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Abstract

Transform coding is routinely used for lossy compression of discrete sources with memory. The

input signal is divided into N -dimensional vectors, which are transformed by means of a linear mapping.

Then, transform coefficients are quantized and entropy coded. In this paper we consider the problem of

identifying the transform matrix as well as the quantization step sizes. We study the challenging case in

which the only available information is a set of P transform decoded vectors. We formulate the problem

in terms of finding the lattice with the largest determinant that contains all observed vectors. We propose

an algorithm that is able to find the optimal solution and we formally study its convergence properties.

Our analysis shows that it is possible to identify successfully both the transform and the quantization step

sizes when P ≥ N + δ where δ is a small integer, and the probability of failure decreases exponentially

to zero as P −N increases.

I. INTRODUCTION

Transform coding has emerged over the years as the dominating compression strategy. Transform coding

is adopted in virtually all multimedia compression standards including image compression standards such

as JPEG [1] and JPEG 2000 [2], [3] and video compression standards such as, for example, H.264/AVC [4]

and HEVC [5]. This is due to the fact that transform coders are very effective and yet computationally

inexpensive since the encoding operation is divided into three relatively simple steps: the computation

of a linear transformation of the data, scalar quantization of each coefficient, and entropy coding.
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Transform coding has been widely studied in the last decades and many important results and optimality

conditions have been derived. For example, it is well known that, for Gaussian sources, the Karhunen-

Loève Transform (KLT) is the optimal transform [6][7]. Moreover, the analysis of popular transform

coders used in image compression has also led to new insights and new interesting connections between

compression and non-linear approximation theory [8]. In particular, this analysis has also clarified why

the wavelet transform is the best transform for compressing piecewise regular functions [9][10]. Further

insights on the interplay between linear transform, quantization and entropy coding can be found in [11]

for the case of integer-to-integer transforms.

Due to its centrality to any type of multimedia data, transform coding theory is now extensively

used in a new range of applications that rely on the possibility of reverse-engineering complex chains

of operators starting from the available output signals. Indeed, the lifespan of a multimedia signal is

virtually unbounded. This is due to the ability of creating copies and the availability of inexpensive

storage options. However, signals seldom remain identical to their original version. As they pass through

processing chains, some operators, including transform coding, are bound to leave subtle characteristic

footprints on the signals, which can be identified in order to uncover their processing history. This insight

might be extremely useful in a wide range of scenarios in the field of multimedia signal processing at

large including, e.g.,: i) forensics, in order to address tasks such as source device identification [12] or

tampering detection [13][14]; ii) quality assessment, to enable no-reference methods that rely solely on

the received signals [15][16]; iii) digital restoration, which requires prior knowledge about the operations

that affected a digital signal [17].

In this context, several works have exploited the footprints left by transform coding. In [18], a method

was proposed to infer the implementation-dependent quantization matrix template used in a JPEG-

compressed image. Double JPEG compression introduces characteristic peaks in the histogram of DCT

coefficients, which can be detected and used, e.g, for tampering localization [19][14]. More recently,

similar techniques were applied to video signals for the cases of MPEG-2 [20][21], MPEG-4 [22][23]

and H.264/AVC [24].

All the aforementioned works require prior knowledge of the type of standard being considered. This

implies that the specific transform in use is assumed to be known, whereas the quantization step sizes

need to be estimated. In practice, it might be useful to be able to infer which transform was used in

order to understand, for example, whether an image was compressed using the DCT-based JPEG or the

wavelet-based JPEG 2000 and, in the latter case, which wavelet transform was used. Similarly, it would
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be good to be able to infer if a video sequence was compressed using MPEG-2, MPEG-4 or H.264/AVC.

Some efforts in this direction can be found in [25].

Most of the above methods focus only on a specific type of multimedia signal (e.g., only images or

only videos) and are to some extent heuristic. It is therefore natural to try and develop a universal theory

of transform coder identification that is independent of the specific application at hand. To this end,

in this paper we consider a general model of transform coding that can be tailored to describe a large

variety of practical implementations that are found in lossy coding systems, including those adopted

in multimedia communication. Specifically, a 1-dimensional input signal is encoded by partitioning it

into non-overlapping N -dimensional vectors, which are then transformed by means of a linear mapping.

Then, transform coefficients are quantized and entropy coded. At the decoder, quantization symbols are

entropy decoded and mapped to reconstruction levels. Then, the inverse transform is applied to obtain

an approximation of the signal in its original domain.

Given the output produced by a specific transform coding chain, we investigate the problem of

identifying its parameters. To this end, we assume both the size and the alignment of the transform

to be known, as they can be estimated with methods available in the literature [21][18]. We propose an

algorithm that receives as input a set of P transform decoded vectors embedded in a N -dimensional

vector space and produces as output an estimation of the transform adopted, as well as the quantization

step sizes, whenever these can be unambiguously determined. We leverage the intrinsic discrete nature

of the problem, by observing the fact that these vectors are bound to belong to a N -dimensional lattice.

