be expressed quite efficiently in the frequency

domain by

G(ν) [u, v] = G(ν−1) [u, v] +MNĉ
(ν)
(u,v) (27)

where only the amplitude of the selected basis function with

index (u, v) has to be changed. Besides the model, also the

residual has to be updated by the selected basis function

r(ν) [m,n] = r(ν−1) [m,n]− ĉ
(ν)
(u,v)ϕ(u,v) [m,n] . (28)

This step can be expressed in the frequency domain as well

by

R(ν)
w [k, l] = R(ν−1)

w [k, l]− ĉ
(ν)
(u,v)W [k − u, l− v] , ∀ (k, l) .

(29)

After the update, the model generation process proceeds to

the next iteration where another basis function is selected

and its weight is estimated. These steps are repeated until a

predefined number of iterations is reached. As all operations

within the iteration can be expressed in the frequency domain,

it is advisable to carry out the whole model generation in the

frequency domain and therewith avoiding the explicit calcu-

lation of the projection coefficients. In order to achieve this,

only a transform into the frequency domain at the beginning

and one back into the spatial domain after the modeling has

finished are necessary.

Finally, the real-valued part of the samples from the model

that correspond to unknown samples of the currently consid-

ered block are taken as estimate for the content of the block
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and therewith replacing the unknown samples. After this, the

reconstruction process proceeds to the next block while all the

samples of the just finished block can be used for improving

the reconstruction of the neighboring, yet unprocessed blocks.

IV. RELATIONSHIP TO COMPRESSED SENSING

Even though the above outlined FSR has a completely

different background and has developed from a different

origin, it can also be interpreted in the Compressed Sensing

(CS) framework [8], [9]. CS is a concept which came up

some years ago and which states that the number of samples

that have to be acquired from a signal may be much smaller

compared to the classical Shannon-Nyquist theorem [44], as

long as a sparse representation of the signal exists. In order

to achieve this, the sparsity of the signal is exploited directly

during the acquisition process by measuring multiple linear

combinations of the sparse components.

In order to describe the subsampling process and the re-

sampling by FSR within the CS framework, the desired signal

f [m,n] on the regular grid is regarded in vectorized form as

f = Φc (30)

with Φ being the matrix of the vectorized basis functions and

c being the sparse vector of expansion coefficients. As vector

f contains as many samples as f [m,n] it is of length

Lf = MN. (31)

The matrix Φ contains all possible basis functions and there-

with forms a complete Fourier basis. Accordingly, matrix Φ

is of size (MN)× (MN). Using (30), the generation process

for the subsampled signal from (5) can be written according

to the typical CS notation by

fnr = Qf (32)

= QΦc (33)

with fnr being the available subsampled signal fnr [m,n]
written in vectorized form. In this context, the entries, where

q [m,n] is equal to zero are not part of fnr. Thus, the vector

fnr is of length

Lfnr
=

∑

∀(m,n)

q [m,n] . (34)

The matrix Q is the subsampling matrix which is of size

Lfnr
× Lf and results from q [m,n] and determines the

available samples after the non-regular subsampling. Since the

subsampling process performs a sample-wise mapping from

the pixels from f to fnr, every row contains only zeros

except for a single one. All the samples which get lost by the

subsampling process are represented by columns completely

full of zeros. Hence Q has a form like

Q =




0 0 1 0 0 0 0 . . . 0
0 0 0 0 0 0 0 . . . 1
0 0 0 0 0 1 0 . . . 0

...
...

1 0 0 0 0 0 0 . . . 0




. (35)

It has to be noted that matrix Q which acts as measurement

matrix is a very sparse matrix and therewith differs from the

matrices most often used in CS. However, in combination

with sparsifying matrix Φ, the product of QΦ in (33) can be

regarded as the matrix for obtaining the linear measurements

of the sparse coefficient vector c.

Similar to CS, the objective of the proposed FSR is to

estimate the sparse coefficient vector c based on the vector

fnr and the measurement matrix Q together with the transform

matrix Φ. For this, FSR generates the model g [m,n] which

can be written as

g = Φĉ (36)

with the coefficient vector ĉ to be determined by the sparse

modeling of FSR.

