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Abstract— A   novel   sub-Markov   random   walk   (subRW) 
algorithm with label  prior is  proposed for  seeded image  seg- 

mentation, which can  be  interpreted as  a  traditional random 
walker on a graph with added auxiliary nodes. Under this 
explanation, we unify the proposed subRW and other popular 

random walk (RW) algorithms. This unifying view will make 
it possible for transferring intrinsic findings between different 
RW   algorithms,   and   offer   new   ideas   for   designing  novel 

RW algorithms by adding or changing auxiliary nodes. To verify 
the second benefit, we design a new subRW algorithm with label 
prior  to  solve  the  segmentation problem of  objects  with  thin 

and elongated parts. The experimental results on both synthetic 
and natural images with twigs demonstrate that the proposed 
subRW method outperforms previous RW algorithms for seeded 

image segmentation. 
 

Index    Terms— Seeded    image    segmentation,    subMarkov, 
random walk, optimization, label prior, complex texture. 

 
I.  INT RODUCT ION 

ANDOM walk (RW) has been widely used for many 

different tasks in computer vision and machine learning, 

such   as   segmentation   [20],   [23],   [28],   [35],   cluster- 

ing  [19],  [25],  ranking [13],  [31],  classification [10],  [41] 

and the other applications [1], [13], [18], [22], [26], [33]. 

Grady and Funka-Lea [15] first proposed the RW for medical 

image segmentation and extended it in [20] for general image 

segmentation. In their work, the user should give labels to a 

small number of pixels. Assuming a random walker starts at 

each unlabeled pixel, they calculate the probabilities that these 

random walkers first reach the pre-labeled pixels. These prob- 

abilities will determine the probability of each unlabeled pixel 

belonging to a label. By assigning each pixel to a label with 

the  greatest probability, the  interactive image segmentation 
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result can be obtained. After [15], many related and important 

methods based on RW [17], [23], [34], [35]. In [17] have been 

proposed, the RW has been extended to segment out discon- 

nected objects by using prior models without labeling each 

object. In other words, a user only needs to indicate labels on 

some objects and the other similar objects will be segmented 

out. Sinop and Grady [23] proposed a common framework 

to unify the RW, graph cuts, and shortest path algorithms for 

interactive segmentation. Furthermore, they added the popular 

watershed segmentation algorithm to this framework [35] and 

made  the  theoretical analysis  for  the  connections between 

these algorithms. This unified framework brings some benefits, 

including opening  new  possibilities  for  using  unary  terms 

in traditional watershed algorithms to optimize more general 

models. 

Recently, some researchers [27], [40] have focused on 

segmenting natural images with complex textures. They extend 

the RW algorithm and obtain better performance for these 

challenging images. In general, these algorithms are graph- 

based so we can use a graph to describe an image for 

introducing them. Kim et al. [27] proposed a random walker 

with a restarting probability (RWR) for segmentation. It means 

that this random walker will return to the starting node with 

a probability c at each step, and walk to other adjacent nodes 

with probability 1 − c. Shen et al. [40] have developed the 

lazy random walk (LRW) for superpixel segmentation. A LRW 

will stay at the current node with a probability 1 − α  and 

walk out along the edges connected with the current node 

with probability α. Wu et al. [37] proposed another similar 

RW algorithm called partially absorbing random walk (PARW) 

for applications based on cluster, such as ranking and classi- 

fication. In PARW, a random walker is absorbed at current 

node i with a probability αi  and follows a random edge out 

of it with probability 1 − αi . And they analyze the relations 
between PARW and other popular ranking and classification 

models, such as PageRank [7], hitting and commute times [32], 

and semi-supervised learning [11], [16]. Comparing the above 

three RW-based algorithms, we  can  conclude that  they all 

satisfy the subMarkov property [30], i.e., the sum of transition 

probabilities 
    

q (i, j ) that a random walker starts from a node 

to other adjacent nodes is less than or equal to 1. Is there 

a common framework to unify these algorithms? This is the 

problem we want to first solve in this work. 

The other problem is  how to  segment objects with  thin 

and elongated parts (twig problem) in natural images, which 

is  difficult  for  most  RW-based  algorithms.  For  example, 

Figs. 1 (c)-(e) show the failed segmentation results of popular 

RW-based algorithms, including RW  [20],  RWR  [27], and 

LRW  [40].  One  reason may  be  that  the  distance between

mailto:dongxingping@bit.edu.cn
mailto:shenjianbing@bit.edu.cn
mailto:shao@ieee.org
mailto:vangool@vision.ee.ethz.ch


 
 

 

Fig. 1.  Comparison results between our subRW method and three well-known 
RW-based algorithms. (a) Is an input image; (b) Is the scribbled image, where 
the red/blue scribbles specify the foreground/background regions respectively. 
(c)-(f) Are the corresponding results by RW [20], RWR [27], LRW [40], and 
our subRW algorithm with label prior. The red lines denote the boundaries 
of twigs segmentation. 

 
the twig parts and the corresponding seeds is so far that the 

random walker with a small probability starts from these seeds 

to twig parts (or from twig to seeds). 

In this paper, we propose a novel subMarkov random walk 

(subRW) framework to unify four RW-based algorithms: RW, 

RWR, LRW and PARW, and extend it by adding label prior 

to solve the twig problem. First, according to the subMarkov 

property, we build a subRW framework for image segmen- 

tation.  In  subRW,  a  random walker  will  leave  a  graph  G 

from  a  node i  with  probability ci   and  walk  to  the  other 

adjacent nodes in  G  with probability 1 − ci .  This random 
walker can be transformed to a random walker with Markov 

transition  probability  (
    

q (i, j )   =   1)  that  walks  in  an 

expanded  graph  Ge .  This  graph  is  constructed by  adding 

auxiliary staying nodes connected with seeds and auxiliary 

killing nodes connected with unseeded nodes into graph G. 

In order to further understand the subRW, we give a detailed 

optimization explanation. Then we unify the subRW and the 

aforementioned four RW-based algorithms in  the expanded 

graph.  After  analyzing  the  connections between  them,  we 

design  a  new  RW-based  algorithm  by  changing  edges  or 

adding auxiliary nodes. According to this idea, we introduce a 

novel subRW with label prior to solve the twig problem. This 

label prior can be viewed as global ‘seeds’ connected with all 

nodes. Each global ‘seed’ corresponds to a label. So we can 

add some prior nodes connected with all nodes into graph Ge 

to build a new expanded graph G p . Then we compute the 

probability that  a  random  walker  starting  from  each  node 

reaches the staying nodes or the prior nodes in graph G p , as 

the likelihoods probability of corresponding labels. In other 

words, we want to compute the probability of reaching the 

user specified seeds plus the probability of reaching the global 

‘seeds’. These global ‘seeds’ will help to segment out the twig 

parts. As shown in Fig. 1 (f), our approach has successfully 

segmented the twigs of the tree using the proposed subRW 

algorithm with label prior information. 

