
IEEE TRANSACTIONS ON IMAGE PROCESSING 1

Efficient Nonnegative Tucker Decompositions:
Algorithms and Uniqueness

Guoxu Zhou, Andrzej Cichocki Fellow, IEEE, Qibin Zhao, and Shengli Xie Senior Member, IEEE,

Abstract—Nonnegative Tucker decomposition (NTD) is a pow-
erful tool for the extraction of nonnegative parts-based and
physically meaningful latent components from high-dimensional
tensor data while preserving the natural multilinear structure
of data. However, as the data tensor often has multiple modes
and is large-scale, existing NTD algorithms suffer from a very
high computational complexity in terms of both storage and
computation time, which has been one major obstacle for
practical applications of NTD. To overcome these disadvantages,
we show how low (multilinear) rank approximation (LRA) of
tensors is able to significantly simplify the computation of the
gradients of the cost function, upon which a family of efficient
first-order NTD algorithms are developed. Besides dramatically
reducing the storage complexity and running time, the new
algorithms are quite flexible and robust to noise because any
well-established LRA approaches can be applied. We also show
how nonnegativity incorporating sparsity substantially improves
the uniqueness property and partially alleviates the curse of
dimensionality of the Tucker decompositions. Simulation results
on synthetic and real-world data justify the validity and high
efficiency of the proposed NTD algorithms.

Index Terms—Tucker decompositions, dimensionality reduc-
tion, nonnegative alternating least squares.

I. INTRODUCTION

F INDING information-rich and task-relevant variables hid-
den behind observation data is a fundamental task in

data analysis and has been widely studied in the fields of
signal and image processing and machine learning. Although
the observation data can be very large, a much lower num-
ber of latent variables or components can capture the most
significant features of the original data. By revealing such
components, we achieve objectives such as dimensionality
reduction and feature extraction and obtain a highly relevant

Manuscript received ...This work was partially supported by the National
Natural Science Foundation of China (grants U1201253), the Guangdong
Province Natural Science Foundation (2014A030308009), the Guangdong
Province Excellent Thesis Foundation (SYBZZXM201316), and the JSPS
KAKENHI (26730125, 15K15955).

Guoxu Zhou is with the School of Automation at Guangdong University
of Technology, Guangzhou, China and the Laboratory for Advanced Brain
Signal Processing, RIKEN Brain Science Institute, Wako-shi, Saitama, Japan.
E-mail: zhouguoxu@ieee.org.

Andrzej Cichocki is with the Laboratory for Advanced Brain Signal
Processing, RIKEN Brain Science Institute, Wako-shi, Saitama, Japan and
with Systems Research Institute, Polish Academy of Science, Warsaw, Poland.
E-mail: cia@brain.riken.jp.

Qibin Zhao is with the Laboratory for Advanced Brain Signal Processing,
RIKEN Brain Science Institute, Japan. E-mail: qbzhao@brain.riken.jp.

Shengli Xie is with the Faculty of Automation, Guangdong University of
Technology, Guangzhou 510006, China. E-mail: eeoshlxie@scut.edu.cn.

and compact representation of high-dimensional data. This
important topic has been extensively studied in the last several
decades, particularly witnessed by the great success of blind
source separation (BSS) techniques [1]. In these methods,
observation data are modeled as a linear combination of the
latent components that possess specific diversities such as
statistical independence, a temporal structure, sparsity, and
smoothness. By properly exploiting such diversities, a large
family of matrix-factorization-based methodologies has been
proposed and successfully applied to a variety of areas. In
many applications, the data are more naturally represented
by tensors, e.g., color images, video clips, and fMRI data.
The methodologies that matricize the data and then apply
matrix factorization approaches give a flattened view of data
and often cause a loss of the internal structure information;
hence, it is more favorable to process such data in their own
domain, i.e., tensor domain, to obtain a multiple perspective
stereoscopic view of data rather than a flattened one. For this
reason, tensor decomposition methods have been proposed and
widely applied to deal with high-order tensors. As one of the
most widely used methods, the Tucker decomposition has been
applied to pattern recognition [2], [3], clustering analysis [4],
image denoising [5], etc. and has achieved great success.

Very often, the observation data and latent components are
naturally nonnegative, e.g., text, images, spectra, probability
matrices, the adjacency matrices of graphs, web data based
on impressions and clicks, and financial time series. For
these data, the extracted components may lose most of their
physical meaning if the nonnegativity is not preserved. In
this regard, nonnegative matrix factorization (NMF) has been
demonstrated to be a powerful tool to analyze nonnegative
matrix data because NMF is able to give physically meaningful
and more interpretable results. Particularly, it has the ability
of learning the local parts of objects [6]. As a result, NMF
has received extensive study in the last decade [4], [6] and
has been found many important applications including clus-
tering analysis [7]–[9], sparse coding [10], dependent source
separation [11], etc.

For nonnegative tensor data analysis, nonnegative Tucker
decomposition (NTD) has also gained importance in recent
years [4], [12], [13]. NTD not only inherits all of the advan-
tages of NMF but also provides an additional multiway struc-
tured representation of data. Fig.1 illustrates how NTD is able
to give a parts-based representation of face images included
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Fig. 1: An illustration of how NTD is able to give a local parts-based representation of tensor objects for the PIE face database.
By NTD, each face is represented by a linear combination of a set of very sparse basis faces. In contrast to the basis images
extracted by NMF, these basis faces possess a multilinear structure (i.e., G×1 A(1) ×2 A(2)).

TABLE I: Notation and Definitions.

A, ar , air A matrix, the rth-column, and the (i, r)th-entry of
matrix A, respectively.

1, 0 The vector/matrix with all its elements being ones,
zeros.

IN The index set of positive integers no larger than N in
ascending order, i.e., IN = {1, 2, . . . , N}.

RR1×R2···×RN
+

Set of N th-order nonnegative tensors (matrices) with
the size of R1-by-R2· · · by-RN .

A ≥ 0 Nonnegative matrix A, i.e., air ≥ 0, ∀i, r.
P+ (A) An operator yielding a nonnegative matrix of air =

max(air, 0), ∀i, r.
Y, Y(n) A tensor, the mode-n matricization of tensor Y.
~, � Element-wise (Hadamard) product, division of matrices

or tensors. Moreover, we define A
B

.
= A�B.

C = A⊗B Kronecker product of A ∈ RI1×J1 and B ∈ RI2×J2

that yields C = [ai1j1B] ∈ RI1I2×J1J2 with entries
c(i1−1)I2+i2,(j1−1)J2+j2 = ai1j1bi2j2 .

C = A�B Khatri–Rao product of A =
[
a1 a2 · · · aJ

]
∈

RI1×J and B =
[
b1 b2 · · · bJ

]
∈

RI2×J that yields a matrix C =[
a1⊗b1 a2⊗b2 · · · aJ ⊗bJ

]
∈ RI1I2×J .

zA, sA Number of zeros in A ∈ RI×R, the sparsity defined
as sA

.
= zA/(IR) ∈ [0, 1].