For generating the coefficient vector ĉ, the operations FSR

carries out are related to the ones from Matching Pursuits

(MP) [45]. Therewith, FSR could be regarded as to belong

to the class of so-called greedy recovery algorithms [46]. In

doing so, the generation of a sparse solution is assured since

only a limited number of iterations is carried out. Thus, the

number of non-zero elements in ĉ is maximally as large as

the number of iterations. As a basis function can get selected

multiple times, it might also be smaller.

However, even though the modeling is related to MP, the

proposed FSR significantly differs from it in several points.

First of all, MP minimizes the approximation energy with

respect to the selected basis function in every iteration [45],

[46]. In contrast to this, FSR uses the weighted residual energy

Ew =
(
f̄nr −QΦĉ

)H
W
(
f̄nr −QΦĉ

)
(37)

only as an intermediate step for selecting the basis functions

during the iterations and estimating its weight. Here, W is

a diagonal matrix with the non-zero entries of w [m,n] on

the main diagonal. Unlike MP, by applying the orthogonality

deficiency compensation, FSR does not maximally reduce the

energy term in every iteration with respect to the selected basis

function, but rather only a fraction of the basis function is

added to the model in every iteration.

On top of this, the spatial weighting function w [m,n] is

not part of the original MP and also the frequency weighting

is not used, there. Instead, FSR exploits the prior knowledge

that in natural images high frequencies are less likely to occur

than low ones by applying the frequency weighting wf [k, l]
during the selection process. In CS theory, there also exist

related approaches like [47], [48] which make use of some

prior knowledge for recovering the signal. However, the prior

knowledge is exploited in different ways, there. For exploiting

a prior knowledge about the distribution of the non-zero entries

in the coefficient vector, [47] iteratively estimates the support

of the coefficient vector. In doing so, the dimensionality of the

reconstruction problem can be reduced leading to an improved

reconstruction quality. In [48], a so called oblique projection

is used for the reconstruction. For this, not the measurement

matrix is used for the reconstruction by MP, but rather a second

matrix is generated and used, in order to match the probability

distribution of the signal support more.
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TABLE I
MODEL GENERATION PARAMETERS FOR FSR.

Block size 4× 4
Border width 14
FFT size 32× 32
Iterations 100
Decay factor ρ̂ 0.7
Orthogonality deficiency compensation γ 0.5
Weighting of already reconstructed areas δ 0.5

In contrast to this, the proposed FSR exploits the prior

knowledge by carrying out the weighted projection and ap-

plying the frequency weighting during the selection process.

It has to be further noted, that, since FSR only operates on

small areas of the image, it is related most to block-wise CS

algorithms [49]. Even though there exist CS algorithms like

[50] which use overlapping blocks, as well, the proposed FSR

goes beyond this by reusing already reconstructed samples

from one block to support the recovery of the next block and

especially making the processing order adaptive to the local

density of the available samples.

Altogether, FSR can indeed be interpreted within the CS

framework. Despite having a different origin, it combines

many techniques which have also been developed indepen-

dently within the CS framework, like the iterative modeling,

the exploitation of prior knowledge, and the block processing.

Nevertheless, FSR also uses different concepts like the spatial

weighting, the orthogonality deficiency compensation, or the

optimized processing order in combination with the reuse

of already reconstructed blocks which are not common in

CS. The combination of the effective modeling of the signal

based on the available samples within each block together

with the optimized processing order which can account for

locally varying densities allows for a very high reconstruction

quality, as will be shown in the next section. Furthermore, an

additional discussion is provided, analyzing the performance

of FSR, especially in comparison with other state-of-the-art

reconstruction algorithms, at the end of the next section.

V. SIMULATIONS AND RESULTS

In order to illustrate how well FSR can be used for re-

sampling images from a non-regular subset of pixel positions

to a regular two-dimensional grid, this section is intended

to show simulation results and a comparison to alternative

reconstruction algorithms. First of all, the next subsection

discusses which parameters to actually use for FSR in order

to get a high reconstruction quality. Afterwards, an evaluation

of the reconstruction quality based on a large test data set

follows. All the simulations have been conducted by taking

the reference images and subsampling them at non-regular

positions. This way, the reconstructed image can be compared

to the original image and an objective evaluation of the

reconstruction performance is possible.