A preliminary version of this work was presented in [43], 

and the present is significantly different. The popular random 

walk with Markov transition probability is first added into our 

unified optimization framework, which makes this framework 

more complete. Considerable new theoretical analysis and 

proofs  are  added  into  the  initial  subRW  algorithm,  such 

as  the  uniqueness and  a  new  optimization explanation for 

subRW with label prior, which make it applicable for more 

vision applications based on optimization. The optimization 

framework and explanation improves the initial algorithm to 

be more suitable for multi-label segmentation. We also extend 

the original experiments from 2-label segmentation to multi- 

label segmentation. Our source code will be available at.1 

The main contributions are summarized as follows: 

1) A novel random walk (subRW) with label prior is 

proposed for unifying well-known RW-based algorithms, 

such   as   RW   [20],   RWR   [27],   LRW   [40],   and 

PARW [37], which all satisfy the SubMarkov property, 

making it easier to convert the intrinsic findings between 

them. 

2)  The  subRW  is  interpreted  as  a  general  optimization 

problem, which makes it easier to find the latent prob- 

lem  of  the  subRW  for  different  vision  applications. 

For example, from the optimization explanation of 

subRW with label prior, we find the consistence between 

label prior and reaching probability may be violated in 

multi-label segmentation, and we successfully solve this 

problem. 

3)  We   further   introduce   a   novel   subRW   algorithm 

by adding auxiliary nodes into the original graph. 

According to this idea, a novel subRW method with label 

prior is proposed to solve the twig segmentation prob- 

lem with thin and elongated objects. The optimization 

explanation is also given. 

 
II.  A UNIFYING VIE W OF SUBRW 

In this section, we propose a novel random walk algorithm 

with a subMarkov transition probability (subRW) for interac- 

tive multi-labeled image segmentation, provide the optimiza- 

tion explanation of subRW, and analyze the relations between 

this proposed algorithm and other popular RW algorithms, such 

as RW [20], RWR [27], LRW [40], and PARW [37]. 

We  first give  some  important notations and  their  corre- 
sponding descriptions. An image is formulated as a weighted 

undirected graph G = (V , E ) with nodes v ∈ V , and edges 

e ∈ E ⊆ V × V . Each node vi  represents an image pixel xi . 

An edge ei j   connects two nodes vi   and v j   in 8-connected 

neighborhood system. A weight wi j  ∈ W of edge ei j  measures 
the  likelihood that  a  random  walker  will  cross  this  edge. 
 

1 http://github.com/shenjianbing/subrw

http://github.com/shenjianbing/subrw
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As many previous graph-based segmentation algorithms [20], 

[21],  [27], [40],  a  weight wi j    is  defined as  the  following 

weighting function:

 

wi j  = ex p(− 
 
 
Ii − I j   

2
 

σ 

 

) +  ,              (1)

where  Ii   and  I j   are the pixel colors at two nodes vi   and 

v j   in Lab color space, σ  is a controlling parameter which 

is set as 1/60 in this paper, and    is a small constant as 10−6. 

The degree matrix D is a diagonal matrix where Di i   = di , 
di  = 

    
j ∼i wi j   is the degree of a node vi ,  j ∼ i  represents 

a node v j  in the neighborhood (not includeing itself) of vi . 
N is the number of nodes (pixels). 

In our approach, a user needs to indicate some scribbles 

on  foreground  objects  and  backgrounds  as  multi-labeled 

seeds.  Here,  we  define  these  seeds  as  a  set  of  labeled 

nodes  VM    =   {V l1 , V l2 , · · · , V lK }.  Then  a  set  of  labels 

LS = {l1, l2 , · · · , l K } is also defined, where K is the number 

 

 
 
 
 
 
 
 
 
 
 
Fig. 2.    The nodes graph of a subRW. The ellipse nodes denote the original 
nodes in V  and the circle nodes are the newly added auxiliary nodes. The 
green ellipses are the unseeded nodes and the others are the seeded nodes.

of labels V lk  = {v
lk , v

lk , · · · , v
lk } and Mk  is the  number of

1      2                 Mk 

seeds with label lk . 

 
A. The SubMarkov Random Walk 

Given a weighted graph G, a set of labeled nodes VM , and 

a set of unlabeled nodes VU , where VU ∪ VM  = V , the multi- 

labeled image segmentation can be formulated as a labeling 

problem, where each node vi  ∈ V  should be assigned with a 

label from set LS. This problem can be solved by comparing 

the probability r 
lk   of each node belonging to a label lk  in our 

algorithm. Before computing this probability, we define the 

subMarkov transition probability q on V as follows: 

Definition 1: q denotes a subMarkov transition probability 

if for each node vi 

node     connected with all unseeded nodes (e.g., the green 

circle node in Fig. 2). When a random walker from a node vi 

reaches this node, it will be killed at this node and the 

corresponding probability will be omitted. In other words, an 

effective random walker will not reach this node. The other 

one is the staying node s
lk   connected with the m-seeded node 

with label lk   (e.g., the blue, orange or purple circle nodes 

in Fig. 2). When a random walker reaches this node which 

can be viewed as  a  target node, it  will stay at  this node. 

We denote  SM   as a set of staying nodes corresponding to 

seeds set VM , and ci  as the leaving probability for each node 
in V . Then, the transition probability on V ∪ {   } ∪ SM   is 
formulated as follows: 

⎧
ci ,              if i ∈ V , j ∈ {   } ∪ SM

  
q (i, j )    1.                                  (2) 

j ∼i 

⎪ 

q (i, j )     

⎪⎨(1 − ci )
 

wi j  

 

di 

,  if  j ∼ i ∈ V 
 

 
(3)

According to [30], a subMarkov transition probability has 

the following property: 

Property 1: Through adding an auxiliary node   , a sub- 
Markov  transition  probability  q  on  G  can  be  made  into 

a  (Markov)  transition  probability  on  V  ∪ {   }  by  setting 

q (  ,  ) = 1 and q (i,   ) = 1 −  
    

q (i, j ). The probability 
j ∼i 

⎪1,                     if i = j ∈ {   } ∪ SM ⎪⎩
0,                     otherwise. 

 

Suppose a random walker starts from a node vi  ∈ V  and 

walks on V ∪ {   } ∪ SM  with the transition probability q (i, j ) 

in (3). By setting r 
lk     as the reaching probability that this 

random walker reaches the auxiliary staying node s
lk , then

q (i,   ) can be viewed as a  probability that a random walker 

leaves graph G. 

