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Abstract— In free viewpoint video systems, a user has the
freedom to select a virtual view from which an image of the
3D scene is rendered, and the scene is commonly represented by
color and depth images of multiple nearby viewpoints. In such
representation, there exists data redundancy across multiple
dimensions: 1) a 3D voxel may be represented by pixels in
multiple viewpoint images (inter-view redundancy); 2) a pixel
patch may recur in a distant spatial region of the same image
due to self-similarity (inter-patch redundancy); and 3) pixels in
a local spatial region tend to be similar (inter-pixel redundancy).
It is important to exploit these redundancies during inter-
view prediction toward effective multiview video compression.
In this paper, we propose an encoder-driven inpainting strategy
for inter-view predictive coding, where explicit instructions are
transmitted minimally, and the decoder is left to independently
recover remaining missing data via inpainting, resulting in lower
coding overhead. In particular, after pixels in a reference view
are projected to a target view via depth-image-based rendering
at the decoder, the remaining holes in the target view are filled
via an inpainting process in a block-by-block manner. First,
blocks are ordered in terms of difficulty-to-inpaint by the decoder.
Then, explicit instructions are only sent for the reconstruction
of the most difficult blocks. In particular, the missing pixels are
explicitly coded via a graph Fourier transform or a sparsification
procedure using discrete cosine transform, leading to low coding
cost. For blocks that are easy to inpaint, the decoder indepen-
dently completes missing pixels via template-based inpainting.
We apply our proposed scheme to frames in a prediction struc-
ture defined by JCT-3V where inter-view prediction is dominant,
and experimentally we show that our scheme achieves up to
3-dB gain in peak-signal-to-noise-ratio in reconstructed image
quality over a comparable 3D-High Efficiency Video Coding
implementation using fixed 16 × 16 block size.

Index Terms— Video compression, predictive encoding,
transform coding.
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I. INTRODUCTION

IN FREE viewpoint video systems [1], color maps
(RGB images) and depth maps1 (per-pixel distance between

physical objects and capturing cameras) of the 3D scene as
observed from multiple closely spaced cameras are captured at
the encoder into a color-plus-depth representation [4]. Armed
with color and depth images of multiple views, images of
intermediate virtual viewpoints can be synthesized at decoder
via depth-image-based rendering (DIBR) [5], enabling new
applications such as free viewpoint TV [1], immersive video
conferencing [6], etc.

It is apparent that this multiview color-plus-depth repre-
sentation contains various types of data redundancy spatially
and across views. First, a voxel of an object in the 3D scene
that is visible from multiple camera-captured views will be
represented as pixels in multiple viewpoint images (inter-view
redundancy). Assuming that the 3D scene is Lambertian,2

a 3D voxel reflects the same color value to different
viewpoints, and recording the same value across multiple
viewpoint images leads to redundancy. Second, it is well
understood that values of neighboring pixels of the same
object in a viewpoint image tend to be correlated statistically
(inter-pixel redundancy). Finally, it is observed that natural
images tend to be self-similar: similar image patches tend to
recur in different spatial regions throughout the same image
(inter-patch redundancy). Previous computer vision research
efforts have successfully exploited this nonlocal self-similarity
characteristic of images for denoising [7] and inpainting [8]
(completion of missing pixels in a spatial region).

While temporal redundancy is crucial for video coding,
for frames where temporal prediction is either not possible
(e.g., random access I-frames) or not effective (e.g., P-frames
with distant temporal predictor frames in a pre-determined
frame structure), it is critical to exploit these spatial and
inter-view redundancies inherent in the color-plus-depth rep-
resentation for efficient data compression. The vast major-
ity of conventional inter-view prediction schemes [9]–[11]
attempt to eliminate this redundancy following the traditional
video coding paradigm of hybrid signal prediction/residual
coding, e.g., video coding standards like H.264 [12] and
HEVC [13]. Specifically, to reconstruct a given target block, a
sender transmits explicit instructions like motion vector (MV)
to guide the receiver to the location of the most similar

1Depth images can be acquired directly using depth sensors [2], or computed
from neighboring color images using stereo-matching algorithms [3].

2Reflective surfaces such as wine glasses and mirrors are not Lambertian.
However, for closely spaced capturing cameras, the Lambertian surface
assumption is nonetheless a good approximation.
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block, which serves as a predictor signal. Then, the differ-
ence between the predictor and target block—the prediction
residual—is transform coded and transmitted to the receiver
to improve the reconstruction quality. This paradigm has a
long legacy in video coding research, dating back to the first
ISO video coding standard MPEG1 and ITU-T standard H.261
in the late 1980’s, where one of the crucial design criteria
was a computationally inexpensive video decoder. In that light,
the hybrid signal prediction/residual coding paradigm where
the encoder dictates exactly how each code block should be
reconstructed is a suitable design choice that results in today’s
many practical codecs across many platforms.

Given that the cost of computation has drastically decreased,
the strict requirement that the video decoder must be com-
putationally simple is no longer necessary in many practical
cases. In this paper, we argue that one can leverage on the
computation power of a decoder to recover a desired signal and
lower the overall transmission cost. In particular, we propose
an encoder-driven inpainting strategy for inter-view predictive
coding, where explicit directions are transmitted minimally
from the encoder, and the decoder is left to independently
recover missing pixels via inpainting, resulting in lower coding
overhead. Our strategy efficiently exploits the aforementioned
inter-patch, inter-pixel and inter-view redundancies inherent in
color-plus-depth representation, and can complement existing
3D coding tools such as those in the 3D-HEVC standard by
coding frames that depend heavily on inter-view prediction for
coding efficiency.

In details, first we directly project pixels from one (or more)
reference view(s) to a target view via DIBR, thus eliminating
inter-view redundancy. This projection results in a number
of disocclusion holes—spatial areas that are occluded in the
reference view by foreground objects but become exposed
after the view change. To complete these holes, we first
order the blocks with missing pixels in terms of decreasing
difficulty for inpainting. For the most difficult blocks, we
transmit explicit instructions called Auxiliary information (AI)
to guide the decoder in the reconstruction process. AI typically
consists of the location information of the best predictor
block for inpainting, and color values for missing pixels. The
incomplete blocks typically contain known pixels projected
from neighboring view via DIBR as well as missing pixels,
but only the missing pixels are explicitly coded via a graph
Fourier transform (GFT) [14]–[17] or a sparsification proce-
dure using the discrete cosine transform (DCT) [18], [19],
in order to achieve low coding cost. Finally, the decoder can
independently complete missing pixels in the blocks that are
easy to inpaint via a template-matching algorithm such as [8].
We apply our proposed inter-view prediction strategy to
selected frames in a prediction structure defined by JCT-3V
where inter-view prediction is dominant, and experimentally
we show that our strategy can outperform a comparable imple-
mentation of 3D-HEVC using fixed block size 16 × 16 by up
to 3 dB in PSNR in reconstructed image quality, demonstrating
the potential of our inter-view predictive coding strategy for
3D video compression.

The outline of the paper is as follows. We first discuss
related works in Section II. We then overview our

encoder-driven inpainting based coding system in Section III.
We describe our design of AI used to guide the inpainting
of disocclusion holes at decoder in Section IV. Methods for
sparsification of DCT and GFT of code blocks are described in
Section V. The order in which the missing holes are completed
is crucial in our proposal; we show that finding the optimal
filling order is an NP-hard problem and present a heuristic
“hard-to-easy” order in Section VI. Finally, we discuss
our experimentation and conclude in Section VII and VIII,
respectively.

II. RELATED WORK

We divide our discussion of related works into two sections.
We first discuss previous works in multiview image and
video coding in the literature. We then discuss existing art in
employing decoder-side inpainting techniques for compression
of 2D image and video.

A. Multiview Image and Video Coding
Multiview image & video coding refers to the compression

of multiple color images of the same 3D scene captured
using an array of closely spaced cameras. Many papers on
this topic focus on the efficient coding of the entire set of
images by exploiting the inter-view data redundancy inherent
in the camera setup. A straightforward way to achieve it is
to use disparity-compensated prediction. Similar to motion-
compensated prediction in single-view video coding, for each
block in the target view, disparity compensation finds the best
matching block in a reference view, then encodes and transmits
the disparity vector (DV) and the prediction residual for recon-
struction at the decoder. In [20], motion compensation and dis-
parity compensation are combined to encode stereo sequences.
The concept of Group of Group of Pictures (GoGOP) for
inter-view prediction is introduced in [21], where a picture
can refer to decoded pictures in other views even at different
time instants. In [9] and [22], various modified hierarchical
bidirectionally predicted structures are developed for inter-
view prediction. In [23], the problem of optimal Group of
Pictures (GOP) prediction structure for multiview video cod-
ing is studied. However, simple 2D translational inter-view
motion assumed by disparity compensation cannot accurately
represent the geometry transformation in a view-switch from
one camera viewpoint image to another; hence, disparity
compensation is not always efficient.