A. Reconstruction Parameters

Regarding the modeling process described in the previous

section, it becomes apparent that FSR relies on several differ-

ent parameters. As it has to be avoided that the parameters of

the final evaluation are fitted to the underlying data set, the

determination of a good parameter set has to be conducted

on a data set which is independent from the actual test

data set. Thus, the Kodak test data base [51] has been used

for determining the parameters, while the final results that

are presented in the next subsection are performed on the

TECNICK image data base [52].

Accordingly, in order to identify a good parameter set for

the reconstruction, a large number of different parameter com-

binations have been evaluated on the images from the Kodak

test data base. In this context, only the luminance component

has been considered. Furthermore, three different subsampling

densities have been evaluated. In the most challenging case,

only 10% of the samples from the original image are available.

The other two cases consist of 25% and 50% of the samples.

Apparently, due to the number of involved parameters, a

full search of the parameter space is not feasible. Thus, the

parameters that have been proposed in earlier publications for

error concealment and resolution enhancement have been used

as starting points. The metric that has been used for identifying

a promising parameter set is the Peak Signal-to-Noise Ratio

(PSNR) between original image and reconstructed image.

In order to keep the computational load manageable, the

transform size has been set to 32×32 at the beginning. As this

also defines the maximum possible size of the reconstruction

area L, the sum of the block size and two times the border

width also has to be not larger than 32. However, as tests with

larger block sizes and according transform sizes have shown,

this is no big limitation as the reconstruction quality decreases

with larger block sizes, again [40]. Taking the constraint for

the block size and the border width into account, the remaining

parameters have been varied in wide ranges for identifying a

good set.

As output from the parameter training, it can be stated that

a block size of 4 samples and a border width of 14 samples is

suited well for a good reconstruction quality. Furthermore, the

number of iterations necessary for the model generation should

be set to 100 and the weighting function should decay with

ρ̂ = 0.7. Samples that already have been reconstructed before

should further be weighted by δ = 0.5 and the orthogonality

deficiency compensation factor γ should also be set to 0.5.

To give a compact overview of the parameters, they are also

listed in Table I.

In order to check how sensitive these parameters are,

Figure 8 exemplarily shows the average reconstruction quality

for the whole Kodak test data base with varying weighting

function decay factors ρ̂, orthogonality deficiency compensa-

tion factors γ, for different numbers of iterations to be carried

out, and varying weighting factors δ of already reconstructed

areas. For the plots, only the shown parameters have been

changed, while all other parameters are selected according to

Table I. It can be observed that the sensitivity of the parameters

is not very high and they do not have to be tuned to a specific

value in order to allow a high reconstruction quality. Instead,

they can be varied over a relatively wide value range without

having a large impact on the average reconstruction quality.

Regarding the plots in Figure 8, it can be observed that

especially the sensitivity of the parameter δ which controls the
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Fig. 8. Average reconstruction quality in PSNR for Kodak test data base for different subsampling densities and varying weighting function decay factors
ρ̂, orthogonality deficiency compensation factors γ, number of iterations, and weighting factors δ of already reconstructed areas.

reuse of already reconstructed samples is low. Nevertheless, it

is of high importance as if it was set to zero no reconstruction

would be possible for the case that the reconstruction area

did not contain just a single originally known sample. This

might happen for example for very low subsampling densities

or if the available samples are unequally distributed. It can

be seen quite well, that the impact of the parameters differs

for the considered subsampling densities. However, in order

to determine a parameter set that is universal, the proposed

parameters in Table I provide a good compromise as they

achieve a good reconstruction quality for the different regarded

subsampling densities.

As mentioned above, the proposed FSR is based on an older

algorithm which is called Frequency Selective Extrapolation

(FSE) which also already has an evolution of several years.