A ∼ U(0, 1) Elements of A are drawn from independent uniform
distributions between 0 and 1.

in the PIE database1. In the figure, a sample face image is
represented as a linear combination of a set of sparse basis
images that possess a multilinear structure. Unconstrained
Tucker decompositions are often criticized for the lack of
uniqueness and the curse of dimensionality, which indicates
that the size of the core tensor increases exponentially with the
dimension. Compared with unconstrained Tucker decomposi-
tions, NTD is more likely to be unique and provides physically
meaningful components. Moreover, the core tensor in NTD
is often very sparse, which allows us to discover the most
significant links between components and to partially alleviate
the curse of dimensionality. Unfortunately, existing algorithms
are generally performed by directly applying the NMF update

1Available at http://vasc.ri.cmu.edu/idb/html/face/.

rules without fully exploiting the special multilinear structure
of the Tucker model, which in turn suffers from a very high
computational complexity in terms of both space and time,
especially when the data tensor is large-scale. It is therefore
quite crucial to develop more efficient NTD algorithms that
are able to yield satisfactory results within a tolerable time.
By taking into account that unconstrained Tucker decompo-
sitions are significantly faster than NTD, we propose a new
framework for efficient NTD that is based on an unconstrained
Tucker decomposition of the data tensor in this paper. As such,
frequent access to the original big tensor is avoided, thereby
leading to a considerably reduced computational complexity
for NTD. Although the basic idea of NTD based on a
proceeding low (multilinear) rank approximation (LRA) has
been briefly introduced in our recent overview paper [14], the
detailed derivations are presented in this paper with new results
on the uniqueness of NTD.

The rest of the paper is organized as follows. In Section II,
the basic notation and NTD models are introduced. In Section
III, the first-order NTD algorithms are reviewed. In Section IV,
flexible and efficient NTD algorithms based on the low-rank
approximation of data are introduced, and unique and sparse
NTD is discussed in Section V. Simulations on synthetic and
real-world data are presented in Section VI to demonstrate the
high efficiency of the proposed algorithms, and conclusions are
presented in Section VII.

The notation used in this paper is listed in TABLE I, and
more details can be found in [4], [15].

II. NTD MODELS

A. Notation and Basic Multilinear Operators

Definitions. For an N th-order tensor G ∈ RR1×R2···×RN ,
we define
• Fibers. A mode-n fiber of tensor G is a vector ob-

tained by fixing all indices but the nth index, e.g.,
gr1,...,rn−1,:,rn+1,...,rN , by using the MATLAB colon op-
erator.

http://vasc.ri.cmu.edu/idb/html/face/
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• Matricization. The mode-n matricization (unfolding) of
G is an Rn-by-

∏
p 6=nRp matrix denoted by G(n) whose

columns consist of all mode-n fibers of G.
• Mode-n product. The mode-n product of G and an In-

by-Rn matrix A(n) yields an N th-order tensor Y = G×n
A(n) ∈ RR1···×Rn−1×In×Rn+1···×RN such that

yr1,··· ,rn−1,in,rn+1,··· ,rN =

Rn∑
rn=1

gr1,r2,··· ,rNain,rn .

Useful properties. The following properties concerning the
mode-n product will be frequently used:

1) If Y = G×n A(n), then Y(n) = A(n)G(n);
2) (G×n A)×n B = G×n (BA);
3) (G×m A)×n B = (G×n B)×m A, n 6= m.
4) If Y = G×1A(1)×2A(2) · · ·×NA(N) .

= G×n∈IN A(n),
then Y(n) = A(n)G(n)R

(n)>, where

R(n) = A(N)⊗ · · ·⊗A(n+1)⊗A(n−1)⊗ · · ·⊗A(1)

.
=
⊗

p 6=n
A(p),

(1)

and Y(n) and G(n) are the mode-n matricizations of Y
and G, respectively.

Note that owning to Property 3), the mode products in
G ×n∈IN A(n) can be in any order of n. However, in⊗

p 6=n A(p), the Kronecker products must be performed in the
inverse order of the index set p 6= n

.
= {1, 2, . . . , n − 1, n +

1, . . . , N}.

B. Nonnegative Tucker Decomposition Models

1) General NTD Model: By Tucker decomposition, a given
N th-order tensor Y ∈ RI1×I2···×IN is approximated as

Y ≈ G×n∈IN A(n), (2)

where A(n) =
[
a

(n)
1 a

(n)
2 · · · a

(n)
Rn

]
∈ RIn×Rn are the

factor (component) matrices with rank(A(n)) = Rn, and
G ∈ RR1×R2×···×RN is the core tensor whose entries reflect
the interactions and connections between the components
(columns) in different mode matrices. We assume that Rn ≤
In as high-dimensional data can often be well approximated
by its lower-rank representations.

In NTD, both the core tensor G and the factor matrices
A(n) are required to be element-wisely nonnegative. The
nonnegativity of the factors brings about two key effects:
the resulting representation is purely additive but without
subtractions, and the factors are often sparse, as they may
contain many zero entries. These two effects equip nonnegative
factorization methods with the ability of learning localized
parts of objects.

2) Population NTD: In the above NTD, if we fix the N th
factor matrix A(N) to be the identity matrix I (or equivalently,
A(N) is absorbed into the core tensor such that G ← G ×N
A(N) [4]), we obtain the population NTD model:

Y ≈ G×n6=N A(n), A(n) ≥ 0, G ≥ 0. (3)

Population NTD is important because it has a broad range
of applications in machine learning and signal processing
[4]. To understand the key idea of population NTD, consider
simultaneously performing NTD on a set of (N − 1)th-order
sample tensors {Yi ∈ RI1×I2···×IN−1

+ : i = 1, 2, . . . , IN} with
common component matrices. As such, each sample tensor can
be represented as [4]

Yi ≈ Gi ×n 6=N A(n), i = 1, 2, . . . , IN , (4)

where Gi is the core tensor associated with Yi, or equivalently,

Y>(N) ≈
[⊗

n6=N
A(n)

]
G>(N), (5)

where each column of Y>(N) is a vectorized sample, and Y(N)

is just the mode-N matricization of the N th-order tensor Y

obtained by concatenating all of the samples Yi. As such, all
samples are represented as a linear combination of N −1 sets
of common basis vectors (i.e., the columns of A(n), n 6= N ),
and Gi contains the extracted features.

In the case of N = 3, the tensors Yi and Gi in (4) are just
matrices, and (4) can be written as

Yi ≈ A(1)GiA
(2)>, (6)

which has been studied in name of population value decom-
position (PVD) [16] without nonnegativity constraints. Hence,
population NTD is an extension of PVD for extracting the
nonnegative common components from multiblock higher-
dimensional data equipped with the extra ability of learning
the localized parts of objects [17].

An alternative method of performing such feature extraction
tasks, which is referred to as nonnegative matrix factorization
(NMF), vectorizes each sample to form a sample matrix
S = Y>(N) =

[
vec(Y1) vec(Y2) · · · vec(YIN )

]
. By using

NMF, S is represented as

S = Y>(N) ≈WH>, s.t. W ≥ 0,H ≥ 0, (7)

or equivalently, by using tensor notation,

S ≈W ×2 H, s.t. W ≥ 0,H ≥ 0. (8)

An intuitive difference between population NTD and NMF
is that the basis vectors in the former are the outer product
of lower-dimensional vectors, as shown in (5), which has a
much lower number of free parameters and gives a kind of
multilinear representation. This multilinear representation has
been widely exploited to overcome the over-fitting problem in
discriminant analysis [3], [18], and it substantially improves
the sparsity of basis vectors, which will be discussed later.
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III. OVERVIEW OF FIRST-ORDER METHODS FOR NTD
In NTD, we need to minimize the following cost function:

DNTD =
1

2

∥∥∥Y− Ŷ
∥∥∥2

F
, (9)

where Ŷ = G ×n∈IN A(n) with the component matrices
A(n) ∈ RIn×Rn

+ and the core tensor G ∈ RR1×R2···×RN
+ , both

of which are element-wisely nonnegative.
Following the analysis in [19] and similarly defining ∆d =

{x ∈ Rd+1
+ ‖ ‖x‖1 = 1}, we can straightforwardly obtain the

following proposition:
Proposition 1: Let Y ∈ RI1×I2···×IN+ . Then, the infimum

inf
{∥∥∥Y− G×n∈IN A(n)

∥∥∥
1∣∣∣G ∈ RR1×R2···×RN

+ ,a
(n)
j ∈ ∆Rn−1, j ∈ IRn

, n ∈ IN
}

is attained.
Owning to Proposition 1 and the equivalence of different

norms, a global optimal solution for the problem in (9) always
exists. Below, we focus on the optimization algorithms.

