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Local Multi-Grouped Binary Descriptor with
Ring-based Pooling Configuration and Optimization

Yongqgiang Gao, Weilin Huang, and Yu Qiao

Abstract—Local binary descriptors are attracting increasingly
attention due to their great advantages in computational speed,
which are able to achieve real-time performance in numerous
image/vision applications. Various methods have been proposed to
learn data-dependent binary descriptors. However, most existing
binary descriptors aim overly at computational simplicity at the
expense of significant information loss which causes ambiguity
in similarity measure using Hamming distance. In this paper,
by considering multiple features might share complementary
information, we present a novel local binary descriptor, re-
ferred as Ring-based Multi-Grouped Descriptor (RMGD), to
successfully bridge the performance gap between current binary
and floated-point descriptors. Our contributions are two-fold.
Firstly, we introduce a new pooling configuration based on spatial
ring-region sampling, allowing for involving binary tests on the
full set of pairwise regions with different shapes, scales and
distances. This leads to a more meaningful description than
existing methods which normally apply a limited set of pooling
configurations. Then, an extended Adaboost is proposed for
efficient bit selection by emphasizing high variance and low
correlation, achieving a highly compact representation. Secondly,
the RMGD is computed from multiple image properties where
binary strings are extracted. We cast multi-grouped features
integration as rankSVM or sparse SVM learning problem, so that
different features can compensate strongly for each other, which
is the key to discriminativeness and robustness. The performance
of RMGD was evaluated on a number of publicly available
benchmarks, where the RMGD outperforms the state-of-the-art
binary descriptors significantly.

Index Terms—Local binary descriptors, ring-region, bit selec-
tion, Adaboost, convex optimization.

I. INTRODUCTION

OCAL image description is a challenging yet impor-
Ltant problem and serves as a fundamental component
for broad image and vision applications, including object
detection/recognition [1], [2], image classification [3], [4],
face recognition [5]-[9] etc. With the increasing demands of
advanced descriptors, a large number of local features have
been developed in the last two decades. Typical examples
include Scale Invariant Feature Transform [10], Local Binary
Pattern [5], [11], Histogram of Orientated Gradient [12],
Region Covariance Descriptor [13], [14]. SIFT [10] and SURF
[15] are two successful and widely applied descriptors among
them. A huge efforts have been devoted to improving their
discriminative capabilities and robustness. However, most of
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them are hand-crafted descriptors, which significantly limit
their generality to various tasks or different databases by
using pre-defined filters and unfeasible pooling configurations.
Recently, learning-based descriptors have been proposed by
optimising both local filters and pooling regions using training
data, with promising improvements achieved [16]-[18]. The
discriminative capability and computational complexity are
two crucial but conflicted issues, which need to be balanced
carefully in the learning processing.

Most high-performance image descriptors require float-
point computation, to achieve promising distinctiveness and
robustness by imposing a heavy computational cost. With the
rapid growth of the vision applications in large-scale data
sets or in low power mobile devices, binary descriptors have
been attracting increasingly attentions, due to their numerous
advantages, including low memory footprint, fast computation
and simple matching strategy. In contrast to the float-point
ones, the binary descriptors encode patch information using a
string of bits and apply hamming distance for measuring sim-
ilarity using fast XOR operation. They can achieve reasonable
performance by comparing against the float-point ones, while
only running in a fraction of the time required.

The binary descriptors can be generally categorized into two
groups. In the first group, the binary strings are computed upon
the float-point features in order to reduce computational cost
without significantly compromising its performance. Quan-
tization [19], and hashing techniques [20] are adopted to
generate the bit strings from the float-point features. But their
performance are largely limited by the qualities of the interme-
diate float representations. The other group of methods obtain
the binary strings directly from raw image patches, mainly
by measuring intensity differences between predefined pixel
locations [21], [22] or pooling regions [23]. To improve the
quality of the binary descriptor, learning methods are further
applied for bit selection by optimizing the pixel locations or
pooling regions [17], [24].

Although the binary descriptors have advantage in speed,
they generally exhibit less discriminative power and robustness
than the float-point equivalents. The quality of a binary de-
scriptor is mainly determined by the pooling configuration and
the strategy of binary tests. Current binary descriptors often
suffer from several limitations. Firstly, a number of descriptors
make use of intensity difference between two individual pixels
for binary tests, which are sensitive to noise and spatial defor-
mation. Secondly, region based binary tests would improve its
stability and informativeness, but they are computed from a
limited set of pre-defined pooling regions with fixed shapes
and scales (e.g. rectangular or Gaussian pooling areas in
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Fig. 1. Illustration of the proposed framework. The pooling region R and
group weight W are learned from training data, and then are adopted for test.

[23]). This results in an uncompleted description by discarding
a large amount of constrastive information between regions
of different shapes, scales or distances. Thirdly, they mostly
compute binary features from a single image property, such as
intensity or gradient. Few of them extracts binary features from
multiple image properties simultaneously, while an efficient
algorithm for optimizing multiple groups of the binary features
have not been explored in previous research.

The goal of this paper is to bridge the performance gap
between binary and float-point descriptors by trading off
distinctiveness, robustness and simplicity. Considering strong
complementary information between various binary groups,
we present a new local binary descriptor, referred as ring-
based multiple-grouped descriptor (RMGD), to increase the
informativeness and discriminative capability of current binary
descriptors, while maintaining its computational feasibility
to large-scale applications. The pipeline of the RMGD is
described in Fig. 1. We first present a novel leaning based
pooling configuration to encode more meaningful and compact
information into multi-grouped binary strings. Then two pow-
erful learning algorithms are proposed for effectively optimiz-
ing groups’ weights, which further increase its discriminative
ability. Our main contributions are summarized as follows.

First, we develop a new spatial pooling configuration by
dividing an image patch into multi-scale ring regions, as
shown in Fig. 3. A binary string is derived by computing
the differences of all possible region pairs of various shapes,
scales or distances. This yields a richer description than other
alternatives. It is more nature for objects to appear in different
sharps, scales or spatial distances in a natural image. With the
pooling scheme, the descriptor is capable of encoding both
coarse-level global feature and fine-level local information,
which enhance its informativeness and distinctiveness.

Second, we introduce an efficient greedy algorithm for
large-scale bit selection by extending the Adaboost algorithm.
Motivated by Yang and Cheng’s method [25], equal weight
and accumulated error are adopted by our method to keep the

binary nature and joint optimization between the selected bits.
Furthermore, our greedy algorithm leverages high variance and
low correlation objectives to effectively handle a much larger-
scale problem (with more than two orders of magnitudes in
the number of bits), which not only results in a fast selection,
but also leads to a compact and discriminative description.

Third, our binary descriptor is derived from multiple image
properties, including intensity, multiple gradient channels. We
propose two learning methods to effectively optimize the
multi-group binary strings, so that they complement each other
strongly, which is the key to discriminations and robustness.
Firstly, we cast the multi-grouped optimization as a pair-wise
ranking problem, and solve it effectively in a rankSVM frame-
work. Secondly, the grouped weight learning is formulated
as a convex optimization problem by penalizing the objective
function with a L1 constraint to induce sparsity of the weights
for optimization.

Finally, the RMGD outperforms the state-of-the-art binary
descriptors significantly on a number of benchmarks, and
achieves comparable performance of current float-point de-
scriptors but with a fraction of computation and memory.

The rest of the paper is organized as follows. In Section
II, we briefly review related studies on current local fea-
ture descriptors. Then details of the proposed RMGD are
described in Section III, including a novel spatial pooling
scheme and multi-grouped learning for feature optimization.
The evaluation of the RMGD are detailed in Section IV. In
section V, we investigate the performance of RMGD on two
applications: image matching and object recognition, followed
by the conclusion in Section VL.