In order to assess the progress of this algorithm, Figure 9

shows the reconstruction quality for different subsampling

densities for three different stages of development: First, this

is the original version of FSE [53], without the weighting

function, the orthogonality deficiency compensation, and the

above introduced enhancements. Hence, it can be regarded as a

direct Matching Pursuits [45] based modeling of the available

samples. The second algorithm is a highly optimized version

of FSE [40] which already includes the spatial weighting func-

tion, orthogonality deficiency compensation and a processing

order optimized for large loss areas. And finally, the plot shows

the results for the proposed FSR which includes the processing

order suited for the considered reconstruction task and the

frequency weighting. While the gain of FSR is moderate for

large subsampling densities where many of the samples are

still available, it clearly increases for low densities and reaches

up to 0.7 dB over the already optimized FSE [40].

B. Evaluation of the Reconstruction Quality

After having derived a useful set of parameters in the

preceding subsection, the actual abilities of FSR for the

resampling of images to a regular grid are evaluated in the

following. For this, the simulations have been carried out on

the TECNICK image data base [52] which is independent

from the Kodak data base that has been used for determining

the parameter set. The data base comprises 100 images which

are of size 1200× 1200 pixels and again only the luminance

component of the images is considered. The individual images

from this data base contain very different content and therewith

challenge the reconstruction in very different ways.
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Fig. 9. Average reconstruction quality in PSNR with respect to different
subsampling densities for Kodak test data base for FSR and two of its
ancestors.
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For a comprehensive evaluation of the performance, FSR

furthermore is compared to several algorithms that can also be

used for this reconstruction task. The first one is Linear Inter-

polation (LI) where the reconstruction of an unknown sample

is achieved by determining the three closest neighbors and lin-

early interpolating between them. Additionally, Natural Neigh-

bor Interpolation (NNI) [23] is considered as well as a Band-
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TABLE II
AVERAGE GAIN (WITH STANDARD DEVIATION) IN dB PSNR COMPARED TO LINEAR INTERPOLATION. MAXIMUM GAIN WRITTEN IN BOLD FONT.

Subsampling FSR NNI [23] BL [16], [17] KR [33] MCA [36] TV [30] WI [10] CLS [32]
density

10% 1.45± 0.99 0.24± 0.04 −4.44± 0.69 −0.14± 0.50 −1.16± 1.39 −1.84± 0.97 −1.09± 0.68 −1.32± 0.76
25% 2.17± 1.26 0.25± 0.05 −5.94± 0.90 0.90± 1.09 −1.07± 1.58 −1.03± 0.88 0.47 ± 0.91 −0.70± 0.81
50% 2.41± 1.33 0.38± 0.06 −7.40± 1.19 −0.24± 1.27 −0.88± 1.75 −0.04± 0.97 1.63 ± 1.36 0.39± 0.98
75% 2.39 ± 1.35 0.68± 0.14 −9.04± 1.38 −1.00± 1.39 −0.59± 1.93 0.96± 1.09 2.45± 1.85 1.66± 1.18
90% 2.47 ± 1.36 1.13± 0.26 −10.84± 1.46 −1.11± 1.39 −0.28± 2.00 1.65± 1.12 2.95± 2.01 2.63± 1.38

limited Reconstruction (BL) based on the concepts from [16],

[17]. Besides these algorithms, the statistically driven Steering

Kernel Regression (KR) [33] is evaluated. Furthermore, a

reconstruction making use of Total Variation Minimization

(TV) [30] is considered. Since the proposed FSR makes use of

a sparse modeling, two alternative algorithms that exploit this

property are considered, as well. First, this is the reconstruc-

tion using Morphological Component Analysis (MCA) [36].

This algorithms decomposes an image into a texture and a

cartoon layer and performs a sparse modeling of these by

making use of Basis Pursuits Denoising [54] and a Wavelet

representation. Second, by testing the sparsity-based Wavelet

Inpainting (WI) [10], an alternative algorithm is considered

that also exploits the sparsity property of image signals. For

this, WI performs an iterative hard thresholding of Wavelet

coefficients and aims at finding a sparse representation of

the signal in the Wavelet domain. As Wavelets are able to

directly handle the instationarity of image signals, a block-

wise processing as for the proposed FSR is not necessary,

there. And finally, Constrained Split Augmented Lagrangian

Shrinkage Algorithm (CLS) [32] is considered as another

modern regularization minimization algorithm for solving this

inverse problem.