To solve the optimization problem, we generally use a block
coordinate descent framework: we minimize the cost function
with respect to only the partial parameters (e.g., one factor
matrix or even only one column of it) each time while fixing
the others. To optimize A(n), we consider an equivalent form
of (9) by considering the mode-n matricization of Y and Ŷ:

DNTD =
1

2

∥∥∥Y(n) −A(n)B(n)>
∥∥∥2

F
, A(n) ≥ 0, (10)

where B(n) = R(n)G>(n) and R(n) is defined as in (1). To
optimize G, considering the vectorization of Y and Ŷ, (9)
becomes

DNTD =
1

2
‖vec(Y)− F vec(G)‖2F , G ≥ 0, (11)

where

F =
⊗

n∈IN
A(n) ∈ R(

∏
n In)×(

∏
n Rn). (12)

Both (10) and (11) are nonnegative least squares (NLS)
problems and have been extensively studied in the context
of NMF, including the multiplicative update (MU) algorithm
[20], the hierarchical alternating least squares (HALS) method
[4], the active-set methods [21], [22], and the NMF algorithm
based on the accelerated proximal gradient (APG) [23]. These
algorithms only use the first-order information and are free
from searching the (learning) step size. To extend these
methods to NTD, we need to compute the following respective
gradients of DNTD with respect to A(n) and G:

∂DNTD

∂A(n)
= A(n)B(n)>B(n) −Y(n)B

(n), (13)

where B(n) =
[⊗

p 6=n A(p)
]

G>(n), and

∂DNTD

∂vec(G)
= F>F vec(G)− F> vec(Y), (14)

or equivalently,

∂DNTD

∂G
= Ŷ×n∈IN A(n)> − Y×n∈IN A(n)>. (15)

On the basis of (13)–(15) and the existing NMF algorithms,
a set of first-order NTD algorithms can be developed; for
example, the NTD algorithms based on the MU and HALS
algorithms have been developed in [12], [13], [24].

The above mentioned algorithms are all based on the
gradients in (13)–(15). The major problem is that both F
and B(n) are quite large. For example, it can be verified
that the complexity of computing Y(n)B

(n) is as high as
O(RnI1I2 · · · IN ). Hence, direct implementation of the above
methods is extremely time and space demanding, especially
for large-scale problems.

IV. NTD BASED ON LOW-RANK APPROXIMATIONS

A. Efficient Computation of Gradients by Using LRA

To reduce the computational complexity, we consider the
following two-step approach to perform NTD:

1) the LRA step. Obtain the LRA of Y such that

Y ≈ Ỹ = G̃×n∈IN Ã(n), (16)

where Ã(n) ∈ RIn×R̃n , and R̃n � In controls the
approximation error and is not necessarily equal to Rn.

2) the NTD step. Perform NTD by minimizing DNTD =
1
2

∥∥∥Ỹ− Ŷ
∥∥∥2

F
, where Ŷ = G ×n∈IN A(n) is the target

nonnegative tensor.
The effects of LRA are twofold: reduce the noise in the
observation data and reduce the subsequent computational
complexity in terms of both space and time. In fact, Ỹ

consumes much less storage than Y does when R̃n � In: the
former consumes

∑
n(R̃nIn) +

∏
n R̃n, whereas Y consumes∏

n In. For an intuitive comparison, suppose N = 4, Rn = 10,
and In = 100, n = 1, 2, 3, 4; then, the memory consumed by
Ỹ is only 0.014% of that consumed by Y.

Now, we show how the gradients with respect to A(n), n ∈
IN , and G can be efficiently computed after Y is replaced with
its low-rank approximation Ỹ. First, we have

B(n)>B(n) = G(n)R
(n)>R(n)G>(n)

= G(n)

⊗
p 6=n

(A(p)>A(p))

G>(n)

= X(n)G
>
(n),

(17)

where X(n) is the mode-n matricization of the tensor

X
.
= G×p 6=n (A(p)>A(p)). (18)

Here, X can be efficiently computed as it only involves
the products of the small core tensor G with Rn-by-Rn
matrices. Particularly, the memory-efficient (ME) tensor times
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TABLE II: Floating-point Multiplication Counts for the Com-
putation of the Gradients under the Conditions That Rn =
R̃n = R and In = I , n ∈ IN .

With LRA Without LRA

∂DNTD
∂A(n) 2IR2 + 2RN+1 IR2 +RN+1 +

N∑
k=1

RkIN+1−k

∂DNTD
∂G

2IR2 + 2RN+1 IR2 +RN+1 +
N∑

k=1
RkIN+1−k

the matrices proposed in [25] can be applied to compute X to
further significantly reduce the memory consumption.

Regarding the term Y(n)B
(n), we have

Y(n)B
(n) = Ã(n)G̃(n)R̃

(n)>R(n)G>(n)

= Ã(n)G̃(n)

⊗
p 6=n

(A(p)>Ã(p))

>G>(n)

= Ã(n)X̃(n)G
>
(n),

(19)

where X̃(n) is the mode-n matricization of the tensor

X̃ = G̃×p 6=n (A(p)>Ã(p)). (20)

Furthermore, from (18), (20), and Ŷ = G×n∈IN A(n), we
have

Ŷ×p∈IN A(p)> = X×n (A(n)>A(n)), (21)

and
Y×p∈IN A(p)> = X̃×n (A(n)>Ã(n)). (22)

The tensors X and X̃ can be computed very efficiently, as they
only involve multiplications between very small core tensors
and matrices. On the basis of the above analysis, the gradients
(13) and (15) can be computed as

∂DNTD

∂A(n)
= A(n)

(
X(n)G

>
(n)

)
− Ã(n)

(
X̃(n)G

>
(n)

)
,

∂DNTD

∂G
= X×n (A(n)>A(n))− X̃×n (A(n)>Ã(n)).

(23)

We counter the floating-point multiplications to measure the
computational complexity on the condition that R̃n = Rn = R
and In = I , ∀n ∈ IN , from which we can see that the LRA
versions are significantly faster than the original versions.