II. RELATED WORK

SIFT [10] has been known as the most successful local
image descriptor in the last decade. It extracts image feature
by computing a number of local histograms from multiple
oriented gradient channels, which enables it with highly de-
scriptive power and strong robustness against multiple image
distortions. With the goal of fast computation, SURF [15]
was proposed by employing responses of Haar wavelets for
approximating gradient orientations in the SIFT, and achieves
great speed acceleration without significantly decreasing their
performance. Recently, a number of learning based descriptors
have been proposed in order to tackle hand-crafted lim-
itations of the traditional descriptors [26]-[28]. Promising
improvements have been achieved due to their data-driven
properties, which learn to optimize the pooling configurations
and the other aspects of the underlying representation [27]-
[29]. Howeyver, by using the costly float-point operation, these
descriptors are still too computationally expensive to extract
and to match, making them prohibitively slow for many real-
time applications.

Binary descriptors are of particular interest with its dis-
tinct advantages on computational simplicity and low storage
requirement. BRIEF realizes simplicity and fast speed by
simply computing the binary tests from a set of randomly
selected pairs [21]. However, it has been shown that binary
information generated by such simple pixel-based operation is



highly sensitive to noise, yet not robust to rotation and scale
changes [23], [25]. To alleviate these limitations, ORB [30]
and BRISK [31] were proposed to enhance scale and rotation
invariance by introducing an orientation operator and image
pyramids. Both methods further increase their discriminative
capabilities by improving their pooling configurations. The
ORB selects highly uncorrelated pixel pairs for binary tests,
while the BRISK emphasizes locality by computing intensity
differences between two short-distance pixels in a predefined
circular sampling pattern. FREAK [32] further improved the
performance of the BRISK by defining a novel retinal based
pooling scheme. These hand-designed descriptors, comparing
raw intensities of pixels with manually-defined pooling con-
figurations, may result in a significant information loss.

Obviously, the pooling configuration is crucial to the quality
of binary descriptors. Recently, a few methods have been
developed to optimize their pooling configurations using train-
ing data. D-BRIEF [16] projects an image patch onto a
more discriminative subspace learned, and then builds the
binary descriptor by thresholding their coordinates in the
subspace. Trzcinski er al. [17] proposed Boosted Gradient
Maps (BGM) by leveraging boosting-trick to optimize weights
of the spatial pooling regions which are considered as weak
learners in the boosting framework. Similarly, Binboost [24]
computes a weak learner from each pooling region in the
image gradient space, and then jointly optimizes the weak
learners and their weights by a complex greedy algorithm.
Yang and Cheng [33] proposed an ultra-fast binary descriptor,
named Local Difference Binary (LDB). They computed the
binary strings from pairs of equal-sized spatial regions in both
intensity and gradient spaces. An efficient bit selection scheme
extended from the AdaBoost [34] was applied for bit selection.
Receptive fields descriptor (RFD) [23] computes the binary
descriptors from defined receptive fields which are optimized
using a simple greedy algorithm by sorting all the candidate
pooling fields with their discriminative scores.

The proposed RMGD is related to the LDB [33] in using
the region-based binary test to generate the binary strings,
and proposing an extended Adaboost algorithm for fast bit
selection. But our descriptor differs from it by proposing more
principled approaches for both the pooling configuration and
multiple-group optimization, which are the key to considerable
performance improvement. Our work is also similar to the
RFD [23]. We compute the binary strings directly from a
raw image patch, while the RFD first extracts a float-point
descriptor from a patch and then binary strings are generated
by thresholding it. Furthermore, both the LDB and RFD in-
volves binary tests with the equal-sized pooling configurations.
By contrast, our descriptor is able to generate binary features
from the full set of region pairs with different shapes, scales,
and distances, leading to a complete and more meaningful
representation by encoding both local and global information.

Recently, weighted Hamming distances for binary descrip-
tors are studied. Fan et al. [35] claimed that the distinctiveness
of each element is usually different and a more reasonable
way is to learn weights for different elements of the binary
descriptors. Feng et al. [36] defined Absolute Code Difference
Vector (ACDV) and learned the weights of ACDV. The RFD

only computes binary features in gradient space [23], and
the LDB simply combines binary descriptors computed from
intensity and the first-order gradients [33]. For our RMGD,
we learn weights for various groups of the binary descriptors.
The RMGD not only considers the superiority of binary de-
scriptors, simple computation and low memory, but also takes
into account the strong complementary information between
groups. We propose two learning methods, based on the
rankSVM framework and the convex optimization algorithm
respectively, to effectively optimize different feature groups
derived from multiple image properties. This leads to a further
improvement on discriminative capability and robustness by
leveraging complementary properties among various feature
groups.

III. RMGD: RING-BASED MULTI-GROUPED DESCRIPTOR

This section presents the details of the proposed Ring-based
Multi-Grouped Descriptor (RMGD), including the pooling
configuration and multi-grouped binary features optimization.
We introduce a new spatial pooling scheme by dividing an
image patch into multi-scale ring regions, for which binary
comparisons are calculated. Then, we present two leaning
methods, based on the rankSVM and convex [;-optimization,
to solve the multi-grouped optimization problem effectively.

A. Problem Definition and Formulation

Given an image patch X, we aim to generate a compact
yet powerful binary descriptor RM G Dy (x) = {B™(x)}M_,
which consists of M groups with N bits in each group.
B™(x) € N is in Hamming space, and is computed directly
from a raw image property (e.g., intensity or gradient). Gen-
erally, the number of bits can be different for different groups.
Here we use the same number of bits just for simplicity. Each

bit is computed as,

, 1 if  fn(X, Rn1) < fm(X, Rp2)
mie. L m\&y Lln m\%y
B (x; Ryt R2) = {0 otherwise

)
where 1 < n < N, 1 <m < M, fn(x,R) denotes the
operation of extracting certain image feature from a region
R within the patch x, we use the average property value (e.g.
mean intensity) of a region as its feature. R,,; and R,5 denote
a pair of spatial sampling regions in the patch. How to design
these region pairs for binary tests is often referred as pooling
configuration, which plays a key role in the performance
of a local descriptor. It includes two main steps: a spatial
sampling scheme for generating possible region candidates
and an efficient learning algorithm for optimally selecting most
distinctive and compact pairs for binary tests. We develop new
methods for both steps.

Another novelty of our RMGD is its capability for gen-
erating binary strings from multiple image properties. The
key factor for improving the performance is to optimally
weight various binary groups. We define the weight vector as
W = {wy,ws,...,wp}, corresponding to M groups of the
binary strings. In the next, we will discuss how to learn these
parameters from training data. Two algorithms are presented
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in our framework. Notice that the weights (W,,,) can be float-
point or integer values, since they are not assigned to the
generated binary strings directly. In order to keep the binary
nature of the descriptor, they are used to weight Hamming
distance after XOR operation in matching processing.

B. Pooling Configuration

1) Spatial Ring-Region Sampling: As mentioned, randomly
single-pixel comparisons may suffer from the problems of
weak robustness and instability, we release this problem by
using region-based sampling strategies as previous works [17],
[25], [26], [37], [38]. It has been shown that the region-based
intensity difference is robust to most of photometric changes,
e.g. lighting/illumination changes, blurring, image noise, and
compression artifacts [25], [39].

The design of the region sampling is crucial to the per-
formance of binary descriptors. A number of issues should be
considered and traded off carefully. The feature extracted from
a small region is able to capture more detailed local informa-
tion, which often includes more discriminative characteristic,
but has low robustness and instability against noise and spatial
distortions. While the feature computed from a large region
would result in a more robust and stable representation by
encoding more global information. But it has less distinctive
power. Most exiting descriptors utilize fixed-size sampling
regions, and hence are not powerful to integrate both local
and global information effectively [17], [26], [37], [38].

To encode richer information, Yang and Cheng [25] pro-
posed the Local Difference Binary descriptor (LDB) by sam-
pling an image patch into multi-scales regions. The binary
tests are conducted by comparing the intensity or gradient
differences between paired regions of same scale and shape
(e.g. rectangular). The multi-scale approach enables the LDB
to capture both local and global features of the image, leading
to considerable performance gains. To this end, we improve
the LDB further by developing a more complete description
that generates the region pairs in a full set of different scales,
shapes and distances.

