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Abstract— Human   action   recognition  in   videos  has   been 
extensively studied in recent years due to its wide range of 
applications. Instead of classifying video sequences into a number 
of action categories, in this paper, we focus on a particular problem 
of action similarity labeling (ASLAN), which aims at verifying  
whether  a  pair  of  videos  contain  the  same  type  of action or 
not. To address this challenge, a novel approach called compressive  
sequential  learning  (CSL)  is  proposed  by  lever- aging the 
compressive sensing theory and sequential learning. We first 
project data points to a low-dimensional space by effec- tively 
exploring an important property in compressive sensing: the  
restricted isometry  property. In  particular, a  very  sparse 
measurement matrix is adopted to reduce the dimensionality 
efficiently. We then learn an ensemble classifier for measuring 
similarities between  pairwise  videos  by  iteratively  minimizing 
its empirical risk with the AdaBoost strategy on  the training 
set. Unlike conventional AdaBoost, the weak learner for  each 
iteration is not explicitly defined and its parameters are learned 
through  greedy  optimization.  Furthermore,  an  alternative  of 
CSL  named  compressive  sequential  encoding  is  developed  as 
an  encoding  technique  and  followed  by  a  linear  classifier to 
address the similarity-labeling problem. Our method has been 
systematically evaluated on four action data sets: ASLAN, KTH, 
HMDB51, and Hollywood2, and the results show the effectiveness 
and superiority of our method for ASLAN. 

 

Index Terms— Action recognition, action similarity labeling, 
pair matching, boosting, sparse random projection. 
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I.  INT RODUCT ION 

UMAN action recognition in videos has been an active 

research  area  in  computer  vision  spanning  a  wide 

range of application domains, such as intelligent surveillance, 

human-computer interaction, health monitoring and content- 

based video retrieval. Due to its vital importance, a variety 

of  approaches have been proposed to  address the problem 

of  action classification or  recognition [1]–[8]. The goal of 

human action recognition in videos is to classify unlabeled 

videos containing different types of actions into a predefined 

set of action categories. Recently, the computer vision com- 

munity has been mainly focusing on actions performed in 

unconstrained videos, targeting real-world action recognition. 

Unsurprisingly, these videos always present large variances 

in viewpoint, illumination, scale and appearance, and other 

complications such as occlusions, background cluttering and 

multiple actors performing actions in the same scene. 

In such realistic settings, there is always an inevitable 

problem that different types of actions could exist in a short 

video  sequence.  It  becomes  extremely  difficult to  classify 

such a sequence into an exact type of action. For instance, 

a   “springboard   diving”   mainly   consists   of   “jumping”, 

“falling”, and “swimming”. How to define complex actions 

appropriately is  highly subjective and  may  vary  from  one 

subject to another. In other words, class ambiguity is a common 

problem existing in multi-class action recognition, especially in 

unconstrained videos. Consequently, to avoid this ambiguity 

problem, action similarity labeling or action pair matching has 

been introduced by Kliper-Gross et al. [9] as another critical 

task, which is the focus of this paper, together with a 

benchmark dataset named The Action Similarity Labeling 

(ASLAN) Challenge (see  Fig. 1  for examples of action 

pairs). The aim of action similarity labeling is to determine if 

the actors in two video sequences are performing the same 

action or not. In addition to avoiding the ambiguity of  multi-

class action recognition, action similarity labeling has its 

own advantages. Firstly, it is not limited to a given set of 

actions. In terms of multi-class action recognition, one may 

first learn the models corresponding to some predefined 

training actions and classify unknown videos based on these 

models. However, in the setting of action similarity labeling, 

no action labels are given. Therefore, it is a more generalized 

approach  to   determining  whether   two   never-before-seen 

video sequences contain the  same action. Secondly, action 

similarity labeling provides insights toward content-based 

video retrieval. Given an unknown video, retrieving videos

mailto:qinjiebuaa@gmail.com
mailto:yhwang@buaa.edu.cn
mailto:liu@northumbria.ac.uk
mailto:shao@northumbria.ac.uk
mailto:zhang@ia.ac.cn


 
 

 
 

 
Fig. 1.     Examples of (a) pairs of “same”-labeled actions and (b) pairs of 

“not-same”-labeled actions. 

 
including the same type of action is the basic characteristic of 

image/video search engines. Thereby, addressing the similarity 

labeling/pair matching problem effectively and efficiently will 

enhance the performance of video retrieval significantly. 

To address the action similarity labeling problem, several 

methods   have   been   proposed   [9]–[16],   which   can   be 

mainly divided according to two perspectives: similarity 

measurement [9]–[13] and feature representation [14]–[16]. 

