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TVR-DART: A More Robust Algorithm for
Discrete Tomography From Limited

Projection Data With Automated
Gray Value Estimation

Xiaodong Zhuge, Willem Jan Palenstijn, and Kees Joost Batenburg

Abstract— In this paper, we present a novel iterative
reconstruction algorithm for discrete tomography (DT) named
total variation regularized discrete algebraic reconstruction
technique (TVR-DART) with automated gray value estimation.
This algorithm is more robust and automated than the original
DART algorithm, and is aimed at imaging of objects consisting of
only a few different material compositions, each corresponding
to a different gray value in the reconstruction. By exploiting
two types of prior knowledge of the scanned object simulta-
neously, TVR-DART solves the discrete reconstruction problem
within an optimization framework inspired by compressive sens-
ing to steer the current reconstruction toward a solution with
the specified number of discrete gray values. The gray values
and the thresholds are estimated as the reconstruction improves
through iterations. Extensive experiments from simulated data,
experimental μCT, and electron tomography data sets show that
TVR-DART is capable of providing more accurate reconstruction
than existing algorithms under noisy conditions from a small
number of projection images and/or from a small angular range.
Furthermore, the new algorithm requires less effort on parame-
ter tuning compared with the original DART algorithm. With
TVR-DART, we aim to provide the tomography society with an
easy-to-use and robust algorithm for DT.

Index Terms— Discrete tomography, total variation,
compressive sensing, image reconstruction, sparse reconstruction,
prior knowledge.

I. INTRODUCTION

TOMOGRAPHY is a powerful technique for investigating
the three-dimensional (3D) structures of objects by uti-

lizing penetrating waves or particles, and has a wide range of
applications such as computed tomography (CT) [1] and elec-
tron tomography (ET) [2]. Projection images of an object are
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acquired over a range of rotation angles, and a mathematical
procedure known as tomographic reconstruction is required to
recover the 3D object information from its 2D projections.
Due to its large influence on the outcome of the complete
tomography experiment, reconstruction algorithms have been
a subject under intensive research [3], [4].

In most practical applications, it is extremely advantageous
if the reconstruction algorithm can still produce accurate
results using a small number of projection images under
moderate/high noise levels. For example, medical CT uses
ionizing radiation and reducing the dose to the patient is
of high importance. In transmission electron tomography, the
electron beam causes damage to the sample during acquisition
and cannot penetrate the sample section at high tilt angles.
These practical aspects limit the number of projection images,
acquired image quality (low dose leads to high noise level),
and/or available angular range for reconstruction. Under such
conditions, the tomography reconstruction problem is highly
underdetermined and there is no unique solution to the inverse
problem based on only the acquired data.

This necessitates the full utilization of the prior knowledge
we have on the unknown object. Compressive sensing (CS)
is one of the concepts under intensive research in recent
years [5], [6]. It proves that if an image is sparse in a certain
domain, it can be recovered accurately from a small number of
measurements with high probability when the measurements
satisfy certain randomization properties [7]. Total Variation
Minimization (TVmin) can be seen as a special case of
CS when the boundary of the object is sparse within the
image [8]–[11]. Discrete tomography (DT) considers another
type of prior knowledge where the object is known to con-
sist of a limited number of materials, each producing a
constant gray value in the reconstruction [12]. The Discrete
Algebraic Reconstruction Technique (DART) is one of the
practical algorithms that exploits the discrete nature of the
object by alternating iteratively between discretization steps of
segmentation based on gray values, and continuous steps of
reconstruction on the boundary of the segmented image [13].
DART has been successfully used for reconstructing samples
from applications in CT [14] and ET [15], [16].

Despite its superior performance demonstrated in some
cases, applying DART in practice is still a challenging
and time consuming process. This difficulty is related to
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several issues: First, DART is a heuristic procedure that
requires many parameters to be specified by the user. Figuring
out the optimal choices for these parameters for experimental
data requires substantial effort and time for manual tuning.
Second, one of the important concepts behind DART is to
reduce the number of unknowns by fixing and removing the
pixels/voxels within the flat regions of the segmented image
from the system of linear equations. This makes the system
better determined as the reconstruction improves through iter-
ations. However, fixing the interior regions of the segmented
image can misassign a substantial number of pixels in the
reconstruction especially when the reconstruction is still not
accurate in the early stage. This can push the solution in the
wrong direction when the limited projection data also contains
a certain mismatch from the model (e.g., image alignment
error, nonlinearity in image formation) and/or moderate to
high level of noise. Third, DART applies a smoothing filter
to the free pixels as a way to even out the fluctuations over
the boundary pixels and combat the influence of noise in the
projection data. Although this strategy makes sense intuitively,
it is hard to predict its effect on the reconstruction under
noisy conditions. Last but not least, the reconstruction can
be not entirely discrete in practice due to imperfection of the
imaging system or the object itself. The hard segmentation
in the discrete step of DART imposes a strong constraint
on the solution, making it difficult to cope with practical
complications.

Efforts have been made to deal with some of the above
mentioned problems. For example, an algorithm was proposed
that couples DART with a search-based algorithm in order
to find the right gray values for the reconstruction [17].
An algorithm known as SDART was proposed to deal with
noisy projections by spreading the noise across the whole
image domain using a penalty matrix [18].