Hence, the problem is formulated in terms of finding a lattice that contains all observed vectors. We

propose an algorithm that is able to solve the problem and we formally study its convergence properties.

Our analysis shows that it is possible to successfully identify both the transform and the quantization step

sizes with high probability when P > N . In the experiments we found that an excess of approximately

6-7 observed vectors beyond the dimension N of the space is generally sufficient to ensure successful

convergence. In addition, the complexity of the algorithm is shown to grow linearly with N .

It is important to mention that the method used to solve the problem addressed in this paper is related

to Euclid’s algorithm, which is used to find the greatest common divisor (GCD) in a set of integers.

Indeed, when N = 1 and P = 2, the proposed method coincides with Euclid’s algorithm. However, in

this case the problem reduces to estimating the quantization step size, as the transform is trivially defined.

Note that, lattice theory has been widely used for source and channel coding (e.g., [26], [27], [28]).

However, to the best of the authors’ knowledge, this theory has not been employed to address the
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problem of identifying a linear mapping using the footprint left by quantization. Only [29] uses similar

principles but their goal is to investigate the color compression history, i.e., the colorspace used in JPEG

compression. Therefore, the solution proposed is tailored to work in a 3-dimensional vector space, thus

avoiding the challenges that arise in higher dimensional spaces.

Also, it is important not to confuse the problem addressed in this paper with the classical problem of

lattice reduction [28]. In the latter case, given a basis for a lattice, one seeks an equivalent basis matrix

with favorable properties. Usually, such a basis consists of vectors that are short and with improved

orthogonality. There are several definitions of lattice reduction with corresponding reduction criteria,

each meeting a different tradeoff between quality of the reduced basis and the computational effort

required for finding it. The most popular one is the Lenstra-Lenstra-Lovasz (LLL) reduction [30], which

can be interpreted as an extension of the Gauss reduction to lattices of rank greater than 2.

The rest of this paper is organized as follows. Section II introduces the necessary notation and

formulates the transform identification problem and Section III provides the background on lattice

theory. The proposed method is described in Section IV. Then, a theoretical analysis of the convergence

properties is presented in Section V. The performance of the transform identification algorithm is evaluated

empirically in Section VI. Finally, Section VII concludes the paper, indicating the open issues and

stimulating further investigations.

II. PROBLEM STATEMENT

The symbols x, x and X denote, respectively, a scalar, a column vector and a matrix. A M×N matrix

X can be written either in terms of its columns or rows. Specifically,

X =
[
x1 x2 . . . xN

]
=


x̄T1

x̄T2

· · ·
x̄TM

 . (1)

Let x denote a N -dimensional vector and W a transform matrix, whose rows represent the transform

basis functions.

Transform coding is performed by applying scalar quantization to the transform coefficients y = Wx.

Let Qi(·) denote the quantizer associated to the i-th transform coefficient. We assume that Qi(·) is a scalar

uniform quantizer with step size ∆i, i = 1, . . . , N . Therefore, the reconstructed quantized coefficients
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can be written as ỹ = [ỹ1, ỹ2, . . . , ỹN ]T , with

ỹi = Qi(yi) = ∆i · round
[
yi
∆i

]
, i = 1, . . . , N. (2)

The reconstructed block in the original domain is given by x̃ = W−1ỹ.

Let {x̃1, . . . , x̃P } denote a set of P observed N -dimensional vectors, which are the output of a

transform coder. Due to quantization, the unobserved vectors representing quantized transform coefficients

{ỹ1, . . . , ỹP } are constrained to belong to a lattice Ly described by the following basis:

By =


∆1 0 . . . 0

0 ∆2 . . . 0
...

...
. . .

...

0 0 . . . ∆N

 (3)

Therefore, the observed vectors {x̃1, . . . , x̃P } belong to a lattice Lx described by the basis:

Bx = [bx,1, . . . ,bx,N ] = W−1By, (4)

with bx,i = ∆iŵi, i = 1, . . . , N , W−1 = [ŵ1, . . . , ŵN ].

In this paper we study the problem of determining Bx from a finite set of P ≥ N distinct vectors

{x̃1, . . . , x̃P }. That is, we seek to determine the parameters of a transform coder based on the footprints

left on its output. We propose an algorithm to solve this problem and we study its convergence properties.

In addition, we show that the probability of correctly determining Bx (or, equivalently, another basis for

the lattice Lx) is monotonically increasing in the number of observations P , and rapidly approaching

one when P > N . Note that when determining Bx, the proposed method does not make any assumption

on the structure of the transform matrix W. In the general case, given Bx, it is not possible to uniquely

determine W and the quantization step sizes ∆i, i = 1, . . . , N . Indeed, the length of each basis vector

bx,i can be factored out as ‖bx,i‖2 = ∆i‖ŵi‖2. However, in the important case in which W represents

an orthonormal transform, the quantization step sizes ∆i, i = 1, . . . , N , and the transform matrix W

can be immediately obtained from Bx. Indeed, W−1 = WT , ŵi = w̄i, i = 1, . . . , N , with ‖w̄i‖2 = 1.