The simulations for evaluating the reconstruction perfor-

mance have been carried out for seven different subsampling

densities. That is to say, from the original image non-regular

subsets containing between 10% and 90% of the samples are

taken and the objective always is to reconstruct the original

image from these samples as good as possible. For every sub-

sampling density, the sampling masks are fixed, that is to say,

every reconstruction algorithm performs the reconstruction on

the identical non-regularly subsampled image. The output of

the simulations is shown in Figure 10 where the reconstruction

quality is plotted over the subsampling density. For this, the

mean reconstruction quality averaged over all images from the

TECNICK data base is considered. It can be seen quite well

that FSR outperforms all the other algorithms considerably for

low subsampling densities where only very few of the original

samples are available. For these very challenging densities,

gains of more than 1 dB PSNR over the second best algorithm

are possible. Only for the case where most of the samples from

the original image are still available, FSR is beaten by WI and

CLS. However, it has to be noted that the FSR parameter set

is fixed and not adapted to the subsampling density. As has

been shown in the previous subsection, it might be possible

to achieve a higher reconstruction quality by choosing the

parameters to fit higher densities, but as all other algorithms

are also not adapted to the subsampling density, this option is

TABLE III
RECONSTRUCTION QUALITY IN TERMS OF SSIM. MAXIMUM VALUE

WRITTEN IN BOLD FONT.

Subsampling 10% 25% 50% 75% 90%
density

FSR 0.810 0.878 0.914 0.931 0.939

LI 0.786 0.857 0.904 0.927 0.937
NNI [23] 0.790 0.861 0.907 0.929 0.938
BL [16], [17] 0.604 0.656 0.717 0.771 0.819
KR [33] 0.792 0.858 0.895 0.921 0.934
MCA [36] 0.733 0.818 0.882 0.916 0.933
TV [30] 0.740 0.837 0.901 0.929 0.938
WI [10] 0.755 0.861 0.911 0.931 0.939

CLS [32] 0.750 0.844 0.905 0.930 0.939

not considered.

As the used test data base consists of 100 images, it is

also possible to analyze the statistics of the reconstruction

quality. For this, Table II lists the average gain of the different

algorithms compared to Linear Interpolation, together with the

standard deviation. While the average gain reflects the behav-

ior from Figure 10, the standard deviation shows how reliable

these gains are. Accordingly, the lower the standard deviation

is, the lower is the probability that the reconstruction of few

of the test images is poor while on average the reconstruction

quality might still be high. Regarding the results for FSR, it

can be seen that the average gain always is considerably larger

than the standard deviation, making the illustrated gains also

quite reliable. Only for subsampling densities of 75% and

90%, WI is able to slightly outperform FSR, however, the

gains have a larger standard deviation, showing the quality of

reconstructed images varies more for WI than for FSR. For a

density of 90%, where only a very small number of samples

is missing, CLS is able to outperform FSR, as well, and also

exhibits a similar standard deviation.

Since PSNR is a metric just relying on the mean squared

error of the reconstructed signal, it sometimes does not rep-

resent well the perceptual quality. A metric which accounts

more for this is the Structural Similarity Measure (SSIM)

[55]. In Table III the average SSIM results are given for the

considered sequences and the evaluated subsampling densities.

Apparently, for the considered scenario, the SSIM results

conform well with the PSNR and it can be seen that the

proposed FSR is able to outperform the other algorithms for

low densities significantly and for high subsampling densities

provides a similar reconstruction quality as WI and CLS.

The results presented so far show that the reconstruction

method BL falls far behind all the other algorithms and

only achieves a very low quality. However, it has to be
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Fig. 11. Reconstruction quality in PSNR for test image Zoneplate.

noted that this algorithm reconstructs a band-limited solution

given the available samples. That is to say, if for example

the subsampling density 10% was considered, a signal is

reconstructed that also is limited to only 10% of the original

frequency range. Apparently, this leads to strong distortions

and only a low reconstruction quality. In order to test the

abilities of the different algorithms for reconstructing high

frequency content, all algorithms have also been applied on the

test image Zoneplate which is a rotation-symmetrically chirp

and is shown top left in Figure 12. Since this image contains

the whole range from very low to very high spatial frequencies,

it is well suited for evaluating to what extent an algorithm

can recover high frequency content. In Figures 11 and 12,

the reconstruction of the test image Zoneplate from samples

located at non-regular positions is given. While the first of

the two figures shows the reconstruction quality in PSNR for

the considered algorithms over varying subsampling densities,

the latter shows the visual output of the reconstruction at a

subsampling density of 25%. It can be seen quite well that

FSR is able to outperform all other algorithms significantly for

this test image and achieves an extremely high reconstruction

quality. Especially if the reconstruction is compared to the

original image in Figure 12, almost no difference is visible.