However,  novel  feature  extraction  and  representation  is  a 

non-trivial task and learning a suitable metric or projection 

matrix to measure similarities of high dimensional vectors is 

typically complicated and time-consuming. In this work, we 

address the problem of action similarity labeling “in the wild” 

based  on  a  novel  approach called  Compressive Sequential 

Learning (CSL), by exploring the techniques of compressive 

sensing and sequential learning. Due to complexities of 

realistic actions, high dimensional feature vectors are typically 

extracted, which usually leads to low computing efficiency 

and large storage space. To eliminate these shortcomings, we 

first project data points to a lower dimensional space based on 

an important property in compressive sensing: the Restricted 

Isometry Property (RIP) [17], which is able to preserve the 

distances between the points in a vector space. The projection 

can  also  obtain  more  compact  data  representations  and 

balance the components’ variance [18]. Instead of the typical 

measurement matrix (random Gaussian matrix) satisfying RIP, 

we employ a very sparse random measurement matrix, which 

will reduce the memory and computational cost significantly. 

After projecting original high dimensional vectors to a 

relatively low dimensional space, a novel pair-wise sequential 

learning method motivated by [19] is proposed to exploit the 

information between pair-wise data based on the spirit of the 

boosting theory. In [19], a boosting strategy was utilized to 

learn each bit of an extremely compact binary local feature 

descriptor. However, in this work, by leveraging the boosting- 

trick, we simultaneously optimize the output of an ensemble 

classifier and reduce the empirical loss on pair-wise training 

data. Specifically, for each iteration of boosting, unlike [19], 

in which the weak learner is explicitly pre-defined, we learn a 

non-linear weak learner whose parameters are optimized based 

on the pair-wise training data and by efficiently using greedy 

optimization. The obtained CSL classifier is of the same form 

as a typical AdaBoost [20] strong classifier, being the sign of 

a linear combination of previously learned non-linear weak 

learners. Additionally, as an alternative to the sign function, 

a linear SVM classifier is applied on the training data after 

aggregating the outputs of non-linear weak learners. In this 

case, our CSL method turns into Compressive Sequential 

Encoding (CSE), working as a strategy for extremely compact 

feature coding [21]–[23] for pair-wise data. 

The rest of this paper is organized as follows. In Section II, 

related  work  for  action  similarity  labeling  is  discussed. 

Section III describes our method in detail. The global sequen- 

tial  learning  based  on  the  boosting-trick is  first proposed, 

and then the weak learner is defined and learned via greedy 

optimization. Subsequently, sparse random projection is intro- 

duced based on the compressive sensing theory. Finally, the 

overall framework is revisited and an alternative method to 

CSL is discussed. In Sections IV and V, extensive experi- 

mental results on four public action datasets, i.e., ASLAN, 

KTH, HMDB51 and Hollywood2, are shown, which prove 

the superiority of our method. 
 

II.  RELATED WORK 

Action similarity labeling or action pair matching is a 

recently introduced task  in  the  area  of  action  recognition, 

focusing on the same/not-same classification of two never- 

before-seen video sequences. Performance in this task highly 

depends on the feature representation and the suitability of the 

similarity measurement used for comparing video pairs. 

In terms of the similarity measurement, the first attempt [9] 

employed twelve pre-defined (dis-)similarity functions (e.g., 

Euclidean and chi-square distances) and their combinations 

as the baseline method. After that, Kliper-Gross et al. [11] 

proposed a  supervised  metric  learning  method  called  One 

Shot Similarity Metric Learning (OSSML) to  learn a  pro- 

jection matrix which improves the  (dis-)similarity between 

same/not-same training pairs in  a  reduced subspace of the 

original feature space. Moreover, before applying the  final 

OSSML projection, PCA or Cosine Similarity Metric Learn- 

ing (CSML) was adopted as the initial projection. It has been 

validated on ASLAN that OSSML achieves better performance 

(approximately 4% improvement in terms of the Area Under 

Curve (AUC)) than  manually defined (dis-)similarity func- 

tions. Similar to the metric learning method, Peng et al. [13] 

developed a large margin dimensionality reduction (LMDR) 

method to compress high-dimensional feature representations 

encoded by both Fisher Vector (FV) [24] and Vector of Locally 

Aggregated Descriptors (VLAD) [18]. A projection matrix was 

learned to increase the similarities of “same” video pairs and 

meanwhile separate “not-same” video pairs by a large margin. 

Instead of learning a proper metric, Cheng [10] proposed a 

similarity-score based paradigm to learn a rectangular simi- 

larity matrix of a fixed rank and applied it to pairwise-based 

action recognition. A Riemannian manifold-based optimiza- 

tion framework was exploited to learn the similarity matrix. 

Apart from learning a proper metric or a similarity matrix, 

the  similarities of  neighboring spatio-temporal points  were 

explored in [12]. The space where the similarities lie in was 

discovered and mapped to another space with a fixed, smaller 

dimensionality. Thus, a novel similarity measurement between 

two image sequences was defined to form a similarity vector 

for further classification.



 
 
 

 
 

Fig. 2.    The overall framework of Compressive Sequential Learning (CSL): Space-time features are first extracted from pair-wise action videos, followed 

by Bag-of-Features video representation. Two feature vectors extracted from a pair containing the same action are assigned label ‘+1’ and ‘−1’ means they 
belong to different action classes. Subsequently, sparse random projection is employed to project the high dimensional feature space to a lower one. Then 
our sequential learning is utilized to learn an optimized ensemble classifier, which can predict the labels for pair-wise data. Given a pair of testing videos, 
the learned classifier is applied to label the similarity of this pair. 