Therefore:

∆i = ‖bx,i‖2, i = 1, . . . , N, (5)

w̄i = bx,i/‖bx,i‖2 i = 1, . . . , N. (6)
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III. BACKGROUND ON LATTICE THEORY

In this section we provide the necessary background on lattice theory. Further details can be found,

e.g., in [31][32][28]. Let L denote a lattice of rank K embedded in RN . Let B = [b1,b2, . . . ,bK ] denote

a basis for the lattice L. That is,

L = {x|a1b1 + a2b2 + . . .+ aKbK , ai ∈ Z}. (7)

In order to make the mapping between a basis and the corresponding lattice explicit, the latter can be

expressed as L(B).

Any lattice basis also describes a fundamental parallelotope according to

P(B) =

{
x|x =

K∑
i=1

θibi, 0 ≤ θi < 1

}
. (8)

When K = 2, 3, P(B) is, respectively, a parallelogram or a parallelepiped. As an example, Figure 1(a)

shows the fundamental parallelotope corresponding to a lattice basis B when K = 2.

Given a point z ∈ RK , let Pz(B) denote the parallelotope enclosing z. Pz(B) is obtained by translating

P(B) so that its origin coincides with one of the lattice points. More specifically,

Pz(B) =

{
x|x = B ·

⌊
B−1z

⌋
+

K∑
i=1

θibi, 0 ≤ θi < 1

}
. (9)

Figure 1(b) illustrates Pz(B) for an arbitrary vector z.

Different bases for the same lattice lead to different fundamental parallelotopes. For example, Fig-

ure 1(a) and Figure 1(c) depict two different bases for the same lattice, together with the corresponding

fundamental parallelotopes. However, the volume of P(B) is the same for all bases of a given lattice.

This volume equals the so-called lattice determinant, which is a lattice invariant defined as

|L| =
√

det(BTB). (10)

If the lattice is full rank, i.e., K = N , the lattice determinant equals the determinant of the matrix B,

|L| = |det(B)|.
Let L denote a sub-lattice of L. That is, for any vector x ∈ L, then x ∈ L. A basis B for L can be

expressed in terms of B as

B = BU, (11)

where U is such that uij ∈ Z. Moreover, let det(U) = ±m, then

|L|
|L| = |det(U)| = m (12)
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b1

b2

P(B)

(a)

b1

z

← B · �B−1z�

Pz(B)
b1

b2

(b)

b1

b2P(B)

(c)

P(B) →

P(B)

b1

b2

b2

b1

(d)

Fig. 1. Examples of lattices. (a) The fundamental parallelotope of a lattice defined by a basis B. (b) Parallelotope enclosing

an arbitrary vector z. (c) Another (equivalent) basis for the lattice in (a). (d) An example of a sub-lattice of the lattice L(B).

and we say that L is a sub-lattice of L of index m. For example, Figure 1(d) shows two lattices L and

L, such that L ⊂ L. In this case, the matrix U is equal to

U =

 −4 −5

3 −1

 , (13)

and L is a sub-lattice of index m = 19.

IV. AN ALGORITHM FOR TRANSFORM IDENTIFICATION

In this section we propose an algorithm that is able to determine the parameters of a transform coder

from its output, i.e., a set of observed vectors {x̃1, . . . , x̃P }. This is accomplished by finding a suitable
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lattice L∗ such that {x̃1, . . . , x̃P } ⊂ L∗. In Section V-C we will show that, with probability approaching

one, L∗ ≡ Lx, provided that P −N > 0.

The problem of determining a basis for the lattice Lx is complicated by the fact that we typically

observe a finite (and possibly small) number of vectors P embedded in a possibly large dimensional

space. More precisely, {x̃1, . . . , x̃P } belong to a bounded lattice, in virtue of the fact that each transform

coefficient yi is quantized with a finite number of bits Ri, to one of 2Ri reconstruction levels. Let R̄

denote the average number of bits allocated to transform coefficients. The number of potential lattice

points is equal to
N∏
i=1

2Ri = 2
∑N

i=1Ri = 2NR̄, (14)

and only P of them are covered by observed vectors. Thus, we note that, given R̄, the number of

lattice points increases exponentially with the dimension N and that in most cases of practical relevance

P � 2NR̄.

Another issue arises from the fact that, for a set of vectors {x̃1, . . . , x̃P }, there are infinitely many

lattices that include all of them. Indeed, any lattice L̄ such that Lx ⊂ L̄ is compatible with the observed set

of vectors. Note that any basis of the form B = BxU
−1, with det(U) = ±m, with m an integer greater

than one defines a compatible lattice L̄. A simple example is obtained setting U = aI, a ∈ N, a > 1.