In this paper, we propose a new iterative reconstruction
algorithm, TVR-DART, which can produce more accurate
reconstructions than DART under noisy conditions from lim-
ited projection data. TVR-DART takes the key concept of
DART in terms of steering the solution toward discrete gray
values, and incorporates this strategy within an automated
optimization framework of compressive sensing. We replace
the hard segmentation step of DART with a soft segmentation
function which is described with a sum of logistic functions.
This smoothes the objective function and allows us to solve
the discrete reconstruction and gray value estimation problems
alternatingly in a non-convex optimization framework. A total
variation term applied on the segmented reconstruction is
added to the objective function to combat noise and regularize
the reconstruction under extremely limited data conditions.
The core idea of TVR-DART is to gently push the gray values
of the reconstruction using the soft segmentation function at
each iteration, and to continuously update the entire image
so that the reconstruction after applying the soft segmentation
better matches the projection data and is at the same time
sparse in its boundaries between regions with constant discrete
gray values. Due to the fact that the �1-norm is applied on
the segmented reconstruction, TVR-DART produces accurate
and sharp boundaries in the reconstruction without blurring

the solution. The algorithm has been implemented using the
open source ASTRA Tomography Toolbox [26], in which
the basic forward and backward projection operations are
efficiently computed using a Graphical Processing Unit (GPU).
A thorough experimental study is provided in this paper to
investigate the ability of TVR-DART to reconstruct images
from noisy data and from a small number of projection
images, and to compare with existing algorithms including
Simultaneous Iterative Reconstruction Technique (SIRT),
TVmin, and DART. The results show that TVR-DART can
produce more accurate reconstructions under difficult practical
conditions. Furthermore, we show that the limited number of
parameters of the algorithm can be easily configured under
different conditions.

This paper is organized as follows. In Section II the
mathematical notation and the DART algorithm are briefly
introduced. The TVR-DART algorithm is described in detail
in Section III. In Section IV, we present the numerical sim-
ulations and comparison studies. Results from experimental
datasets are discussed in Section V. Section VI concludes this
paper.

II. MATHEMATICAL CONCEPTS AND DART ALGORITHM

A. Problem Definition

We treat the tomographic reconstruction problem as a sys-
tem of linear equations. The formulation is generic and covers
2D and 3D imaging in parallel/fan/cone beam geometries.
Let x = (

xj
) ∈ R

n denote a vector containing the dis-
cretized pixel/voxel values of the object being imaged, while
p = (pi) ∈ R

m represents the measured projection values from
all detectors collapsed into a single vector. Then the forward
image formation process can be modeled using a projection
operator W = (

wij
) ∈ R

mxn which maps the object to the
measured projection data:

p = Wx (1)

In discrete tomography, we intend to solve the following
problem: Let G > 1 be the number of gray values and
R = {ρ1, . . . , ρG} denote the set of gray values. Find x ∈ Rn

such that Wx = p. In practice a solution can be seen as the
result of the following optimization:

min
x∈{ρ1,...,ρG}n

||Wx − p|| (2)

where ‖·‖ represents a certain norm. Notice that because
the solution space Rn is not a convex set, many algorithms
from convex optimization cannot be directly applied for the
reconstruction problem in discrete tomography.

B. Original DART Algorithm

Here we provide a brief overview of the DART algorithm.
More details can be found in [13]. DART alternates between
a continuous algebraic reconstruction step and a discrete
segmentation step, and uses a well-designed procedure to
gradually improve the segmented image.

The algorithm starts with an initial continuous reconstruc-
tion using an algebraic reconstruction method (ARM). As the
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first step, a hard segmentation is applied on the reconstruction,
rounding all pixels to the nearest gray value in R. In the
second step, boundary pixels, that have at least one neighbor
pixel with a different gray value, and some randomly chosen
pixels from the non-boundary region are selected as free pixels.
The probability of a non-boundary pixel to be classified as
free pixel is 1 − p, with p known as the fix probability.
In the third step, the unknowns corresponding to the pixels
other than free pixels, known as fixed pixels, are removed
from the system of linear equations in (1). Specifically the
corresponding columns in W and rows in x are removed while
the projections of the fixed pixels are subtracted from p. Then
the free pixels are updated with a continuous reconstruction
step with the ARM. In the fourth step, the free pixels are
smoothed with a Gaussian filter with a small kernel as a way
to regulate strong fluctuations. The whole procedure iterates
between step 1 and 4 until a termination criterion is met.

III. FORMULATIONS FOR TVR-DART

In TVR-DART we combine the concept of solution steering
of DART with TV regularization, and solve the discrete tomog-
raphy problem within an automated optimization framework.
The objective function F consists of two parts: a data fit term
Ffit incorporating the discrete prior and a regularization term
Freg ensuring the sparsity of image gradients:

F
(
x, R

) = Ffit
(
x, R

) + λ · Freg
(
x, R

)
(3)

Ffit = ∥
∥W S

(
x, R

) − p
∥
∥2

2 (4)

Freg =
∑

j

Mε

((∇S
(
x̃, R

))
j

)
(5)

where λ is the weight for controlling the trade-off between
the two parts of the objective function. S

(
x, R

)
represents

the Soft Segmentation Function that smoothly pushes the gray
values toward discrete solutions, and Mε (·) is the Huber norm
function [19]

Mε (r) =
{

r2/2ε 0 ≤ |r | ≤ ε
|r | − ε/2 |r | > ε

(6)

which interpolates between smooth �2 treatment of small
residuals and robust �1 treatment of large residuals with ε as
the threshold between the two types of norms. R is the set of
gray values augmented with the set of thresholds {τ1, . . . , τG },
x̃ is the spatial image representation of vector x, and ∇
represents the discrete gradient operator.

The inclusion of the soft segmentation in the objective
function applies a soft push on the pixel values that encourages
discrete solutions. The Huber norm of the image gradient is
applied to steer towards sparse solutions and it yields a dif-
ferentiable objective function. TVR-DART aims to minimize
the objective function (3) over both the reconstruction x and
the soft segmentation parameters R:

min
x∈Rn,R=

{
ρ1, . . . , ρG
τ1, . . . , τG

} F
(
x, R

)
(7)

where G denotes the prior knowledge in terms of the total
number of discrete gray values in the reconstruction.

Fig. 1. Illustration of the soft segmentation function S (x, R) under different
values of K . The gray values are (0, 0.5, 1.0) with thresholds at (0.25, 0.75).