 

As for the feature representation, most of the methods in 

the action similarity labeling task adopted those widely used 

in  action recognition. For instance, the  baseline results on 

ASLAN were obtained by leveraging Space-Time Interest 

Points (STIPs) followed by the Bag-of-Features (BoF) 

representation [25]. Kliper-Gross et al. [14] then proposed an 

enhanced feature encoding method named Motion Interchange 

Patterns (MIP) by capturing local changes in motion direc- 

tions. MIP was able to decouple image edges from the motion 

and compensate for global camera motion. Hanani et al. [15] 

explored new variants of the MIP framework by incorporating 

gradient-based descriptors and made the framework achieve a 

in  which only the pair labels are available during training 

rather than the individual label of each single data point. 

 
A. Problem Formulation 

Given a set of N training pairs of videos, {(v x , v 
y 
)}, with 

i      i 
Rm feature representation {(xi , yi )},  where xi  and yi  ∈       and 

label {li } ∈ {+1, −1}, such that li  = +1 if v x  and v 
y  

contain 
i               i 

the same action, and li   =  −1  otherwise. We hope to find 
a binary decision function (classifier) H(x, y) that is able to 

minimize the empirical loss on the training data: 
 

N  

better description of the motion’s structure. In particular, two 

variants histMIP and DoGMIP were proposed, which replaced 

L = 
i =1 

(H(xi , yi ) = li )                           (1)

the  original  patch  representation by  histogram of  gradient 

orientations and Difference of Gaussians representations, 

respectively. These new variants were further combined with 

other features, such as STIPs [26], dense trajectories [27], [28] 

and Motion Boundary Histograms (MBH) [29], to  achieve 

better  performance.  Inspired  by  a  recently  proposed  tool 

in  text  processing  named  word2vec  [30]  neural  network, 

a  piggyback  representation  [16]  was  proposed  to  encode 

the local spatial arrangements of keypoints by employing a 

variant of the word2vec method. 

 
III.  ME T HODOL OGY 

In this section, we will introduce our Compressive Sequen- 

tial Learning method in detail. The overall framework of CSL 

is shown in Fig. 2. The proposed method particularly aims 

at  addressing  the  classification problem  of  pair-wise  data, 

Specifically, we adopt the boosting strategy similar to what 

is used in an AdaBoost classifier, aiming at iteratively learning 

the binary classifier to jointly minimize the empirical loss. 

Thus, the final classification function is the sign of a linear 

combination of non-linear weak learners: 

T 

H(x, y) = sign(
     

α(t )h(t )(x, y)),                   (2) 

t =1 

where T is the number of iterations, α(t )  stands for the t-th 

vote corresponding to h(t ), and sign(x ) = +1 if x ≥ 0, and 

sign(x ) = −1 otherwise. α adjusts the classification result of 

pair-wise data in each iteration. In addition, h(x, y) is the weak 
learner whose definition and optimization will be introduced 
in Section III-C. 

In   the  following  sub-sections,  we  first  introduce  the 

boosting strategy for iteratively learning the final pair-wise
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Fig. 3.    The working flow of our sequential learning algorithm: In the t th  iteration, a binary function h(t )  (i.e., weak learner) is learned based on labeled 
pair-wise video samples and the current distribution over all the samples is updated as well. In the next iteration, if a video pair is misclassified by the weak 
learner, it will be assigned a larger distribution value, and vice versa. Hence, the following weak learner tends to correct the errors of the preceding ones. The 
final ensemble classifier is a linear combination of these weak learners. 

 

ensemble classifier. Subsequently, how to formulate and opti- 

mize  the  non-linear weak  learner  is  addressed. Finally,  to 

reduce the  computational cost,  a  sparse random projection 

method is proposed to further boost the performance. 
 
 

B. Sequential Learning via Boosting 
 

In  this section, a  boosting-based optimization method is 

adopted to iteratively minimize Eq. (1). The overall framework 

can been seen from Fig. 3. Boosting was first proposed in the 

computational learning theory literature [20], [31], [32] and 

has since received much attention. AdaBoost, also known as 

Adaptive Boosting, has been extensively studied and applied 

to many research areas. The goal of AdaBoost is to construct 

an ensemble classifier that minimizes the training error. The 

ensemble classifier consists of a number of weak classifiers, 

each of which can obtain a weak hypothesis whose training 

error is better than chance (i.e., less than 50%) on the training 

data, weighted by a distribution D. It is computationally 

infeasible to optimize the ensemble classifier to achieve the 

global minimal error on the training data. Therefore, a greedy 

optimization method is utilized to address this problem. The 

vote α corresponding to the weak learner and distribution D 

that weights the training data are updated iteratively to ensure 

the overall decrease of the training error for the ensemble clas- 

sifier. Specifically, in each iteration, α is computed according 

to the weighted training error, and D is updated so that the 

pair-wise data points that are misclassified by the previous 

iteration are assigned a higher weight, whereas those points that 

are correctly classified are assigned a lower weight. 

During  the  last  few  decades,  a  variety  of  AdaBoost 

variants have been proposed, including Discrete AdaBoost, 

Real AdaBoost [33], LogitBoost and Gentle AdaBoost [34]. 