In order to resolve this ambiguity, we seek the lattice L∗ that maximizes the lattice determinant |L|,
within this infinite set of compatible lattices. That is,

maximize
L(B)

|L(B)|

subject to {x̃1, . . . , x̃P } ⊂ L(B).

(15)

For example, for the set of observed points {x̃1, x̃2, x̃3} depicted in Figure 2(a), Figure 2(g) illustrates

a basis for the lattice that is the optimal solution of (15). In contrast, the lattice in Figure 2(h) is a feasible

solution of (15), but it is not optimal, since it is characterized by a lower value of the lattice determinant.

The proposed method used to solve the problem above is detailed in Algorithm 1. The method constructs

an initial basis for an N -dimensional lattice (line 1). This is accomplished by considering the vectors

in O until N linearly independent vectors are found. These vectors are used as columns of the starting

estimate B(0) and to populate the initial set of visited vectors S. We denote with U the set of vectors

in O that have not been visited yet. Then, the solution of (15) is constructed iteratively, by considering

the remaining vectors in U one by one. At each iteration, the function recurseTI returns a basis for

a lattice that solves (15), in which the constraint is imposed only on the subset of visited vectors S, that
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ALGORITHM 1: TI algorithm
Input: Set of observed vectors O = {x̃1, . . . , x̃P }
Output: A basis B of the lattice solution of (15)

1) B(0) = initBasis(O);

2) S = {b1, . . . ,bN};
3) U = O \ S;

4) r = 0

5) while card{U} > 0;

6) Pick x̃ in U ;

7) U = U \ {x̃};
8) S = S ∪ x̃;

9) B(r+1) = recurseTI(B(r),S);

10) r = r + 1

11) end

is, S ⊂ L(B). As such, the algorithm starts finding the solution of an under-constrained problem and

additional constraints are added as more vectors are visited.

Figure 2 shows an illustrative example when N = 2 and three vectors {x̃1, x̃2, x̃3} are observed

(Figure 2(b)). The initial basis (line 1) is constructed using x̃1 and x̃2, since they are linearly independent

(Figure 2(b)). Then, the point x̃3 is selected (line 6 and Figure 2(c)) and the function recurseTI (line 9)

returns a basis that solves (15), i.e., a basis with the largest lattice determinant that includes all observed

vectors. Figure 2(f) illustrates such a basis, and Figure 2(g) shows an equivalent basis obtained after

lattice reduction.

The core of the method is the recursive function recurseTI. When describing this function, we keep

a clear distinction between algorithm template and algorithm instance, as it is customary in computer

science. We start describing the template in Algorithm 2, which does not specify the function entirely.

Then, a concrete instance of the template is detailed in Algorithm 3. The rationale of maintaining this

distinction is motivated by the fact that the correctness of the method is a property that descends from

the template alone, as further discussed in Section V-A. Conversely, the rate of convergence depends on

the specific algorithm instance, as explained in Section V-B.
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x̃3

x̃1

x̃2

(a)

x̃1

x̃2

(b)

x̃3

x̃1

x̃2

(c)

x̃3

x̃1

x̃2

(d)

x̃3

x̃1

x̃2

(e)

x̃3

x̃1

x̃2

(f)

x̃3

x̃1

x̃2

(g)

x̃3

x̃1

x̃2

(h)

Fig. 2. An example of transform identification. A set of three observed vectors is given in (a). Then, (b)-(h) show, step-by-step,

how the solution to problem (15) is sought by Algorithm 1.

A. An algorithm template for recurseTI

The function recurseTI receives as input a set of visited vectors S and the current estimate of a

basis B for the lattice L(B). If S ⊂ L, i.e., all the vectors in S belong to the lattice defined by B, the

recursion is terminated (line 1 in Algorithm 2). Otherwise, one of the vectors x̃ that does not belong to

L is selected (line 4) and the parallelotope which encloses it is identified (line 5). Then, a vector d is

computed as the difference between x̃ and one of the vertices of the parallelotope (line 6). The intuition
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ALGORITHM 2: recurseTI(B,S)

Input: Set of vectors S = {x̃1, . . . , x̃S}, a basis B of a lattice.

Output: A basis of a lattice L with maximum determinant |L|, such that S ⊂ L
1) if S ⊂ L(B)

2) return B

3) else

4) Pick z ∈ S \ L(B).

5) Determine Pz(B).

6) Pick a vertex v of Pz(B).

7) Compute d = z− v.

8) Compute Bi, replacing the i-th column of B with d.

9) Pick an index l, such that det(Bl) 6= 0.

10) recurseTI(Bl,S);

11) end

here is to capture a short vector that cannot be represented by the current lattice, and to modify the

current basis in such a way that (upon convergence) it can be represented. Hence, the updated basis is

constructed by replacing one of the columns of B with d (line 8). Among the N possible cases, any

choice such that Bi is non-singular represents a valid selection (line 10).