We introduce a ring-region sampling scheme to generate a
large number of pooling region candidates with multiple scales
and shapes. As shown in Fig. 2, an image patch is first densely
divided into a number of ring regions centered at central of
the patch. Specifically, suppose a patch x with the size of
k x k, we compute radius of the patch as r = floor(k/2),
where floor(y) is the maximum integer not larger than y.
We generate r element ring-regions from this patch. All
possible combinations of these element regions are considered
to generate a complete set of pooling regions with multiple
scales and shapes. Then each generated ring region is further
divided into a number of sub divisions (e.g. 4, 8 or 16). Finally,
it generates z =t X W pooling regions in total. ¢ is the
number of divisions. The details of region combination and
division are illustrated in Fig. 3. In contrast to most previous
work comparing equal-sized regions, we compute the binary
tests by comparing the mean intensity differences between all
possible region pairs of different shapes, scales and spatial
distances, so as to encode more meaningful and distinctive
information. Hence, the number of the complete region pairs

is|y) For instance, given a smoothed patch x with resolution

of 32 x 32, the single-division case (referred as “All” in Fig. 2
) includes 136 pooling regions that generates a total 9,180
region pairs for binary tests. The numbers of the generated
pooling regions for the “4-division”, “8-division” and *“16-
division” cases are 544, 1,088 and 2,176, corresponding
to their full sets of region pairs of 147,696, 591,328 and
2,366,400, respectively. Comparing to the spatial sampling
of the LDB [25], which divides a patch into a small number
of large regions (e.g. from 2 X 2 to 5 x 5) and computes the
binary tests by comparing two regions of the same scale and
shape, our binary strings encode much more detailed features
and important contrastive information between the regions of
various scales and shapes, and hence stronger discriminative
capability can be expected.

2) Boosted Bit Selection with Correlation Constraints:
The proposed densely sampling and full comparison scheme
generates a complete and meaningful description of an image.
However, it also results in a huge number of region pairs
to compare (e.g. 591,328 in the “8-division” case), making
it prohibitively slow in practice. Moreover, the resulted long
binary string may be highly redundant by including a large
number of strongly correlated and noise (e.g. low variance)
bits. In order to achieve a compact representation and fast
computation, we aim to select a small number of the most
informative region pairs for the binary tests.

Optimizing the binary tests over the full set of region pairs
poses a difficult problem due to the huge number of the
possible regions. Fortunately, the boosting methods are partic-
ularly well-adopted for this problem with good performance
achieved [3], [24], [25], [40], [41]. Yang and Cheng [25]
proposed an efficient greedy algorithm for bit selection by
improving the original Adaboost [34], [41] at two aspects. (1)
Forcing equal weights for all selected features to keep the
binary nature of the descriptor; (2) Using the accumulated
error as bit selection criterion to enhance the complementarity
between the selected bits. However, our problem involves a



much larger-scale bit selection, where the candidate bit number
is about two order of magnitude than that of the LDB [25],
directly applying the algorithm to our problem may cause two
problems. Firstly, Yang and Cheng’s method [25] essentially
does not strongly enhance the uncorrelation between bits by
using the accumulated error instead of the single-bit error, and
hence easily leads to a local minimum for our large-scale bit
selection. Secondly, the computational cost can be increased
substantially.

Motivated from [30], [42] which indicate that, for an effi-
cient binary descriptor, each bit should have 50% chance of
being 1 or 0, and different bits should have small correlation,
we emphasize high variance and low correlation criterions
to make the descriptor more discriminative. We develop a
two-step bit section method. First, we implement a raw but
fast selection scheme to generate a subset of bit candidates
with low classification errors and high variance. Second, a
correlation-constrained Adaboost algorithm is proposed to fur-
ther optimize the selected bits. Although greedy, our algorithm
is highly efficient for large-scale bit selection with the goal of
searching for a small set of uncorrelated yet highly-variant bits,
leading to a compact and discriminative representation. Details
of the Boosted Bit Selection with Correlation Constraints
(BBSCC) are described in Algorithm 1.

The numbers of matching and non-matching pairs for train-
ing are 1:3, since the non-matching cases are often much more
than the matching cases in practice. Our experiments also
show that this strategy outperforms that using equal numbers
of them. The correlation between two bits is calculated as
Pearson correlation through all training examples:

Z\XI bi @bi

VIR ) \/Z'X' (b},)”

where € denotes XOR operation.

2)

corr(be,,be,) =

C. Multi-Grouped Features Optimization

The intensity is a fundamental image property and generally
includes meaningful information for image description, so that
most image descriptors extract their features from the intensity
space. Great success of recent local descriptors show that im-
age gradient space is capable of encoding inherent underlying
structure of the image, which have been shown to be more
powerful for image representation than the intensity in many
applications, such as SIFT [10], HOG [12], GLOH [43] and
BinBoost [37]. To this end, we aim to explore the advantages
of both spaces to achieve a more robust and discriminative
representation. Specially, we compute binary strings from
multiple image properties (13 in total), including the intensity,
x-partial, y-partial, gradient magnitude, orientation, and eight
channels by soft assigning the gradient orientations. Finally,
13 groups of binary strings are generated from an image patch.

As expected, we achieved considerable performance im-
provements by simply combining multi-grouped binary
strings, as indicated in our experiments in Section IV. B. It
would be interesting to find the impacts of different binary
groups which may have various contributions in the repre-
sentation. And it can be expected that a good weighting on

Algorithm 1 Boosted Bit Selection with Correlation Constraints

Input:

A set of training data 7' = {X, Y}, where X, is a pair
of image patches. Y; = 1 indicates a matching pair, while
Y; = 0 is for a non-matching pair;

Output:

The optimized bits or bit positions, C' = {c1, ¢, . ..
n is the number of the selected bits.

1: Compute N-bit descriptors for all patches in 7.

2: Compute a matching error for each bit: 47 vail Y; — Y|
where Y; is the predicted label of a pair, and is computed
from our binary test,

M = |T| is the number of training pairs.
3: Order the errors in ascending and select the first N /2 bits.
4: Compute the mean of each bit through all training pairs:
LMy
M Z2ai=1"1i
5: Choose N/4 bits whose means are mostly closed to 0.5,
from the selected N/2 bits.
: Set equal weight d; = 1/M to all training pairs X.
:SetC'=¢
: AdaBoost-based Bit Selection:
: fort=1tondo
10:  Find a bit b; with the minimum accumulated error:
by = argmin Z':accu(t)s E':accu(t) = 5accu(t - ]-) + &4,
€aceu(0) =0, &¢ = Zﬁl d;Yi — Y;|
11:  Compute the correlation rate, corr(b, cg), cx € C.
122 if corr(bs, ¢;) < te, Ve; € C then
13: Set C =C Uy
14:  end if
t. is the correlation threshold, which is set empirically.
15 if & < 0.5 then
16: Update weights: dt+1 P =

7671}7

Nelie cREEN BN

dt i X e‘Pt ant

where <,0t1 =1, if Y = YZ, ¢t,i = —1, otherwise.

ap =+ ln —=, and Z; is a normalizing factor.
17 else
18: Switch to a new training set and reset d; = 1/M.
19:  end if
20: end for

the grouped features would achieve a better optimization,
which may lead to a further improvement on the performance.
Therefore, our goal is to learn the weights from provided
training data. Specially, we define a weight vector as W =
[wy,wa, ..., wa] for M groups of binary strings. We cast the
weight learning as an optimization problem with an objective,
which encourages that the distances of the non-matching pairs
(N) are larger than those of the matching pairs (P):

dW(Jj,Z/)‘Fl <dw(u,’U), V(JU,y) EP? V(u,v) ENa

3)
the dw (z,y) is defined as:

§ wpd

ZWTD( (z),B(y))
= WTD(amy),

), B"(y))
“4)



where d(B™(x), B™(y)) denotes the Hamming distance
computed from the m-th group of the binary strings
{B(z),B(y}. D(B(x),B(y)) is a distance vector with
{d(B™(x), B™(y))}*_,, and M is the number of groups.
The Eq. 3 can be considered as a hinge loss in the formulation
as: Z(z) = max(z + 1,0), where z = dw (z,y) — dw (u, v).
Then we derive the following convex optimization problem by
minimizing .Z(z):
min

By 2

T (x,y)eP
(u,v) eN

LWH(d(z,y) — d(u,v))) + @l W, (5)

where ||[W]]; is the penalty on the learning weights, for which
we adopt two forms: I; norm ||W||; (lasso penalty [44]) and
lo norm ||[W||3 (ridge penalty [45]); p; > 0 (I = 1,2), is a
tuning parameter which balances the error loss and penalty.
The W is a vector with non-negative elements. We present
two methods to solve the convex optimization problem with
different norms effectively.