The objective function in (3)-(5) means that TVR-DART
pursues a reconstruction that matches well with the projection
data in a least square sense after applying the segmentation
function, and the segmented solution is preferred to also
exhibit sparse boundaries. Therefore, the solution we are
looking for in the end is not x but S

(
x, R

)
which is optimized

to fit with the projection data. By changing the formulation of
discrete tomography from (2) to (7), we manage to switch the
problem of a convex objective function on a non-convex set,
to a problem of a non-convex objective function over a convex
set, which can be solved using non-convex optimization
techniques. Previous attempts of limited data discrete tomog-
raphy using non-convex optimization techniques can be found
in [20] and [21]. In CT, non-convex prior models were also
proposed for reconstruction from nonlinear X-ray measure-
ments [22]–[24].

In order to have a smooth objective function for the opti-
mization, we define the Soft Segmentation Function, S

(
x, R

)
,

as a sum of logistic functions:

S
(
x, R

) =
G∑

g=2

(
ρg − ρg−1

)
u

(
x − τg, kg

)
(8)

where ρg are the discrete gray values with ρ1 = 0, assuming
the background is zero in the reconstruction, and τg represent
the corresponding thresholds, with τ1 = 0. The function
u(x, kg) is the logistic function defined as:

u(x, kg) = 1

1 + e−2kgx (9)

where kg is different for each step between consecutive gray
values:

kg = K

ρg − ρg−1
g = 2, . . . , G (10)

K is the transition constant for controlling the sharpness of
transitions in the segmentation curve. The reason to define kg

as a function of the gray value difference is to make sure
the maximum gradient of S is the same for every transition
step. This also prevents the need to change the value of K
when the gray values of the reconstruction fall in different
value ranges. The soft segmentation function for different
values of K is illustrated in Figure 1. As we can see, S

(
x, R

)

approximates the staircase function of a hard segmentation
when kg increases. Because the function is monotonically
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Fig. 2. Flowchart of the TVR-DART algorithm.

increasing, it acts as a ‘compression/expansion’ operator on
the solution space. This causes the local gradients to be
compressed/expanded, which effectively encourages discrete
solutions.

The flowchart of the TVR-DART algorithm is shown in
Figure 2. The algorithm initializes x with a continuous recon-
struction using TVmin, and it operates iteratively in a manner
of alternating minimization. At first, the parameters for the
segmentation function are estimated based on the current
reconstruction. Then the reconstruction is updated based on the
current gray values and thresholds. The whole process iterates
until the stop criterion is met. By following this process,
TVR-DART utilizes a simplified and automated procedure
requiring only a small amount of parameter tuning. In the
following three subsections, we will derive update equations
that aim to minimize the defined objective function and
provide more details on the initialization and optimization
procedures.

A. Reconstruction Step

Since the objective function F
(
x, R

)
is differentiable and

almost everywhere twice differentiable due to the choice of a
smooth soft segmentation function and Huber norm, we use
the second order approximation to find the next iteration of
the reconstruction. The second order Taylor series of F

(
x, R

)

around the current iteration xt is

F (x) = F
(
xt) + (x − xt )

T J
(
xt )

+1

2
(x − xt )

T H
(
xt ) (x − xt ) (11)

where J
(
xt

)
denotes the gradient and H

(
xt

)
is the Hessian

matrix. Newton’s approach would suggest we set the gradient
of (11) to zero, which directly leads us to the stationary point
of the quadratic function:

x = xt − H
(
xt )−1J

(
xt) (12)

But this would require the estimation of the inverse of an
extremely large Hessian matrix (n × n with n being the
number of pixels in the reconstruction). Even quasi-Newton
methods that approximate the inverse of the Hessian matrix
would require manipulation of such large matrices, which
is prohibitively expensive for the tomography application in
practice. Therefore, we pursued a solution that replaces the
Hessian matrix with a diagonal matrix H

(
xt

)
, whose inverse

is straightforward to compute. We show that this forms an
auxiliary function that lies above the original objective func-
tion around the current estimate. And taking a step to the

minimum of the auxiliary function will lead us to the next
estimate that will decrease the objective function. The details
of this approach are provided in the following.

The gradient of both Ffit and Freg over x are derived as:

Jfit = 2
(
WT WS − WT p

) ◦ ∇xS (13)

Jreg = ∇S Freg ◦ ∇xS (14)

with

∇xS = 2K
G∑

g=2

ug
(
1 − ug

)
(15)

where S is an abbreviation for S
(
xt , Rt

)
, ug is an abbreviation

for u
(
x − τg, kg

)
, ∇xS represents the partial derivative of S

over the reconstruction x, and ∇S Freg is the partial derivative
of Freg with respect to the segmented reconstruction S. The
formulation of ∇S Freg is derived in Appendix II. Here ‘◦’
represents element-wise multiplication.

The Hessian matrix of the data fit term Ffit is
formulated as:

Hfit = 2
{
diag (∇xS) WT Wdiag (∇xS)

+ diag
[(

WT WS − WT p
) ◦ ∇2

xxS
]}

(16)

with

∇2
xxS = 4K

G∑

g=2

kgug
(
1 − ug

) (
1 − 2ug

)
(17)

The second term of (16) is a diagonal matrix. And the first
term is a full matrix of which the complete inverse would be
expensive to compute. Here we replace the first term of Hfit
with a diagonal matrix ηfit:

Hfit = 2
{
ηfit + diag

[(
WT WS − WT p

) ◦ ∇2
xxS

]}
(18)

where

ηfit = diag
[
diag

(∇xS
)
WT Wdiag

(∇xS
)
e
]

(19)

Here e = (
ej = 1

) ∈ R
n denotes a vector containing all ones.