Color-plus-depth format is an alternative data representation
that is particularly useful for free viewpoint video [4]. Color
and depth images from multiple camera viewpoints are
encoded together, and at the decoder one can synthesize
novel intermediate viewpoint images via DIBR [5]. In this
kind of representation, an alternative to translational disparity
prediction is view-synthesis-based prediction [24]–[26],
where a synthesized version of a target view is used for
predictive coding. Our proposal is an example of this class of
view-synthesis-based methods for inter-view predictive
coding, but combines inpainting and advanced transform
coding in a “hard-to-easy” block order for improved
compression performance.

Layered depth video (LDV) [27] is another alternative
representation of multiview video data, where in addition to
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the color and depth maps of the main view, residual layers
of other views not visible from the main view are constructed
for coding. Because our proposal is also view-synthesis based,
it is similar to LDV, but we focus on the efficient coding of
the disocclusion hole pixels in a synthesized image (akin to
the residual layers in LDV) through an intricate system of
techniques described earlier.

As depth images are used only for view synthesis and are
not themselves directly viewed, different rate-distortion (RD)
optimization procedures have been designed for depth map
coding to optimize the synthesized view quality [18], [19],
[28], [29]. In particular, since depth images possess unique
signal characteristics such as piecewise smoothness (PWS),
new coding tools such as graph Fourier transform (GFT)
designed specifically for depth signals have been pro-
posed [14]–[17], [30].

Recently, HEVC has been extended to support encoding
of 3D video, namely multiview video and associated depth
data [31], [32], similar to the MVC extension of H.264/
AVC [33]. There are mainly two types of tools employed:
disparity compensation and view synthesis prediction.
As discussed earlier, this is the hybrid signal predic-
tion/residual coding paradigm used in conventional video
coding standards, where the encoder dictates exactly how a
target signal should be constructed at the decoder.

The key differentiator for our proposal is that we leverage
on the self-discovery power of the decoder, so that the decoder
can recover remaining missing pixels in the reconstructed
viewpoint image via inpainting procedures. Instead of disparity
compensation, our proposal exploits inter-view redundancy by
mapping pixels from a reference view to a target view to create
a starting image, and then transmits auxiliary information to
assist the decoder in the completion of the rest of the image
in a RD optimal manner, thus avoiding the aforementioned
shortcomings of disparity compensation.

B. Inpainting for Image and Video Coding
Employing inpainting at the decoder to aid compression

was first proposed in [34] for 2D images. In a nutshell,
the work in [34] essentially advertises an advanced
intra-prediction scheme based on (local) inpainting. This
inpainting is more sophisticated than uni-directional pixel copy
employed in video coding standards like H.264 intra [12],
where texture in the target block is predicted using observed
pixels from adjacent causal blocks that have already been
reconstructed. To further improve inpainting quality, edge
information (called assistant information) for the target block
is optionally sent, so that sharp edges in the reconstructed
block can be preserved. The success of [34] has inspired
a set of follow-up works that also employ inpainting for
2D image and video coding [35]–[39]. For example, the
authors in [37] generalize the notion of assistant informa-
tion to a set of parameters for different model distributions;
i.e., instead of simple edges, other assistant information can
be transmitted to aid inpainting. Blocks with statistics that do
not fit with model distributions are classified as non-featured
blocks and coded using traditional DCT-based methods.
The authors in [38] propose an inpainting procedure based

on Laplace partial differential equation (PDE) and total
variation (TV) for HEVC intra coding, and later for depth
map coding as well [39].

Though also employing inpainting at the decoder, our
work differs from these works fundamentally in the following
regard: inpainting for intra-prediction as described above
exploits local inter-pixel data redundancy in images, while our
proposed encoder-driven inpainting strategy exploits also data
redundancy in non-local pixel patches due to self-similarity
in images. Specifically, our inpainting scheme is derived from
inpainting schemes based on template-matching such as [8]
that identify and copy non-local pixel patches from distant
spatial regions to the target patch. This concept is similar
to our previous work [40], which is significantly extended
here in many aspects. In particular, we introduce a new order
of encoding/decoding in our proposal, where our goal is to
first transmit the hard-to-inpaint blocks, so that the remaining
blocks can be filled independently by the decoder using non-
local template-matching. Second, in order to code prediction
residuals or intra blocks, we introduce DCT sparsification
and GFT as additional coding modes to code only unknown
pixels in a target block and improve coding performance.
Finally, because the “hard-to-easy” order entails non-stationary
statistics over time, we design a statistical context to efficiently
encode AI modes, resulting in non-negligible coding gain
at low bitrates when the coding of modes accounts for a
significant portion of the bit budget.

We note that template-matching-based intra prediction has
been proposed previously in [41]–[44] for video coding.
Specifically, DIP (displacement intra prediction) and
MTP (Markovian texture prediction) in [41] share similar
ideas with our proposed coding modes. However, the coding
strategies are fundamentally different. These works employ
the traditional top-down left-to-right block order during the
encoding process. In contrast, we propose a block order so
that explicit information is transmitted only for difficult-
to-inpaint blocks, after which decoder must complete the
remaining missing pixels via inpainting. Our unique block
filling order also means that the blocks requiring completion
have varying numbers of missing pixels, leading to novel
transform coding techniques (graph Fourier transform and
DCT spasification) that are not considered in [41]–[44].

III. CODING SYSTEM OVERVIEW

A. System Overview

We propose a coding strategy based on encoder-driven
inpainting for color-plus-depth representation of multiview
video data. Specifically, the objective of our coding strategy
is to code color and depth image pairs of multiple views in a
RD optimal manner. For the sake of simplicity, we describe
our coding strategy for two neighboring viewpoint images
(two pairs of color and depth images). The application of our
strategy to multiple views with more complex frame prediction
structure is straightforward, and experimental results will be
reported in Section VII.

We first independently code color and depth images of one
view with the help of a video codec; this view is called the
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Fig. 1. Illustration of disocclusion holes left after DIBR for sequence
Undo_Dancer. The forward warping via DIBR is performed from
view 1 to view 5. The black regions close to the right side of the foreground
(the man) show the missing pixels that have to be filled after projection.
(a) view 1. (b) original view 5. (c) rendered view 5.

independent view. Then we propose to code the second view
(the dependent view) as follows. We project the decoded color
pixels of the independent view to the dependent view image
via DIBR, where the geometric information provided by the
depth map of the independent view and the camera calibration
parameters are used to identify pixel correspondences between
the two views. We assume in this work that the view-to-view
projections via DIBR are of sufficient quality and do not
require further refinements at the decoder.3 After the projection
step, there are two kinds of holes in the DIBR-synthesized
image that require filling in order to have a good reconstruction
of the dependent view; these are: i) rounding holes, and
ii) disocclusion holes. First, the disparity values of the pixels
in the independent view likely have fractional values; when
projected to the dependent view they are rounded to the
nearest integers to land on the 2D grid of the rendered
image. This rounding operation can result in rounding holes.
By assuming a rectified camera setup where the relative
camera positions correspond to pure horizontal shifts, the pixel
disparities have only horizontal components. Thus we can
identify the rounding holes simply as follows. For a given
hole in the projected image, we check if the nearest available
pixels to the left and right of the hole have almost identical
depth values (namely, less than a pre-defined threshold δ).
If so, we identify the hole as a rounding hole and perform
simple horizontal linear interpolation to fill in the missing
pixel(s).

After identification and filling of the rounding holes in the
projected image, disocclusion and out-of-view holes remain.
Out-of-view holes are spatial regions that newly enter the
visible image real estate due to the change of camera position.
Our coding schemes can efficiently treat them in the same
way as the disocclusion holes.4 Disocclusion holes represent
spatial regions in the dependent view that are not visible
in the independent view due to occlusion by foreground
objects. An example of such disocclusion holes is shown
in Fig. 1.5 Unlike rounding holes, disocclusion holes may

3If projections are poor due to illumination differences in color maps or
estimation errors in depth maps, they should be corrected in a pre-processing
step prior to the start of encoding for better coding performance.