1) ly norm: The objective is to learn the W which makes as
many as possible of the pairs to satisfy the Eq. 3. With the 5
constraint on the W, the convex optimization of Eq. 5 can be
reduced to a ranking SVM problem [46]-[48] by introducing
the (non-negative) slack variables &:

w* :argwr/ninHWHQ—l—iz&,j s.t.
Whd(ui,vi) — Whd(zj,y;) >1— &
Vi,Vi: &3>0
(ui,vi) € N, (z,y5) € P

(6)

If a training example lies on “wrong” side of the hyperplane,
the corresponding &; ; is greater than 1. Therefore ) ¢; ; yieds
an upper bound on the number of training errors. This means
that the rankSVM finds a hyperplane classifier that optimizes
an approximation of the training error regularized by the [y
norm of the weight vector [46], [48]-[50] .

2) Iy norm: If the l; norm is adopted, we derive the
following non-smooth convex optimization problem :

>

(x,y) eP
(u,v) eN

LW (d(z,y) = d(u,v))) + pa|[Wl1, (D

min
W>0

This is intrinsically similar to sparse support vector ma-
chines [44], [51]-[53]. which are highly effective in variable
ranking and selection [51]. Our objective is to select most
informative feature maps by using the sparsity-inducing regu-
lariser, and weight the selected groups optimally. Simonyan et.
al [26] proposed a method for learning pooling regions based
on Euclidean distance in the descriptor space, while we adopt
the Eq. 7 for multi-grouped features ranking and selection by
computing the Hamming distance between the binary strings.

Typically, an extreme large number of the pairs is employed
for learning, e.g. 500,000 in our experiment. It makes conven-
tional interior point methods infeasible. By following [26], we
adopt Regularized Dual Averaging (RDA) [54] to optimize
the Eq. 7, formulating the objective function into an online
setting. Typically, this objective function contains the sum of
two convex terms: one is the loss function of the learning

task and the other is a simple regularization term. In our case,
the second regularization term is the “soft” [;-regularization,
u1]|w||1. By following the principles of RDA, an auxiliary
function h(w) = 1||w||3 is applied. Given a nonnegative and
nondecreasing sequence 3; = v/t (¢ denotes the iteration),
the specific form of the RDA update term for the Eq. 7 is,

Wint41 = maX{—f(Qm + p1),0}, (®)
where g = %22:1 g; is the average sub-gradient of the
corresponding hing loss function at iteration ¢, pp is the
parameter in Eq. 7, and w,, can be fine-tuned by different
values of 1.

IV. EXPERIMENTS

In this section, we present extensive experimental results
to evaluate efficiency of the RMGD, and investigate the
properties of our method by showing the performance im-
provements by each independent component. The experiments
were conducted on three challenging and widely-used local
image patch datasets [27], [55]: Liberty, Yosemite and Notre
Dame. Each dataset contains over 400k scale- and rotation-
normalized 64 x 64 image patches, which are detected by
Difference of Gaussian (DoG) maxima or multi-scale Harris
corners. The ground truth for each dataset is available with
patch pairs of 100k, 200k, and 500k, where 50% for matching
and the other 50% for non-matching pairs. In this paper, we
resize the training and test patches into 32 x 32, and all patches
are smoothed by a Gaussian kernel with standard deviation.
These pre-processing are the standard steps by following
previous work in [16], [21], [24], [30]. We report results of the
evaluation in terms of ROC curves and false positive rate at
95% recall (FPR @ 95%) which is the percentage of incorrect
matches obtained when 95% of true matches are found, as in
[27] and [37]. More details can be found in project webpage'.

Assume that “8-division” ring-region sampling scheme is
adopted. There are totally 591,328 tests for a local patch of
size 32 X 32. We compute the binary strings from thirteen
different feature maps. Fig. 4 shows an example channel for
each map, and we denote them as “Int.”, “X-part.”, “Y-part.”
“Mag.”, “Ori.”, “Chan.1” ~ “Chan.8” for short. Intuitively,
the “Int.” and “Mag.” maps consist of more local details
comparing to the “X-part.” and “Y-part.”, while eight different
originated maps exhibit to be not only discriminative but
strongly complementary information to each others.

A. Evaluation of the Proposed Pooling Configuration

We conduct extensive experiments to evaluate our ring-
based pooling configuration. For fair comparisons, the ex-
periments were only implemented on the “Int.” map. We
investigate the efficiency of each independent component of it.
The performance of the spatial ring-region sampling scheme
is compared to that of the BRIEF without any learning
process, then the efficiency of our bit selection method is

Uhttp://mmlab.siat.ac.cn/yqgao/RMGD/
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Fig. 4. Multiple feature maps of an image patch. The sequence of feature
maps are intensity map (Int.), x-partial (X-part.), y-partial (Y-part.), gradient
magnitude (Mag.), gradient orientation (Ori.), and soft assigning gradient
maps with eight orientations from [0, /4] to [77/4, 27].

evaluated. Finally, the whole pooling configuration including
both components is further compared to recent methods.

The spatial ring-region sampling. A group of experiments
were conducted to compare the performance of different
division strategies of our spatial ring-region sampling method.
In each case, we generated a set of binary descriptors by ran-
domly selecting increasing numbers of the region pairs for the
binary tests, e.g. N = 128,256,512,1024. The generated bi-
nary descriptors were tested on the 100k Notre Dame database,
and the false positive rates (at the 95% recall) were reported as
in [29]. Each error rate presented in the Fig. 5 is the average
value of five independent random selections of the region pairs.
Noting that most of variances locate in 10~* ~ 10~% which
means they are relatively stable through our experiments. We
adopt BRIEF [21]? as the baseline. As shown in Fig.5, the “8-
division” scheme achieves reasonable performance among the
four cases by trading off their performance and the numbers
of bit candidates. Although the “16-division” case generates
a larger set of region pairs by dividing the patch into finer
regions. These regions may be too small to encode enough
global and robust information, and hence it dose not lead to
a further large improvement, while doubling the number of
the bit candidates. Therefore, we use the “8-division” for the
RMGD in all our following experiments. In the “8-division”
case, our method achieves 51.16% and 49.51% error rates at
the 512- and 1024-dimensions respectively, which outperform
the BRIEF at 56.78% and 53.25% considerably, even by
randomly selecting a small number of bits from the generated
binary strings. This indicates that the proposed ring-region
sampling is highly beneficial, and is powerful for capturing
meaningful local image feature.