Low-rank approximation or unconstrained Tucker decom-
position of the data tensor plays a key role in the pro-
posed two-step framework. The high-order singular value
decomposition (HOSVD) method [26] often serves as the
workhorse for this purpose. Although it provides a good trade-
off between accuracy and efficiency, it involves the eigenvalue
decomposition of the very large matrices Y(n); hence, it is
not suitable for very large-scale problems [27]. Its memory
efficient variant proposed in [25] is an iterative method and
provides improved scalability. CUR decomposition [28] and
the MACH method [29], which are respectively based on

sampling and sparsification, provide favorable scalability and
are suitable for large-scale problems. In [30], a highly scalable
Tucker decomposition algorithm was developed on the basis of
distributed computing and randomization. All of these methods
have assumed that the noise is Gaussian. Otherwise, robust
tensor decomposition methods [31], [32] are recommended if
the data tensor is contaminated by outliers. In practice, which
one is the best depends on many factors, e.g., whether the data
is sparse or dense, the scale of data, the noise distribution, etc.

B. Efficient NTD Algorithms Based on LRA

1) LRANTD Based on MU rules (MU-NTD): the standard
MU method updates A(n) using

A(n) ← A(n) − ηA(n) ~
∂DNTD

∂A(n)
(24)

with a clever choice of step size ηA(n) = A(n) �
(A(n)X(n)G

>
(n)). As such, the cost function remains non-

increasing and A(n) remains nonnegative. As the term
Ã(n)X̃(n)G

>
(n) (i.e., (19)) may contain some negative ele-

ments after LRA, we apply the method proposed in [33]
to (24), where the descent direction ∂DNTD

∂A(n) is replaced by
A(n)X(n)G

>
(n) −P+(Ã(n)X̃(n)G

>
(n)), thereby leading to the

following MU formula:

A(n) ← A(n) ~
P+

(
Ã(n)X̃(n)G

>
(n)

)
A(n)X(n)G

>
(n)

. (25)

Similarly, we obtain the MU rule for G as

G← G~
P+

(
X̃×n (A(n)>Ã(n))

)
(X×n (A(n)>A(n))

. (26)

See Algorithm 1 for the pseudocode of the NTD algorithm
based on the MU rules in(25) and (26). (They are quite
different from the algorithms proposed in [12], [13], [24]
that update the parameters in a very inefficient manner: they
update one parameter only once in one main iteration. In our
case, however, multiple updates will be used to achieve a
sufficient decrease of the cost function to improve the total
efficiency, motivated by the work [34] for NMF. Of course, in
order to achieve a high efficiency, exact convergence of each
subproblem is generally unnecessary during the iterations.)

2) NTD Based on HALS (HALS-NTD): HALS-NTD up-
dates only one column of A(n) each time [24] by minimizing

DNTD =
1

2

∥∥∥Yr
(n) − a(n)

r b(n)
r
>
∥∥∥2

F
, (27)

where Yr
(n) = Y(n) −

∑
i 6=r a

(n)
i b

(n)
i
>, r ∈ IRn

=
{1, 2, . . . , Rn}. By using the Lagrange multiplier method [33],
we obtain the update rule for a

(n)
r :

a(n)
r ← a(n)

r +
1

t
(n)
r,r

P+

(
q(n)
r −A(n)t(n)

r

)
, (28)
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Algorithm 1 The MU-NTD Algorithm

Require: Y.
1: Initialization.
2: Perform LRA: Y← G̃×n∈IN Ã(n).
3: while not converged do
4: Execute the loop in lines 5–8 for n = 1, 2, . . . , N :
5: while not converged do
6: Update the tensors X and X̃ using (18) and (20).

7: A(n) ← A(n) ~
P+(Ã(n)X̃(n)G

>
(n))

(A(n)X(n)G
>
(n)

)
.

8: end while
9: while not converged do

10: G← G~ P+(X̃×n(A(n)>Ã(n)))

(X×n(A(n)>A(n))
.

11: end while
12: end while
13: return G, A(n), n ∈ IN .

where t
(n)
r,r is the (r, r) entry of the matrix T(n); t

(n)
r and

q
(n)
r are the rth columns of the matrices T(n) and Q(n),

respectively; Q(n) = Ã(n)X̃(n)G
>
(n); and T(n) = X(n)G

>
(n).

The MU rule in (26) can be used to update G.
3) NTD Based on the Accelerated Proximal Gradient (APG-

NTD): Following the analysis in [23], we have the following:

Proposition 2: Both ∂DNTD
∂A(n) and ∂DNTD

∂G in (13), (15) and (23)
are Lipschitz continuous with the Lipschitz constants LA(n) =∥∥T(n)

∥∥
2

and LG =
∥∥F>F

∥∥
2

=
∥∥∏

n∈IN A(n)>A(n)
∥∥

2
.

Hence, the APG method can be applied to update A(n) and
G. For example, we use Algorithm 2 to obtain G provided that
all A(n) are fixed. Similarly, we can obtained the update rules
for A(n). We call this algorithm APG-NTD; see Algorithm 2.

Algorithm 2 The APG Algorithm for the Core Tensor G

Require: Y, A(n).
1: Initialize E1 = G0, α0 = 1, LG =

∥∥F>F
∥∥
F

, k = 1.
2: while not converged do
3: Gk ← P+

(
Ek − 1

LG

∂DNTD
∂G

)
,

4: αk+1 ←
1+
√

4α2
k+1

2 ,
5: Ek+1 ← Gk + αk−1

αk+1
(Gk − Gk−1),

6: k ← k + 1.
7: end while
8: return G.

4) Active Set Method (AS-NTD): The active set method
proposed for NMF in [21], [22] can be applied to NTD to
solve (10) and (11). Roughly speaking, these methods involve
solving the inverse problems of ∂DNTD

∂vec(A(n))
= 0 and ∂DNTD

∂vec(G) =
0 under nonnegativity constraints, and among them, block
principal pivoting (BPP) achieved the best performance, as
multiple columns are updated simultaneously [22]. Active-set-
based NMF approaches converge very fast, but their stability

was questioned in some cases [23].
5) Alternating Least Squares (ALS) and Semi-NTD: Some-

times some component matrices A(n) and/or the core tensor G
are not necessarily nonnegative, which is a natural extension
of semi-NMF [35]. These factors can be updated by their
least-squares (LS) solutions to the linear equation systems
∂DNTD
∂A(n) = 0 and ∂DNTD

∂G = 0, which results in

A(n) ← Ã(n)X̃(n)G
>
(n)

(
X(n)G

>
(n)

)−1

,

G← G×n∈IN [(A(n)>A(n))
−1

A(n)>Ã(n)].

(29)

Note that if we apply an additional nonnegativity projection
to (29), a very simple ALS-based NTD algorithm (ALS-NTD)
yields

A(n) = P+(A(n)), G = P+(G). (30)

Similar to the ALS-based NMF method, the ALS-NTD method
generally has no guarantee of convergence. However, many
experimental results show that this method works quite well
when Rn � In, ∀n ∈ IN , and the factors are very sparse.

C. Error Bounds

An important question is how the LRA will affect the
accuracy of NTD. The following proposition provides an
approximate error bound:

Proposition 3: Let tensor Ỹ = G̃ ×n∈IN Ã(n) be a low-
rank approximation of Y with

∥∥∥Y− Ỹ
∥∥∥
F
≤ σ. Suppose that

Ŷ = Ĝ ×n∈IN Â(n) and Ý = Ǵ ×n∈IN Á(n) are the optimal
NTDs of Ỹ and Y, respectively, and

∥∥∥Y− Ý
∥∥∥
F

= ε. Then

ε ≤
∥∥∥Y− Ŷ

∥∥∥
F
≤ 2σ + ε. (31)

Proof: As Ŷ and Ý are respectively the optimal NTDs of
Ỹ and Y, we have

ε ≤
∥∥∥Y− Ŷ

∥∥∥
F
≤
∥∥∥Y− Ỹ

∥∥∥
F

+
∥∥∥Ỹ− Ŷ

∥∥∥
F

≤ σ +
∥∥∥Ỹ− Ý

∥∥∥
F

≤ σ +
∥∥∥Ỹ− Y

∥∥∥
F

+
∥∥∥Y− Ý

∥∥∥
F

≤ 2σ + ε

(32)

Obviously, if the LRA is exact such that σ = 0, there is no
difference between the direct NTD and that based on LRA.
In summary, the quality of LRA could be crucial to achieve
satisfactory accuracy.