4We thus use disocclusion holes to denote the two types of holes hereafter.
5Video sequence Undo_Dancer can be found from

ftp://mpeg3dv.research.nokia.com

Fig. 2. The block diagram of the proposed strategy. Dependent views are
obtained by DIBR estimation from the decoded independent view, along with
encoder-driven inpainting of the disocclusion holes.

contain novel information that cannot be easily extrapolated
from available neighboring pixels. Hence, the encoder has to
provide information to the decoder so that it can properly
reconstruct the dependent view. In this paper, we assume
that the decoder has the computational resources to execute
inpainting procedures. Thus the encoder only provides care-
fully chosen auxiliary information (AI) to guide the decoder
through the reconstruction of difficult spatial regions, so that
the decoder can self-discover missing pixels in the remaining
holes in the dependent view via inpainting. The construction
of this AI data is described in the next section.

The depth pixels of the independent view are also projected
to the dependent view, and rounding holes are identified and
filled in the same manner as in the color image.6 However,
the disocclusion holes are simply extrapolated using adjacent
background depth pixels. This is because depth images are
known to be piecewise smooth [14]–[16]. We further find
empirically that adjacent background depth pixels are good
predictors for signal extrapolation into the disocclusion holes.
The overall procedure of the proposed coding strategy is
summarized in Fig. 2.

B. Encoder-Driven Disocclusion Hole Filling

We provide now more details about our coding strategy
that relies on inpainting to fill in disocclusion holes.
In the computer vision literature, there exist many inpainting
algorithms [8], [46]–[49] to complete holes in a given image.
The key difference between our work and inpainting schemes
like [8] is that, in our multiview coding scenario, the target
image to be inpainted is known at the encoder. Hence, the
encoder can provide additional information to guide the image
completion process at the decoder. Inspired by the patch-based
template-matching inpainting algorithm in [8], we will employ

6The corresponding depth values for the two views are the same if we
assume the two viewpoints are rectified [45].
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a similar inpainting framework and complete the rendered
image on a per-patch basis. In a nutshell, our patch-based
inpainting framework performs the following operations.
We first select a pixel on the boundary of disocclusion holes in
the DIBR projection of the dependent view; the selected pixel
is the center of a target patch that will be inpainted. Missing
pixels in the target patch are then filled using known pixels
in the reconstructed dependent view via template-matching,
possibly with help of AI provided by the encoder. Then,
another target patch is selected for filling, and the process
continues until all missing pixels are completed. The order in
which the patches are selected for filling is called the patch
order. Given this patch-based inpainting framework, there are
two key questions to solve for effective coding performance:
i) for a given target patch, how to best complete it, possibly
with the aid of AI? ii) what is the optimal patch order to
complete the rendered image?

We first observe that, given a local target patch to be
completed, the level of difficulty in inpainting it—called
local hardness in the sequel—depends on the degree of self-
similarity exhibited between the target patch and already
completed spatial regions in the predicted image. If the missing
pixels in the target patch can be found in the completed
spatial regions, then the encoder only needs to convey a simple
message (called the skip mode) to the decoder to signal that the
missing information can be self-discovered using an unassisted
inpainting procedure such as template-matching [8]. If the
missing pixels are available in the completed spatial regions
but it is difficult for the decoder to discover them unassisted,
then the encoder can provide lightweight search instructions
(called the vec mode) to guide the discovery process. Finally,
if the missing pixels are entirely innovative, then the encoder
has no choice but to explicitly encode the missing pixels
(called the intra mode).

Note that only the subset of missing pixels in a target
block requires intra coding. This observation can be exploited
for novel patch-based transform coding that can outperform
conventional schemes like DCT that typically code the entire
pixel block, regardless of whether pixels in the block are
missing or not. These different kinds of information compose
the set of AI that the encoder convey to the decoder on a
patch-by-patch basis for encoder-guided inpainting. Finally,
we remark that the different kinds of AI have different coding
costs, and the choice of AI is determined by a RD criterion.
The details of the AI design is discussed in Section IV and
the patch-based transform coding is described in Section V.

The second question is related to the order of patches in the
inpainting process. Clearly, a left-to-right top-to-bottom raster
scanning order employed in conventional block-based image /
video coding algorithms is not appropriate. A key innovation
in Criminisi’s inpainting algorithm [8] is the order in which
target patches should be selected for inpainting: the main idea
is to select easy-to-inpaint patches first, so that propagation
of likely errors in hard-to-inpaint patches to other regions
will be minimized. This patch ordering problem is called the
global hardness of patches in the inpainting process. In stark
contrast to the “easy-to-hard” patch order in Criminisi’s
algorithm, we propose a “hard-to-easy” patch order for our

Fig. 3. Notation diagram of Criminisi’s inpainting algorithm [8]. The regions
� and � respectively denote the known and unknown region in the inpainting
process.

encoder-assisted inpainting algorithm. The basic idea is that,
once the hardest patches are filled in (with ample assistance
from the encoder), the remaining patches are all easy-to-
inpaint. They can be completed by the decoder unassisted, and
hence the encoder can directly save bits from reduction in AI
signaling cost. Note that the problem of error propagation from
hard-to-inpaint patches to other spatial regions can be easily
contained in our setting, since the encoder-guided inpainting
process can implicitly control the inpainting quality at the
decoder. The details of our proposed “hard-to-easy” patch
order is presented in Section VI.

Note that we focus on the development of new coding tools
for inter-view predictive coding, rather than the optimization
of the inter-view prediction frame structure itself, which is
outside the scope of this paper.

IV. INPAINTING BASED CODING AND

AUXILIARY INFORMATION

Towards a solution to address local hardness in encoder-
driven image inpainting, we first overview a well-known
template-matching inpainting algorithm [8]—we use a similar
variant in our system. We then discuss the design and imple-
mentation of auxiliary information (AI).

A. Overview of Criminisi’s Inpainting Algorithm

Criminisi’s inpainting algorithm [8] is a well-known method
to propagate texture patterns from known pixel regions to
spatial regions with missing pixels, assuming that self-
similarity typically exists in natural images. While there
are more recent inpainting algorithms designed specifically
for DIBR-synthesized images [50]–[53], we construct our
algorithm based on [8] for its simplicity. For convenience
and consistency, we reuse some notations from Criminisi’s
algorithm. We denote the image by I , and denote by � and
� = I \ � respectively the source and target regions in the
inpainting process. As illustrated in Fig. 3, the pixels in �
that are neighbors of � form the boundary, denoted by δ�.
The region � includes the rendered and decoded pixels, while
� represents the remaining holes. A square-shaped target patch
�p centered at pixel p on the boundary δ� is chosen by
a given patch selection procedure, namely the easy-to-hard
order in Criminisi’s algorithm. The patch �p has two non-
overlapping parts: the known region �p ∩ � (also called
template in the sequel) and the target unknown region �p ∩�.
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For a given a target patch �p, template matching is
performed in [8] to find the patch �q in � that is the most
similar to known pixels in �p ∩ �:

�∗
q = arg min

�q∈�
d(�p,�q ) (1)

where the distortion term d() is computed using only known
pixels in �p and their corresponding pixels in �q . After the
optimal �∗

q is found, the pixels in �∗
q that correspond to

missing pixel locations in �p ∩ � will be copied over for
completion of �p.

B. Encoder-Driven Patch Completion

Given a target patch �p , we now discuss our encoder-
driven patch completion procedure using AI to fill in the
missing pixels in �p . In a nutshell, we seek to design a set of
AI modes {ϕ} for the completion of missing pixels in the target
region and to eventually choose for each target patch �p the
AI mode that minimizes the RD cost, i.e.,

ϕ∗ = arg min
ϕ

d(p, ϕ) + λ · r(p, ϕ), (2)

In (2), r(p, ϕ) is the coding rate of the mode ϕ for patch �p

centered at p, d(p, ϕ) is the distortion between missing pixels
in �p ∩ � and the reconstructed pixels using mode ϕ,
and λ is a pre-defined weighting parameter that trades off
the importance of distortion and rate. We use sum of squared
differences as distortion in this paper. The index of the coding
mode in (2) is compressed via a context-based arithmetic
coder.