TABLE I
COMPARISON RESULTS OF VARIOUS POOLING CONFIGURATION

Pooling Configuration | FPR @ 95%-4K [ FPR @ 95%-40K
ORB 63.72
RFDg 40.56 .
RFDg 41.34 -
Ring-BSB 39.97 29.45
Ring-BBSCC 38.46 28.27

The BBSCC bit selection strategy. We further show that
the performance of RMGD can be improved considerably with
the proposed bit selection methods (the BBSCC). We compare

2codes: http://cvlab.epfl.ch/research/detect/brief, and the patch size and
kernel size are 32 and 7, respectively.
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Fig. 5. False positive rate at 95% (FPR @ 95%) for ring-region features with
different divisions on the datasets of 100k Notre Dame. Results are obtained
by averaging 5 loops and all bits selected by uniform random and error bar
indicates variance for each division with related bits.

it with recent BSB [25] which is also extended from the
Adaboost for bit selection. For fair comparisons, both the
BBSCC and BSB were implemented upon our ring-region
sampling for selecting 256 bits from the total 591,328 bits.
They were trained by using the “Liberty” dataset with two
different scales: 4k and 40k pairs (both with 1:3 matching
and non-matching pairs). They were test in the “Notre Dame”
with 100k pairs (50k matching and 50k non-matching). The
results are compared in Table 1.

The BBSCC achieves the FPR at 38.46% and 28.27%
for 4K- and 40K- training sets. Obviously, the proposed
BBSCC improves the performance of the ring-region sampling
with random bit selection and the BRIEF substantially by
leveraging the training data, as shown in Fig. 5, and more
training data would lead to a considerable reduction on the
FPR. The BSB gets higher FPRs at 39.97% and 29.45% based
on the same pooling configuration scheme, indicating that our
algorithm with strong enhancements on high variance and low
correlation leads to a more discriminative binary representa-
tion. Furthermore, in our experiment, we found that the BSB
requires much more training time to optimize the compact bits
from our large-scale binary strings, which is about four times
of our methods. This indicates that our multi-step scheme is
more efficient to handle the large-scale bit selection problem,
and achieves a more compact representation.

TABLE I
AVERAGE TIME COSTS OF DIFFERENT DESCRIPTORS

Descriptor | Extracting time (ns) | Matching time (ns)
SIFT 235 940
BinBoost 6.48 36.45
BRIEF 12.54 35.46
RMGD 10.46 32.46

The whole pooling configuration. We further compare our
full pooling configuration with the ORB [30] and RFD [23]
in Table I. The ORB was improved from the BRIEF by
learning the oriented BRIEF features from a given dataset. In
the Liberty, Yosemite and Notre Dame datasets, the principal
orientations of the image patches were normalised by the
original authors [27], [55]. Thus the ORB is equivalent to



the BRIEF when the principal orientation is given [16]. As
can be seen, our pooling configuration has obvious advantages
over the ORB by reducing the error rates considerably. Our
method also outperforms recently-developed RFD [23], which
achieves a higher error rates at 40.56% with the 4K training
data. This improvement may be benefited from our meaningful
binary representation generated from the full set of region
pairs, and the efficiency of the bit selection algorithm. Besides,
learning the RFD descriptor is highly memory demanding,
making it prohibitive to be implemented in a large training
set.

Computational complexity The main advantage of binary
descriptors is that they require less computational and storage
cost compared with float descriptors. We introduce circle
integral image to speed up the computation of ring-based de-
scriptor. The circle integral image is computed independently
within each image patch or around each keypoint center, which
is different from the integral image exploited by the SURF for
rectangular regions [15]. Details of our circle integral image
can be found in the Appendix. To validate the computational
efficiency of the RMGD, we estimate the average time costs of
feature extraction and feature matching on “wall” dataset [43].
Experiments are conducted on a PC with Intel (R) Core(TM) 2
Duo CPU E7500 @ 2.93 GHZ, 2.94 GHZ, 6.00 GB of RAM.
Tab. II gives the average time costs of different descriptors,
where the model of the RMGD is trained on the “Liberty” with
256 bits. The reported times include the computation times
of the integral images. Notice that the BinBoost and BRIEF
were run with provided C/C++ codes, while our method was
implemented in Matlab, which could be further speeded up
with more engineering work involved. Obviously, the RMGD
still requires less time than the BRIEF in both extracting and
matching times, while achieving substantial improvements on
the performance. Note that RMGD is obtained by only one
channel and it is calculated on circle integral image.

B. Evaluation of Multi-Grouped Feature Optimization

We evaluate the multi-grouped binary features optimization
by comparing the performance of two proposed optimization
methods (referred as “/;-opt” and “l3-opt”) with single-group
binary feature and direct combination of them with equal
weights (the “No-opt”). The “I;-opt” and “ly-opt” are com-
puted by using /1 (Eq. 7) and lo norm (Eq. 6), respectively.
We analyse insights of the proposed descriptor for performance
improvements and discuss the contribution of each grouped
feature and interaction between them. Our pooling configu-
ration is applied on 13 different image properties (as shown
in Fig. 4) for extracting 13 groups of compact binary strings
(e.g. 128 or 256 bits) by Algorithm 1. In this experiment,
we trained 60k patch pairs from the “liberty”(abbr. Lib), and
tested on 100K pairs from the “Notre Dame” (abbr. NoD).
Both datasets include 50% matching and the other 50% non-
matching pairs. The results of feature combinations (including
the “No-opt”, “l;-opt” and “l2-opt”) are reported, comparing to
the performance of each single binary group. The comparisons
are summarized in Fig. 6, and more experimental results
by using the “Notre Dame” and “Yosemite” datasets as the
training data are presented in our project webpage.

Three observations can be found from the left of Fig. 6.
First, the binary feature from the “Int.”” map achieves the
lowest FPR (at about 25%) among 13 single-grouped features,
while the other single features get much larger FPRs inde-
pendently. This correctly matches the fact that intensity map
generally encodes main image information, and serves as a
basic image property for general feature extractions. Second,
direct combination of 13 grouped features leads to a large
improvement with 5% reduction of the FPR (the “No-opt”)
over the best performance of the single feature. This indicates
that, although gradient based binary features do not include
as much detailed information as the intensity, they are able
to capture robust global information which provides strong
complementary to the local information. Third, the proposed
optimization methods for group weights learning (the “l;-opt”
and “lo-opt”) lead to a further considerable improvements
over the “No-opt”, which finally reaches at about 15% on
the FPR. These results clearly show importance of multi-
grouped features combination for performance improvements,
and efficiency of the proposed methods for weights learning.

We further compare three combination methods with varied
bit numbers in the right sub-figure of Fig. 6. The test were
conducted on the “Notre Dame” (abbr. NoD) and “Yosemite”
(abbr. Yos) datasets. The performance of three methods are
generally improved by increasing the numbers of bits. This
is because more bits can encode more meaningful binary
feature in each group, and thus make the final integrated
descriptor more discriminative. However, as shown in the
right sub-figure of the Fig. 6, the speeds of the performance
improvements by the direct combinations are slowed down
considerably when the numbers of the bits are increased from
512 to 1024. A similar phenomenon is shown in the Fig. 5,
where the performance of the single-group binary descriptor
is not always increased by increasing the number of the bits.
The descriptor with more bits may easily include redundant
information without an optimal selection. By contrast, the
improvements of both optimization methods are consistently
significant in this case, indicating that our group weight
methods can enhance the complementarity between different
grouped features. Furthermore, the proposed weight learning
algorithms (the “I;-opt” and “l5-opt”) consistently outperform
the direct combination with a large margin. And among the
two learning-based methods, we notice that the “I1-opt” ob-
tains slightly lower error rates than the “/5-opt”. This indicates
that the “l;-opt”, which utilizes a sparsity-inducing regularizer,
is more powerful for learning the weights of multiple groups.
Another advantage of using “l;-opt” is that it encourages
the elements of W to be zero, which not only discards the
redundant features, but also reduces the final computational
cost in the testing phase. Therefore, the “/;-opt” is adopted in
our following experiments.

We develop two strategies to further improve the perfor-
mance. Firstly, we enlarge the number of feature groups by
dividing each group into eight subgroups with equal intervals,
and hence we finally have 13 x 8 = 104 groups in total. This
finer weighting scheme increases the discriminative power of
our descriptor, and the 104 sub groups were chosen empirically
by trading off the performance and its learning cost. Further
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increasing the number of sub groups did not lead to an obvious
improvement on the performance. Secondly, we increase the
number of training image pairs to 500K to learn a better
weight for each group. The test data is the same as previous
experiment on the 13-grouped learning. The FPR values for
each single-grouped binary feature (in Blue bar) and the “l;-
opt” combination are presented in Fig. 7, along with the
learned weights (in Red bar) by the “/;-opt”.