Note that ηfit can be effectively computed as:

ηfit = diag
(∇xS◦WT W∇xS

)
(20)

Because Hfit − Hfit is a positive semi-definite matrix (shown
in Appendix I), we have

(x − xt )T [
Hfit − Hfit

]
(x − xt ) ≥ 0 (21)

Therefore, replacing Hfit with Hfit forms an auxiliary function
above the quadratic approximation of the data fit term of the
objective function in a neighborhood of the current estimate xt .
Taking a step towards the minimum of the auxiliary function
gives us the next estimate. We will show in later sections that
this strategy almost always lowers the objective function.

The Hessian matrix of the regularization term Freg is
formulated as

Hreg = diag (∇xS)
[
J

(∇S Freg
)
(S)

]
diag (∇xS)

+ diag
[∇S Freg ◦ ∇2

xxS
]

(22)
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The second term of Hreg is a diagonal matrix, and the term
J

(∇S Freg
)
(S) is the Hessian matrix of the Huber norm with

respect to S. J
(∇S Freg

)
(S) is a large but very sparse matrix

and its formulation is provided in Appendix II. We replace the
first term of Hreg in (22) with a diagonal matrix ηreg:

Hreg = ηreg + diag
[∇S Freg ◦ ∇2

xxS
]

(23)

with

ηreg = diag
{
Q̃e

}
(24)

and Q = (
qij

) = diag (∇xS)
[
J

(∇S Freg
)
(S)

]
diag (∇xS),

Q̃ = (∣∣qij
∣
∣). We show in Appendix I that Hreg−Hreg is positive

semi-definite, so:

(x − xt )T [
Hreg − Hreg

]
(x − xt ) ≥ 0 (25)

Thus replacing Hreg with Hreg forms an auxiliary function
above the quadratic approximation of the regularization term
of the objective function in a neighborhood of the current
estimate xt . Note that this is just one possible choice of
auxiliary function, and other choices may work just as well.

Substituting (18)(23) in (12) results in the following update:

xt+1 = xt − H
(
xt )−1

J
(
xt) (26)

where

J
(
xt ) = Jfit + λ · Jreg (27)

H
(
xt ) = Hfit + λ · Hreg (28)

The advantage of the proposed algorithm using the auxiliary
functions is that it is computationally efficient and easy to
implement. There is no need to adjust the step size as in
gradient descent methods, and the algorithm achieves faster
convergence using the curvature information. This is beneficial
for large-scale tomography applications in practice.

B. Gray Value and Threshold Estimation Steps

In this step, we estimate the gray values and thresholds
based on the current estimate of the reconstruction using
Newton’s method. From the objective function in (3), the
gradients of Ffit and Freg over either the gray value or
threshold, denoted by Rg , are derived as follows:

J
Rg
fit = 2 (WS − p)T W∇Rg

S (29)

J
Rg
reg = [∇S Freg

]T ∇Rg
S (30)

And the Hessian matrices are written as:

H
Rg
fit = 2

{(
W∇Rg

S
)T (

W∇Rg
S
)

+ (WS − p)T
(

W∇2
Rg

S
)}

(31)

H
Rg
reg =

∑{
diag

(
∇Rg

S
) [

J
(∇S Freg

)
(S)

]
diag

(
∇Rg

S
)

+ diag
[
∇S Freg ◦ ∇2

Rg
S
]}

(32)

where ∇Rg
S and ∇2

Rg
S denote the first and second order

partial derivatives of S over either the gray value ρg or the

threshold τg , respectively. Their analytical expressions are as
follows:

∇ρg S =

⎧
⎪⎪⎨

⎪⎪⎩

ug · [
1 − 2kg

(
x − τg

) (
1 − ug

)]

−ug+1 · [
1 − 2kg+1

(
x − τg+1

) (
1 − ug+1

)]
,

g �= G
ug · [

1 − 2kg
(
x − τg

) (
1 − ug

)]
, g = G

(33)

∇2
ρg

S =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4K 2
(
x − τg

)2
ug

(
1 − ug

) (
1 − 2ug

)

(
ρg − ρg−1

)3

+4K 2
(
x − τg+1

)2
ug+1

(
1 − ug+1

) (
1 − 2ug+1

)

(
ρg+1 − ρg

)3

g �= G

4K 2
(
x − τg

)2ug
(
1 − ug

) (
1 − 2ug

)

(
ρg − ρg−1

)3 , g = G

(34)

∇τg S = −2K ug
(
1 − ug

)
(35)

∇2
τg

S = 4K kgug
(
1 − ug

) (
1 − 2ug

)
(36)

with ug = u
(
x − τg, kg

)
and ug+1 = u

(
x − τg+1, kg+1

)
.

These lead to the update for gray values and thresholds:

ρt+1
g = ρt

g − Jρg /Hρg (37)

τ t+1
g = τ t

g − Jτg /Hτg (38)

where

Jρg = J
ρg
fit + λ · J

ρg
reg (39)

Hρg = H
ρg
fit + λ · H

ρg
reg (40)

Jτg = J
τg
fit + λ · J

τg
reg (41)

Hτg = H
τg
fit + λ · H

τg
reg (42)

In each update step of gray values and thresholds, (37) and (38)
are applied to obtain a better estimation. Please note that
the proposed algorithm might still diverge under certain data
conditions and initialization. But as we show in the numerical
and experimental sections of the paper, the proposed technique
leads to faithful reconstructions and estimation of gray values
for a wide range of conditions and datasets.

C. Optimization Procedure, Initialization
and Convergence Criteria

With the derived formulas in the two previous subsections,
we have the necessary update equations to take steps towards
a solution. However, there are still a few issues regarding
initialization, the optimization procedure and convergence that
deserve further discussions.

The proposed algorithm requires to be initialized with a
reconstruction x0 with gray values between the minimum and
maximum gray values of the soft segmentation function. As we
mentioned, the inclusion of the soft segmentation function in
the objective function causes the local gradients to be com-
pressed/expanded. As a consequence, if the initial estimation
only contains gray values within the flat regions of the soft
segmentation function (e.g., all pixels are below 0 or larger
than the maximum gray value), the solution will only move in
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Fig. 3. Procedure of the TVR-DART algorithm.

very small steps due to the small gradients in these regions.
We suggest initializing the reconstruction algorithm with a
solution from TVmin as suggested in [25], and setting the
initial maximum gray value of the soft segmentation function
to the maximum pixel value of the initial reconstruction. The
rest of the gray values are then uniformly distributed between
the minimum and maximum values.