In this paper, we design three AI modes with different
coding costs r(p, ϕ) and different degrees of influence on
patch reconstruction. The AI “skip” mode results in zero rate
beyond the signaling cost of the mode itself. AI “vec” mode
encodes a motion or disparity vector to inform the decoder
the location of the best matching patch in the known region.
The AI “intra” mode encodes the intensity of missing pixels
in the target patch, and thus usually results in the highest rate.
The encoder chooses among these three modes for a given
target patch �p in order to solve the optimization problem
in (2). We describe in details the three coding modes in the
rest of this section.

C. AI Modes

1) AI “Skip”: The AI “skip” mode instructs the decoder to
self-discover missing pixels in �p using only information in
source region �. This can be done either locally or nonlocally.
Local skip means that, given the strong inter-pixel redundancy
exhibited in the local patch, the missing pixels in �p ∩ � can
be deduced from neighboring known pixels via simple signal
extrapolation schemes such as [46]. In contrast, nonlocal
skip instructs the decoder to perform template matching to
complete missing pixels in the target patch �p using its
template �p ∩ �. This is similar to the template matching
in [8], except that the search region includes not only the
known region � in the same image, but also designated
decoded pictures in the decoder’s buffer. Designated pictures
could include LT previous decoded pictures in time from the

same view and LV decoded pictures of the same time instant
but from neighboring views. For simplicity, only the decoded
picture of previous time instant from the same view is used as
reference in our paper. Local skip and nonlocal skip finally
translate to different AI mode indices for arithmetic
encoding.

The AI “skip” mode is expected to be a dominant mode at
low rate when coding rate is of higher priority than distortion.
At high rate, however, because of the lack of direct control in
the pixel completion process, the patch quality reconstruction
is limited. We present two other modes with more direct
control on the inpainting results (reconstruction quality).

2) AI “Vec”: When the template matching of “nonlocal
skip” fails to identify a good match for �p ∩ �, we offer the
AI “vec” mode as an alternative to improve the reconstruction
quality by directly locating the pixels in the known region
that are the most similar to the missing pixels in the target
patch. We stress here the difference between “nonlocal skip”
and “vec”. “Nonlocal skip” relies on the known pixels in the
target region of �p for template-matching with known patches,
which may not always lead to the best completion results. The
“vec” mode, on the other hand, simply informs the decoder
about the location of the pixels in the known region that are
the most similar to the missing pixels in the target patch;
it does not rely on template-matching at all.

To leverage on both self-similarity of still image and
temporal redundancy of video sequences, we propose two
kinds of “vec” mode, namely intra-frame AI “vec” and inter-
frame AI “vec”. For intra-frame “vec”, a similarity vector (SV)
pointing to the known region in the same image is signaled to
the decoder. On the other hand, the inter-frame “vec” is akin to
motion estimation in differential coding for single-view video:
a motion vector (MV) is used to represent the displacement of
the current block to the most similar one in a reference picture
(i.e., the previous frame in time in the same view).

3) AI “Intra”: When no pixels similar to �p ∩ � are
found in the search space of nonlocal “skip” and “vec” modes,
e.g., in the case of disocclusion of novel objects, the AI “intra”
mode is used to directly code the missing pixels in the target
patch �p . In this mode, the block is first predicted, then
the prediction residual signal is transformed, quantized, and
entropy-coded. Since the shapes of known pixels �p ∩ �
and causal neighbors of �p are arbitrary, the directional intra
prediction used in conventional block-based video coding such
as HEVC [13] is not suitable here. Instead, we propose to
use the signal extrapolation scheme in AI “local skip” as the
prediction, and to code only the resulting prediction residual.
Another noticeable deviation from conventional block-based
video coding is that, in our scenario, only missing pixels
in a block requires coding and not the full block of pixels.
We discuss in Section V two methods to encode only the
missing pixels in a square target block for AI “intra”.

4) Arithmetic Coding of AI Mode Indices: The coding
modes are compressed with arithmetic coding. Let us consider
a set of AI mode decisions ϒ = {ϕi }i=1..N for N consecutive
patches. In order to transmit this vector ϒ , we use an arith-
metic coder, which needs the mode probabilities as input, both
at the encoder side and decoder side. As mentioned above,
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Fig. 4. An example graph from a 2 × 2 patch.

we have designed an encoder-driven inpainting algorithm that
adopts the “hard-to-easy” order. It means that “hard” modes
such as AI “intra” or “vec” are chosen more frequently at
the beginning, while “easy” mode AI “skip” is likely chosen
at the end of the coding process. In order to take into
account this evolution in the coding of ϒ , we adapt the input
probabilities of the arithmetic coder. For a given mode flag ϕi

to code, we evaluate the probabilities pi,l of each coding mode
l = 1, . . . , L over the W last mode decisions

pi,l =
∑W

j=1 bi− j,l

W
, (3)

where

bi− j,l =
{

1 if ϕi− j = l

0 otherwise.
(4)

The L probabilities, available at the decoder side also, are the
contexts of our arithmetic coding of mode indices. Note that
we code the mode index directly and do not have a binarization
process.

V. TRANSFORM CODING OF MISSING PATCH PIXELS

In our proposed patch-based coding scheme, the center p of
a K × K target square patch �p is always on the boundary of
known and unknown regions as shown in Fig. 3. Hence, the
patch �p contains known pixels in �p ∩� as well as missing
pixels in �p ∩�. If one naïvely use regular block-based DCT
to encode the patch (or the prediction residual of the patch),
then the resulting K × K transform coefficients will contain
information belonging to both known and unknown pixels,
resulting in undesirable representation redundancy. In this
section, we propose two block-based coding procedures to
encode only the missing pixels in a patch, namely i) the
graph Fourier transform (GFT), and ii) the sparsification
of DCT.

A. Graph Fourier Transform

GFT has recently been proposed for transform coding of
a block in a piecewise smooth image like a depth map that
straddles a sharp boundary, so that filtering across discontinu-
ities is avoided. This results in a sparser signal representation
in transform domain than DCT [14]–[17]. The key idea is
to represent pixels in the block as nodes in a graph G, and
connect each pixel with each of its four neighbors with an
edge of weight 1 only if both pixels reside on the same side
of a boundary. In essence, a block of pixels is divided into
connected sub-graphs, as illustrated in Fig. 4.

The graph G is described by a few matrices. First, an
adjacency matrix A describes the connectivity of the graph G,
where Ai, j = 1 if nodes i and j are connected via an
edge and 0 otherwise. For the graph in Fig. 4, the adjacency
matrix is

A =

⎡

⎢
⎢
⎣

0 1 0 0
1 0 0 1
0 0 0 0
0 1 0 0

⎤

⎥
⎥
⎦. (5)

A degree matrix D is a diagonal matrix, where
Di,i = ∑

j Ai, j . For the graph in Fig. 4, the degree
matrix is

D =

⎡

⎢
⎢
⎣

1 0 0 0
0 2 0 0
0 0 0 0
0 0 0 1

⎤

⎥
⎥
⎦. (6)

Finally, the graph Laplacian matrix L is defined as the differ-
ence between the degree matrix and the adjacency matrix [54]:

L = D − A. (7)

For the graph in Fig. 4, the graph Laplacian matrix is

L =

⎡

⎢
⎢
⎣

1 −1 0 0
−1 2 0 −1
0 0 0 0
0 −1 0 1

⎤

⎥
⎥
⎦. (8)

GFT is then defined as follows. It is a linear transform
matrix � composed of the eigenvectors of L, i.e., Lφi = λiφi ,
where φi is the i -th row of � written as a column vector, and
λi is the i -th eigenvalue of �, which could be seen as the
i -th graph frequency of the graph G. A given pixel block x is
then interpreted as a graph-signal on graph G. After computing
GFT coefficients α = �x, the coefficients α are quantized
and entropy-coded. Unlike block transforms such as DCT
where the same transform is applied for every pixel block,
GFT is an adaptive transform; i.e., different signal-dependent
transforms � are used for different input graph-signals x, since
the graph construction is dependent on the signals. Previous
works [14]–[17] have shown that this overhead of encoding
side information to describe GFT is not expensive for depth
maps, and there is overall substantial coding gain for GFT
over fixed transforms like DCT for coding depth maps.

Based on the success of GFT to code depth maps,
we propose here to use GFT to encode only the missing
pixels �p ∩ � in a given patch �p. We first construct a
graph G only for these missing pixels: each missing pixel in
�p ∩ � is denoted by a node, and there is an edge of weight 1
connecting two nodes if they represent two missing pixels that
are neighbors. See Fig. 5 for an illustration. In this way, the
graph is composed only of nodes that represent the n missing
pixels.