In  practice,  we  follow  the  spirit  of  Gentle  AdaBoost and 

Meanwhile, due to the different rule of updating the vote α, 

Gentle  AdaBoost  is  proved  to  be  more  efficient than  the 

traditional AdaBoost. 

 
C. Optimized Weak Learner 

Unlike other weak learners used in the boosting strategy, 

our weak learner should be able to address the classification 

problem of pair-wise data. In the pair-wise setting, only the 

label of each pair is available instead of the label of any single 

data point. The weak learner h(x, y) adopted in the boosting 

algorithm should be capable of predicting whether two data 

points belong to the same class or not. Thereby, the objective 

of this weak learner is to minimize the least-squares loss on 

the training data: 

N 

min 
    

(h(xi , yi ) − li )
2 .                           (3) 

i =1 

Intuitively, we define the weak learner as a product of two 

sign functions as follows: 

h(x, y) = sign(wT x + b) sign(wT y + b),              (4) 
 

where the function inside the sign has a standard form of a 

linear function with w and b as its parameters. 

Particularly, by applying the weak learner of this form, the 

predictions of labels for pair-wise data will be +1 if two data 

points belong to the same class, and −1  otherwise. In the 
following, we will learn the parameters w and b via greedy 
optimization. 

Note that 

N 

min 
    

(h(xi , yi )    li )
2
 

w,b 
i =1 

N

adopt it to optimize the global objective function in Eq. (1). = min 
    

(h(xi , yi )
2 + l 2

  

i        i     i

Gentle AdaBoost is different from the widely used traditional 

AdaBoost with regard to how they use the weighted training 

w,b 
i =1 

N 
i  − 2l h(x , y ))

error  to  update  the  vote  α.  Empirical  evidence  indicates 

that  Gentle  AdaBoost has  similar  or  superior performance 

to the traditional AdaBoost on regular data, but presents its 

advantage on noisy data and is much more resistant to outliers. 

min 
    

(1     1    2li h(xi , yi )).                         (5) 
w,b 

i =1 

The weak learner h(x, y)  that minimizes Eq. (5) is also 

the one that maximizes the correlation of its output and the



 

=                                 +                    + 

→ 

i 

= 

i = 

eeding 

 

 

data labels. Based on this fact, parameters w and b can be 

optimized by: 
 

N 

max 
     

li h(xi , yi ) 
w,b 

i =1 

N 

max 
     

li  sign(wT xi       b)sign(wT yi       b) 
w,b

i =1 

N 

= max 
  

li sign( 
 
 
 
 )sign(  

 
 
 ),                       (6)

w      
i =1 wT xi wT yi 

 

Fig. 4.     Sparse Random Projection: P is the sparse random measurement

where w      w by simply adding b behind the last entry of w   matrix. Each row of P contains β non-zero entries (the white grids represent 
zero entries). By applying P on the original high-dimensional data x , a moreand  xi   →    

of xi  or yi .
 

yi  by adding 1 behind the last entry compact x   i 
can be obtained with a low computational cost (i.e., totally kβ

 

Since the sign function in the weak learner is non- 

differentiable, Eq. (6) is still hard to solve. Here, the spectral 

relaxation trick [35], [36] is applied and the sign function is 

approximated by using its signed magnitude, i.e., sign(x ) = x . 

Therefore, by  dropping the  sign  function,  Eq.  (6)  can  be 

relaxed as: 

N 

multiplications, where k , β ± m). 

 

 
video sequences containing actions “in the wild” (computing 

w s and b s requires eigen decompositions of (m +1)×(m +1) 

matrices).  In  this  sub-section, we  focus  on  projecting the 

pair-wise data from the high dimensional space to a suitable 

low one. In particular, we adopt the spirit of sparse random

max 
  

li (   )(       ) projection. Fig. 4 shows our sparse random projection method,

w      
i =1 wT xi 

 
N 

wT yi 
which has the following advantages: (1) simultaneously pre- 
serving the structure of the original high dimensional space;

= max 
  

li  
 

(2)  obtaining  compact  low-dimensional feature  representa-

w      
i =1 

wT xi yi 
T w 

 
N 

tions; (3) balancing the components’ variance of the original 

feature vector. In the following, we will first introduce random

wT  
  
xi yi 

T )w.                       (7)
 

projection and further propose our sparse random projectionmax 
w   

( 

i =1 

li      
method.

Moreover, w in Eq. (7) can be optimized by solving:   Given a set of data points {xi }
N 

1 , where xi  ∈ Rm , our goal 

is to find a random matrix P ∈ Rk×m , which projects xi  to xi
 

 

where Z = 
    N 

max 
w   

 

li xi yi 
T .