According to the above property, we can design different 

we have: 
⎧ 
⎪(1 − ci ) 

 
 

 
wi j 

r 
lk    + c  · 1   if v  = v

lk , 
d    j m         i                  i          m

subMarkov random walk algorithms by adding different aux- 
lk           

⎨
 

im  
= j ∼i      i 

i j   lk
 (4)

iliary nodes. In fact, popular random walk algorithms, such ⎪(1 − ci ) 
 

 
d  

r j m + ci · 0   otherwise.

as RW [20], RWR [27], LRW [40], and PARW [37], can be 

interpreted in this view (more details will be given in the next 

⎩    
j ∼i      i 

 

The vector notation r
lk               lk

subsection). The other advantage of a subMarkov transition 

probability is that it will help to improve segmentation per- 

 

follows: 
m = [rim ]N ×1 , which is formulated as



 

im  

im  m im  
× 

formance in images with complex texture. More experiments 
m = (I − Dc )Pr k 

+ Dc b
l  ,                  (5)

and analysis for solving the complex texture problem given 

in Section IV-B. 

m               m 

where b
lk                 k     

N   1

m  = [b
l   

] is the N -dimensional indicating vector

We first consider a general subRW algorithm for interactive with  b
lk

 =   1  if  vi     =   v
lk

 and  b
lk

 =   0  otherwise.

seeded  image  segmentation. Two  kinds  of  auxiliary nodes 

are  added  into  graph  G  to  get  an  expanded  graph  Ge . 

As shown in Fig. 2, one kind of auxiliary node is a killing 

Dc  is  a  diagonal matrix whose diagonal element is  ci   i.e. 

Dc = di ag(c1, c2 , · · · , cN ), and I is a N × N identity matrix. 

The  transition matrix P  =  [ pi j ]N ×N    is  a  row-normalized



 

m 

m 

m 

lk 

m 

x 

x 

1 

matrix of the adjacency matrix W (defined in (1)): By taking the partial derivative of r
lk , we have:

 

pi j  = wi j /di .                                   (6)
 

 

∂ Olk                                      
l
  

1              l           l

lk     
= (D − W)rm + (I − Dc )

 
DDc (rm − bm )

 
The number of a set of seeded nodes with a same label is 

 

 

∂ rm 

k                                −                k              k 

 
lk

often larger than one. A good RW approach should consider = (I − Dc )
−1 D[(I − (I − Dc )D

−1 W)rm − Dc b
lk ]

all seeded nodes. We use an average reaching probability r 
lk ,

 
lk                     k

i 

that a random walker from a node vi  reaches a set of staying 
nodes with label lk , as the likelihood of assigning this node 

= (I − Dc )
−1 D(Erm − Dc b

l  ),                            (12) 

where E = I − (I − Dc )P = I − (I − Dc )D
−1 W. By setting 

lk

to label lk . (5) can be rewritten as follows: 
∂ O 

∂ rm      

=
 

0,  we  can  get  (7).  Thus, the  optimal solution of 

l

rlk
 

−1         lk
 

−1         lk
 minimizing the objective function  O k 

is  equivalent to  the
m = (I − (I − Dc )P) 

 

where E = I − (I − Dc )P. 

Dc bm = E Dc bm ,        (7) 
 

solution of subRW. 

Let us analyze the objective function (10). This objective

Thus,  a  vector  formulation  of  this  average  steady-state 

probability rlk   can be given as follows: 

function consists of two components. The first component is 

a common smoothing term. Minimizing this term will keep 

the consistence of the local probabilities, i.e., when the nodes
 

rlk  = 1      
Mk   

rlk  = E−1 Dc b
lk ,          (8) 

are more similar, their probabilities are more likely to be the 

same. The second component can be viewed as a unary term
Z k Mk  

m=1 
Z k Mk 

corresponding to seeds. By minimizing this term, probability
lk                                                                                                           lk

where blk  = [b
lk ]N

 
1  is a vector with b

lk  = 1 if vi  ∈ Vlk   and
 r

im  
keeps close to the predefined value b

im  
which represents

i       ×                                       i 

b
lk 

i   
= 0 otherwise, and Z k  is a normalized constant. The final 

labeling result (i.e., the segmentation result) for each node 
vi  ∈ V is obtained as follows: 

 

Ri  = arg max r 
lk .                                (9) 

lk        
i
 

 

Note that, in (8), directly computing the inverse of matrix E 

may  be  very  expensive,  especially  when  the  number  of 

nodes  is  very  large.  Fortunately, (8)  can  be  converted  to 

solve the linear equations and the corresponding coefficient 

matrix E is a sparse matrix. We can use the existing sparse 

algorithms [3]–[5] to solve these linear equations. More impor- 

tantly, if 0 < ci    1, ∀i  ∈ V , matrix E is non-singular (the 
proof is given in Appendix A). The solution of these linear 

equations is unique in theory, when 0 < ci    1, ∀i  ∈ V . Thus, 

the segmentation results are unique. 
 
 

B. The Optimization Explanation of SubRW 

Although the subRW algorithm is based on random walks, 

it can also be interpreted as a general energy optimization 

problem, which will make the subRW easier to be employed 

for general vision applications using optimization [29], [34]. 

Now  we  will  give  the  optimization  explanation  in  detail. 

the information of seeds. ci   is the regularization parameter, 
and it decides which component is more important. 
 

 
C. Relations With Other Well-Known RW Algorithms 

We will further analyze the relations between the proposed 

subMarkov  random  walk  and  other  popular  algorithms: 

RW [20], RWR [27], LRW [40], and PARW [37]. Then we find 

these algorithms can be unified and related with the subRW. 

1) Relations With RW: In [20], Grady proposed a random 

walk algorithm with Markov transition probability for segmen- 

tation, which can be viewed as a special case of subRW. This 

algorithm places a random walker at each unlabeled node and 

then computes which labeled nodes they first arrive at. This 

computation would  be  completely impractical. Fortunately, 

the combinatorial Dirichlet algorithm provides a simple and 

convenient method for computing this problem [20]. Here, we 

directly give formulation of this solution. More details can 

be found in [20]. Denote xlk   as the probabilities of random 

walkers first arriving at the labeled nodes with label lk  and L 
as the Laplacian matrix, where L = D − W [6]. Without loss 
of generality, we may assume that the nodes in L and xlk 

are ordered such that the labeled nodes are in first and the 

unlabeled nodes are in second. Then we have the block matrix 
lk

Firstly, suppose ∀i ,  0  <  ci   <  1, then let us consider the 

following objective function: 

of L and x  :  

  
LM        B 

  
 

   
lk  
 

 
lk                 M

 

1  
N     N 

L =   
BT       LU   

,  x   =
 lk     

.                  (13) 
U



 

(r im  

r m 
M U 

T 

N 

T 

Olk   = 
    

wi j (r 
lk − r 

lk   )2

 

2 
i =1  j =1 

im          j m  Different  from  the  subRW,  this  method  only  needs  to 
calculate the probabilities of unlabeled nodes and the final

1   
+ 

2 
i =1 

di ci        lk 

1 − ci     
im 

 

 

− b
lk  )2 .              (10) 

solution is as follows: 
 

LU x
lk   = −BT x

lk  ,                      (14)

 

The vector formulation of above equations is defined as:
 

U                     M 

where x
lk

 

 

O lk   = 

 
1  lk 

T 

2  m
 

 

 

(D − W)rlk
 

M  is given by the labeled nodes. 