In the example in Figure 2, two recursive steps are performed before terminating recurseTI. In the

first call, it is verified that x̃3 does not belong to the lattice defined by the current basis (Figure 2(c)),

and the updated basis is constructed (Figure 2(d)) by replacing one of the two basis vectors with the

difference vector between x̃3 and one of the vertices of Px̃3
(B). In the second call it is verified that

neither x̃3 nor x̃2 belong to the updated lattice. Therefore, one of the two difference vectors (e.g., the

one representing the difference between x̃2 and one of the vertices of Px̃2
(B)) is used to replace one of

the two basis vectors. In the third call the recursion is terminated, because all points in S belong to the

lattice.

In Section V-A, it is shown that the recursion always terminates in a finite number of steps and leads

to the optimal solution of (15). The solution the algorithm converges to, though, might be a sub-lattice of

the underlying lattice Lx, i.e., L∗ ⊂ Lx. Fortunately, this is a very unlikely event, even when the number

of observed points P is only slightly larger than N , as further discussed in Section V-C.
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B. An algorithm instance for recurseTI

A practical instantiation of the template presented in Algorithm 2 requires to specify how to perform

the choices at line 4, 6 and 9, which were left undefined. Note that these choices are arbitrary and have

no effect on the correctness of the method, although they might affect the number of recursive steps

needed to achieve convergence.

In our specific implementation, the selection of the vector x̃ ∈ S \ L(B) (line 4 in Algorithm 2), the

vertex of the parallelotope (line 6) and the column to be replaced (line 9) are carried out as detailed

in Algorithm 3. The rationale is to construct a new basis related to a lattice with the smallest lattice

determinant |L(B)|, so as to tighten the upper bound on the value of the optimal solution, i.e., |L∗| ≤
|L(B)|.

Specifically, given a basis B as input, we compute the vector x̂ = B · round(B−1x̃), which represents

one of the vertices of the parallelotope enclosing x̃ (line 4 in Algorithm 3). In order to prevent numerical

instability induced by the inversion of the matrix B, we perform basis reduction according to the LLL

algorithm (line 2) and we find a nearly orthogonal basis which is equivalent to B, but has a smaller

orthogonality defect. In our implementation, we perform basis reduction only when the condition number

is greater than a threshold T , which was set equal to 104 (line 1).

Then, the selected point z = x̃f is the one that minimizes the distance from the corresponding vertex

(line 8). That is,

f = arg min
j∈{l|‖x̃l−x̂l‖2>0}

‖x̃j − x̂j‖2, (16)

so as to minimize the length of the new basis vector d. Similarly, the choice of the new basis among the set

of (up to) N candidate bases Bi (line 11) is to select the one that leads to the smallest lattice determinant,

after excluding those that do not have rank N . From Cramer’s rule, it follows that det(Bi) = θidet(B),

where θ = B−1d is the expansion of d in the basis B. Hence, we replace the l-th column of B, which

is the one corresponding to the entry of θ with the least strictly positive absolute value. That is,

l = arg min
j∈{p|θp 6=0}

|θj |. (17)

V. ANALYSIS

A. Convergence

In this section, we prove that the proposed algorithm converges in a finite number of recursive steps to

the solution L∗ of (15). To this end, we rely on the specifications of the algorithm template in Algorithm 2.
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ALGORITHM 3: recurseTI(B,S)

Input: Set of vectors S = {x̃1, . . . , x̃S}, a basis B of a lattice.

Output: A basis of a lattice L with maximum determinant |L|, such that S ⊂ L
1) if condnum(B) > T

2) B = LLL(B)

3) end

4) x̂i = B · round(B−1x̃i), i = 1, . . . , S;

5) if (maxj=1,...,S ‖x̃j − x̂j‖2) = 0

6) return B

7) else

8) f = arg minj∈{l|‖x̃l−x̂l‖2>0} ‖x̃j − x̂j‖2;

9) d = x̃f − x̂f ;

10) θ = B−1d;

11) l = arg minj∈{p|θp 6=0} |θj |;
12) recurseTI(Bl,S);

13) end

Let B(0) denote the initial estimate of a basis of the lattice, which is constructed, for example, by

selecting as its columns a subset of N linearly independent vectors in O (Algorithm 1, line 1). Hence,

each vector of the initial basis B(0) can be expressed as a linear combination with integer coefficients of

the columns of Bx. Thus, we can write B(0) = BxA, with det(A) = m and m ∈ Z \ {0}. From this, it

follows that |L(B(0))| = m · |Lx| and |Lx| ≤ |L(B(0))|
Let B(r) denote the estimate obtained after the r-th call of the recursive function recurseTI. It is

possible to prove the following lemma:

Lemma 5.1: |L(B(r+1))| ≤ |L(B(r))|, with equality if and only if S ⊂ L(B(r)) = L(B(r+1))

Proof: If S ⊂ L(B(r)), then B(r+1) = B(r) and the recursion terminates. Otherwise, let z ∈
S \ L(B(r)) be any of the points which does not belong to the lattice defined by B(r), v any of the

vertices of Pz(B(r)) and d = z− v. The vector d can be expressed in terms of the basis B(r) as

d = B(r)θ. (18)

By definition, the vector z belongs to Pz(B(r)), hence −1 ≤ θi ≤ 1. Since z /∈ L(B(r)), z does not

belong to the vertices of Pz(B(r)). It follows that there is at least one coefficient θl in the basis expansion
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of d, such that 0 < |θl| < 1.