 

wT Zw,                                     (8) 

       
in a much lower dimensional space Rk

 

up the computation: 

(k ± m) for sp        

 

i =1         
It is worth      in 

 

Eq. (8) turns into a standard eigen
  

x      Px .                                       (9)

not g that w can
 

 i  =     i

decomposition problem. Hence, the optimal solution for   
be obtained in a closed-form as the eigenvector of Z associated 

 

According to the Johnson-Lindenstrauss (JL) lemma [37], 

distances between the points in a vector space are very likely

with  the  largest  eigenvalue.  Additionally,  since    
yi 

preserved  if  they  are  projected  onto  a  randomly  selected

xi    and    

are  equivalent  to  each  other  (i.e.,  h(xi , yi )   =   h(yi , xi )), 
Z  can  be  transformed  into  its  symmetric  form  such  that 

subspace with suitably high dimensions. Furthermore, as [38]

Z = 
    N 

li (xi yi 
T +yi xi 

T ) before solving w, which simplifies
 proves, the random matrix satisfying the JL lemma also holds

 

the
 i =1 

for the Restricted Isometry Property in compressive sensing.
calculation. 

Although the optimization is not global, it yields a practical 

approximation to the optimal solution to Eq. (6). Furthermore, 

owing  to  the  iterative optimization of  the  global  boosting 

strategy, a series of sub-optimal weak learners can also achieve 

promising classification performance after several iterations. 



 

as 

Additionally, due to the simplification of our weak learner, 

computational costs in each iteration can be significantly 

reduced. 
 

 
D. Sparse Random Projection 

In the above sub-sections, a global and local optimization 

framework for dealing with the classification of pair-wise data 

has been proposed. Although the computational complexity 

can  be  reduced to  a  certain extent, it  is  still  high  due  to 

the high dimensionality of complex features extracted from 

 

Therefore, if the random matrix P satisfies the JL lemma, P is 

able to preserve the structure of the high dimensional space, 

namely the distances between all pairs of original data points. 

In other words, if xi  is compressive, such as audio or image 

data, it can be reconstructed with a minimum error from xi 

with high probability. In addition to structure-preserving,  

 

mentioned in [18], P can balance the components’ variance 

of  xi   after  performing the  projection,  which  will  directly 

benefit the optimization of weak learners. 

In terms of conventional random projections [39], the entries 

of the measurement matrix P (denoted by { pi j }) should be i.i.d. 

with a zero mean. A convenient way is to let pi j  follow a sym- 

metric distribution about zero with a unit variance. Therefore, 
a typical measurement matrix P is drawn from a Gaussian 

ensemble randomly with  pi j  ∼ N (0, 1). In this case, P is a 

dense matrix of real numbers. Multiplying xi  with P becomes



 

√ 

m 

10 

⎪ 

 
 

 

Algorithm 1 Compressive Sequential Learning 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a non-trivial task in many practical computational environ- 

ments.  To  address this  problem, Achlioptas [37]  proposed 

sparse random projections using the measurement matrix P 

with i.i.d. entries in 

Finally, we obtain a linear combination of non-linear optimized 

weak learners. By simply feeding to  the sign function, an 

ensemble classifier is learned to measure similarities between 

pair-wise data points. Meanwhile, before applying the sign

⎧              
1                           function, we obtain the confidence values and treat them as

⎪1,      wi t h  probabi li ty 
2s ⎪⎨                

1 
pi j  =    s    0,     wi t h  probabi li ty 1 − 

 
 
(10) 

one dimensional feature vectors for pairs of data. And a linear 

SVM classifier is trained on these 1D vectors from the training

s                      set and then applied to predict labels for testing pairs of data. ⎪              
1                           

In this way, our CSL can be seen as an encoding technique⎩−1,   wi t h  probabi li ty 
2s 

where s = 1 or s = 3. In this case, the random measurement 

matrix P becomes very sparse and is very easy to compute. 

By setting s = 3, a three-fold speedup can be guaranteed since 

only one third of the data need to be computed. Furthermore, 
 in [39], Li et al. showed that even larger values of s could 

be employed, such as s = 
√

m, with little loss in accuracy. 
If s = 

√
m, a 

√
m-fold speedup can be achieved. In particular, 

we utilize a coefficient ξ ∈ ( 1 , 0.1] to set s and control the 

sparsity of the random projection matrix: s = m × ξ . When 

ξ = 0.1, the random projection matrix P could be extremely 

sparse,  i.e.,  a  m -fold  speedup  can  be  achieved. However, 

in  practice, s  should not  be  set  too aggressively to  retain 

robustness. 

 
E. Compressive Sequential Learning and Encoding 

As aforementioned, our method incorporates the spirits of 

compressive sensing and sequential learning, and the focus of 

our method is classification of pair-wise data. Therefore, we 

name it Compressive Sequential Learning. The overall frame- 

work is outlined in Fig. 2, and the figure inside the dashed 

box is  the core process of  our CSL method. Furthermore, 

Algorithm 1 illustrates the detailed procedure of our method. 

It can be seen from Fig. 2 and Algorithm 1 that the boosting- 

trick is utilized as the global optimization technique. In each 

iteration, sparse random projection is first employed to reduce 

the dimensionality of the original feature space. Based on the 

low dimensional feature vectors from the  training set,  our 

weak learner is optimized by solving Eq. (8). After finding 

the  optimized weak  learner, we  follow  the  formulation in 

Algorithm 1 to obtain and update the distribution D and vote α. 