By setting the indicating vector blk   = [b
lk

 

we obtain: 

 

, b
lk 

T
 

 
]  , then

1   lk
 

lk   
T 

−1              lk            lk                                                                                                                          l
+ 

2 
(rm − bm )

 
(I − Dc )

 
DDc (rm − bm ).      (11)

 
x

lk               k

M  = bM .                                    (15)



 

m 

im  

i i j 

lk 

di 

m 

m 

im  

⎪ 

d 

For the comparison between RW and subRW, we should a node vi  has the same label with seeded node v
lk , can be

rewrite (14). Denote the block matrix of W, D as: formulated as:

  
WM       WB 

    
DM         0  

  
 

fllk
 

 

(I − αS)−1 blk ,                     (24)
W =   

WT
 ,  D = .           (16) m =                   m

B      WU 0      DU 
 

where  S   = D−1/2WD−1/2 ,  D  is  a  diagonal  matrix  and

Note that L = D − W, so LU  = DU − WU  and B = −WB . 
Substitute these above equations into (14), we then have: 

Di i  = di . 
We rewrite (24) as follows:

(DU  − WU )x
lk

 

= WT x
lk

  

(17)
  

fllk  = αD−1/2 WD−1/2 fllk  + blk

U              B   M m                                             m         m ,              (25)

DU x
lk 

= WU x
lk  + WT x

lk .             (18)
U 

 

Rewrite (18) as follows: 

U            B   M In fact, the labeling result of LRW (or other algorithms 

based on RW) only depends on the probabilities of each node 

with different labels, i.e., Rli  = arg max f l
lk  . So we can scale

di x 
lk   =     

 
 

j ∼i, j ∈VU 

wi j x 
lk  +     

 
 

j ∼i, j ∈VM 

wi j x 
lk ,  i ∈ VU      (19) 

lk 

these probabilities to interpret the LRW from the subRW point 
of view, which will not change this labeling result. By setting

x 
lk 
  wi j 

x 
lk ,  i ∈ V

  

,                              (20)    β
 

(1     α)d 
1/2 

, d
 

min d , and rl
lk 

β D−1/2fl
lk , we

i    =        
di      

j                    U 

j ∼i
 

=     −      
min min  = 

i 
i                 m  =              m 

=1:N

 

where x 
lk  = b

lk , for j ∈ VM .
 

then multiply (25) by β D−1/2  to  obtain:

j           i                                                                                                                                          rlm = αD
−1 

Wrl
lk 

+ β D
−1/2

b
lk .                  (26)

m                          m 
Recall  (8)  for   computing  the  desired  probabilities  of

subRW, we can rewrite it as follows: The above equation can be rewritten as follows:

 

r 
lk

 wi j    lk

 
ci            lk

 

rl
lk

   wi j 
rl

lk                                      lk

i    = (1 − ci ) 
 

 

j ∼i 

r j   + 
i 

 

 

Z k Mk 

· bi  .            (21) im  
= α 

 

 

 di j ∼i 

j m 
+(1 − α)γi bim 

+ (1 − α)(1 − γi ) · 0, 
 

(27)

Comparing  (15),   (20)   and   (21),   it   indicates   that   if  
1, i ∈ VM

 

 

where γi = ( dmin ) 
 
1/2 .

Z k    =   1/Mk ,  ci    = 
 

equivalent to the RW. 

 

0, i ∈ VU 
then    the  subRW  is 

, 
According to this equation, we find that the LRW can also 

be viewed as a subMarkov random walk by adding an edge

2) Relations With RWR: Kim et al. [27] suppose a random between each seeded node and the killing node    . Then the

walker starts from a  m-th seed   node v
lk

 

 

of  label lk 

 

in  a 
corresponding transition probability on V ∪ {   } ∪ SM  can be 
formulated as:

graph G. Different from the traditional random walker, it has                            ⎧

a restarting probability c to return to seed v
lk

 at each step. 1 − α,                   if i ∈ VU ⎪ 
, j =   

Then each node is assigned a steady-state  probability  f r 
lk 

⎪
(1 − α)γi ,           if i ∈ VM , j ∈ SM

that this random walker will finally stay at this node, which 
⎪       

i                         S               M

(1 − α)(1 − γ ),   if i ∈ V , j ∈ S

is formulated as: q (i, j ) = wi j  
α      ,              if  j ∼ i     V

 (28)

 

f r 
lk

 

 

= (1 − c) 
     wi j  

f r 
lk

 
 

+ c · b
lk  .             (22)

 
⎪ di                                                 

∈
 ⎪



 

m 

im  

m                                                    i 

d 

 

im   di         
j m                im j 

∼i 

⎪1,                           if i = j ∈ {   } ∪ SM 

0,                        otherwise.

(4) of subRW is rewritten as follows: 
 

4) Relations  With  PARW:   In  [37],  partially  absorbing

im  = (1 − ci ) 
  

r 
lk

 

j ∼i 

wi j 
r 

lk    + c  · b
lk  .              (23) j m         i       im  

i 

random walks (PARWs) model were proposed for ranking, 

clustering, and classification. Wu et al. [37] suppose that a 

PARW is absorbed at current node i with probability λi , and

Combining (22) and (23), we find that RWR is a special case 
of subRW with leaving probability ci  = c, i = 1, 2, · · · , N . 
In other words, the subRW can be viewed as a set of RWR 

with a different restarting probability at each node. 

3) Relations With LRW:  In [40], Shen et al. proposed a 

lazy  random walker  for  superpixel segmentation, which  is 

viewed as a multi-labeled segmentation problem. Under their 

framework, a random walker will stay at the current position 

with probability (1 − α) and walk out along an arbitrary edge 
with probability α. They use the commute time C Ti j  [14] to 

measure the probability that these two nodes belong to the 
same label, where C Ti j  is the expected number of steps for 

a lazy random walker starting at vi  to v j  and then returning. 

After normalizing the commute time, probability  f l
lk , that

 

walks out of it following a random edge with probability 1−λi . 
They set ai j   as the absorption probability, where a PARW 
starting  from  node  i   will  be  absorbed  at  node   j   with 

probability ai j .  Then matrix A  =  [ai j ]N ×N    of  absorption 

probabilities is formulated as: 
 

A = ( + D − W)−1  ,           (29) 
 

where     = di ag(λ1, λ2 , · · · , λN ), λi    0, i = 1, · · · , N . 