The vector d replaces the i-th column of B(r) to obtain B
(r)
i . From Cramer’s rule,

det(B(r)
i ) = θidet(B(r)) (19)

Therefore, if we select l, such that 0 < |θl| < 1,

|L(B(r+1))| = |det(B(r+1))| = |det(B(r)
l )| = |θl||det(B(r))| < |det(B(r))| = |L(B(r))| (20)

Note that there must be at least one such an index l, as indicated above.

We construct the sequence of integer numbers

sr = |L(B(r))|, r = 0, 1, . . . , R. (21)

Let R denote the smallest integer such that |L(B(R))| = |L(B(R+1))|. That is, R is the number of steps

needed to achieve convergence. It is possible to prove the following theorem:

Theorem 5.2: Algorithm 1 converges to the solution of (15).

Proof: Let L∗ denote the solution of (15), i.e., the lattice with maximum volume that includes all

observed vectors S. We need to prove that L(B(R)) = L∗.
First, we prove that |L(B(R))| cannot decrease beyond |L∗|, i.e., |L∗| ≤ |L(B(R))|. To this end, let

L(B(R−1)) denote the lattice obtained at the iteration just before convergence. Hence, there is at least one

observed vector x̃ ∈ L∗ such that x̃ /∈ L(B(R−1)). Lemma 5.1 establishes that |L(B(R))| < |L(B(R−1))|.
Let d denote the difference vector as in line 7 of Algorithm 2. By construction, d ∈ L∗. Let B∗ denote

a basis for L∗. Then, it is possible to write d = B∗θ∗, θ∗i ∈ Z. L(B(R−1)) is a sublattice of L∗. Hence,

B(R−1) = B∗A, where A is a matrix of integer elements such that det(A) = m, with m ∈ Z \ {0}, and

|L(B(R−1))|/|L∗| = m.

It is possible to express d in the basis expansion of B(R−1). That is,

θ = (B(R−1))−1d = (B∗A)−1B∗θ∗ = A−1θ∗ =
1

det(A)
cofactor(A)θ∗. (22)

Note that both the cofactor matrix cofactor(A) and θ∗ have integer elements. Hence, the vector cofactor(A)θ∗

has integer elements. Any nonzero element of θ is an integer multiple of 1/det(A) = 1/m. Therefore,

if θi 6= 0, |θi| ≥ 1/m.

From the proof of Lemma 5.1, we know that

|L(B(R))| = |θl||L(B(R−1))| ≥ 1

m
|L(B(R−1))| = |L∗|, (23)
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where θl is one of the nonzero elements of θ.

To prove that |L(B(R))| = |L∗|, it remains to be shown that cannot be |L(B(R))| > |L∗|. Indeed, if

this were the case, L(B(R)) would be the optimal solution of (15), since it includes all observed points

S and has volume larger than |L∗|.
Note that R <∞, i.e., convergence is achieved in a finite number of steps. Indeed, {sr} is a sequence

of integer values. The sequence is monotonically decreasing due to Lemma 5.1, until convergence is

achieved and S ⊂ L(B(R)). In addition, it is bounded from below by |Lx|. Therefore, convergence is

achieved in up to |L(B(0))|/|Lx| number of steps. In the following section we show that with a specific

instantiation of Algorithm 2 given in Algorithm 3 it is possible to ensure a significantly faster convergence

rate.

B. Rate of convergence

It is possible to prove that the proposed method implemented according to the instance presented in

Algorithm 3 converges in a number of steps that is upper bounded by dlog2(|L(B(0))|/|Lx|)e. To show

this, it suffices to demonstrate that the value of the lattice determinant is (at least) halved between two

consecutive calls of recurseTI, as stated by the following theorem.

Theorem 5.3: If S 6⊂ L(B(r)), then |L(B(r+1))|
|L(B(r))| ≤ 1

2

Proof: Since S 6⊂ L(B(r)), then maxj=1,...,S ‖x̃j − x̂j‖2 > 0, and the recursion is not terminated.