D. NTD with Missing Values (Weighted NTD)

In practice, some entries of the data tensor could be severely
contaminated by noise and hence could not be used or they
are simply missing. In such a case, the intrinsic low-rank
structure of data often allows the recovery of the missing
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values by using incomplete data. NTD with missing values
can be formulated as the following general weighted NTD
problem:

min
G≥0, A(n)≥0

∥∥∥W~
(
Y− G×n∈IN A(n)

)∥∥∥
F
, (33)

where the entries of the weight tensor W are between 0 and 1.
If the entries of W can only be either 0 or 1, (33) is the prob-
lem of NTD with missing values. Although there have been
many methods proposed for tensor/matrix decompositions with
missing values that can be straightforwardly extended to NTD,
an ad-hoc two-step solution can be applied: in Step 1, weighted
Tucker decomposition is performed by minimizing the cost
function

∥∥∥W~
(
Y− Ỹ

)∥∥∥
F

, where Ỹ = G×n∈IN A(n); then,
in Step 2, the NTD is performed by using the completed tensor
Ỹ yielded in Step 1.

Notice that weighted Tucker decomposition approaches also
allow us to obtain the low-rank approximations by accessing
only randomly sampled entries (fibers) of a high-dimensional
tensor, which is a very useful technique to deal with large-scale
problems [28]. Although all of the approaches proposed for the
missing-values problem and those based on random sampling
attempt to find the optimal approximation to the original data
by using only partial data, they have a subtle difference: in
the first category, the data samples used are fixed, whereas in
the second category, the data samples used shall be carefully
selected in order to achieve a satisfactory accuracy with a high
probability. By using the above two-step framework, NTD can
be scaled up for large-scale problems, and the error is governed
by the quality of the LRA in Step 1, as stated in Proposition
3.

V. UNIQUE AND SPARSE NTD

Tucker decompositions are often criticized for suffering
from two major disadvantages: the curse of dimensionality
and the lack of uniqueness. The former means that the
size of the core tensor increases exponentially with respect
to the order N , whereas the latter is due to the fact that
unconstrained Tucker decompositions essentially only estimate
a subspace of each mode. In this section, we discuss how
nonnegativity can help overcome these two limitations of
Tucker decompositions, particularly by incorporating sparsity.
To our best knowledge, although several NTD algorithms have
been developed [4], a theoretical analysis of the uniqueness of
NTD is still missing.

A. Uniqueness of NTD

The following notation will be used in the uniqueness
analysis:

Nonnegative Rank: The nonnegative rank of a nonnegative
matrix Y, i.e., rank+(Y), is equal to the minimal number of
R such that Y = AB>, where A ∈ RM×R+ and B ∈ RN×R+ .
Obviously, rank(Y) ≤ rank+(Y).

Multilinear rank and nonnegative multilinear rank:
The vector r = (R1, R2, . . . , RN ) is called the multilinear
rank of Y, where Rn

.
= rank(Y(n)),∀n. The vector r+ =

(R1, R2, . . . , RN ) is called the nonnegative multilinear rank
of a nonnegative tensor Y, if Rn

.
= rank+(Y(n)).

Essential uniqueness: We call the NTD Y = G ×n∈IN
A(n) essentially unique, if A(n) = ÂP(n)D(n), ∀n, holds
for any other NTD Y = Ĝ ×n∈IN Â(n), where P(n) is
a permutation matrix, and D(n) is a nonnegative diagonal
matrix. (On the basis of relationship between NTD and NMF
described in (7)–(8), the definition of the essential uniqueness
of NMF can be obtained.)

Below, we suppose that Y = G ×n∈IN A(n) is the
NTD of Y with the nonnegative multilinear rank r+ =
(R1, R2, . . . , RN ), i.e., A(n) ∈ RIn×Rn

+ , Rn = rank+(Y(n)).
First, we have the following:

Proposition 4: For any n ∈ IN , Rn ≤ Rn̆ =
∏
p 6=nRp

holds.
Proof: Note that Y(n) = A(n)G(n)R

(n)>, where G(n) ∈
RRn×Rn̆

+ . If there exists n such that Rn > Rn̆, we simply let
Ã(n) = A(n)G(n), G̃(n) = I, and Ã(p)=A(p) for all p 6= n.
Then, Y = G̃ ×n∈IN Ã(n) forms another NTD of Y with
rank+(Y(n)) ≤ Rn̆ < Rn, which contradicts the assumption
of rank+(Y(n)) = Rn.

Corollary 1: Let Rn = max(R1, R2, . . . , RN ), and the
NTD Y = G ×n∈IN A(n) is essentially unique. If s(G) <
1− 1/Rn, then Rn < Rn̆ =

∏
p 6=nRp.

In Corollary 1, the condition s(G) < 1 − 1/Rn means that
G(n) is not a trivial matrix that is a product of a permutation
matrix and a nonnegative scaling matrix. Following the proof
of Proposition 4, the proof of Corollary 1 is obvious.

Proposition 5: If the NTD Y = G ×n∈IN A(n) is essen-
tially unique, then Ỹ(n) = A(n)G(n) is the unique NMF of
matrix Ỹ(n) for all n ∈ IN .

Proof: Suppose that there exists p ∈ IN and a non-trivial
matrix Q such that Ỹ(p) = (A(p)Q)(Q−1G(p)) is another
NMF of Ỹ(p); then, Y = G̃ ×n∈IN Ã(n) and Y = G ×n∈IN
A(n) are two different NTDs of Y, with Ã(p) = A(p)Q,
Ã(n)=A(n) for n 6= p, and G̃(n) = Q−1G(n). This contradicts
the assumption that the NTD of Y is essentially unique.

Proposition 6: For the population NTD Y = G×n 6=NA(n),
if Y(N) has an essentially unique NMF with the positive
rank equal to

∏
p 6=N Rp, then the population NTD of Y is

essentially unique.
Proof: As Y(N) has an essentially unique NMF and

Y(N) = G(N)R
(N)>, where R(N) =

⊗
n 6=N A(n), both

G(N) and R(N) can actually be essentially uniquely estimated.
Without loss of generality, we suppose that

R̂(N) = R(N)PD =
(⊗

n 6=N
A(n)

)
PD,

where R̂(N) is an estimate of R(N), P is a permutation matrix,
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Fig. 2: The evolution of the Fit values versus the iteration number of each algorithm in five runs. In each run, all of the
algorithms started from the same initial settings. The data tensor was generated by using Y = G×n∈I4

A(n) + N, where the
entries of G and A(n) were drawn from i.i.d. exponential distributions with s(A(n)) = s(G) = 0.6. The entries of the noise
N were drawn from a standard Gaussian distribution with an SNR of 0 dB.

and D is a nonnegative diagonal matrix. In other words,

R̂(N) =
⊗

n 6=N
A(n)P(n)D(n) .