To solve the segmentation or labeling problem, we can use 

the absorption probability r p
lk     that a PARW starting from a 

seeded node v
lk   is  absorbed at node v , as the probabilities 

belonging to label lk . The vector notation rp
lk   is: 

 

rplk  = Ablk .                                  (30)
m                                                                           m              m



 

r p r p 
im  

d    α 

i  = 
i 

k 

i 

w 

 

 

By combining (29), (30) can be rewritten as: 

rplk  = ( + D)−1(Wrplk   +    blk ).                (31)
 

m                                            m              m 

The above equation is equivalent to:
 

lk            
  

im  = 
j ∼i 

wi j           lk 

di  + λi       
im 

 

λi 
+ 

di + λi 

 

b
lk  .             (32)

By  comparing  the  above  equation  and  (23),  we  find

that  (32)  is  equivalent to  (23)  when  ci    =     λi ,  i.e.  the
di +λi 

PARW is equivalent to the subRW. In fact, after substituting

ci  =    λi into 1−ci , we have 1−ci =    1    .

di +λi                 di di              di +λi

5) Merits of a Unifying View: We have shown that subRW 

can unify or relate the popular models based on RW. There 

are at least two merits of the unifying view. First, it builds the 

connections between different RW-based algorithms, so that 

it is easier to transfer findings between them. For example, 

in PARW [37], the authors have proved that the choice of 

λi     =   α  (∀i )  can  fulfil  the  cluster  assumption.  In  other 

words, by fixing all  λi   as  a  proper parameter, a  desirable 
clustering performance with PARWs will be achieved. If we 

want  to  apply  subRW  to  solve  a  clustering  problem,  the 

leaving probability ci  can be fixed as    α     to fulfill the cluster 
i + 

 
 
 
 
 
 
 

 
Fig. 3.   The nodes graph with prior nodes of a subRW. The red circle nodes 
represent the prior nodes, which should be connected with all the original ellipse 
nodes. We only show two edges for each prior node for simplification. One edge 
connects a seeded node, and the other connects an unseeded node. Except for 
the red circle nodes, the other nodes are defined as the same as the nodes in 
Fig. 2.

assumption - when c         
λi 

di +λi 
, the subRW is equivalent to the

PARW. Another example  is for segmentation. In RWR [27], where uk
 denotes the  probability density belonging to  Hk

the  authors  have  discussed  the  influence  of  parameter  c. 

In this paper, we have chosen parameter ci  according to their 

suggestion since  the  subRW  is  the  generalized version  of 

RWR. Second, a unifying view offers a new way to design 

novel RW-based algorithms by adding some new auxiliary 

nodes or  changing the  edges between auxiliary nodes and 

original nodes in V . For example, the LRW can be viewed as 

an expansion of the subRW. Inspired by the second merit, we 

design a new subRW with label prior to segment out objects 

with twigs. 

at node vi . This distribution can be learned via many tech- 
niques,  such  as  kernel  estimation  and  Gaussian  Mixture 

Model (GMM). Here, the GMM is used as the prior model. 

Each prior distribution Hk  is viewed as a GMM learned by 

the  seeded nodes with  label lk   (more details about GMM 

learning can be seen in [24], [36], and [38]). Given these 
prior distributions, we can add a set of prior auxiliary nodes 

HM  = {h1 , h2 , · · · , h K } into expanded graph Ge  and get a 

graph with prior Ḡ . An example is shown in Fig. 3. Each 

prior node is connected with all nodes in V and weight wihk 

of an edge between a prior node hk  and a node vi   ∈ V  is

III.  SUBRW WIT H LABE L PRIOR FOR
 proportional to probability density uk , i.e., wih 

 ∝ uk . In this
 

SEEDED IMAGE SEGME NTAT ION 

An object with twigs can be separated into two parts: main 

branch object and twig part. Usually, the twig part is similar to 

the main object, so appropriate user-specified scribbles on the 

main object have included enough information for segmenting 

out the twig part. But most RW-based algorithms do not make 

full use of this information and often omit the twig part. In this 

section, we want to add a label prior constructed by these 

i                     k             i 
paper, we set weight wihk   as: 

wihk   = (1 − ci )λu i ,                     (33) 
 

where λ  is a regularization parameter, which measures the 

importance of the prior distribution. 

Then the transition probability on V ∪ {   } ∪ SM ∪ HM  is 
formulated as follows: 

⎧
c ,                     if i ∈ V , j ∈ {   } ∪ S

scribbles into the subRW to help segment out the twig part. 
 

 
A. Adding Label Prior 

In general, user-specified scribbles are considered as exact 

 
 
 

q̄ (i, j ) = 

⎪ i 
⎪ ⎪

(1 − ci ) ⎨ 

(1 − ci ) ⎪ ⎪ 

 

λuk
 

 

di + λgi 
i j  

di + λgi 

M 
 

,  if i ∈ V , j = hk 

,  if  j ∼ i ∈ V

label prior. Unfortunately, this prior only works at the seeded 

nodes and all unseeded nodes do not have this prior. There- 

fore,  we  want  to  give  all  nodes  in  V  a  new  label  prior, 

which  maybe  less  exact  than  user  
scribbles,  but  can  be 

⎪1,                             
if i = j ∈ 
{   } ∪ SM 



 

im  

m 

⎪⎩0,                             otherwise, ∪ HM 
 

 
(34)

used  for  unseeded  nodes.  This  label  prior  is  constructed 

by  the  user  scribbles,  i.e.,  the  seeded  nodes.  We  can  use 

probability distributions to  build  the  prior  model.  Assume 

where gi  = 
    K     

uk . k=1    i 
Given a transition probability q̄  on a graph with prior Ḡ , 

the probability r̄
lk  , that a random walker from a node vi  ∈ V

a  label lk   has  an  intensity  distribution  Hk   for  each  node, reaches the m-th staying node s
lk  with label lk or prior node hk ,



 

r̄ im  

im  m im  

m 

m 

i 

i 

i 

m 

m 

m 

l 

im  

d 

1 1 

1 

¯ 

m 

k 

 

is formulated as follows: 

wi j r̄
lk 

 

 

λuk 

Algorithm 1 Segmentation by SubRW With Label Prior

lk    = (1 − ci )   
 

 

j ∼i ∈V 

j m  

di + λgi 
+ (1 − ci ) 

i 

di + λgi 
+ ci b

lk  , 

 
(35)

where b
lk

 = 1 if vi  = v
lk

 and b
lk

 

 

= 0 otherwise.