 
 

for embedding pair-wise data to  extremely compact codes, 

i.e.,  one  dimensional feature  vectors. This  method, named 

Compressive Sequential Encoding (CSE), can be seen as an 

alternative to  the  CSL  classifier. Both  CSL  and  CSE  are 

extensively evaluated in Section V. 

 
F. Complexity Analysis 

As illustrated in Algorithm 1, the cost of our CSL algorithm 

mainly  consists  of  three  parts  within  the  “for”  loop.  The 

first part is for the construction of sparse random projection 

matrices. From Section III-D, we can conclude that its time 

complexity is O (km), where m is the dimensionality of the 

original space and k is that of the projected low-dimensional 

space. The second part is for the multiplications of projection 

matrices and N data points xi   ∈ Rm . The time complexity 
of the matrix multiplication is O (km N ). The last part is for 

the optimization of weak learners as shown in Eq. (8), which 
is  a  standard  eigen-decomposition problem. Therefore, the 

time complexity of the last part is O (k3 ). In total, the time 

complexity of our CSL algorithm is O (T × (km + km N + k3)), 

where T  is the number of iterations of the global boosting 

framework. Furthermore, since k  ± m,  the  computational 

complexity of our method is equivalent to O (T km N ). 

In addition, we analyze the computational complexities of 

the state-of-the-art methods for action similarity learning [11], 

[13]–[15], which are shown in Table I. The complexity of 

OSSML [11] mainly consists of two parts, i.e., computing 

gradient of its objective function, and using cross validation 

to estimate the optimal values of its parameters. Specifically, 

the complexity of  OSSML is  O (T  km2 Nbc),  where  T    is 

the  number  of  iterations  used  to  optimize  the  projection



 
 
 

 
 

Fig. 5.    Example frames of actions in the four datasets, i.e., ASLAN, KTH, HMDB51 and Hollywood2. 

 
TABLE I 

COMP U TATI ONAL CO M PL E X IT IE S O F  D IFFE R E N T METHODS . T , T   
AND  T    DENOT E NUMBERS  OF ITERAT I ONS OF DIFFE R E N T 

OPT IM IZ AT I ON ALGORI T HMS USE D B Y DIFFE R E N T 

METHODS . PLEAS E SEE  T EXT F OR MORE DETAI LS  

 

    

    

 
 

matrix, b  is  the number of  values of  the parameter tested 

in  the  cross  validation  process,  c  is  the  number  of  steps 

in the gradient descent method. Both [14] and [15] mainly 

focus on the feature representation problem and employ the 

metric learning method named CSML [40] for similarity 

learning, whose  complexity is  similar  to  that  of  OSSML. 

Specifically,  the  complexities  of  [14]  and  [15]  are  both 

O (T  km N bc).  Obviously, our  CSL  method is  much  more 

efficient than [11], [14], and [15]. In terms of LMDR [13], its 

complexity is mainly due to the quadratic optimization about 

the projection matrix, which is addressed by the stochastic 

sub-gradient descent method. Thus, the overall cost of LMDR 

is O (T  km N ), where T    denotes the number of iterations of 

the stochastic sub-gradient descent method. As shown in [13], 

LMDR needs 10k iterations (i.e., T    =  10,000) to achieve 

the optimal results, while only 50 iterations (i.e., T  =  50) 
are enough for our method to achieve comparable results as 

discussed in Section V-D. Therefore, our method also needs 

less computational complexity than LMDR. 

 
IV.  DATASE T S AND EXPERIMENTAL SETUP 

To evaluate our approach, extensive experiments are 

conducted on a variety of action datasets, especially on 

challenging action datasets containing videos “in the wild”. 

Specifically,  four   public   datasets   for   action   recognition 

(i.e.,  ASLAN, KTH, HMDB51 and Hollywood2) are  used 

in our experiments. Fig. 5 illustrates some example frames 

of  the  action  sequences  in  the  datasets.  From  the  figure, 

we can see that actions in ASLAN, HMDB51 and Hollywood2 

are  of  extremely  high  complexity.  The  video  sequences 

usually contain large variations in camera motion, scale, view, 

background, illumination, etc. Additionally, we evaluate our 

method on KTH, which contains videos under constrained 

environments. We conduct experiments on both constrained 

and realistic action datasets to illustrate the challenge posed 

when using videos “in the wild” compared to laboratory 

produced videos. In the following sub-sections, we describe 

each  of  the  four  datasets  briefly. Since  we  focus  on  the 

problem of similarity labeling, the protocol for creating video 

pairs is also explained. Subsequently, spatial-temporal feature 

extraction and video representation methods are presented in 

detail, as well as the overall experimental protocol. 
 

 
A. Datasets 

1) ASLAN:   The  Action  Similarity  Labeling  (ASLAN) 

Challenge is  a  recent dataset, which contains 3,631 action 

videos collected from the web with over 400 complex action 

classes. The goal of this dataset is to decide if two videos 

present the same action or not, following training with “same” 

and “not-same”-labeled video pairs. We follow the test proto- 

col used in [9], in which the action pairs for training and test 

are mutually exclusive, i.e., actions in the test set are neither 

available during training nor from any action classes in the 

training set. In short, this protocol is known as the unseen 

pair matching. Specifically, ASLAN includes two views, one 

view (View-1) for model selection and algorithm develop- 

ment, and the other one (View-2) for reporting performance. 