=
⊗

n 6=N
Â(n), (34)

where Â(n) .
= A(n)P(n)D(n), P(n) and D(n) are permutation

matrices and diagonal matrices such that P =
⊗

n 6=N P(n)

and D =
⊗

n 6=N D(n). Below, we only need to show that
Â(n) can be essentially uniquely estimated from R̂(N), which
in turn results in the essential uniqueness of A(n).

Motivated by the method proposed in [36], we appropriately
arrange the elements of R̂(N) and reshape it to form a tensor
R̂ such that

R̂ = vec(Â(1)) ◦ · · · ◦ vec(Â(p−1))

◦ vec(Â(p+1)) · · · ◦ vec(Â(N)),
(35)

which means that R̂ is a rank-one tensor and Â(n) can be
uniquely estimated from R̂. This ends the proof.

Corollary 2: Let Y = G×n∈IN A(n) be the NTD of Y. If
Y(n) has an essentially unique NMF with the positive rank of
Rn for all n ∈ IN , then the NTD of Y is unique.

Corollary 2 describes a special case in which the NTD of a
high-order tensor can be achieved by solving N independent
NMF subproblems, which avoids the nonnegative alternating
least squares with respect to N + 1 factors and has been
realized in [14], [33]. Furthermore, from the proof of Propo-
sition 6, we know that the factors can be essentially uniquely
recovered from their Kronecker products. This motivates us
to extend the idea of mode reduction (reshaping) proposed in
[37] to NTD; that is, the NTD of an N th-order tensor can be
implemented by performing NTD on a 3rd-order tensor that is
obtained by reshaping the original N th-order tensor, followed
by a Kronecker product approximation procedure. Once the
3rd-order tensor has an essentially unique NTD (e.g., all of
its three unfolding matrices have a unique NMF), the original
N th-order tensor also does.

From the above analysis, the uniqueness of NTD has a
very close relation with the uniqueness of NMF. So far, there

have been many results on the uniqueness of NMF (see [38]–
[40] for a comprehensive review), most of which are based
on the sparsity of factor matrices. Among them, the pure-
source-dominant condition [11], [41], which means for each
signal there exists at least one instant at which only this signal
is active or strongly dominant, is one of the most popular
uniqueness conditions for NMF [11], [41]–[43]:

Proposition 7: The NMF of Y=AB> is essentially unique
if B satisfies the pure-source-dominant condition, i.e., B =

Π
[
I B>0

]>
PD, where D is a diagonal scaling matrix, P

and Π are permutation matrices, and I is the identity matrix.
The pure-source-dominant condition is also studied in terms

of separable NMF, which gained popularity very recently, as it
proved to be highly scalable and its representative applications
include topic discovery and the clustering analysis of large-
scale datasets [42], [43]. If we replace the unique NMF in
Proposition 6 and Corollary 2 with the above pure-source-
dominant condition, we obtain the corresponding uniqueness
conditions for NTD.

Note that the pure-source-dominant condition essentially
requires that at least one factor matrix of NMF should be
sufficiently sparse. In NTD, it requires that the core tensor or
all component matrices are sufficiently sparse. In fact, sparsity
is not only a key factor of the uniqueness of NTD, it also
reflects the learning-parts ability of NTD, as many zeros often
exist in the factors. Below we focus on sparse NTD.

B. NTD with Sparse Core Tensors

A very sparse core tensor is of particular importance for
NTD: not only does it partially break the curse of dimen-
sionality, as it only keeps the most significant connections
between the components in different modes, it also improves
the uniqueness feature of the results. In fact, in the ideal
case where G is very sparse such that G is all-zero except
gi,i,...,i > 0 for i = 1, 2, . . . ,min(R1, R2, . . . , RN ), NTD
is essentially reduced to nonnegative polyadic decomposition
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(NPD) [4], [14], which is essentially unique under very mild
conditions (even if A(n) is not sparse) [44]. All of these
facts suggest that a very sparse core tensor is quite useful
in practice. Below, we focus on how to improve the sparsity
of the core tensor by imposing suitable constraints, which can
also be applied to improve the sparsity of component matrices
similarly.

One popular approach is to use the l1 penalty to improve
the sparsity of G, leading to DSNTD = DNTD + λ ‖G‖1. As G

is nonnegative, we have
∂DSNTD

∂G
=
∂DNTD

∂G
+ λ, (36)

where ∂DNTD
∂G is given in (23). Hence, the aforementioned

algorithms can be applied directly.
Another approach is to add the Frobenius norm penalty on

A(n) such that DSNTD = DNTD +
∑
n
λn

2

∥∥A(n)
∥∥2

F
, which

generally leads to denser factor matrices A(n) but a more
sparse core tensor G. In such a case, each subproblem with
respect to A(n) is strictly convex and equivalent to applying
Tikhonov regularization.

C. NTD with Sparse Mode Matrices
We consider the partial NTD model in (3)–(5). Notice that

the basis matrix
⊗

n6=N A(n) has a special Kronecker product
structure that is not possessed by NMF. Below, we show that
such a Kronecker product structure will substantially improve
the sparsity of the basis matrix.

Lemma 1 [14]: Let a ∈ RM×1 and b ∈ RN×1. Then,
za�b = Nza + Mzb − zazb and sa�b = sa + sb − sasb,
which means sa�b ≥ max(sa, sb).

Proposition 8: Let A(n) ∈ RIn×Rn , n = 1, 2. Then,
sA(1)⊗A(2) = sA(1) +sA(2)−sA(1)sA(2) ≥ max(sA(1) , sA(2)).

Proof: Let K = A(1)⊗A(2). There exists a re-
arrangement of K, denoted as KR, satisfying KR =
vec(A(1))vec(A(2))> (see [36]), or equivalently,

vec(KR) =
[
vec(A(2))

]
�
[
vec(A(1))

]
. (37)

As the arrangement and vectorization operators do not change
the values of the entries, from (37) and Lemma 1, we have

zA(1)⊗A(2) = I2R2zA(1) + I1R2zA(2) − zA(1)zA(2) , (38)

and the rest of the proof is obvious.
From Proposition 8, NTD generally is able to provide more
sparse basis matrices than NMF. This sparsity stems from the
sparsity of each factor matrix and is further enhanced by the
Kronecker product operators.

VI. SIMULATION RESULTS AND APPLICATIONS

In this section, the performance of the proposed algorithms
is demonstrated by using both synthetic and real-world data.
All simulations were performed on a computer with an i7CPU
at 3.33GHz and 24GB memory, running Windows 7. The
MATLAB codes of the proposed algorithms are available at
http://bsp.brain.riken.jp/∼zhougx.

−10 −5 0 5 10 15 20
97

97.5

98

98.5

99

99.5

100

F
it 

(%
)

Noise level (dB)

 

 

MU

HALS

APG

LRAMU

LRAHALS

LRAAPG

(a) Fits vs. noise levels

MU−NTD HALS−NTD APG−NTD
0

100

200

300

400

500

600 585.74s
557.22s 578.82s

15.59s 15.65s 15.48s

E
la

ps
ed

 ti
m

e 
(s

)

 

 

NTD without LRA NTD with LRA

(b) Elapsed times for each algorithm

Fig. 3: Comparison between the NTD algorithms with or with-
out LRA under different levels of noise. The NTD algorithms
based on LRA are more robust to noise and are significantly
faster than those without LRA.
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Fig. 5: The Fit and mSIR values versus the sparsity level of
factors averaged over 10 Monte Carlo runs, where s(A(n)) =
s(G) = p, p ∈ {0, 0.1, . . . , 0.6}, and the additive Gaussian
noise was 0 dB. It can be seen that if the factors were very
sparse, all the LRA-NTD algorithms were able to recover the
true components in a very high probability.