In fact, this prior node hk  can be viewed as a new staying 
node with label lk , so this reaching probability of hk  should

be considered. By setting a vector r̄
lk   = [r̄ lk  ]N

 
1 , we can get

m 

the vector formulation of (35): 
im     ×

r̄ lk   = (I − Dc )P̄ r̄ lk  + (I − Dc )ū k + Dc b
lk 

m                                m                                              m

 
 
 

where Ē 

= (I − (I − Dc )P̄ )−1 ((I − Dc )ū k + Dc b
lk ) 

= Ē −1 ((I − Dc )ū k + Dc b
lk ),                            (36) 

= I − (I − Dc )P̄ , the transition probability matrix

P̄ = [ p̄ i j ]N ×N   in V is defined as: 

wi j 
p̄ i j  = 

i + 
,                        (37) 

λgi

ū k = [ū k ]N ×1  is a vector with 

 

ū k =
 

 

 

λuk
 

 
 
 

.                                (38)

i        di + λgi

As mentioned before, we use the average reaching proba- 

bility r̄
lk   for each node vi  ∈ V as the probabilities belonging 

to label lk . The vector notation r̄ lk   is formulated as: 

 
 
The vector formulation is as follows:

 

r̄ lk   =
 

 

E−1 ((I − Dc )ū k +
  

Dc b
lk ),             (39)

 Ō lk   = rlk 
T

 

2 
(D − W)r̄lk

Z k  

¯                                  
Mk 1   lk

 
lk   

T                   −1
 

lk            lk

The final labeling (segmentation) result with a label prior + 
2 

(r̄m  − bm ) 
(I − Dc ) (D + λDg )Dc (r̄m  − bm )

is obtained as follows: 
λ    lk

 
 
T    k    lk

 
K 

λ             
lk 

T 
 
t   lk

R̄ i  = arg max r̄
lk ,                       (40)

 + 
2 

(r̄m −e) Du (r̄m  − e) + 
2

 r̄m   Du r̄m ,  (42)

lk        
i
 t =1,t =k

where R̄ i   represents the final label for each node, i.e., each 

pixel in an image. 

In fact, solving (39) can be converted to solving the equiv- 

alent sparse linear equations. We will scale the probability 

density to better utilize the GMMs, since the GMMs need 

the log operation to reduce the cost of computation. These 

algorithm steps are shown in Algorithm 1. And the solution 

 

where  Dg    =   di ag(g1, g2, · · · , gN )  is  a  diagonal  matrix, 

Dk                         k     k                k 
u  =  di ag(u1, u2 , · · · , u N ) is also a diagonal matrix, and 

e = [1, 1, · · · , 1]T  is a N × 1 vector. We  set Da = D + λDg 

and Dη = I − Dc . 

By taking the partial derivative of r̄
lk , we have: 

 

∂ Ō lk

of these equations is also unique, if 0 < ci    1, ∀i  ∈ V  (the
  

∂ r̄
lk

 

= (D − W)r̄lk  + D−1 Da Dc (r̄lk  − blk )

proof is given in Appendix A). m          η 
m 

K 

k   lk              

  

m         m 
 

 
t   lk            k

 

B. The Optimization Explanation 
+ λ(Du r̄m +  

t =1,t =k 

Du r̄m − u )

Similar to the subRW, we can also give the optimization
 



 

k 

k 

η 

lk 

η m 

k 

N 

N K N 

= (Da − W)r̄lk

 

η   Da Dc (r̄ k              

k

 
explanation   for   the   subRW   with   label   prior.   Suppose

 m + D−1
 

l   − bm ) − λuk

−1                                       −1                lk
∀i ,  0 < ci  < 1, then the objective function is as follows: 

= Dη   Da [(Dη + Dc − Da   Dη W)r̄m 

D blk  − D−1D  λu  ]

1  
N     N                            

l
 −   c   m          a       η

Ō lk   =
     

wi j (r̄
lk

 

− r̄     )2
 

1 D [Ē r̄l
 

− (D ū k
 
+ D bl    ]

 

2 
i =1  j =1 

im          j m  = D−     
a         

k
 

 

k                               1      k
 

c   m ) , 
 

a
−1

 

(43)

1       (di + λgi )ci
 where   Dη ū =     Dη D    λu =     D    Dη λu  ,   Ē      =

(r̄
lk 

− b
lk  )2 

I    (I
 

D )P̄
 

I    D D−1W      D
 

D      D−1 D W. By+ 
2             1 − ci            

im          im  −    −   c =    −   η    a =    η + c −   a       η

i =1 

1   

 

 
k    lk

 

 
2       1          

 

 
t   lk 

2 

setting ∂ Ō lk 

∂ r̄m     

=
 
0, we  can get (36).

+ 
2 

i =1 

λui (r̄im  − 1) + 
2 

t =1,t =k i =1 

λui r̄ im .      (41) Thus, the optimal solution of minimizing objective function 
Ō lk   is equivalent to the solution of subRW with label prior.



 

im  

im  

i 

i 

r̄ 

i 

i 

im  

 

From (41), we can find that it consists of three components. 

The first two components are the smooth term and the unary 

term, which are similar to the components in (10). The last 

component corresponds to the label prior. By minimizing this 

IV.  EXPERIMENTAL RESULTS  

In this section, we evaluate the performance of the proposed 

subRW on both synthetic and natural images. We compare our 

algorithm with state-of-the-art methods including RW [20],

component, the reaching probability r̄
lk

 will  be consistent RWR  [27],  and  LRW  [40]  in  qualitative  and  quantitative

with the label prior. Note that, if we only consider the label evaluation. The implementation codes of these algorithms are

prior, the reaching probability r̄
lk

 

proposition. 
should satisfy the following offered by the original authors, and the suggested parameters 

in their papers are used to run the experiments. Our algo-

Proposition 1: If the probability density uk
 of label lk  is rithm includes two main parameters: the leaving probabilities

larger than the probability densities of any other labels, i.e., c1, c2 , · · · , cN   and the label prior parameter λ.  The leaving

uk                    t                                                                                                      lk
i  > max u i , then the corresponding reaching probability r̄im t 

=k 

should be close to 1. 
However, from the last component of (41), we can find that 

K 

probabilities control the probability that a random walker 

reaches the staying nodes (seeds), which principally influence 

the regions without twigs. As mentioned before, when all of 

ci  are set as the same constant, the subRW is equivalent to the

only when uk   >
 ut , r̄

lk will be close to 1. When

i   i      im t 
=1,t =k 

K > 2, this situation is not expected. Thus, a proper adjust- 

ment is made to correct this problem. Denote gk = uk +max u t 

RWR. And a RWR with a proper restarting probability per- 

forms well in most images without twigs. Then we empirically 

set the leaving probabilities to a constant ci  = 4e − 4.
i           i      

t =k     
i

and set gi  = gk for each label, then the last component of (41) A. Complex Texture Problem

will become:  

In this experiment, we compared our algorithm with the

1  
N                                         

1  
N                              

2  
λuk (r̄

lk 
− 1)

2 +
 
  

λ(max u t )r̄
lk   .         (44)

 other algorithms on synthetic textured images. Each textured

 

2 
i =1 

i     im  
 

2 
i =1 

t =k 
i     im  image includes four  or  five types  of  texture. The  goal  of 

segmentation is to extract the texture with twig parts from

By    minimizing    this    component,      
lk

 will    satisfy these images. The segmentation results in Fig. 4 (e) show that

Proposition  1.  In  practice, the  above  adjustment is  made all the twigs are completely segmented out and the boundaries

by  setting  gi    =   gk
 

Algorithm 1. 

 
C. Noise Reduction 

in  (39).  More  details  are  shown  in of the main part are also correctly detected by our algorithm. 

As shown in Fig. 4 (b)-(d), the other RW algorithms [20], 

[27], [40]  do  not  perform well  for  these  textured images. 