The procedure of the complete TVR-DART algorithm is
illustrated in Figure 3 with the necessary equations high-
lighted. After initialization, the algorithm updates both recon-
struction and gray values/thresholds in a manner of alternating
minimization. Based on the initial reconstruction, both gray
values and thresholds are updated. Then the reconstruction
is improved using the updated soft segmentation parameters.
The optimization is ended when the convergence criteria is
reached:

∣
∣St−St−1

∣
∣
1∣

∣St−1
∣
∣
1

≤ γ (43)

where |·|1 denotes the �1 norm, and γ denotes the convergence
threshold. In practice, we have opted to set γ = 10−5.

IV. NUMERICAL INVESTIGATION

In this Section, numerically simulated data are used to
investigate the behavior of TVR-DART and evaluate its per-
formance. The complete algorithm is implemented in Matlab
using the open source ASTRA Tomography Toolbox [26],

in which the basic forward and backward projection operations
are efficiently computed in parallel using Graphical Processing
Unit (GPU).

The simulation experiments use five 2D Phantoms, shown
in Figure 4. All Phantoms are 512 × 512 pixels in size.
Phantom 1 to 3 are binary images with increasing shape
complexity. Phantom 4 and 5 are images containing 3 and 6
discrete gray values. The projection data (sinogram) is gener-
ated assuming a parallel beam geometry. In our experiments,
the length of the detector array is equal to the width of the
image, and the detector spacing is the same as the pixel size
of the Phantom. Thus the projection for each angle consists
of 512 detector values. The Radon transform of the images
is first computed resulting in a sinogram with linear integrals
of attenuation coefficients. Then the noise-less projection data
is generated by taking the exponential of the negative values
of the sinogram. The projection data is further perturbed with
Poisson noise assuming a maximum number of photon counts
I0 at the detectors. In our experiments, I0 varied from 5×103

(high noise) up to 106 (little noise) to study the algorithm’s
performance at different noise levels. The final sinogram used
for reconstruction is obtained by taking the negative logarithm
of the rescaled noisy projection data.

Three algorithms are used for comparison: SIRT, TVmin,
and DART. For SIRT, 200 iterations are applied to ensure con-
vergence is reached. Chambolle’s algorithm described in [27]
is used for TVmin. In total, 200 iterations are applied while
the weight for the continuous TVmin is chosen between 2-5
for all the experiments. For the DART implementation, the
SIRT algorithm is utilized as the ARM step. The algorithm
iterates for 100 iterations to ensure convergence. Within each
main iteration, 20 sub-iterations of SIRT are performed on
the free pixels. For noisy data, the fix probability is specified
at p = 0.5 in order to minimize the effect of noise on the
reconstruction of boundaries as described in [13].

For quantification of the reconstruction performances, we
opted for the Relative Mean Error (RME) that is given by:

RME =
∑

j

∣
∣
∣xo

j − xr
j

∣
∣
∣

∑
j

∣
∣
∣xo

j

∣
∣
∣

(44)

where xo
j and xr

j denote the j -th pixel of the original and
the reconstructed image, respectively. Thus the RME value
gives the error in proportion to the object pixels in the original
image.

A. Noisy and Small Number of Projections

We first test the reconstruction performance of TVR-DART
using a small number of projections that are also contam-
inated with a relatively high level of Poisson noise. It is
assumed in this experiment that the projection angles are
equally spaced between 0 and 180 degrees. Figure 5 shows
TVR-DART reconstructions of all five Phantoms using various
numbers of projections. The number of projections for each
Phantom is chosen to obtain a satisfactory reconstruction,
and depends on the complexity of the morphologies and the
number of gray values of the Phantom. Corresponding SIRT,
TVmin, and DART reconstructions are shown for comparison.
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Fig. 4. Phantoms used in the numerical simulation. (a) Phantom 1. (b) Phantom 2. (c) Phantom 3. (d) Phantom 4. (e) Phantom 5.

Fig. 5. Comparison of reconstructions using noisy and limited number of projections, from SIRT (row 1), TVmin (row 2), DART (row 3), and
TVR-DART (row 4) for Phantom 1 using 9 projections (column 1), Phantom 2 using 15 projections (column 2), Phantom 3 using 30 projections (column 3),
Phantom 4 using 12 projections (column 4), and Phantom 5 using 60 projections (column 5), respectively. (a)–(e) SIRT. (f)–(j) TV minimization. (k)–(o) DART.
(p)–(t) Proposed TVR-DART with gray values fixed.

For DART and TVR-DART in this experiment, we assume
the gray values are known a priori in order to evaluate the
reconstruction part of the algorithms separately. As we can
clearly see, TVR-DART is able to consistently generate more
accurate reconstructions than SIRT, TVmin and DART. It is
able to combine the merits of both discrete tomography and

total variation minimization. Similar to DART, TVR-DART is
capable of recovering structures that are otherwise difficult to
reconstruct by conventional algorithms. But unlike DART, it
handles noise well benefiting from its TV regularization.