We demonstrate the performance of our method on View-2, 

which consists of 10 mutually exclusive subsets. Each subset 

contains 600 action video pairs: 300 same and 300 not-same. 

2) KTH:  KTH  [41]  is  an  early  action  dataset  acquired 

in a controlled environment. It contains six types of human 

actions, e.g., walking and jogging. Each action is performed 

several times by 25 subjects in four conditions. All action
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sequences were taken over homogeneous backgrounds with a 

static camera with a 25fps frame rate. To validate our method 

in terms of unseen pair matching, we follow the setting in [9]. 

Specifically, six actions in KTH are divided into three mutually 

exclusive subsets. 

3) HMDB51:  HMDB51 [42] is  known as  a  large video 

database for human motion recognition, containing 6849 video 

clips collected from various sources such as movies and 

YouTube. There are totally 51 action categories, each of which 

includes at least 101 video sequences. In our experiments, 

we use a subset of HMDB51, which consists of 2963 clips 

belonging to 19 action categories of general body movements. 

In order to create action pairs, we randomly choose five mutu- 

ally exclusive subsets on the 19 action classes. Similar to the 

ASLAN dataset, each subset contains 600 action video pairs: 

300 same and 300 not-same. Note that we use the original 

videos rather than the stabilized ones in our experiments. 

4) Hollywood2: The Hollywood2 [43] dataset is composed 

of  1707  action  samples  with  12  action  classes.  All  the 

videos are  extracted from  69  different Hollywood movies. 

STIP descriptors randomly selected from the training data, and 

Euclidean distance is used to calculate the distances between 

STIP descriptors and 5000 visual words. 
 

 
C. Experimental Protocol 

In terms of reporting performance, we follow the testing 

protocol used in [9]. The final results are reported in an N-fold 

leave-one-out cross-validation scheme on the aforementioned 

four datasets. In each experiment, N−1 of the subsets are used 

for training, with the rest one used for testing. This results 

in N separate classification problems and the final performance 

is reported using the mean accuracy     (see Eq. (11)) and 

the standard error of the mean        (see Eq. (12)) over the 

N subsets. Meanwhile, the ROC curve is constructed and the 

Area Under the Curve (AUC) is calculated for classifiers used 

on the N test subsets. 
 N      

Pn
 

μ =     n=1        ,                        (11) 
N

The dataset intends to provide a comprehensive benchmark for 

human action recognition in realistic and challenging settings. 

where  Pn   is  the classification accuracy using subset n  for 
testing.

To  create  action  pairs,  we  randomly  divide  823  training 
σ              

    
   N

  

μ)2

σ              
n=1 ( Pn  −  

samples into three mutually exclusive subsets, each of which 

contains 300 same action video pairs and 300 not-same ones. 
SE  = √
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B. Space-Time Video Representation 

We  use  the  same  features  employed  in  [9]  to  produce 

baseline  results  on  the  ASLAN  dataset,  which  are  sparse 

We do individual experiments using each of the three fea- 

tures as well as the combination of these features. Additionally, 

to allow for efficient computation, PCA is employed to project 

the high dimensional feature vectors to a reduced    dimen- 

sional  space  before  applying  our  method  (the  value  of   
m is

space-time features first proposed in [26]. These features can 

provide tolerance to  clutter,  occlusions and  scale  changes. 

Specifically, Space-Time Interest  Points  are  detected  using 

a  space-time  extension  of  the  Harris  operator  and  three 

types  of  local  descriptors are  computed to  represent local 

motion and appearance features, i.e., Histogram of Oriented 

Gradients (HOG), Histogram of Optical Flow (HOF), and a 

composition of  these two referred to  as HNF. These local 

feature descriptors are computed for 3D video patches in the 

neighborhood of detected STIPs. Each video patch is divided 

into  a  grid  with  3×3×2  blocks.  Then  4-bin  HOG,  5-bin 

HOF, and 8-bin HNF descriptors are computed for each block. 

By concatenating the blocks, each detected STIP is referred 

to as a 72-element, 90-element or 144-element descriptor. 

To  represent a  video sequence containing a  set  of  such 

descriptors,  we   adopt   the   widely   used   spatial-temporal 

Bag-of-Features (BoF) model. A visual vocabulary is assem- 

bled by clustering all the descriptors of training videos. Each 

STIP of the video sequence is assigned a label corresponding 

to  its  closest  visual  word  of  the  vocabulary. Therefore, a 

video sequence is the composite of a  set of visual words. 

The frequency of occurrences of each word belonging to the 

video sequence is calculated and normalized into a histogram, 

which is  the final BoF representation. In  our experiments, 

one visual vocabulary is needed for each of our N exper- 

iments  (N=10,  3,  5  and  3  for  ASLAN,  KTH,  HMDB51 
and Hollywood2, respectively). For each experiment, k-means 

(k=5000) clustering is employed to cluster a subset of 100k 



 
decided according to extensive experiments with different PCA 

dimensions). After that, sparse random projection is applied to 

further reduce the dimension and boost the performance. Due 

to the randomness of our sparse projection, each experiment is 

performed 200 times and the final results reported are averaged 

from the 200 runs. 