The RW method almost does not find the right boundaries

Adding the label prior may produce some noise. One 

solution is decreasing parameter λ.  However, when λ  is too 

small, the twig parts may be lost. Then we need to use the 

other strategy to reduce noise. Combining the label prior value 

for each node, we can get a coarse segmentation result: 

C Ri  = arg max u
k 
.                             (45)

 

since there are too many short noisy edges in textured images. 

These edges can be viewed as barriers which prevent a random 

walker to walk across them. When there are many barriers 

between an object node and the corresponding seeds, it is 

difficult for a  random walker from this node to  reach the 

right seed. Thus  RW  fails  to  segment many nodes of  the

k       
i                                                         object. Both RWR and LRW reduce the probability that a

Although there is much noise in this coarse segmentation, it 

mostly does not connect with the main part. So we can choose 

the connected regions with seeds from the coarse segmentation 

as the candidate regions. Then we only add the label prior into 

these candidate regions, which will keep the prior information 

of twigs and decrease the noise. Furthermore, the candidate 

regions are dilated to  add more prior information into the 

boundary regions. Since the contrast of the prior information 

near boundaries is high, it will help to find correct boundaries. 

We  denote  the  indicating  vector  of  the  dilated  candidate 

regions as crk  = [cr k ]N ×1 , i.e., cr k  = 1, if node i  belongs 

random walker  walks  on  the  original image  graph, which 

thus reduces the influence of these barriers. Then the random 

walker in RWR or LRW will be more likely to find the correct 

boundaries. Fig. 4  (c) and (d) show the similar results by 

RWR and LRW, since they can be viewed as similar subRWs 

without label prior. In the top row, they perform well and 

only lose  some twigs  and produce some error boundaries. 

However, in the bottom row, they only detect very few right 

boundaries. This may be due to that the twigs are too long 

and complicated. Our algorithm still performs very well for 

this  complicated situation. Our  algorithm also  reduces the

i 

to these regions; cr k 
i 

= 0, otherwise. Then the prior vector influence of barriers by decreasing the walking probability on



 

i uk  = [uk ]N
 ×1   is reset as: uk  ← uk    crk , where     means the original image graph. The label prior will help the random

the  corresponding elements  of  two  vectors  are  multiplied 

respectively and a vector is returned with the same scale. For 

some images with a high contrast between the object and the 

background, it is not necessary to make this noise removal 

process. So we  offer a  selecting parameter γ  for users to 

choose whether to perform this process. 

Finally,  we  summarize  the  main  steps  of  the  proposed 

subMarkov random walk with label prior in Algorithm 1. 

walker from a node of twigs to reach the right global ‘seed’ 

(i.e, prior node). 

 
B. Qualitative and Quantitative Comparisons 

We  have  also  compared  our  algorithm  with  the  other 

three well-known RW algorithms for natural images shown 

in Fig. 5 and Fig. 6. These images are taken from three datasets: 

the  Berkeley segmentation dataset (BSD) [9], the



 
 
 

 
 

 
Fig. 4.    Comparison between our algorithm and other RW algorithms on synthetic texture images. (a) The input scribbled images. (b), (c), (d) and (e) are 
the segmentation results by RW [20], RWR [27] with c = 1e − 6, LRW [40] with 1 − α = 1e − 6, and our subRW with γ = 1, ci  = 4e − 4, λ = 4e − 11. 

 

 

 
 

 
 

Fig. 5.   Comparison between our algorithm and state-of-the-art algorithms. (a) Input scribbled images. (b), (c), (d) and (e) are segmentation results of RW [20], 
RWR [27] with c = 4e − 4, LRW [40] with 1 − α = 1e − 4, and our method with ci  = 4e − 4, λ = 2e − 10. The value of γ in our approach is empirically 

chosen, where γ = 1 for the top one image and γ = 0 for the bottom two images. If γ = 1, many twigs of the bottom three images will be lost. 
 

Microsoft  Research  Cambridge  object  recognition  image 

database  (MSRC),  and  Visual  Object  Classes  Challenge 

2012 (VOC2012). The manual labeled ground-truth masks are 

Two metrics are used for the quantitative comparisons. The 

first one is a normalized overlap score a0 [23] which measures 

the accuracy of the object segmentation results. The overlap

provided in these three datasets, and the VOC2012 dataset region is formulated as: a0  = R̃ ∩G̃ 
, where R̃ is  the set of

only offers ground-truth masks of a part of images. However, 
 

pixels assigned as the object 
R̃ ∪G̃ 

from the 
 

segmentation result and

the masks in MSRC and VOC2012 are not accurate enough 

or  complete  for  our  experiments, and  the  VOC2012  does 

not offer the masks of background. Thus, we only used the 

ground truth masks from BSD and labeled the new ground truth 

masks for a part of images from MSRC and VOC2012 

ourselves. 

G̃ is that from the ground-truth. 
A higher score indicates better segmentation performance. 

This metric is effective for objective evaluation. However, it 

cannot fully reflect the evaluation mechanism of human visual 

system. It may ignore the connectivity or the coherence along 

the segmented boundaries. This limitation has been shown
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Fig. 6.    Comparison results with multiple labels. (a) Input scribbled images. Top two images are from MSRC and others are from VOC2012. (b) Ground 
truth. (c)-(f) are segmentation results of RW [20], RWR [27] with c = 4e − 4, LRW [40] with 1 − α = 1e − 4, and our method with ci  = 4e − 4, λ = 2e − 10, γ  

= 1. The error    denotes the percentage of incorrectly labeled pixels. 
 

 

in  [39]. To  further verify the  performance of  our method, 

we  adopt the  second metric: the  percentage of  incorrectly 

labeled pixels   , which is also called error rate. Let us denote 

TABLE I 

T HE PERCENTAG E O F INCORRECTLY L ABELED  PI X ELS 

FO R 2-L ABEL SEGMENTAT I O N

1                N  T
 

1                N  TL A  = [l 
A 
, · · · , l 

A 
] and L B  = [l 

B 
, · · · , l 

B 
] as the sets of

labels from the segmentation results and from the ground-truth. 
 N    

li       i

Then, the    is defined as follows:    = i =1   A ⊕l B  × 100, where

l i          i
 

i          i      i          i
A 

⊕ l 
B 

= 1, if l 
A 

= l 
B 

; l 
A 

⊕ l 
B  

= 0, otherwise. 
We  evaluated  our  algorithm  and  other  three  algorithms 

on two segmentation problems. The first one is fore- 

ground/background segmentation, i.e., 2-label segmentation, 

which is the most common segmentation problem. And the 

second is multi-label segmentation. Both metrics are applied 

for measuring the quantitative performance. But the main met- 

ric is chosen by different segmentation problems. The overlap 

score a0  measures the accuracy of the object, which is more 

suitable for the 2-label segmentation. In 2-label segmentation, 

more attention may be attracted by the foreground, i.e., the 

object in an image. The error rate    indicates the segmentation 

performance of all labels (not only considering the object), 

which is more suitable for the multi-label segmentation. Thus, 

the overlap score a0, as the main metric of 2-label segmen- 

tation, is directly shown in the qualitative results in Fig. 5. 