Given this graph of missing pixels, one can compute
the adjacency and degree matrices A and D accordingly.
The graph Laplacian L = D − A can also be computed,
and its eigen-decomposition can be performed to obtain the
GFT matrix �. To encode missing pixels x (stacked together
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Fig. 5. An example of graph construction for an 8 × 8 patch. White
circles denote unknown pixels. Black circles denote known pixels. Edges
connect neighboring unknown pixels. The weights assigned to every edges are
unity.

as a vector), we simply compute the GFT coefficients α = �x,
and quantize and entropy encode them into bits. Note that,
unlike the classical DCT that has K ×K transform coefficients
for K × K pixels in the patch �p, the number of GFT
coefficients is only equal to the number of missing pixels
in �p. Since the locations of the missing pixels are known
at decoder already, a graph can be readily constructed, and
the GFT matrix � can be computed to permit reconstruction
of the missing pixels. We will show in Section VII that usage
of GFT to encode missing pixels in a patch can outperform
DCT in coding performance.

B. Sparsification Procedure Using DCT

We introduce here another option to encode missing pixels
in a patch by sparsification of the DCT coefficients. While
the GFT leads to good coding performance, the complexity
required to compute the GFT via eigen-decomposition both at
the encoder and decoder can be high, especially, if the number
of missing pixels is large. Compared to the GFT, the DCT
sparsification procedure is less complex.

Since the values of rendered pixels in a patch are known
at encoder and decoder prior to any transform encoding, the
known pixels in �p ∩� can be viewed as degrees of freedom
at encoder side: they can be manipulated in order to reduce the
cost of coding the patch �p as their decoded values are simply
discarded. Specifically, we propose a sparsification procedure
in the DCT domain that exploits these degrees of freedom
to minimize the number of non-zero DCT coefficients. The
fraction of non-zero quantized transform coefficients has an
approximately linear relationship with bitrate [55], hence min-
imization of the number of non-zero coefficients corresponds
to a reduction in the coding rate.

Let x be pixels in a K × K patch, stacked into a col-
umn vector. Let � be the DCT transform; the DCT coef-
ficients y can be computed simply: y = �x. Let V be
a K 2 × K 2 diagonal matrix where entry Vi,i = 1 if the
i -th pixel in x is an unknown pixel and 0 otherwise. Our
objective is to minimize the rate-distortion cost of AI “intra”
for the patch �p by manipulating the coefficients y in the

Algorithm 1 Iterative Re-Weighted Least Squares (IRLS) for
DCT Coefficients Sparsification

transform domain

min
y

‖V(�−1y − x)‖2
2 + λ‖y‖0, (9)

Note that λ = λmode∗B , the product of the Lagrange multiplier
used in AI mode decision (λmode) and the average bits to code
a non-zero quantized coefficient (B), and hence B‖y‖0 is the
coding rate of the patch. In Eq. (9), the l0-norm is a rate proxy,
while the l2-norm is a measure of distortion, counting only the
distortion contributed by the unknown pixels.

The minimization of the l0-norm in (9) is in general a
non-convex and NP-hard problem. For efficient computation,
one can use an iterative re-weighted least squares algorithm
and replace the l0-norm with a sparsity-promoting weighted
l2-norm [19]:

min
y

[V(�−1y − x)]T[V(�−1y − x)] + yTWλy, (10)

where the weight matrix is

Wλ =

⎛

⎜
⎜
⎜
⎝

λw1 0 · · · 0
0 λw2 · · · 0
...

...
. . .

...
0 0 · · · λwK 2

⎞

⎟
⎟
⎟
⎠

, (11)

where {w1, w2, · · · , wN2 } are iteratively updated. The optimal
solution to Eq. (10) can be found by solving the linear
system

(�Ṽ�−1 + Wλ)yo = �Ṽx, (12)

where Ṽ = VTV = V.
Iteratively updating the weights in Wλ and solving

the linear system in (12) can achieve transform domain
sparsity [19], [56] and minimum rate-distortion cost given λ.
The detailed procedure is written in Algorithm 1. After
the algorithm converges, the optimal transform coefficients
are quantized and entropy coded. Finally, we note that the
parameter τ in the iterative weight computation process
(see Algorithm 1) can control the speed of the algorithm,
i.e. the complexity of encoder, while at decoder side we only
need to inverse-transform the received coefficients.

VI. “HARD-TO-EASY” ORDER FOR

TARGET PATCH SELECTION

In this section, we address the following problem: how
target patches �p in the target region � should be selected
for completion. The order of target patches to be filled can
be denoted by a sequence of positions p on the boundary
between known and target regions, i.e., p ∈ δ�t , where �t

denotes the target region that contains all missing pixels at
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iteration t , until all missing pixels in the image are filled. Our
goal is to find a patch order so that the overall RD cost to
fill all missing pixels in �0 is minimized. The total number of
possible orders is, in the worst case, exponential in the number
of missing pixels in �0, so clearly an exhaustive search for
the optimal order is not practical.

We discussed earlier that the Criminisi’s inpainting
algorithm [8] proposed an “easy-to-hard” order for patch
selection to minimize the chance of error propagation from
hard-to-fill patches to other spatial regions. However, in our
encoder-driven inpainting framework, the encoder can trans-
mit AI to guide the decoder in completing missing pixels.
Therefore, the error propagation from hard-to-fill patches
can be contained proactively, and Criminisi’s order is not
necessarily the optimal order in this case.7 In this section,
we first show that finding the optimal order is an NP-hard
problem. We then propose a heuristic “hard-to-easy” order,
which can be computed in polynomial time, and has better
performance than the Criminsi’s order.

A. NP-Hardness Proof for Patch Selection Order

In the most general setting, the optimal patch ordering
problem can be formulated as follows. Let Pt = {pt , . . . , p1}
be the first t selected patch centers, and let ϒt = {ϕt , . . . , ϕ1}
be the t selected AI modes for the first t selected patches Pt .
Assuming that it requires T selected patches before all the
missing pixels are filled in the initial target region �0, the
optimal patch order, expressed in patch centers and AI modes
P∗

T and ϒ∗
T , is defined as:

(P∗
T , ϒ∗

T ) = arg min
PT ,ϒT

T∑

t=1

d(pt , ϕt | Pt−1, ϒt−1) + λ

· r(pt , ϕt | Pt−1, ϒt−1) (13)

where d(pt , ϕt | Pt−1, ϒt−1) and r(pt , ϕt | Pt−1, ϒt−1) are
respectively the distortion and rate of completing the patch
centered at pt using mode ϕt , given previous selected patch
centers and modes Pt−1 and ϒt−1. The selected patch centers
and modes P∗

T and ϒ∗
T must satisfy two conditions. First, each

center pt must lie on the boundary δ�t , where the target region
of missing pixels �t for each iteration t is updated as follows:

�t = �t−1 ∪ �t−1, �t = I\�t (14)

In words, the known region �t in iteration t is updated with
completed pixels in patch �t−1, and �t is the target region of
remaining missing pixels.

Second, by completing all T patches, there should be no
remaining pixels:

�T +1 = ∅ (15)

The optimal patch order problem in (13) is hard for
two reasons. First, the distortion term d(pt , ϕt | Pt−1, ϒt−1)
depends on the history of previously selected modes ϒt−1,
where each mode ϕt can be selected from a discrete AI mode

7Interestingly, one can argue that at zero rate, Criminisi’s “easy-to-hard”
order is a good solution in RD performance. We will in fact show our proposed
order defaults to the Criminsi’s order when the rate constraint is extremely
tight.

set {ϕ}. This means that the total number of these distortion
terms d() is at least on the order of | {ϕ}| T , i.e., exponential in
the number of selected patches T . Thus, the time required just
for data collection of these terms is time-consuming. This is
analogous to the dependent quantization problem for video
coding [57], where the distortion dt (Qt | Qt−1, . . . , Q1) of
a differentially coded frame t depends on not only its own
quantization parameter (QP) Qt , but also QPs of all previous
frames in the dependency chain as well.