Regarding the quality of the alternative reconstruction algo-

rithms, it can be seen that, except for MCA, they are not able

to recover high frequency content. Thus, they are only able to

achieve low PSNR values and fall behind.

Besides the evaluation of the reconstruction quality in

terms of PSNR and SSIM, of course, the visual quality of

the reconstructed images is of great importance. In order

to illustrate that the measured performance also is visually

noticeable, Figure 13 shows the output of the reconstruction

for details of four test images from the TECNICK data base

for a subsampling density of 25%. The shown patches have

been selected to represent very different content and it can

be seen that the considered algorithms behave differently with

respect to the content to be reconstructed. In order to show the

images in a sufficient size, only a subset of algorithms has been

selected for this comparison. Besides FSR, this is LI as a rather

simple method, WI as a different sparsity-based reconstruction

algorithm, and CLS as an regularization minimization algo-

rithm. Regarding the algorithms used for comparison, it can

be seen that they all produce different artifacts. For example,

LI produces very jagged edges and a lot of noise-like artifacts.

In contrast to this, CLS is able to generate sharp edges, but in

some cases leads to an oversmoothing and fine structures like

the corners of the letters or the fence could not be recovered.

WI achieves a very high subjective quality, however there are

for example some small artifacts like impulse-noise on the

roof and especially very fine structures as at the far end of the

fence or the hair of the cat looks jagged, as well. In contrast to

this, the proposed FSR produces a high reconstruction quality

that is visually consistent. This holds for smooth as well as

textured areas and even very fine structures, as at the fence,

as well as sharp edges at the text letters can be recovered

with high quality. Even for noise-like structures as shown in

the rightmost column, a reasonable reconstruction is possible

and the fur of the cat looks quite similar to the original image.

Therewith, the results from the objective evaluation also reflect

the visual quality quite well.

Comparing the results presented above, it can be discovered,

that FSR is able to outperform the other algorithms especially

for small subsampling ratios, that is to say, when there are

only few samples available for the reconstruction. This can

be explained by several reasons. First, the iterative modeling

in combination with the novel frequency weighting allows

for a stable and high quality reconstruction of individual

blocks. Second, the block-wise processing assures a high

reconstruction quality on a large scale. Unlike algorithms like

TV, CLS, MCA, or WI, the processing of FSR is carried out

for overlapping blocks. In doing so, it can account effectively

for the instationarity of image signals. By applying a block-

wise Fourier-transform, a high frequency resolution can be

achieved, even for small areas, allowing for the reconstruction

of high-frequency content. At the same time, the optimized

processing order in combination with the reuse of already

reconstructed samples from one block for the processing of

the next one is important for achieving a high quality. As the

local density of the samples determines the processing order, it

can be assured that regions with many available samples are

processed prior to regions with only few available samples.

This is important in combination with the reuse of already

reconstructed pixels as it is possible then to extend the content

from already reconstructed blocks into areas where only very

few samples are available. This may happen especially in

the case of very small subsampling densities where only

few samples are available. In this case, the other algorithms

sometimes produce artifacts like oversmoothing as can be seen

for example in Figure 13. For high subsampling densities, this

case is less likely. Hence, CLS and WI can achieve a high

quality as well, or even are able to outperform FSR.

In order to assess the complexity of the different algo-

rithms, the average time for reconstructing one image from

the TECNICK image data base at a subsampling density of

10% has been measured. The results are listed in Table IV.

The tests have been carried out on an Intel Xeon E5-1620

v2 running at 3.70 GHz, equipped with 32 GB of RAM and
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TABLE IV
AVERAGE PROCESSING TIME IN SECONDS FOR ONE IMAGE FROM

TECNICK IMAGE DATA BASE [52] WITH SUBSAMPLING DENSITY 10%.