Figure 6 demonstrates the reconstruction of TVR-DART
with simultaneous estimation of gray values and thresholds
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Fig. 6. Reconstruction with simultaneous estimation of gray values using TVR-DART under the same noise level and number of projection images as in
Fig 5. (a) - (e) Reconstruction of phantom 1 to 5. (f) Convergence of the objective function through iterations. (g) Convergence of gray value estimation as
sum of absolute errors of the estimated gray values through iterations. (h) Comparison of the Relative Mean Error (RME) of reconstructions among SIRT,
TVmin, DART, TVR-DART with and without gray value estimation for all 5 phantoms.

under the same conditions as in Figure 5. For all Phantoms,
the initial gray values are specified by setting the maximum
gray values to the maximum pixel value of the initial contin-
uous reconstructions from TVmin, and the intermediate gray
values uniformly distributed between 0 and the maximum. The
starting values of the thresholds are chosen as the average
values between adjacent gray values. We observe that the
algorithm performs equally well for Phantom 1 to 4 while
providing a degraded reconstruction for Phantom 5. This is
due to the need to estimate a much larger number of gray
values in Phantom 5 that led to less accurate estimation of gray
values and in turn a less accurate reconstruction. Therefore,
although the proposed algorithm can help converge towards
more accurate estimation of gray values, a less ideal initial
guess of these values under limited data conditions could
still lead to worse image quality compared to the case where
all gray values are known in advance. Figure 6 (f) and (g)
show the convergence of the algorithm by both the objective
function and the sum of the absolute errors of the estimated
gray values. Despite limited and noisy data, the TVR-DART
algorithm shows a steadily decreasing objective function for
all Phantoms. Figure 6 (h) further lists the RME for all recon-
structions shown in Figure 5 and 6. We see that the RME from
TVR-DART is consistently lower than all other techniques.
When the gray values are unknown and need to be estimated,
slight degradation of results can be seen for Phantom 3 and
Phantom 5, due to their higher morphological complexity
and larger number of gray values. In these situations, a
useful strategy is to first estimate both gray values and the
reconstruction, and then reinitiate the reconstruction while
keeping the estimated gray value fixed. This is a common
strategy in alternating minimization.

B. Optimum Choice of Parameters

Figure 7 demonstrates the RME of the reconstruction of
Phantom 3 as a function of the three main parameters of
TVR-DART: the total variation weighting λ, the transition
constant K , and the threshold ε for the Huber norm function.
Here a full tilt angle range of 180 degrees with 6 degree steps
(30 projections) is assumed. As expected, the optimum choice
of λ increases with higher noise level in the projection data.
For data with a relatively small amount of noise, a value range
of λ ∈ [10, 20] gives the optimal results while a higher value
of λ ∈ [50, 100] is needed for extremely noisy conditions.

The choice of the transition constant K is less influenced
by the data. While a lower value of K makes the segmentation
function too smooth by offering not enough push to the
discrete gray values, setting the value too high pushes the
solution too fast toward discrete values. The threshold for
the Huber norm also exhibits a relative weak influence on the
reconstruction accuracy. Choosing a small value of ε ensures
that large regions of the reconstruction are treated with the
edge-preserving �1 norm, which leads to a sharper and more
accurate solution. For the following studies, we keep K = 6
and ε = 0.02 while λ is selected following the summarized
guidelines.

C. Limited Angular Range
In many practical applications such as electron tomography

or certain medical applications, it is impossible to acquire
projection images of the object from all tilt angles, and the
data can be only acquired over a limited angular range.
In such a situation, conventional algorithms such as FBP or
SIRT cannot solve the reconstruction problem accurately even
using a sufficiently large number of projections. Here we test
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Fig. 7. Performance of TVR-DART under different choice of parameters and noise levels. (a) Relative Mean Error (RME) of reconstruction under different λ
weight for the regularization, (b) RME under different transition constant K for the Soft Segmentation Function, (c) RME under different choice of ε the
threshold for the Huber norm function. Phantom 3 is used for plotting these curves.

Fig. 8. Comparison of reconstructions under limited angular range (−60 to 60 degree) using noisy (5×103 photon count) and limited number of projections,
from SIRT (a, f), TVmin (b, g), DART (c, h), and TVR-DART with simultaneous estimation of gray values (d, i) for phantom 1 using 12 projections (row 1),
phantom 4 using 21 projections (row 2). (e, j) shows the difference between the ground truth and the TVR-DART reconstructions.

TVR-DART using simulated data from a typical angular range
in electron tomography, from −60 to 60 degrees with a limited
number of projections. The projection data is further perturbed
by a high level of noise (5 × 103 photon count) to mimic
practical conditions.

Figure 8 shows the reconstructions for Phantom 1 and 4
using SIRT, TVmin, DART, and TVR-DART. As we can see,
the advantage of TVR-DART is even more significant under
limited angular range conditions. The proposed algorithm
yields much more accurate reconstructions than the other
techniques used in this comparison. This is further verified
by the difference between the reconstruction and original
Phantom. By imposing prior knowledge of both discrete gray
values and sparse boundaries, TVR-DART is shown to be
capable of dealing with limited angular range problem even
under sparse and noisy data conditions.

V. EXPERIMENTAL VERIFICATION

To further evaluate the proposed algorithm in practical
conditions, we applied TVR-DART on experimental datasets

from two different imaging modalities: X-ray Micro-CT and
Electron Tomography.

A. X-Ray Micro-CT Experiment

For this Micro-CT experiment, a hardware Phantom is used.
The Phantom has a convex shape like a bean and the body
is made of Plexiglass with three holes drilled through in the
vertical direction. The bigger hole on the left is filled with
white spirit while the two smaller holes are filled with air. The
projection data of the Phantom is acquired by a Skyscan 1172
microtomography X-ray scanner. A total of 600 projection
images are used in this experiment over a tilt range of
174 degree. The tilt angle step between projections is 0.6°. The
dataset is first pre-processed to reduce some of the physical
artifacts such as beam hardening, and make the data applica-
ble for discrete tomography. We applied the algorithms on
two subsets of the full scan within the complete angular range:
one with 30 projections of 6° steps, and one with 10 pro-
jections of 18° steps. This tests the algorithms under highly
limited data conditions. A Segmented SIRT reconstruction
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Fig. 9. Experimental verification using X-ray Micro-CT (SkyScan 1172) data of a physical bean-shaped phantom. Reconstruction from 30 projections (row 1)
and 10 projections (row 2) in fan beam geometry obtained using (a)-(f) SIRT, (b)-(g) TVmin, (c)-(h) DART, (d)-(i) TVR-DART, and (e)-(j) the difference
between TVR-DART reconstructions and the ground truth of the phantom. The body of the physical phantom is made of Plexiglass with the larger hole on
the left filled with white spirit and the two small holes on the middle and right side filled with air.

from all 600 projections is used to generate an image to be
used as ground truth to evaluate the reconstructions under lim-
ited data conditions. The scanner has a cone beam geometry.
Because the Phantom is the same along the vertical direction,
the central slice of the data is reconstructed in this experiment
using a fan beam geometry. The pixel size of the projection
data is 25 μm with 1000 pixels over the width of the detector.