Consider the vector d = x̃f − x̂f , which can be expressed in the basis B(r) as d = B(r)θ. Dropping the

superscript (r), it is possible to write

θ = B−1d = B−1(x̃f − x̂f ) (24)

= B−1x̃f −B−1(B · round(B−1x̂f )) (25)

= B−1x̃f − round(B−1x̂f ) = a− round(a), (26)

where we set a = B−1x̂f . Due to the properties of rounding, −1/2 ≤ θi < 1/2. Thus, replacing any of

the columns of B(r) such that θl 6= 0, we obtain, using Cramer’s rule,

|L(B(r+1))|
|L(B(r))| = |θl| <

1

2
(27)

Based on Theorem 5.3,

|L(B(r))| ≤
(

1

2

)r
|L(B(0))|, ∀r > 0,S 6⊂ L(B(r)) (28)
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Hence, convergence is achieved in up to ⌈
log2

|L(B(0))|
|Lx|

⌉
(29)

number of steps.

Note that this upper bound on the convergence rate is guaranteed solely on the basis of the way the

vertex of the parallelotope is selected, whereas it does not depend neither on which point is selected, nor

on which column is replaced. However, the heuristics applied in Algorithm 3 are based on the rationale

of reducing the ratio |L(B(r+1))|
|L(B(r))| as much as possible.

C. Probability of success

In Section V-A, we showed that the proposed method converges to the optimal solution L∗ of (15). In

this section, we show that it converges to the correct (and unique) lattice Lx (i.e., L∗ ≡ Lx) with high

probability, provided that the number of observed vectors P is greater than N .

Given a lattice Lx of rank N embedded in RN , there is more than one sub-lattice L of L of index m.

It can be shown that the number of sub-lattices is equal to [33]

fN (m) =

q∏
i=1

N−1∏
j=1

pti+ji − 1

pji − 1
=

q∏
i=1

ti∏
j=1

pN+j−1
i − 1

pji − 1
, (30)

where m = pt11 · · · p
tq
q is the prime factorization of m. That is, p1, . . . , pq are the prime factors of m, and

ts is the multiplicity of the factor ps.

For example, when N = 2 and m = 2, f2(2) = 3. Given the basis B = I, the corresponding sub-lattices

of L(B) are generated by, e.g, the following bases

B1 =

 1 −1

−1 1

 , B2 =

 2 0

0 1

 , B3 =

 0 2

1 0

 . (31)

In order to determine analytically a lower bound on the probability of converging to the correct solution,

we need to prove the following lemma, which provides bounds on the number of sub-lattices.

Lemma 5.4: Given a lattice Lx of rank N embedded in RN , the number fN (m) of sub-lattices of

index m is bounded by

mN−1 < fN (m) < mN . (32)

Proof: It is possible to derive both an upper and a lower bound on the number of sub-lattices that are

independent from the prime factorisation of m starting from (30). Since for all cases of interest N > 1,

we have:
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pN+j−1
i − 1

pji − 1
>
pN+j−1
i

pji
. (33)

Substituting in (30), we have a function fN (m) that is guaranteed to yield values below fN (m):

fN (m) =

q∏
i=1

ti∏
j=1

pN+j−1
i

pji
. (34)

This can be simplified to:

fN (m) =

q∏
i=1

p
ti(N−1)
i . (35)

This is equivalent to the (N − 1)th power of the product of the prime factors of m. That is, the lower

bound of fN (m) can be expressed as:

fN (m) = mN−1. (36)

In terms of the upper bound of fN (m), we proceed similarly by starting with the observation that:

pN+j−1
i − 1

pji − 1
<
pN+j
i

pji
. (37)

By substituting back into (30), we can observe that:

q∏
i=1

ti∏
j=1

pN+j
i

pji
= mfN (m). (38)

Hence, it is easy to see that the upper bound on fN (m) can be expressed as:

fN (m) = mN . (39)

Therefore, since fN (m) < fN (m) < fN (m), we have:

mN−1 < fN (m) < mN . (40)

Now, consider a specific sub-lattice L ⊂ Lx of index m and a set of P vectors from the original lattice

Lx. In the case of uniformly distributed vectors, the probability that one vector belong to the sub-lattice
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L is equal to (1/m). Thus, the probability that all P vectors belong to the same sub-lattice L is equal

to (1/m)P , assuming statistical independence among the set of vectors.

Let pfail(N,P ) denote the probability of failing to detect the underlying lattice Lx of rank N , when

P points are observed. Then, psucc(N,P ) = 1− pfail(N,P ). A failure occurs whenever all P vectors fall

in any of the sub-lattices of index m. Hence, we can write

pfail(N,P ) <

∞∑
m=2

fN (m)

(
1

m

)P
<

∞∑
m=2

mN

(
1

m

)P
=

∞∑
m=2

1

mP−N = ζ(P −N)− 1 (41)

The first inequality is a union bound, i.e., the probability of failure is upper bounded by the sum of

the probabilities of observing all P vectors in a given sub-lattice. The second inequality follows from

the upper bound given by Lemma 5.4. The last expression contains ζ(·), which is the Riemann’s zeta

function. That is,

ζ(s) =

∞∑
m=1

1

ms
. (42)

Note that the infinite series converges when the real part of the argument s is greater than 1. In our case,

this requires P −N > 1 or P > N + 1. Then, the probability of success is lower bounded by

psucc(N,P ) > 2− ζ(P −N). (43)

It is interesting to observe that the probability of failure/success depend solely on the difference P−N .