Second, we have the difficulty of choosing an appropriate
patch order for mode selection in our problem. This means
that, in addition to the set of patch centers Pt−1 selected in
previous iterations, the order in which these patch centers have
been selected also influences the rate term r(pt , ϕt | Pt−1,
ϒt−1) and the distortion term d(pt , ϕt | Pt−1, ϒt−1). To illus-
trate this second difficulty, let us consider the simple case
where the rate term r(pt , ϕt | Pt−1, ϒt−1) depends only on
the current patch center and the lone previous patch center,
i.e., r(pt | pt−1). This corresponds to the case where the
location of the next patch center pt is differentially coded
from the previous center pt−1, while the AI mode coding
cost is negligible, resulting in a rate cost r(pt | pt−1). We will
assume that the rate cost for the first patch center r(p1) is the
same for all centers, and therefore can be safely ignored in
the optimization. To further simplify our complexity analysis,
we also assume that the distortion cost is negligible; this
will correspond to the case when λ in (13) is set so large
that the rate term dominates. We now show that even in this
special case, the optimal patch order problem is NP-hard via a
reduction from a well-known NP-hard problem—the traveling
salesman problem (TSP) [58].

TSP is formulated as follows. There exists a finite set of
cities C = {c1, . . . , cM } and a distance l(ci , c j ) between each
pair of cities ci , c j ∈ C. The question is how to find a tour of
all the cities, π = {π(1), . . . π(M)}, where π(m) ∈ C, such
that the total distance traveled is minimized:
π∗ = arg min

π
L(π) =

M−1∑

i=1

l(cπ(i), cπ(i+1)) + l(cπ(M), cπ(1))

(16)

TSP remains NP-hard if we do not require a cycle and remove
the last distance term l(cπ(M), cπ(1)).

We now argue that the above simple case of patch selection
includes TSP as a special case. First, we construct M non-
overlapping patches that require separate filling in the target
region �0; each patch i will correspond to a city ci ∈ C in the
TSP problem. Then we set the rate cost r(i | j) of selecting
patch center i after previous selection of patch center j ,
as well as the reverse r( j | i), to be l(ci , c j ) in TSP. It is now
clear that the optimal patch order in our simplified problem—
one that minimizes the total rate

∑M
t=2 r(pt | pt−1)—maps to

a minimum distance tour in TSP. Hence, our optimal patch
order problem is at least as hard as TSP, which means that
our optimal patch order problem is actually NP-hard.

B. “Hard-to-Easy” Order

Given that the optimal patch order problem in (13) is
NP-hard, we propose a simple “hard-to-easy” heuristic to
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determine a good patch order. The key idea is that, if all the
difficult-to-fill patches are first filled, then the missing pixels
in the remaining easy-to-fill patches can be self-discovered
at the decoder exploiting self-similarity in images, such that
no more AI is required. Further, bundling the difficult-to-
fill patches in the beginning of AI coding means that there
is stronger statistical correlation among chosen modes for
these patches, resulting in coding gain when the chosen
modes are compressed using arithmetic coding, as described
in Section IV.

In order to determine the “hard-to-easy” order, for each
iteration t of the inpainting algorithm we compute a metric
for each candidate target patch �p centered at p ∈ δ�t using
known pixels in �t . The metric is the distortion between
candidate patch �p and the best matching block �q in �t

chosen via template-matching, see Eq. (1), and computed using
only the known pixels in �p, i.e., �p ∩ �t . The candidate
patch �p with the largest metric value will be deemed the
hardest and is selected as the next target patch for filling.
The intuition here is that the candidate patch �p with no
good matching patch �q in the known region �t likely lacks
the self-similarity characteristics that are required for nonlocal
template matching to recover missing pixels. Hence this patch
is deemed difficult-to-fill. Note that using this method, there
is no need to explicitly inform the decoder about the location
of the next target patch center p, as it can perform the exact
same operations as the encoder to deduce the same target patch
location.

The patch selection process is first computed until there are
no missing pixels left. Then, a binary search is performed to
identify the best end point, at which the encoder stops all
AI transmission and the decoder is left to fill the remaining
holes on its own via Criminisi’s algorithm in the default
“easy-to-hard” order. At each candidate end point, the
RD cost including both the AI-assisted patches and the
decoder’s self-discovered patches is computed, and the candi-
date point with the smallest RD cost is selected as the optimal
end point. In practice, an “end-of-transmission” flag is coded
to signal to the decoder the end of AI information and the start
of the classical Criminisi’s algorithm to fill in the remaining
holes.

VII. EXPERIMENTATION

A. Experimental Setup

To test the performance of our proposed encoder-driven
inpainting strategy for inter-view predictive coding, we per-
form extensive experiments to compare our method against
3D-HEVC reference software HTM-13.0. The view synthesis
software used is the VSRS-1D-Fast algorithm included in
HTM-13.0.

In our codec, independent views are coded using
3D-HEVC. We only apply our strategy to code P-frames in
the dependent views where inter-view prediction is dominant.
The remaining B-frames in the dependent views are also coded
using 3D-HEVC. Note, however, that the depth maps of all
frames (P- and B-frames) in the dependent views are not
explicitly coded but are reconstructed using our proposed
procedure described in Section III. This amounts to a further

bitrate reduction compared to 3D-HEVC. We use the same
view synthesis algorithm as in 3D-HEVC. More implementa-
tion details and complexity analysis of our codec are discussed
in Section VII-C.

Our tests generally follow the Common Test Condi-
tions (CTC) [59]. We mainly use two JCT-3V standard test
sequences [59], namely Undo_Dancer and GT_Fly from
Nokia at 1920 × 1080-pixel resolution. Since they are syn-
thetic multiview video sequences with accurate depth values,
we can obtain satisfactory view synthesis quality via DIBR.
In addition, we show the performance of two other JCT-3V
standard test sequences, namely Balloons and Kendo from
Nagoya University at 1024 × 768-pixel resolution. They are
natural multiview sequences with imperfect depth maps, which
penalizes the quality of the view synthesis via DIBR.

Views 1, 5, and 9 for Undo_Dancer and GT_Fly
are tested. Each view has 250 frames with a frame rate
at 25 frames per second (fps). As for Balloons and Kendo,
view 1, 3, and 5 are used. There are 300 frames with a frame
rate at 30 fps. The coding order of views is center-left-right.
The center view is independently coded, and the left and right
views are predicted by the center view. The size of group of
picture (GOP) is 8. The period of I-frame for independent
view and inter-view-only P-frame for dependent views is 24.

As the reconstruction quality using our proposal is bounded
by the synthesized view quality via DIBR, our experimental
results are under 36 dB for synthetic sequences and 31 dB
for natural sequences on average in Peak-Signal-to-Noise-
Ratio (PSNR). Hence, in addition to the default QP set
(40, 35, 30, 25) for independent views, QP values 51, 48,
46, 43, and 37 are used for coding of the dependent views
to match the DIBR-synthesized image quality stemming from
the coded independent views. In general, to code dependent
views both 3D-HEVC and our scheme use higher QP than the
independent views. The QP pair for each RD point is specified
in the following figures, in form of (Q Pi , Q Pd ), where Q Pi is
for independent views and Q Pd is for dependent views.

In our proposal, we try several λ’s for RD optimization
and QP’s for our AI “intra” mode such that the operational
RD convex hulls are found. Additionally, lossless network
transmission is assumed in the following experiments.

The patch size in our proposed strategy is chosen to
be 8 × 8. In theory we could also use variable patch sizes
and the quadtree structure to further improve performance,
but in this paper we fix the patch size to better evaluate the
performance of encoder-driven inpainting. Accordingly, we fix
the size of coding tree unit (CTU) in the reference 3D-HEVC
to be 16 × 16, which is the smallest option of CTU and the
closest to the patch size in our scheme. Since the 16 × 16
CTU in 3D-HEVC includes the 8 × 8 coding unit as one
of its candidate modes, one might expect that the 3D-HEVC
with 16 × 16 CTU would have better performance than our
scheme with the fixed 8 × 8 coding patch. However, we will
show that our method can actually outperform 3D-HEVC with
16×16 CTU, thanks to a more thorough exploitation of spatial
and inter-view redundancies by our scheme.

Note that for sequences Undo_Dancer and GT_Fly,
at the low bitrate range where our scheme operates, the
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Fig. 6. Rate-distortion performance comparison between the proposed
scheme (AI) and 3D-HEVC. The rate is the summation of that of two
dependent views, and the distortion is the average PSNR of two dependent
views. The BD gains are given in the parenthesis. (a) GT_Fly (2.7 dB).
(b) Undo_Dancer (1.8 dB). (c) Balloons (1.6 dB). (d) Kendo (2.6 dB).

unrestricted 3D-HEVC (64 × 64 CTU) achieves about 3-7dB
gain over the restricted 3D-HEVC with 16 × 16 CTU.
We leave it as a future topic to generalize our scheme to other
patch sizes, so that a direct comparison with the unrestricted
3D-HEVC could be eventually made possible.