For TVR-DART, assuming that there are only three different
materials, we first estimated the corresponding three gray
values over the first 50 iterations, then the reconstruction is
reinitiated to obtain the final reconstruction over 200 iterations.
The weight of the total variation is specified as λ = 60 for the
30 projection scenario and λ = 40 for the 10 projection case,
while the transition constant of the soft segmentation function
is kept at K = 6 for both experiments.

Figure 9 shows the reconstructions of the Phan-
tom using SIRT, TVmin, DART, and TVR-DART from
30 and 10 projections. The pixel error maps between the
TVR-DART reconstructions and the ground truth of the
Phantom are also presented. SIRT reconstructions are much
noisier than other techniques and degrade the most when the
number of projections is further reduced. TVmin provides
a good alternative to SIRT in terms of reducing noise and
artifacts in the reconstruction. However, the boundaries of
TVmin are less defined, especially around the region of the
large hole with white spirit, which has less contrast to the
surrounding material. DART provides more defined boundaries
than TVmin, but fails to handle the noise in the original data.
This problem mostly appears around the boundaries of the
object, which makes the reconstruction less useful. Among
all, TVR-DART is able to provide the best reconstructions
even using only 10 projections. The degradation of quality
is also the smallest among algorithms comparing the results
from 30 and 10 projections. This shows the clear advantage

Fig. 10. Experimental verification using Electron Tomography of PbSe-CdSe
core/shell nanoparticles with an average diameter of 9nm. The tilt angle ranges
from −55 to 55 degrees. Comparison of reconstructions from 111 projections
(column 1) and 55 projections (column 2) obtained using (a) (b) SIRT,
(c) (d) TVmin, (e) (f) DART, (g) (h) TVR-DART with simultaneous estimation
of gray values.

of combining the prior knowledge of both discreteness and
sparsity of the object in the reconstruction technique.

B. Electron Tomography Experiment

An electron tomography experiment of nanomaterials is
further carried out to test the proposed algorithm. The sam-
ple consists of PbSe-CdSe core shell nanoparticles with an
average diameter of 9nm. The nanoparticles are dispersed on
a carbon support. A tilt series of the particle assembly is
acquired with an angular range from −55° to 55° with 1°
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increments in high angle annular dark field scanning trans-
mission electron microscopy (HAADF-STEM) mode. The
acquisition was performed at a FEI TITAN microscope using
a Fischione tomography tilt holder operated by the FEI
Xplore3D software. The pixel size used in the acquisition
equals 1.36 nm. The acquired images are first aligned correct-
ing slight image rotation, magnification and shifts over the tilt
series.

Reconstructions are performed on the full data and on a
subset of data with half of the projections over the same
angular range. The results from SIRT, TVmin, DART, and
TVR-DART are presented in Figure 10. For TVR-DART,
the number of materials and its sparsity of object bound-
aries are used as prior information for the reconstruction.
We can observe that all particles are visible in the SIRT
and TVmin reconstructions from the complete data but less
so when only half of projections are used. DART does a
good job identifying all small particles, but also generates
noisy boundaries and some inconsistent holes within the inner
regions of the nanoparticles. Among the four tested algorithms,
TVR-DART yields the most accurate reconstructions with
clear recovery of the small particles and boundaries of the
shape of the large ones while maintaining a high image quality
even using only 55 images under a severe missing angle
condition.

VI. CONCLUSIONS

In this paper, we have presented a new discrete tomography
reconstruction algorithm, TVR-DART, that exploits two types
of prior information of the object simultaneously in terms
of the sample’s discreteness in materials and sparsity of its
boundaries. The algorithm is aimed at tomographic reconstruc-
tion of objects consisting of a few different material compo-
sitions, each approximately corresponding to a constant gray
value in the reconstruction. By defining a soft segmentation
function within the objective function of the reconstruction
algorithm, TVR-DART smoothly steers the solution toward
discrete gray values while minimizing the total variation of the
boundaries of the discrete solution. Since it is very difficult
to know the exact gray values in most practical applications,
the gray values and thresholds of the segmentation function
are automatically estimated in an alternating manner with
the reconstruction assuming the total number of gray values
is known. Extensive numerical simulations were carried out
under a small number of projections corrupted with a high
level of Poisson noise and further within a limited angular
range. Experimental data from two imaging modalities of
micro-CT and Electron Tomography were further used to
test the algorithm in practical applications. The accuracy of
TVR-DART is compared with SIRT, TV minimization, and
DART. All the experimental results demonstrate that the
proposed TVR-DART algorithm is able to take the advantage
of the two types of priors, and is capable of consistently
producing accurate reconstructions under noisy and limited
data conditions. With the key computation steps of the algo-
rithm readily implemented using GPU for fast and efficient
computations, we aim to provide the experimental fields with
a robust and automated technique for discrete tomography.

APPENDIX I

This Section gives the proof of the positive semi-
definite results referred to in Section III.A. Specifically,
proving (21) and (25) requires the following lemma:

Lemma 1: Let A = (
aij

) ∈ R
nxn be a square symmetric

n × n matrix, Ã = (∣∣aij
∣
∣) ∈ R

nxn the matrix with absolute
values of A as its elements, and e a n × 1 vector with all
entries equal to one, then B = diag(Ãe) − A is a positive
semi-definite matrix.