A. Simulations Using Synthetic Data

Basic Settings: The data tensor Y was generated by
using Y = G ×n∈I4 A(n) + N, where the elements of the
component matrices and the core tensor were drawn from
independent exponential distributions with the mean parameter
10. The entries of the additive noise term N were drawn from
independent Gaussian distributions. In all simulations using
synthetic data, we set In = 100, n = 1, 2, 3, 4, and the
nonnegative multilinear rank r+ = (5, 6, 7, 8). To generate
the sparse core tensor and component matrices, some entries
that were uniformly sampled from each matrix/tensor were
set to be zero to meet the specified sparsity. We used two
performance indices to measure the approximation accuracy.
The first one is the Fit index, which measures the fitting error

between the data tensor2 Y and its estimate Ŷ:

Fit(Y, Ŷ) =
(

1−
∥∥∥Y− Ŷ

∥∥∥
F
/‖Y‖F

)
× 100%.

Another performance index, the mean signal-to-interference
ratio (mSIR, dB), measures how well the recovered compo-
nents match the true components:

mSIR =
1∑
nRn

N∑
n=1

Rn∑
rn=1

20 log10

∥∥∥a(n)
rn

∥∥∥
2∥∥∥a(n)

rn − â
(n)
rn

∥∥∥
2

, (39)

where â
(n)
rn is an estimate of a

(n)
rn , both of which are normal-

ized to have zero-mean and unit variance.
On the basis of the NLS solvers we introduced in Section

IV, we implemented five NTD algorithms: MU-NTD, HALS-
NTD, BPP-NTD, APG-NTD, and ALS-NTD, each of which
has versions with or without LRA. In our implementation of
BPP-NTD, we have borrowed code from BPP-NMF [22] to
solve each NLS subproblem.

1. Convergence speed of different update rules. The maxi-
mum iteration number for each NLS subproblem was 20, and
the total number of iterations was 500 for all algorithms. In this
comparison, we directly ran each algorithm on the observation
data without the LRA procedure to compare the performance
between the suggested update rules, and the evolution of the
Fit values versus the iteration number is shown in Fig.2 by
using five different initial values. It can be seen that the ALS-
NTD algorithm was quite sensitive to the initial values, mainly
because it involves the computation of the inverse of probably
ill-conditioned matrices during the iterations. (This issue was
also observed in the BPP-NTD algorithm [23], although it
seems to be not as serious as in ALS-NTD. It seems that APG-
NTD is less sensitive to the initial values, whereas HALS-
NTD often provides a higher accuracy and faster convergence
speed. Hence, in the comparisons below, we focused on the
other three more stable algorithms). Except the ALS-NTD
algorithm, all algorithms converged consistently.

2. Comparison between the NTD algorithms with or without
LRA for different levels of noise. For each algorithm, the

stopping criterion was
∥∥∥A(n)

iter+1 −A
(n)
iter

∥∥∥2

F
< 10−6. All of

the LRA-based NTD algorithms used HOSVD [26] to obtain
the LRA of the noisy observation data. Their performance
averaged over 10 Monte Carlo runs is shown in Fig.3. From
Fig.3(a), we can see that the LRA-based NTD algorithms
are often more robust than those without LRA. We guess
this is mainly because the NTD algorithms without LRA
are more sensitive to the initial values for noisy data due to
the nonnegative projection during iterations. In other words,
LRA is quite helpful to reduce the noise and consequently
improve the robustness of the NTD algorithms. Moreover, just
as expected, the LRA-based NTD algorithms are significantly
faster than those without LRA, as shown in Fig.3(b).

2For the simulations using synthetic data, the tensor Y in Fit(Y,Ŷ) is the
latent noise-free tensor; otherwise, for real-world data, Y is the data tensor.
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We also investigated how LRA will affect the final results of
NTD. In this experiment, the randTucker algorithm proposed
in [30] was used to compress the data tensor (contaminated
by Gaussian noise with SNR = 20 dB). Then, LRAAPG was
applied to perform NTD by using exactly the same initial
settings. Fig.4 shows the results of 20 Monte Carlo runs, which
demonstrated that a more accurate LRA roughly led to better
performance for NTD. Note also that the final Fit values were
often higher than those of LRA (the Fit was evaluated using the
noise-free tensor instead of the observation tensor), suggesting
the nonnegativity constraints may help to remove noise and
improve the estimation accuracy.

3. Investigation of how sparsity affects the essential unique-
ness of NTD by applying the developed algorithms to the
data whose factors were of different levels of sparsity. In this
simulation, we set s(A(n)) = s(G) = p, p ∈ {0, 0.1, . . . , 0.6}
each time. In each run, 0 dB Gaussian noise was added to the
data tensor data, and the LRA procedure of all the algorithms
was again performed by using HOSVD [26]. The average
performance over 10 Monte Carlo runs is shown in Fig.5. From
the figure, when the sparsity of the factors (including the core
tensor) were higher than 0.3, the mSIR values were generally
higher than 20 dB, which means that the corresponding NTDs
in such cases were essentially unique, and the existing NTD
algorithms were able to recover the true components with a
very high probability. However, if the factors were of low
sparsity level, all algorithms not only failed to recover all true
components but also achieved lower Fit values. We guess that
this was mainly caused by the local convergence of the NTD
algorithms. From the simulation results, the sparsity of factors
is one key factor in NTD, as it substantially improves the
essential uniqueness of NTD, which in turn leads to a better
fit to data, as sticking in local minima of the NTD algorithms
can be largely avoided.

B. Experiments Using Real-world Data
Object clustering. In this experiment, we applied the

proposed NTD algorithms to the clustering analysis of objects
selected from the Columbia Object Image Library (COIL-100).
The COIL-100 database consists of 7,200 images of 100 ob-
jects, each of which has 72 images taken from different poses.
For simplicity, we only considered the first 20 categories, and
we randomly selected k categories each time to form a data
tensor Y of 128×128×3×72k. Then, the tensor Y was decom-
posed by the proposed NTD algorithms as Y ≈ G×n∈I4

A(n)

by empirically setting R1 = R2 = 10, R3 = 3, and R4 = 2k
denoting the number of features. We used the factor matrix
A(4) as the features and used the K-means approach to cluster
the objects. In each run of the K-means it was repeated 20
times to mitigate the local convergence issue. To show the
superiority of the NTD methods in high-dimensional data
analysis, we also used the NeNMF method (accelerated by
using the LRA technique proposed in [33]) and the PCA
method to extract the features from the vectorized samples.

TABLE III: Performance Comparison When the Algorithms
Were Applied to a Clustering Analysis by Using the First
20 Objects of the COIL-100 Objects, Averaged Over 10
Monte Carlo Runs. The NTD Algorithms Achieved a Higher
Clustering Accuracy Than the Nenmf Algorithm.