Similarly, the error rate    is also directly shown in Fig. 6. 

Next, we will describe these experiments in detail. 
In 2-label segmentation, we choose the natural images that 

only include one object with twigs. Some of them have 

complex textures like the cheetah, and others possess very thin 

twigs such as the helicopter. Fig. 5 shows that our algorithm 

outperforms the other algorithms no matter in quality or in 

quantity. In the qualitative comparisons, it is obvious that our 

method not only successfully segments out the most twigs of 

objects, but also adheres the edges to the boundaries better 

than the others. This is due to the added label prior which 

also has an impact on the main part of the object. In the 

 
 
 

 
 

 

 
quantitative comparisons, the advantage of our method is also 

significant such as the airplane and the cheetah in Fig. 5, where 

the twig parts are very small and our improvements over other 

algorithms are still very evident for these complicated images. 

The comparison of error rate is shown in Table I, which also 

verifies our improvements. 

In  multi-label segmentation, we  also  choose  the  natural 

images with twigs shown in Fig. 6. Some of them have multi- 

background, such as the backgrounds of the bridge include the 

water and the sky. Some of them contain multi-objects, like 

the bike image where the boy is also an object. The qualitative 

and quantitative results are shown in Fig. 6. Similar to 2-label 

segmentation, our  algorithm still  yields better performance 

than the other algorithms in multi-label segmentation. Most 

twigs  are  segmented  out  and  the  adherence  of  edges  in 

the objects are better than others as well. For example, the 

tail  and  the  wings  of  the  airplane have  been  successfully 

segmented out by our algorithm, but the other methods lost 

these twigs. And for the legs of the cow, our algorithm has 

better edges’ adherence. In quantitative comparisons, the error 



 
rate in Fig. 6 and the average overlap score in Table II also 

show the significant improvement of our algorithm. Note that,



 

  

 

TABLE II 

T HE OVERLAP  SCORES  F OR MULTI -L ABEL SEGMENTAT I O N 

 
     

     

     

     

     

     

     

     

 
    

 
 

the average overlap score is the average of all objects’ overlap 

scores in one image. It is worth mentioning that the label prior 

of GMM may produce more noise than 2-label segmentation. 

If we do not reduce the noise (i.e., setting γ = 0), the 

segmentation results will be bad or even completely wrong. 

Thus, we reduce the noise by setting γ = 1 for most images. 

As mentioned before, this process may lose some twigs such 

as the airplane2 in Fig. 6. However, our algorithm still has 

better performance. 

A. The Proof of the Matrix E in (8) Is Nonsingular 

Before  the   proof,  we   give   some  definitions  and   an 

important theorem from http://en.wikipedia.org/wiki/ 

Diagonally_dominant_matrix. 

Definition 2: The matrix A is diagonally dominant if 

 

|ai i | ≥ 
      

|ai j |  for all i,                     (46) 

j =i 

 
where ai j  denotes the entry in the i th row and j th column. 

Definition 3: If a strict inequality (>) is used in (46), then 

this matrix is said to be strictly diagonal dominant. 

Theorem 1: A strictly diagonally dominant matrix (or an 

irreducibly diagonally dominant matrix) is non-singular, which 

is known as the Levy-Desplanques theorem [2]. 

Proof:  According  to  Theorem  1,  we  only  need  to 

prove  the  matrix  E  =   I − (I − Dc )P  is  strictly  diagonal 

dominant.  We  first  give  the  formulation  of  each  element 
in E as: 

⎧
1,                        i = j,

We  also  compare the  run time  among these algorithms. 

All  the average run time in  Tables I  and II  are measured 

in seconds with our unoptimized Matlab implementation on
 

 

ei j  = 

⎪⎨   
(1 − ci )wi j  

−       
di ⎪ 

,  j ∼ i, 
 

(47)

 

a  PC  with  Intel  Core  Processor  i7-2600  CPU  @3.40GHz 

with 6GB RAM. Our approach is slightly slower than RWR 

and LRW, since our method additionally builds label prior 

⎩
0,                        ot her wi se. 

 

Thus, if 0 < ci  ≤ 1, then ∀i ,

for achieving better performance, which needs extra time to |ei j | =  |ei j | =  
1 − ci  
  

wi j 

construct GMMs. However, as shown in Fig. 6, our subMarkov 
RW algorithm significantly improve the seeded image seg- 

 

j =i j ∼i 
di 

j ∼i

 

mentation performance. The additional computational cost is 

worthy to obtain better segmentation performance using our 

subMarkov RW algorithm with Label Prior. 

 
V.  CONCL USIONS 

We have presented a novel framework based on the sub- 

Markov random walk for interactive seeded image segmen- 

= 1 − ci  < 1 = |eii |                       (48) 

 
So according to Definition 3, the matrix E is strictly diagonal 

dominant.                                                                                   
 

 
B. Unique Solution of (39)

tation in this work. This framework can be explained as a Proof: If the coefficient matrix Ē =  I − (I − Dc )P̄  is

traditional random walker that walks on the graph by adding 

some new auxiliary nodes, which makes our framework easily 

interpreted and more flexible. Under this framework, we unify 

the well-known RW-based algorithms, which satisfy the sub- 

Markov property and build bridges to make it easy to transform 

the findings between them. Furthermore, we have designed a 

non-singular, then the equivalent linear equations of (39) have 

unique solution, i.e., the solution of (39) is unique. So we 

only need to prove the matrix Ē is non-singular. Similar to the 

above proof, we should prove Ē  is strictly diagonal dominant. 

We rewrite this matrix as follows: 

⎧
1,                        i      j,

novel subRW with label prior to solve the twigs segmentation ⎪ 
(1

 = 
c )w

problems by  adding  prior  nodes  into  our  framework. The ē i j  = 
⎨

−    
−  i i j 

,  j ∼ i, (49)

experimental results have shown that our algorithm outper- 

forms the state-of-the-art RW-based algorithms. This also 

proves that it is practicable to design a new subRW algorithm 

by adding new auxiliary nodes into our framework. In the 

future, we will extend our algorithm to more applications, 

⎪  di + λgi ⎩
0,                        ot her wi se. 

 

Thus, if 0 < ci  ≤ 1, then ∀i ,

 

such as centerline detection at 3D medical images [42] and 
  

|ēi j          

 
 |ēi j | =  

1 − ci 
 

wi j 

http://en.wikipedia.org/wiki/
mailto:@3.40GHz


 | =  

d 

classification [41]. 
 

j =i j ∼i di + λgi 
 

di
 

j ∼i

APPE NDIX A 

IMPLEMENTATION DETAILS  

= (1 − ci ) 
i + 

 

λgi 
< 1 = |ēi i |          (50)

In this section, we describe our exact formulations with According to  Definition 3, the matrix Ē is  also strictly

more detailed explanations for completeness. diagonal dominant.                                                                   
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