Proof: Assume that t = [t1, t2, . . . , tn]T �= 0n×1, Then

tT (B) t = tT (
diag(Ãe) − A

)
t

=
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∣ − ti ai j t j
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∣ − ti ai j t j

)

(Due to symmetry) (45)

Each individual term is now non-negative, since:
If ai j < 0, we have

(
−1

2
t2
i − ti t j − 1

2
t2

j

)
ai j = −ai j

1

2

(
ti + t j

)2 ≥ 0 (46)

If ai j ≥ 0, we have
(

1

2
t2
i − ti t j + 1

2
t2

j

)
ai j = ai j

1

2

(
ti − t j

)2 ≥ 0 (47)

Therefore, tT (B) t ≥ 0, thus B = diag(Ãe) − A is positive
semi-definite.

It is obvious that the first term of the Hessian matrix Hfit
in (16) is a symmetric matrix:

diag (∇xS) WT Wdiag (∇xS) = [
Wdiag (∇xS)

]T Wdiag (∇xS)

(48)

Because the soft segmentation function is non-decreasing, all
the entries of ∇xS are non-negative. Also all the elements
within the projection matrix W are non-negative. Thus apply-
ing Lemma 1 shows that

Hfit − Hfit = diag
[
diag (∇xS) WT Wdiag (∇xS) e

]

−diag (∇xS) WT Wdiag (∇xS) (49)

is positive semi-definite, therefore (21) is true.
For (25), the term J

(∇S Freg
)
(S) within the Hessian matrix

Hreg in (22) is a symmetric matrix because it is the Hessian
matrix of the regularization term of the objective function with
respect to S. Thus the first term of Hreg is symmetric:

[
diag (∇xS)

[
J

(∇S Freg
)
(S)

]
diag (∇xS)

]T

= diag (∇xS)
[
J

(∇S Freg
)
(S)

]
diag (∇xS) (50)

Using Lemma 1, we can prove that

Hreg − Hreg = diag
{
Q̃e

} − Q (51)

is positive semi-definite, thus (25) is valid. With
both (21) and (25), we arrive at

(x − xt )
T [

H − H
]
(x − xt ) ≥ 0 (52)
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Therefore, replacing H
(
xt

)
with H

(
xt

)
in (11) forms an

auxiliary function G
(
x, xt

)
:

G
(
x, xt) = F

(
xt) + (x − xt )

T J
(
xt )

+1

2
(x − xt )

T H
(
xt ) (x − xt ) (53)

which satisfies the following conditions:

G
(
x, xt ) ≥ F (x) , G

(
xt , xt ) = F

(
xt) (54)

This in turn shows that the objective function F is
non-increasing if a step minimizing the auxiliary function is
taken in each iteration:

xt+1 = arg min
x∈R

G
(
x, xt ) (55)

due to the fact that

F
(
xt+1) ≤ G

(
xt+1, xt ) ≤ G

(
xt , xt) = F

(
xt) (56)

Therefore, the proposed algorithm is capable of decreasing the
objective function.

APPENDIX II

In this Section we derive analytical formulas for the gradient
and Hessian matrices of the Huber norm cost function Freg
with respect to the segmented reconstruction S : ∇S Freg
and J

(∇S Freg
)
(S), which are needed for estimation of (14),

(23), (30) and (32). Let S̃ = (
S̃u,v

) ∈ R
U×V denote the

two-dimensional soft segmented reconstruction matrix, with
S being its vectorized version. We define the discrete gradient
operator ∇ as

(∇S̃
)
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)1
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(57)

with
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And the |·| within the Huber norm function in (6) is defined
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The partial derivative of Freg over S̃u,v depends on three
adjacent pixels S̃u,v, S̃u,v−1, and S̃u−1,v:
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where M = (
Mu,v

) ∈ R
U×V is the mask of pixels treated with

�2 norm while M = (
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U×V
)

is the mask for pixels
treated with �1 norm:

(M)u,v =
⎧
⎨

⎩

1 0 ≤
∣
∣
∣
(∇S̃

)
u,v

∣
∣
∣ ≤ ε

0
∣
∣
∣
(∇S̃

)
u,v

∣
∣
∣ > ε

(62)

(
M

)
u,v =

⎧
⎨

⎩

0 0 ≤
∣
∣∣
(∇S̃

)
u,v

∣
∣∣ ≤ ε

1
∣
∣
∣
(∇S̃

)
u,v

∣
∣
∣ > ε

(63)

Therefore:
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And ∇S Freg is the vectorized version of
∂Freg

∂ S̃u,v
.

The Hessian matrix of the Huber norm, J
(∇S Freg

)
(S), is a

large n × n sparse matrix with 7 × n non-zero values. These
seven 2nd order partial derivatives over S are listed as follows:
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S̃u,v− S̃u,v−1

)2
] 3

2

· Mu,v−1 (69)

∂2 Freg

∂ S̃u,v∂ S̃u−1,v+1

= −
(
S̃u,v − S̃u−1,v

) (
S̃u−1,v+1 − S̃u−1,v

)

[(
S̃u−1,v+1 − S̃u−1,v

)2 + (
S̃u,v − S̃u−1,v

)2
] 3

2

· Mu−1,v

(70)
∂2 Freg

∂ S̃u,v∂ S̃u+1,v−1

= −
(
S̃u+1,v−1 − S̃u,v−1

) (
S̃u,v − S̃u,v−1

)

[(
S̃u+1,v−1 − S̃u,v−1

)2 + (
S̃u,v − S̃u,v−1

)2
] 3

2

· Mu,v−1

(71)

In practice, these seven partial derivatives are estimated in
vector form and together form the sparse Hessian matrix.
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