We stress again that our proposed strategy is designed
specifically for frames where temporal prediction is either
not possible or not effective, and thus must rely solely on
inter-view prediction for coding efficiency. As it will be
demonstrated in our experiments, our new frame type in
this case leads to noticeable performance gain at mid- to
low-bitrate regions, and is useful as a complementary option
in the situation where temporal coding is not effective.

B. Experimental Results

1) Comparison of Rate-Distortion Performance: We first
compare the RD performance of the dependent views using our
approach and the restricted 3D-HEVC with 16×16 CTU size.
Here we use all the proposed coding tools, including the new
transforms and “hard-to-easy” patch order. Some components
will be examined individually later.

The RD performance for the two competing schemes is
shown in Fig. 6 for the luma component of each sequence. The
proposed method has about 3 dB gain due to the compactness
of our coding strategy. Specifically, inter-view redundancy is
exploited via DIBR; we do not code rendered regions whereas
3D-HEVC needs to code every block. The inter-patch redun-
dancy is exploited via AI “skip” and “vec” while 3D-HEVC
does not have efficient tools designed to exploit nonlocal
image self-similarity. Further, the inter-pixel redundancy is
exploited via image inpainting and novel transforms that are
more suitable to our scenario than intra-prediction and DCT
used in 3D-HEVC.

Fig. 7. Rate-distortion performance comparison including intermediate
virtual views. The BD gains are given in the parenthesis. (a) GT_Fly
(2.2 dB). (b) Undo_Dancer (1.7 dB).

In Fig. 6, the sequence GT_Fly has a larger gain than
Undo_Dancer, because the faster movement of GT_Fly
cameras (that greatly weakens temporal prediction) can be
better compensated by our efficient inter-view coding. The
second reason is that the disocclusion holes of GT_Fly are
easier to be filled than Undo_Dancer because its background
is smoother.

We observe that, for the two natural video sequences
Balloons and Kendo, our scheme achieves noticeable cod-
ing gain compared to the restricted 3D-HEVC under 100 kbps.
Multiview sequences with inaccurate depth maps will place a
low upper-bound on the PSNR that our proposed frame type
can achieve (i.e., about 31 dB for Balloons and Kendo).
This limits our performance, and as a result we can only
achieve gain over 3D-HEVC at low bitrates. We believe that
this is a transient problem as depth sensing technologies
continue to improve, and therefore we will focus the following
experiments on sequences GT_Fly and Undo_Dancer that
have good quality depth maps.

The number of frames to which our scheme applies in each
dependent view is 32 out of 250 frames for sequence GT_Fly
and Undo_Dancer. The 32 frames account for up to 64%
of the bitrates in 3D-HEVC, so focusing bitrate reduction for
these frames is meaningful.

We next evaluate the quality of intermediate virtual views
in Fig. 7. We synthesize three equally-spaced intermediate
virtual views from the coded independent and dependent
views. Similarly to the previous experiment, the dependent
views are coded by our scheme and 3D-HEVC, respectively.
The distortion is measured by the average PSNR of the
dependent and intermediate views. As established in the CTC,
the PSNR of an intermediate view is calculated against the
synthesized view from the original color and depth map data
of the reference views, not the original camera-captured views
if available. The rate in Fig. 7 is that of dependent views.

Chroma components are usually smoother than luma
components, but the general PSNR trends are similar. For
sequence Undo_Dancer, our method can obtain up to 4 dB
gain in PSNR, while for sequence GT_Fly, the gain can be
up to 4.5 dB.

Compared to 3D-HEVC, our proposed scheme can achieve
better visual quality at the same rate. A representative example
is Fig. 8. Our scheme can reconstruct sharper boundaries
between foreground (e.g., the pillar) and background, as
highlighted by the top ellipses in Fig. 8(c) and (d). As the
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Fig. 8. An image segment of Undo_Dancer (view 1 frame 9). The number
of bits to code the whole image is 33864 for 3D-HEVC and 31620 for the
proposed method (denoted as “AI”). The coding blocks using different modes
proposed in our method are shown in (e) and (f). Note that the regions
that have no coding blocks marked are rendered via DIBR. (a) original
Undo_Dancer. (b) zoom in the box in (a). (c) 3D-HEVC coded patch.
(d) AI coded patch. (e) AI “skip” in white and AI “vec” in yellow.
(f) AI “intra”: DCT in red, GFT in blue, sDCT8 in green.

rendered boundaries are not smoothed by the DCT-based
coding in 3D-HEVC, and as the coding blocks along bound-
aries do not change the pixel values in the rendered region
using most of our modes, the rendered boundaries are better
preserved. One exception is the AI “intra” mode using regular
DCT, but they are rarely applied to the boundaries as shown by
red rectangles in Fig. 8(f). Secondly, our scheme can preserve
more image details, as highlighted by the bottom ellipses in
Fig. 8(c) and (d), because the bits saved by DIBR, AI “skip”
and “vec” modes, which usually appear in smoother areas as
shown in Fig. 8(e), are allocated to the blocks coding more
complex regions by AI “intra”.

2) Comparison of Inter-View Coding Performance: We now
focus closely on the inter-view coding performance. We con-
sider an application that requires a high degree of temporal
random access, where the I-frame period of independent view
is 8 instead of the default 24 in the CTC, and the frames
in dependent views are only inter-view predicted by the

8sDCT is in short for the sparsification procedure using DCT.

Fig. 9. Rate-distortion performance comparison of inter-view coded P-frames
in dependent views. The BD gains are given in the parenthesis. (a) GT_Fly
(3.1 dB). (b) Undo_Dancer (2.0 dB).

Fig. 10. Iterative accumulation of hard modes along the iteration of the
coding scheme, for two different patch orders. Test on sequence
Undo_Dancer.

I-frames in independent view at the same time instant. To avoid
temporal prediction, we only measure the performance of the
inter-view coded P-frames (in every 8 frames) in dependent
views.9 The results of our scheme and 3D-HEVC can be
found in Fig. 9, showing that our inter-view prediction/coding
tools are better than those in 3D-HEVC. In this experiment,
the coding of sequence GT_Fly can take advantage of
easy-to-inpaint holes after DIBR and leads to greater gains
over 3D-HEVC than Undo_Dancer.

3) Comparison of Criminisi’s “Easy-to-Hard” Order and
the Proposed “Hard-to-Easy” Order: We next examine the
effectiveness of our proposed “hard-to-easy” patch order. First,
we show in Fig. 10 that the “hard-to-easy” order can be
achieved by the proposed heuristic, which iteratively picks
the patch that has the largest distortion with its best match in
source region. We compare our patch order with Criminisi’s
“easy-to-hard” order. The x-axis of Fig. 10 indicates the
iteration index. In each iteration, we fill a selected patch
and then search the next patch to fill. The y-axis denotes
the total number of hard modes selected before the current
iteration. The hard modes include AI “vec” and “intra”. The
decoder cannot reconstruct the hard modes without any explicit
instructions from the encoder. These curves depict the accu-
mulation process of hard modes over iterations, comparing our
patch order and Criminisi’s order. Note that the diagonal line
y = x in the figure represents the situation where all modes
up to current iteration are hard. The expected “hard-to-easy”
behavior is to first select hard-to-fill patches (the early part
of the curve should be close to y = x), and when most hard
patches have been filled, the curve should grow as slow as
possible due to the following easy-to-fill patches. In this sense,

9The rate should look smaller than the default setup in previous subsection.
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Fig. 11. Rate-distortion performance of our proposed coding strategy using
two different patch orders. (a) GT_Fly. (b) Undo_Dancer.

our heuristic for “hard-to-easy” order performs as expected.
Recall that, using the proposed “hard-to-easy” patch order, we
terminate the signaling of AI at an optimal RD point, which
is determined by a binary search, as mentioned in Section VI.
The remaining holes can be inpainted by the decoder, so that
the number of iterations in our strategy are often less than the
strategy using Criminisi’s order as shown in Fig. 10.

The next experiment shows the performance improvement
using our proposed “hard-to-easy” order. The setup is the same
as that in Section VII-A, except for the competing scheme,
which replaces the “hard-to-easy” order with Criminisi’s
order. As shown in Fig. 11, the proposed order outperforms
Criminisi’s order. Larger gains are observed at low rates,
because more easy modes and fewer hard modes are chosen
and the bitstream is likely to be truncated earlier.