Algorithm Accuracy MI Fit (%) Time (s)
MU-NTD 69.7± 3.6 0.80 0.75 301

LRAMU-NTD 69.4± 3.8 0.81 0.74 22
HALS-NTD 68.0± 4.3 0.79 0.75 304

LRAHALS-NTD 70.0± 3.6 0.81 0.74 33
APG-NTD 68.8± 4.9 0.80 0.75 340

LRAAPG-NTD 67.3± 3.9 0.80 0.74 23
NeNMF 63.3± 4.2 0.77 0.77 214

For each k = 4, 8 . . . , 20, we randomly selected 10 different
subsets of objects, and the average performance is plotted in
Fig.6 and listed in TABLE III (for k = 20), which indicates
that the NTD approaches outperformed NeNMF and PCA that
work on flattened data, and the LRA-based NTD algorithms
were significantly faster than the others. From Fig.7, we can
observe that the NTD approaches extracted a more sparse and
local parts-based basis. Moreover, the core tensors obtained
by NTDs were generally very sparse, even without imposing
additional sparsity constraints. In this example, 25% of the
entries captured more than 99.5% of the energy of the entire
core tensor, which allows for the adoption of efficient sparse
representations of it during storage and computation. Note
also that we did not include the existing NTD algorithms in
[12], [13], [24] for comparison because they are much slower
than the proposed algorithms, as analyzed in Section IV. For
example, for k = 20 after 100 iterations, the NTD algorithm
proposed in [13] had consumed approximately 2,360 s while
only achieving the Fit of 0.66. These algorithms are inefficient
because they update the parameters only once in each iteration
and without the LRA acceleration.

Human face recognition. In this experiment, we applied the
proposed NTD algorithms to extract features for human face
recognition using the PIE (the face images taken at the front
pose labeled c27 were used), ORL, and Yale databases. All
of the face images were gray-scaled with a size of 64 × 64.
Each time, we randomly selected p × 100% sample images
from each person to be the training data, whereas the others
were used for testing. In the NTD-based approaches, we
decomposed the training data by using the proposed algorithms
with empirically setting R1 = R2 = 10. Then, the unfolding
matrix of G ×1 A(1) ×2 A(2) was used as the basis matrix.
For comparison, mahNMF [45], NeNMF, and PCA were also
used to learn the basis matrix from the flattened training data
with the same number of features. Once the basis matrix had
been learnt from the training data, the nonnegative projection
of a new test sample onto each basis matrix was used as the
features for recognition (see [45]). Finally, the KNN classifier
included in MATLAB was used for recognition by using the
extracted features, where the distance was measured by their
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Fig. 6: Performance comparison between the proposed algorithms and the standard NMF/PCA algorithms when they were
applied to perform the clustering analysis of the COIL100 objects.

TABLE IV: Comparison of Face Recognition Accuracy Achieved by Each Algorithm Using the PIE, ORL, and Yale Databases
Averaged Over Five Monte Carlo Runs. In Each Run, p × 100% Samples of Each Person Were Used as the Training Data,
Whereas the Others Were Used for Testing.

Algorithm PIE (R3 = 70) ORL (R3 = 40) Yale (R3 = 40)
p =30% p =40% p =50% p =30% p =40% p =50% p =30% p =40% p =50%

MU-NTD 90.2 94.1 94.7 84.6 85.4 89.9 64.7 67.6 66.7
LRAMU-NTD 89.3 93.5 94.4 83.2 85.9 90.0 64.5 68.4 67.6

HALS-NTD 90.1 93.5 94.3 84.3 85.2 89.5 63.4 67.2 66.4
LRAHALS-NTD 89.9 93.4 94.9 83.7 84.7 90.3 64.8 67.0 64.4

APG-NTD 90.2 93.6 94.2 83.1 85.1 90.2 63.5 66.5 67.3
LRAAPG-NTD 90.6 94.2 95.0 82.7 84.9 90.1 64.3 68.2 65.3

mahNMF 85.2 90.0 92.6 81.8 83.8 89.1 60.0 64.2 65.6
NeNMF 86.3 91.6 94.1 68.8 75.7 83.6 50.0 56.8 57.8

PCA 80.9 87.6 91.6 80.2 83.2 88.1 63.5 64.0 62.4

(a) Basis images learned by NMF (b) Bass images learned by NTD

Fig. 7: Basis images learned by using NeNMF and
LRAHALS-NTD from 20 categories randomly selected from
the COIL-100 database. The bases learned by NTD (G×n∈I3

A(n)) are more sparse than thoese obtained by NeNMF.

correlations. TABLE IV summarizes the recognition accuracy
averaged over five Monte Carlo runs. From the table, the
NTD algorithms provided a higher accuracy than matrix-

factorization-based methods, especially when the amount of
training data was relatively small. This phenomenon was also
observed in tensor-based discriminate analysis, which shows
that the tensor-based methods could considerably alleviate
the overfitting problem [18]. It can also be seen that the
difference between the accuracy obtained by the standard
NTD algorithms and that by their LRA-accelerated versions is
marginal (in addition, it seemed that the LRA-based versions
were more stable). In Fig.8, we illustrate how the number of
features, i.e., R3, affected the recognition accuracy by using
the PIE database. Basically, a larger value of R3 often led
to a higher accuracy, at the cost of a higher computational
load. However, once R3 ≥ 100, the performance of the NTD
approaches became unstable. We guess this is because NTD is
not unique anymore (see Proposition 4). NMF was originally
developed in order to give a parts-based representation of
images and to perform dimensionality reduction in the physical
domain. Fig.9 shows the basis images learnt by the NeNMF,
mahNMF, and LRAHALS-NTD algorithms. For the ORL
database, it is well known that the NMF algorithms often tend
to give global representations rather than parts-based ones, as
shown in Fig.9(b) and (c). In contrast, the LRAHALS-NTD
algorithm extracted the localized parts of faces without the
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Fig. 8: Face-recognition accuracy averaged over 5 Monte Carlo runs on the PIE dataset. In each run, p× 100% of the samples
were used for training while the others were used as test samples. The LRAHALS-NTD algorithm was used for feature
extraction with varying number of features R3 and fixed R1 = R2 = 10.
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(a) Example face images (b) Basis learned by NeNMF (c) Basis learned by mahNNF (d) Basis learned by LRAHALS-NTD

Fig. 9: Basis images learned by NeNMF, mahNMF, and LRAHALS-NTD from the ORL database. For this data set, whereas
the NMF approaches often give global-based representations, LRAHALS-NTD was able to give a localized representation.

need to impose any additional sparsity constraints.

VII. CONCLUSION

NTD is a powerful tool to analyze multidimensional non-
negative tensor data with the aim of giving a sparse localized
parts-based representation of high-dimensional objects. In this
paper, we proposed a family of first-order NTD algorithms
based on a preceding LRA of the data tensors. The proposed
algorithms use only the first-order information (gradients) and
are free of line search to search update steps (learning rates).
The LRA procedure significantly reduces the computational
complexity of the subsequent nonnegative factorization pro-
cedure in terms of both time and space and also substantially
improves the robustness to noise and the flexibility of the NTD

algorithms. Indeed, by incorporating various well-established
LRA techniques, the proposed NTD algorithms could be seam-
lessly implemented to analyze data contaminated by various
types of noise seamlessly. The error bounds on LRA-based
NTD were briefly discussed, and some preliminary results
on the essential uniqueness of NTD were provided with a
focus on the relationship to the uniqueness of NMF. We
discussed how sparsity is able to improve the uniqueness of
NTD and to partially alleviate the curse of dimensionality of
Tucker decompositions. Simulations justified the efficiency of
the proposed LRA-based NTD algorithms and demonstrated
their promising applications in clustering analysis.
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