FSR 463.00
LI 4.35
NNI [23] 5.17
BL [16], [17] 56.10
KR [33] 170.00
MCA [36] 18500.00
TV [30] 142.00
WI [10] 11900.00
CLS [32] 85.60

running MATLAB R2013b. It can be seen that the runtime

of the different algorithms spreads over four magnitudes.

Additionally, all the algorithms which are able to achieve a

high reconstruction quality require at least several tens of

seconds. And while the proposed FSR is of course not the

fastest of them, with 460 seconds for reconstructing an image

of 1200×1200 pixels, it still exhibits a manageable complexity.

The processing time for FSR could be further reduced by

using larger block sizes. For example, if the transform size

was left unchanged, doubling the block size would speed up

the processing by a factor of four as the number of blocks

to be processed accordingly is reduced by a factor of four, in

the same way. However, as shown in [40] smaller block sizes

typically lead to a higher reconstruction quality. In addition to

this, by using for example a block size of 8 × 8, either the

border width would have to be reduced or a larger transform

size would have to be used. While the latter one would eat up

parts of the acceleration, the former would lead to a reduced

reconstruction quality. Hence, the parameters given in Table I

provide a good compromise for the reconstruction by FSR.

VI. CONCLUSION AND OUTLOOK

In this paper, Frequency Selective Reconstruction was in-

troduced for resampling images to a regular grid for the case

that the image information only is available for a non-regular

subset of pixel positions. The proposed algorithm is able to

recover the image signal on a regular grid at a very high

quality, even in the case that only very few samples are

available. For this, the property of image signals is exploited

that small areas of images can be sparsely represented in

the Fourier domain. In this process, the property of imaging

systems that high-frequency content is less likely to occur

than low-frequency content is used for obtaining a stable

estimation.

In doing so, the proposed algorithm achieves a very high

reconstruction quality and is able to outperform state-of-the-

art reconstruction algorithms. This holds especially for the

case that the ratio between the available non-regularly spaced

pixels and the samples on the desired regular grid becomes

very small. In this case, gains of more than 1 dB PSNR

compared to state-of-the-art algorithms are possible. These

results are also representative for the visual quality of the

reconstruction as the proposed algorithm is able to achieve

a very high visual quality as well, which is of course of

great importance for reconstruction algorithms. Furthermore,

the proposed algorithm is especially suited for reconstructing

high frequency content and very fine details.

The very high reconstruction quality and the ability of

the algorithm to recover high-frequency content from only a

small number of non-regularly spaced pixels allow for alterna-

tive sampling concepts where the non-regularity is especially

exploited for increasing the sensor resolution as shown for

example in [5].

Besides this, future research aims at using alternative basis

functions sets for the reconstruction which may also be adap-

tive to the underlying signals. Furthermore, extensions to video

signals are envisioned by either using a three-dimensional

model generation similar to [41] or a joint spatial and temporal

reconstruction similar to [56] which would only introduce

little computational overhead to the proposed two-dimensional

reconstruction.
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[2] J. W. Duparré and F. C. Wippermann, “Micro-optical artificial compound

eyes,” Bioinspiration and Biomimetics, vol. 1, no. 1, p. R1, 2006.



14

PSfrag replacements

O
ri

g
in

al
F

S
R

L
I

NNI

BL

S
u

b
sa

m
p

le
d

KR

MCA

TV

W
I

C
L

S

Fig. 13. Visual results for details of different test images from the TECNICK image data base with non-regular subsampling of density 25% and reconstruction
with different algorithms. (Please pay attention, additional aliasing may be caused by printing or scaling. Best to be viewed enlarged on a monitor.)

[3] G. Hennenfent and F. J. Herrmann, “Irregular sampling: from aliasing
to noise,” in Proceedings European Association of Geoscientists and

Engineers Conference and Exhibition, London, UK, 2007.

[4] Y. Maeda and J. Akita, “A CMOS image sensor with pseudorandom
pixel placement for clear imaging,” in International Symposium on
Intelligent Signal Processing and Communication Systems, Kanazawa,
Japan, Dec. 2009, pp. 367–370.
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