By comparing Fig. 7 with the left of Fig. 6, we can find
that the FPR value for each single feature in the 104-groups
is generally higher than that in the 13-groups. It is natural
that a grouped feature by a more finer division may loss some
important information when it is used independently. However,
the result is boosted substantially when we integrate all 104
groups together by using the “/;-opt” optimization, and finally

get an appealing result at 10.15% of the FPR, which further
improves the result of the “/;-opt” with 13 groups (about 15%
of the FPR) significantly.

By investigating the distribution of learned weights, we can
find that large weights are converged on the “Int.” and “Mag.”
maps, while they are highly sparse in the “X-part.” and “Y-
part.” maps. It means that the “Int.” and “Mag.” maps include
the most important information for patch representation, while
the “X-part” and “Y-part” maps may have redundant or
overlapped information. Another observation is that, although
most single sub-group features from the “Chan.1” ~ “Chan.8”
do not achieve reasonable performance independently, some
of them server as good complementary information for patch
description (as indicated by their weight values), which is
also a key factor to performance boosting. Furthermore, the



distributions of learned weights are highly consistent when
we verified the training datasets with various numbers of the
selected bits, which is visualized in the left of Fig. 8. This
is a appealing property as it means that the learned weights
obtained by our method dose not heavily depend on special
training datasets, and hence has good generality.

The right of Fig.8 shows the performance of the “l;-opt”
with various numbers of the selected bits across all splits of
training and test datasets. As can be expected, the FPRs drop
as the numbers of bits increase. The matching time for the
RMGD1 4 is increased slightly at 45.34ns, which is only a
fraction of that of the SIFT (at 940ns).

As showed theoretically in Section III.C, we derive the
margin-based objective with the form of loss + penalty,
Eq. 5. The p; is the tuning parameter that controls the
tradeoff between loss and penalty. Two forms of penalty
are used: the ridge penalty with the idea of penalizing by
the sum-of-squares of the parameters and the lasso penalty
stressed feature selection. In our experiments, we formulate
the objective with ridge penalty as a rankSVM problem by
introducing the slack variable ¢ (Eq. 6); while, the objective
with lasso penalty (Eq. 7) can be considered as one instance of
the sparse support vector machines which can be solved with
a non-smooth convex optimization approach, e.g. subgradient
algorithm.

It is interesting to note that the performance of our grouped-
feature optimization is considerably better than the direct
combination, as shown in Fig. 6. The ridge penalty shrinks the
fitted coefficients W towards zero, and this shrinkage has the
effect of controlling the variances of W which possibly im-
proves the fitted model’s prediction accuracy, especially when
the feature maps are highly correlated [44]. In our method,
we generate 13 feature maps from the original image, which
may be strongly correlated to each other. That is the reason
that feature optimization by Eq. 6 consistently outperforms the
direct combination method, and the tendencies are significant
in Fig. 6. The [; norm of W, i.e. the lasso penalty, can be
considered as a feature selection by inducing the sparsity. It
corresponds to a double-exponential prior for the W, while the
ridge penalty corresponds to a Gaussian prior [44]. It is well
known that the double-exponential density has heavier tails
than the Gaussian density. Friedman et al. [56] showed the
comparison results that the lasso penalty works better than
the ridge penalty in the sparse scenario, similar results can
be seen in our experiments (Fig. 6). Hence, we extend the
sparse scenario to the 104 groups learning to achieve great
performance improvements.

C. Comparisons with the state-of-the-art methods

We further compare performance of the RMGD against
the state-of-the-art binary descriptors on the Brown datasets
[27], including RFD [23], BinBoost [37], BGM [16], ITQ-
SIFT [19], D-BRIEF [16], BRIEF [21] and BRISK [31].
Besides, comparisons with recent float descriptors, such as
SIFT [10], Brown et al. [29] and Simonyan et al. [26] are
also provided. For the RMGD, we report results of the 104-
grouped optimization by the “l;-opt”. In order to reach a

fair comparison, we follow the protocol proposed in [29] by
reporting the ROC curves and false positive rates at 95% recall.
The experiments were conducted on the benchmark dataset
(Local Patch Datasets [29]) which contains three subsets of
patch pairs: the “liberty”, “Notre Dame” and “Yosemite”. We
use crossing combinations of three subsets by training on
one (with 500K pairs of local image patches attached in the
datasets) and testing on one of the remained two. For the “[;-
opt”, we only select a small number of groups (e.g. 50) for
testing based on the numbers of non-zeros weights learned.
The results are compared in Tab. II.

It can be found that the RMGD descriptor yields the
best performance among all the binary descriptors listed. It
outperforms the most closed one (the RFD) by a large margin
with over 2% of the FPR in average. Furthermore, it is
appealing that the RMGD also achieves competitive or even
better results than recent float descriptors (Simonyan et al.
[26]), which indicates that our binary method may narrow the
performance gap between binary and floated-point descriptors.

V. APPLICATIONS
A. Image matching

We evaluate image matching performance of the RMGD
on Oxford dataset [43] which contains six image sequences
with different variations such as, 2D viewpoints (wall), com-
pression artifacts (ubc), illumination changes (leuven), zoom
and rotation (boat), and images blur ( bikes and trees). Each
image sequence is sorted in order of an increasing degree of
distortions with respect to the first image corresponding to
their changes. We followed the evaluation protocol of [47] to
compare the descriptors. For each image, we compute 1,000
keypoints using oFAST [24] detector and then calculate their
corresponding binary descriptors. The matching keypoints in
two images are determined by nearest neighbor search. Since
homography matrix between two images is given, the ground
truth of correct matches can be estimated.

Fig. 9 illustrates the correct matching rates obtained by
ORB-32 [30], BRISK-64 [31], SURF-64 [15], BinBoost-
128 [37], RFD (RFDR, RFD¢) and the proposed RMGD. For
ORB-32 and SURF-64, we use the latest openCV implemen-
tation [23] [58]. And the implementations of the RFD, BRISK
and BinBoost are available from the authors. In general,
the RMGDjg4 achieves better performance than the other
descriptors in all image sequences, and followed by the RFDg
and RFD¢. These results are in consistency with our previous
experiments, indicating that our learned descriptor RMGD can
deal with various image variations effectively.

B. Object Recognition

We further evaluate the RMGD on object recognition task.
Specially, we test them on two image recognition/retrieval
benchmarks, the ZuBud dataset and Kentucky dataset [2]. The
Kentucky dataset consists of object images with the resolution
of 640 x 480 (see the middle of Fig. 10). It includes 255 indoor
and outdoor objects in total. The ZuBuD dataset contains
1,005 images of Zurich building with 5 images for each of



TABLE III

COMPARISONS OF THE PROPOSED RMGD WITH THE STATE-OF-THE-ART BINARY AND FLOATED-POINT DESCRIPTORS WITH THE FPR @95%. THE
NUMBER OF BITS (B), OR DIMENSIONS (F), OR GROUPS AND SELECTED BITS FOR RMGD, ARE DESCRIBED IN PARENTHESES.