Finally, we note that the arithmetic coding of the mode
index can take advantage of the proposed “hard-to-easy”
order: “hard” modes such as AI “intra” or “vec” are chosen
more frequently at the beginning, while “easy” mode AI
“skip” is likely chosen at the middle and end of the coding
process. When we evaluate the probabilities of each mode over
W = 100 last mode decisions, we observe a rate reduction
of 15.51% (Undo_Dancer) for the coding of mode indices,
compared to the arithmetic coding without a limited-length
window whose probabilities are estimated by all previous
mode decisions.

4) Evaluation of Graph Fourier Transform and Sparsifica-
tion Procedure Using DCT: One key difference of our coding
strategy from 3D-HEVC lies in the transform coding step.
Instead of regular DCT, we propose GFT and a sparsification
procedure using DCT (i.e., sDCT) to take advantage of the
particular feature of our coding patches, namely parts of
patches are known and do not need to be coded. Given the
default experimental setup used in Section VII-A, we compare
the performance of AI “intra” mode using 1) DCT; 2) sDCT
and DCT; 3) GFT and DCT; 4) all transforms (DCT, sDCT,
and GFT). For Cases 2, 3, and 4, we pick the best transform in
RD sense for each patch and signal the type of transform used
to the decoder. Note that Case 4 is equivalent to the results
in Fig. 6.

For sequence GT_Fly, Cases 2, 3, and 4 reduce 1.6%,
2.8%, and 3.9% BD rate [60], respectively, over Case 1. For
sequence Undo_Dancer, Cases 2, 3, and 4 reduce 4.8%,
2.9%, and 6.2% BD rate, respectively, over Case 1. Since
the proposed transforms are only for AI “intra”, the coding
gain is mostly at high rates, where more AI “intra” modes

Fig. 12. Mode statistics for coding GT_Fly. Reference QP represents the
one used for coding independent reference view. (a) Luma component.
(b) Chroma component.

Fig. 13. Mode statistics for coding Undo_Dancer. Reference QP represents
the one used for coding independent reference view. (a) Luma component.
(b) Chroma component.

are selected. As shown in the next part, our coding strategy
prefers low-cost AI “skip”, and AI “vec” at low rates. Thus
when the proportion of selected AI “intra” is already small,
the performance improvement using our proposed transforms
is limited. For sequence GT_Fly, the results shows that, using
GFT can get more gain over the sparsification procedure,
but the latter only needs to iteratively solve the least square
problem at the encoder, while at decoder the regular inverse
DCT is only performed once; hence it is less expensive in
computation compared to GFT. The combination of sDCT and
GFT is a better choice than using them individually.

When τ = 1 and ε = 0.01 ∗ Qs (where Qs is quantization
step size), the average number of iterations of the re-weighted
least square for sDCT is 2.0 for sequence Undo_Dancer.

5) Statistics of AI Modes: Each AI mode is proposed with
its own purpose. To better understand why they are introduced
and how they work, we show the statistics of AI modes
in different circumstances. As shown in Fig. 12 and 13,
we observe that 1) AI “skip” and “vec” dominate, meaning that
there is a great amount of similarity to exploit from the known
region and reference frame; 2) with larger QP, i.e., lower rate
budget, the number of the cheapest “skip” mode increases
while the expensive “intra” and “vec” modes decrease; 3) the
chroma component selects fewer “intra” mode due to simpler
texture; 4) the proposed coding strategy can adapt to the
feature of different sequences by choosing different sets of
AI modes.

C. Implementation and Complexity Discussion
In our proposal, both the encoding and decoding of

dependent views start from view synthesis via DIBR.
In the experiments, our testing sequences are rectified and the
disparities are found only along x-axis. The software package
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“VSRS-1D-Fast” is employed to compute disparities for each
image pixel based on coordinate conversions. Since there are
no expensive operations, the rendering is much faster than
coding the same image patches.

After obtaining an incomplete image via DIBR, we first
fill in rounding holes. The complexity of detection is linear
with the number of holes. The filling is a simple averaging of
neighboring known pixels and performed only on the detected
holes. Both encoder and decoder need to do the same detection
and averaging.

We next fill the disocclusion holes patch-by-patch. In order
to quantify the difficulty of inpainting individual patches,
before the first iteration, the patches whose centers are on
the boundary of the known and missing pixels are checked by
template matching. Since we record the results of matching
differences, we only need to perform additional template
matching around the neighborhood of previously inpainted
patch in each iteration. This process is also required to be
performed at the encoder and decoder, because we do not
explicitly encode and signal the patch orders to the decoder.

As described in Section IV, we have three AI modes
as candidates to code a patch: AI “skip”, AI “vec”, and
AI “intra”. AI “skip” includes local and non-local inpainting.
The local inpainting involves the solving of a linear
system, whose complexity depends on the number of unknown
pixels. The non-local inpainting performs template matching,
whose complexity depends on the size of template and the
search range, similar to template-based algorithms in the
literature [8], [51]–[53]. In our proposal, the shape of template
varies for each target patch and it is not larger than 8×8. The
search range of template matching is 64 × 64. For simplicity
of implementation, the matching has integer-pel accuracy,
and full search is applied. Our scheme can be improved by
fractional accuracies and fast search algorithms. AI “skip” only
transmits the mode index to the decoder, which greatly reduces
the transmission rate, but requires the decoder to perform the
same operations as done at the encoder.

Similar to AI “skip”, AI “vec” is also based on matching
(integer-pel and 64×64 full search). Different from AI “skip”,
however, the decoder can directly use the received motion or
similarity vectors to locate the matched patch in the search
region, so the complexity is much lower than AI “skip”.

AI “intra” has three transforms to choose from. The encoder
will run all of them and select the one with minimum RD
cost, and transmit the index of transform to the decoder,
together with the coded residual. At the encoder, the
sparsification procedure with DCT as introduced in Section V
iterates several times to sparsify DCT coefficients and each
iteration involves a matrix inverse. At the decoder, however,
same as the regular inverse-DCT, only one pass (no iterations)
is performed to reconstruct the prediction residual. GFT can
achieve better sparsification, but to generate the adaptive trans-
form matrix eigen-decomposition is required at both encoder
and decoder. For the three transform options, CABAC in
3D-HEVC is used to code the quantized transform coefficients.

As discussed in Section VI, the patch selection and coding
process iterate until there are no missing pixels left. Then,
a binary search is performed to identify the best end point,

at which the encoder stops all AI transmission and the decoder
is left to fill the remaining holes on its own via Criminisi’s
algorithm in the default “easy-to-hard” order, where the
major computation cost at the decoder is to perform template
matching. To enable the binary search, we record the RD cost
of each iteration. In each search point, we combine the
recorded RD cost with the cost of inpainting the remaining
holes. We empirically find that a coarser search on every
eight iterations is good balance between RD performance and
complexity.

According to the mode statistics shown in Fig. 12 and 13,
AI “skip” is the dominant mode. Hence, the efficiency of our
decoding can greatly benefit from an efficient implementation
of template matching.

VIII. CONCLUSION

Compression of color and depth maps from multiple
closely-spaced camera viewpoints is important for 3D imaging
applications and new free viewpoint video communication.
In this paper, we propose an encoder-driven inpainting strategy
to complete disocclusion holes in the DIBR-synthesized image
in an RD optimal manner. Missing pixel regions that are
difficult-to-inpaint are first completed following instructions
from the encoder in the form of auxiliary information (AI).
The remaining easy-to-fill holes are then completed without
encoder’s help via nonlocal template matching, which is
effective due to the self-similarity characteristics in natural
images. Finally, we propose two patch-based transform coding
techniques (graph Fourier transform and DCT sparsification),
so that only missing pixels in a target patch are encoded,
avoiding representation redundancy. In doing so, our coding
strategy successfully exploits the three kinds of redundancy
inherent in the color-plus-depth representation for coding
gain: i) inter-view redundancy via DIBR-based 3D warping;
ii) inter-pixel redundancy via patch-based transform coding;
and iii) inter-patch redundancy via nonlocal template
matching. Experimental results show that our proposed
encoder-driven inpainting strategy is more effective than a
restricted implementation of 3D-HEVC in RD performance.
Inter-view, inter-patch, and inter-pixel redundancies are greatly
reduced by efficient hole filling using the well-designed
AI modes. Our proposed novel transforms boost RD per-
formance at high rates, and the “hard-to-easy” patch order
improves RD performance mainly at low rates such that our
overall scheme can reap noticeable overall gains.
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