Hence, the number P of observed vectors needed to correctly identify the underlying lattice grows linearly

with the dimensionality N of the embedding vector space, despite the number of potential lattice points

grows exponentially with N , as indicated in Section IV.

Figure 3 shows that the upper bound on the probability of failure rapidly decreases to zero even for

modest values of P −N .

VI. EXPERIMENTS

Section V provided a lower bound on the probability of successfully identifying the transform and the

quantization step sizes. In this section, this aspect is evaluated experimentally. In addition, we provide

further insight on the complexity of the algorithm, expressed in terms of the number of recursive steps

needed to compute the sought solution.

To this end, we generated data sets of N -dimensional vectors, whose elements are sampled from

a Gaussian random variable N (0, σ2). We considered the adverse case in which the elements are

independent and identically distributed. Therefore, the distribution of the vectors is isotropic and no
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Fig. 4. (a) Empirical probability of success of Algorithm 1 in identifying the transform and the quantization step sizes as a

function of the number of observed vectors P and the dimensionality of the embedding vector space N . (b) Number of observed

vectors P needed to achieve psucc(N,P ) > 1− ε, with ε = 10−15.

clue could be obtained from a statistical analysis of the distribution. Without loss of generality, we set

σ = 2, W = I and ∆i = 1, i = 1, . . . , N . The same results were obtained using different transform

matrices and quantization step sizes.
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Figure 4(a) shows the empirical probability of success when N = 2, 4, 8, 16, 32, 64, and the number

of observed vectors P is varied, averaged over 100 realizations. As expected psucc(N,P ) = 0 when the

number of vectors P does not exceed the dimensionality of the embedding vector space, i.e., P ≤ N .

Then, as soon as P > N , psucc(N,P ) grows rapidly to one, when just a few additional vectors are

visited. More specifically, Figure 4(b) illustrates the number of observed vectors P needed to achieve

psucc(N,P ) > 1 − ε, where ε was set equal to 10−15. It is possible to observe that, when N > 2, the

number of observed vectors needs to exceed by 6-7 units the dimensionality, and such a difference is

independent from N , as expected based on the analysis in Section V. Note that the results shown in

Figure 4 are completely oblivious of the specific implementation of Algorithm 2.

At the same time, it is interesting to evaluate the complexity when the specific instance of Algorithm 2,

namely Algorithm 3, is adopted. Figure 5 shows the total number of recursive calls needed to converge

to the solution of (15). Note that when a large enough number P of vectors is observed, the algorithm

converges to the correct lattice Lx. Thus, visiting additional vectors does not increase the number of

recursive calls, since the base step of the recursion is always met. Figure 5 shows two cases, that differ

in the way the set of observed vectors is visited, i.e., randomly, or sorted in ascending order of distance

from the origin of the vector space. In both cases, the number of recursive calls grows linearly with N .

This is aligned with the analysis in Section V-B, which shows that convergence proceeds at a rate such

that the number of recursive steps is upper bounded by dlog2 |L(B(0))|/|Lx|e. A (loose) bound on the

lattice determinant is given by

|L(B(0))| = |det(B(0))| ≤ ‖b(0)
1 ‖2‖b

(0)
2 ‖2 · ‖b

(0)
N ‖2 ≤ ‖b

(0)
max‖N2 , (44)

where the first inequality stems from Hadamard inequality and b
(0)
max is the column of B(0) with the

largest norm. Therefore,

dlog2 |L(B(0))|/|Lx|e ≤ dN log2(‖b(0)
max‖2)/|Lx|e (45)

This explain the dependency on N , as well as the fact that sorting the vectors so as to initialize B(0)

with shorter vectors reduces the number of recursive calls.

VII. CONCLUSIONS

In this paper we proposed a method which is able to identify the parameters of a transform coder from

a set of P transform decoded vectors embedded in a N -dimensional space. We proved that it is possible

to successfully identify the transform and the quantization step sizes when P > N and this despite of
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Fig. 5. Total number of recursive calls to recurseTI as a function of the dimensionality of the space N and the strategy

adopted to visit the observed vectors.

the huge number of potential quantization bins, which grows exponentially with N for a target bitrate. In

addition, we proved that the probability of failure decreases exponentially to zero when P −N increases.

In our experiments we found that an excess of approximately 6-7 observed vectors beyond the dimension

N of the space is generally sufficient to ensure successful convergence.

In this paper, we focused on a noiseless scenario, in which we observe directly the output of the

decoder. In some cases, though, signals are processed in complex chains, in which multiple transform

coders are cascaded, thus introducing noise in the observed vectors. Consequently, the observed vectors

do not lie exactly on lattice points. Extending the proposed method to this new scenario represents an

interesting research avenue to be investigated.
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