Train Yosemite Notre Dame Yosemite Liberty Notre Dame [ Liberty
Test Liberty Notre Dame Yosemite
The Binary Descriptors
BRIEF [21] 54.01 (512b) 48.64 (512b) 52.69 (512b)
BRISK [31] 79.36 (1024b) 74.88 (1024b) 73.21 (1024b)
FREAK [32] 58.14 (512b) 50.62 (512b) 52.95 (512b)
D-BRIEF [16] 53.39 (32b) 51.30 (32b) 43.96 (32b) 43.10 (32b) 46.22 (32b) 47.29 (32b)
ITQ-SIFT [19] 37.11 (64b) 36.95 (64b) 30.56 (64b) 31.07 (64b) 34.34 (64b) 34.43 (64b)
BGM [16] 22.18 (256b) 21.62 (256b) 14.69 (256b) 15.99 (256b) 18.42 (256b) 21.11 (256b)
SIFT-KSH [57] 44.87 (128b) 44.71 (128b) 35.73 (128b) 34.84 (128b) 37.59 (128b) 36.31(128b)
RFDg [23] 19.03 (563b) 17.77 (542b) 11.37 (563b) 12.49 (406b) 15.14 (542b) 17.62 (406b)
RFDg [23] 19.40 (598b) 19.35 (446b) 11.68 (598b) 13.23 (293b) 14.50 (446b) 16.99 (293b)
[ RMGD104 [ 17.42(50x32b)  15.09(44x32b) [ 10.86(45x32b)  10.15(50x32b) [ 13.82(44x32b)  14.64(43x32b) ]
The Floated-point Descriptors
SIFT [10] 32.46 (128f) 26.44 (128f) 30.84 (128f)
Brown et al. [29] 18.27(29f) 16.85(36 f) 11.98(29f) - 13.55(36 f) -
Simonyan et al. [26] 16.7(32f) 14.26(32f) 9.99(32f) 9.07(32f) 13.4(32f)) 14.32(32f)
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Fig. 9. Comparisons of the RMGD with recent binary descriptors on the matching accuracy of six image sequences from the “Oxford” dataset. 1|z denotes

the matching pair between image 1 and image x, x = 2, 3,4, 5, 6.

the 201 buildings. The sizes of the images are 640 x 480.
Some examples are shown in the bottom of Fig. 10.

To compare the performance of our descriptor with existing
results, we follow the same evaluation protocol in [23]. The
DoG detector is adopted for extracting keypoints. Then the
local descriptors are calculated, including SIFT [10], BGM
[17], BinBoost [37], RFD [23] and RMGDqg4. The imple-
mentation codes of these descriptors are from OpenCV or the
authors. For each image we query its top 4 similar images
for the ZuBuD dataset or 3 similar images for the Kentucky
dataset. We report the ratios between the number of correctly
retrieved images to the number of all returned images as an
accuracy metric. Tab. IV summarizes the results of different
local descriptors on two datasets. Again, the RMGD1 (4 obtains
the best performance among all descriptors compared, and its
improvements over the others are significant with about 3%
higher than the most closed one (the RFDg).

VI. CONCLUSION

We have presented a novel local binary descriptor (the
RMGD) for image description. Our key contribution includes

TABLE IV
OBJECT RECOGNITION ACCURACY ON THE ZUBUD AND KENTUCKY.

ZuBuD | Kentucky

SIFT [10] 75.5% 48.2%
BGM [17] 67.3% 36.3%
BinBoost-256 [37] | 62.3% 19.2%
BRIEF [21] 70.5% 41.6%
FREAK [32] 48.8% 21.9%
SIFT-KSH [57] 64.6% 29.8%
RFDg [23] 82.5% 65.1%
RFDg [23] 80.7% 62.5%
RMGD104 85.4% 67.3%

a novel pooling configuration, which generates meaningful
binary strings from pairwise ring-regions with various shapes,
scales and distances, and achieve compact representation by
developing a new Adaboost based algorithm for fast bit
selection with enhancements on variance and correlation.
Furthermore, we showed the performance can be improved
considerably by computing the binary strings from multiple
image properties, and proposed two efficient learning algo-
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Fig. 10. Several examples from the Oxford, Kentucky and ZuBuD datasets.

rithms to effectively optimize multi-grouped binary features,
allowing them for compensating for each other. This leads
to a further performance boosting. Extensive experimental
results on a number of benchmarks verify the effectiveness and
usefulness of the RMGD convincingly by achieving significant
performance improvements over current binary descriptors.

APPENDIX
CIRCLE INTEGRAL IMAGE

We propose the circle integral image for fast calculation of
our binary descriptor. Integral image [41] has been proved to
be highly effective in computing various low-level features.
We generalize it to compute the ring features. Supposing the
original point located in the center of a patch x, the circle
integral image can be defined as:

g, 0)=>" Y ime)+ Y i(r,0),

r<r’ 0<0<2m 0<6<6’

€))

where i(r,0) is the intensity of the polar coordinate (r,6),
r,’ < R, 0,0 € [0,27), and R denotes radius of the
patch x. Once the circle integral image is obtained, annular-

Fig. 11. Illustration of circle integral image. The sum of blue ring-region can
be computed with four points located in the circle polar integral image.

sector can be calculated with s = ¢(re,02) — q(re,61) —
q(r1,02) + q(r1,01). As shown in Fig. 11, it speeds up the
calculation of the summation of the pixel values over a ring-
region substantially.

REFERENCES

[11 Y. Gao, J. H. Zhang, and L. Zhang, “Finding objects at indoor envi-
ronment combined with depth information,” in Int. Conf. Mech. and
Automat., 2011, pp. 687-692.

[2]

[3]
[4]

[5]

[6]
[71

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

D. Nistér and H. Stewénius, “Scalable recognition with a vocabulary
tree,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., vol. 2, Jun.
2006, pp. 2161-2168.

P. Dollar, Z. Tu, P. Perona, and S. Belongie, “Integral channel features,”
in Proc. Brit. Mach. Vis. Conf., 2009, pp. 91.1-91.11.

J. Sivic and A. Zisserman, “Efficient visual search of videos cast as text
retrieval,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 4, pp.
591-606, 2009.

A. Ahonen, A. Hadid, and M. Pietikdinen, “Face description with local
binary patterns: Application to face recognition,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 28, pp. 2037-2041, 2006.

W. Huang and H. Yin, “Robust face recognition with structural binary
gradient patterns,” arXiv:1506.00481, 2015.

Z. Li, D. Gong, X. Li, and D. Tao, “Learning compact feature descriptor
and adaptive matching framework for face recognition,” IEEE Trans.
Image Process., pp. 2736-2745, 2015.

Z. Li, D. Gong, Y. Qiao, and D. Tao, “Common feature discriminant
analysis for matching infrared face images to optical face images,” IEEE
Trans. Image Process., pp. 2436-2445, 2014.

W. Huang and H. Yin, “A dissimilarity kernel with local features for
robust facial recognition,” in IEEE International Conference on Image
Processing (ICIP), 2010, pp. 3785-3788.

D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
Int. J. of Comput. Vis., vol. 60, no. 2, pp. 91-110, 2004.

T. Ojala, M. Pietikdinen, and T. Maenpaa, “Multiresolution grayscale
and rotation invariant texture classification with local binary patterns,”
Pattern Analysis and Machine Intelligence, IEEE Transactions on,
vol. 24, pp. 971-987, 2002.

N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in Computer Vision and Pattern Recognition, 2005. CVPR
2005. IEEE Computer Society Conference on, vol. 1. IEEE, 2005, pp.
886-893.

O. Tuzel, F. Porikli, and P. Meer, “Region covariance: A fast descriptor
for detection and classication,” in European Conference on Computer
Vision (ECCV), 2006.

W. Huang, Z. Lin, J. Yang, and J. Wang, “Text localization in natural
images using stroke feature transform and text covariance descriptors,”
in IEEE International Conference on Computer Vision (ICCV), 2013.
H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust
features (surf),” Comput. Vis. Image Understand., vol. 110, no. 3, pp.
346-359, 2008.

T. Trzcinski and V. Lepetit, “Efficient discriminative projections for
compact binary descriptors,” in Proc. IEEE Int. Conf. Eur. Conf. Comput.
Vis., 2012, pp. 228-242.

T. Trzcinski, M. Christoudias, P. Fua, and V. Lepetit, “Learning image
descriptors with the boosting-trick,” in Adv. Neural Inf. Process. Syst.,
2012, pp. 2874-2881.

C. Strecha, A. Bronstein, M. Bronstein, and P. Fua, “Ldahash: Improved
matching with smaller descriptors,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 34, no. 1, pp. 6678, Jan 2012.

Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin, “Iterative quanti-
zation: A procrustean approach to learning binary codes for large-scale
image retrieval,” I[EEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 12,
pp- 2916-2929, Dec 2013.



[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]
[45]
[46]

(471

W. Liu, J. Wang, and S. fu Chang, “Hashing with graphs,” in Proc. Int.
Conf. Mach. Learn., June 2011, pp. 1-8.

M. Calonder, V. Lepetit, M. Ozuysal, T. Trzcinski, C. Strecha, and P. Fua,
“BRIEF: Computing a Local Binary Descriptor Very Fast,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 34, no. 7, pp. 1281-1298, 2012.

Y. Gao, Y. Qiao, Z. Li, and C. Xu, “Ltd: Local ternary descriptor for
image matching,” in IEEE Int. Conf. Info. Autom., Aug 2013, pp. 1375-
1380.

B. Fan, Q. Kong, T. Trzcinski, Z. H. Wang, C. Pan, and P. Fua,
“Receptive fields selectioni for binary feature description,” IEEE Trans.
Image Process., pp. 2583-2595, 2014.

T. Trzcinski, M. Christoudias, and V. Lepetit, “Learning image descrip-
tors with boosting,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 37,
no. 3, pp. 597-610, March 2015.

X. Yang and K. Cheng, “Local difference binary for ultrafast and
distinctive feature description,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 36, no. 1, pp. 188-194, Jan 2014.

K. Simonyan, A. Vedaldi, and A. Zisserman, “Learning local feature
descriptors using convex optimisation,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 36, no. 8, pp. 1573-1585, Aug 2014.

G. Hua, M. Brown, and S. Winder, “Discriminant embedding for local
image descriptors,” in Proc. IEEE Int. Conf. Comput, Oct 2007, pp. 1-8.
S. Winder, G. Hua, and M. Brown, “Picking the best daisy,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., June 2009, pp. 178-185.
M. Brown, G. Hua, and S. Winder, “Discriminative learning of local
image descriptors,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 33,
no. 1, pp. 43-57, Jan 2011.

E. Rublee, V. Rabaud, K. Konolige, and G. R. Bradski, “Orb: An efficient
alternative to sift or surf,” in Proc. IEEE Int. Conf. Comput, 2011, pp.
2564-2571.

S. Leutenegger, M. Chli, and R. Siegwart, “Brisk: Binary robust invariant
scalable keypoints,” in Proc. IEEE Int. Conf. Comput, 2011, pp. 2548—
2555.

R. O. Alahi, Alexandre and P. Vandergheynst, “Freak: Fast retina
keypoint,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2012,
pp. 2564-2571.

X. Yang and K.-T. Cheng, “Ldb: An ultra-fast feature for scalable
augmented reality on mobile devices,” in IEEE Int. Sym. Mixed Aug.
Real., 2012, pp. 49-57.

Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,” in ECCLT, 1995, pp.
23-37.

B. Fan, Q. Kong, X. Yuan, Z. Wang, and C. Pan, “Learning weighted
hamming distance for binary descriptors,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process., 2013.

J. Feang, W. Liu, and Y. Wang, “Learning to rank binary codes,” in
arXiv:1410.5524 [cs.CV], 2014.

L. V. Trzcinski T., Christoudias M. and P. Fua, “Boosting binary keypoint
descriptors,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2013,
pp. 2874-2881.

E. Tola, V. Lepetit, and P. Fua, “DAISY: An Efficient Dense Descriptor
Applied to Wide Baseline Stereo,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 32, no. 5, pp. 815-830, 2010.

E. Shechtman and M. Irani, “Matching local self-similarities across
images and videos,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
June 2007, pp. 1-8.

Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,” vol. 55, no. 1, Aug.
1997, pp. 119-139.

P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Dec. 2001, pp. 1511-1518.

Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in Adv. Neural
Inf. Process. Syst., 2008, pp. 1753-1760.

K. Mikolajezyk and C. Schmid, “A performance evaluation of local
descriptors,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 10,
pp. 1615-1630, 2005.

J. Zhu, S. Rosset, R. Tibshirani, and T. J. Hastie, “I-norm support vector
machines,” in Adv. Neural Inf. Process. Syst., 2004, pp. 49-56.

R. Tibshirani, “Regression shrinkage and selection via the lasso,” in
J.R.S.S.B., 1996, pp. 267-288.

T. Joachims, “Optimizing search engines using clickthrough data,” in
Proc. ACM Int. Conf. Knowl. Dis. Data Mining, 2002, pp. 133-142.
X. Wu, B. Xu, Y. Qiao, and X. Tang, “Automatic music video generation:
cross matching of music and image.” in ACM Multimedia. ACM, 2012,
pp. 1381-1382.

(48]
[49]
[50]

(51]

[52]

(53]

[54]
[55]
[56]

[57]

[58]

T. Joachims, “Training linear svms in linear time,” in Proc. ACM Int.
Conf. Knowl. Dis. Data Mining, 2006, pp. 217-226.

——, “A support vector method for multivariate performance measures,”
in Proc. Int. Conf. Mach. Learn., 2005, pp. 377-384.

T. Joachims, T. Finley, and C.-N. Yu, “Cutting-plane training of struc-
tural svms,” Machine Learning Journal, vol. 77, no. 1, pp. 27-59, 2009.
J. Bi, K. Bennett, M. Embrechts, C. Breneman, and M. Song, “Dimen-
sionality reduction via sparse support vector machines,” J. Mach. Learn.
Res., vol. 3, pp. 1229-1243, 2003.

P. Bradley and O. L. Mangasarian, “Feature selection via concave
minimization and support vector machines,” in Proc. Int. Conf. Mach.
Learn., 1998, pp. 82-90.

A. Cotter, S. Shalev-shwartz, and N. Srebro, “Learning optimally sparse
support vector machines,” in Proc. Int. Conf. Mach. Learn., vol. 28,
2013, pp. 266-274.

L. Xiao, “Dual averaging methods for regularized stochastic learning
and online optimization,” vol. 11, October 2010, pp. 2543-2596.

S. Winder and M. Brown, “Learning local image descriptors,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., June 2007, pp. 1-8.

J. Friedman, T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu, “Discussion
of boosting papers,” Ann. Statist, pp. 102-107, July 2004.

W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang, “Supervised hash-
ing with kernels,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
June 2012, pp. 2074-2081.

G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software
Tools, 2000.

Yonggiang Gao received the B.Sc. degree in School
of Mathematics and Information sciences from Yan-
tai University, Yantai, China, in 2009, the M.S. de-
gree in School of Computer Science and Technology
from University of South China, Hengyang, China,
in 2012. He is currently pursuing the Ph.D. degree
in Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences. His current research
interests include computer vision and machine learn-

ing.

Weilin Huang (M’13) received PhD degree in elec-
tronic engineering from the University of Manch-
ester (UK) in December 2012. He got his BSc in
computer science and MSc in internet computing
from the University of Shandong (China) and Uni-
versity of Surrey (UK), respectively. Currently, he
is working as a Research Assistant Professor at
Chinese Academy of Science, and a joint member
in the Multimedia Laboratory, Chinese University of
Hong Kong. His research interests include computer
vision, machine learning and pattern recognition. He

has served as reviewers for several journals, such as IEEE Transactions on
Image Processing, IEEE Transactions on Systems, Man, and Cybernetics
(SMC)-Part B and Pattern Recognition. He is a member of IEEE.

Yu Qiao (SM’13) received the Ph.D. degree from
the University of Electro-Communications, Japan, in
2006. He was a JSPS Fellow and Project Assistant
Professor with the Unversity of Tokyo from 2007 to
2010. He is currently a Professor with the Shen-
zhen Institutes of Advanced Technology, Chinese
Academy of Sciences. His research interests include
pattern recognition, computer vision, multi-media,
image processing, and machine learning. He has
publised more than 90 papers. He received the Lu
Jiaxi Young Researcher Award from the Chinese

Academy of Sciences in 2012.