 
V.  EXPERIMENTAL  RESULTS  

A. Comparison With Baselines 

We first apply our CSL method on the four datasets and 

compare our results with the baseline results in terms of the 

accuracy, standard error and AUC (see Tables II-V for details). 

Specifically, the  baseline  method  in  [9]  calculates 12  dis- 

tances/similarities between feature vectors of the benchmark 

pairs. The specific formulations of these similarity functions 

can be seen from [9]. Due to space limitation, we manually 

select the best performance of these similarity functions and 

show the best results among them, which correspond to rows 

of “Baseline (Best Sim)” in the tables. Furthermore, the values 

of the 12 (dis-)similarities are concatenated into vectors and 

a  linear  SVM  classifier  is  trained  on  the  12D  vectors  of 

pairs  of  action  samples  from  the  training  set.  As  shown 

in [9], the combination of 12 similarity functions can often 

achieve the best classification results. Therefore, we compare 

the  performance of  our CSL  method with  the  best results 

of  the  12  similarities,  as  well  as  the  concatenated results 

corresponding to rows of “Baseline (All Sim)” in the tables.



 
 

 
TABLE II 

CLAS S I FICATI ON PERF O RMANCE  O N ASL AN: ACCURACY  ± STANDARD  E RROR  AND  (AUC) (%), 
AVERAGED OVER T HE  10-FOLDS . PLEAS E SEE  T EXT F OR MORE DETAI LS  

 
     
     
     
     
     
     
     
     

 
TABLE III 

CLAS S I FICATI ON PERF O RMANCE  O N KT H: ACCURACY  ± STANDARD  E RROR  AND  (AUC) (%), 
AVERAGED OVER T HE  3-FOLDS . PLEAS E SEE  T EXT F OR MORE DETAI LS  

 
     
     
     
     
     

 
TABLE IV 

CLAS S I FICATI ON PERF O RMANCE  O N HMDB51: ACCURACY  ± STANDARD  E RROR  AND  (AUC) (%), 
AVERAGED OVER T HE  5-FOLDS . PLEAS E SEE  T EXT F OR MORE DETAI LS  

 
     
     
     
     
     

 
TABLE V 

CLAS S I FICATI ON PERF O RMANCE  O N HOLLY WOOD 2: ACCURACY  ± STANDARD  E RROR  AND  (AUC) (%), 
AVERAGED OVER T HE  3-FOLDS . PLEAS E SEE  T EXT F OR MORE DETAI LS  

 
     
     
     
     
     

As  aforementioned in  Section  III,  apart  from  our  CSL 

method, we obtain the confidence values before applying the 

sign function in Eq. (2), which are 1D feature vectors for pairs 

of samples. Then a binary, linear SVM classifier is trained on 

these vectors and their corresponding binary labels to map 

unknown pairs to a binary decision of same/not-same. These 

results are shown on the last row of each table corresponding 

to “CSE”. 

In order to acquire the fusion results of the aforementioned 

three features, i.e., HOG, HOF and HNF, two strategies are 

employed. In terms of our CSL method, the weighted voting 

strategy is adopted. In particular, the final fused prediction of 

our CSL classifier is the sign of summation of confidence out- 

puts of three individual CSL classifiers applied on these three 

features. As for the fusion results of the baseline and CSE, we 

follow [9] and utilize the stacking technique [44]. Specifically, 

the (dis-)similarity values of all three features (w.r.t. baseline) 

or the confidence outputs of CSL (w.r.t. CSE) are concatenated 

to form three dimensional vectors, each of which represents a 

pair of example videos. A linear SVM classifier is then trained 

on these vectors with their corresponding same or not-same 

labels. All the fusion results are shown in the last columns of 

the tables. 

As shown in Tables II-V, we can conclude that, for either 

using CSL as a classification method or an encoding method, 

it can always outperform the manually-defined similarity 

functions and their combinations. In comparison of the best 

classification results between the baseline and our methods, 

a 4.80%, 9.44%, 2.40% or 3.22% improvement can be 

guaranteed on  ASLAN, KTH,  HMDB51 and  Hollywood2, 

respectively. For the most challenging datasets, such as 

ASLAN and HMDB51, applying a linear SVM classifier on 

the confidence outputs of CSL can achieve slightly better per- 

formance. In most cases, the standard errors of our methods are 

lower than those of the baseline, showing the generalization of 

our classification method on different subsets. It is noteworthy 

that our method can achieve a significant improvement over the 

baseline on the KTH dataset, especially when using HOG and 

HOF features. This demonstrates the capability of our method 

on action similarity labeling under constrained environments.



 
 

 

 

Fig. 6.    The most confident results using CSL on ASLAN. The Same/Not-Same labels are the ground truth labels, and the Correct/Incorrect labels indicate 
whether our CSL method predicted correctly. For example, the bottom left quadrant displays same action pairs that were most confidently labeled as not-same. 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7.    ROC curves of different methods evaluated on the (a) ASLAN, (b) KTH, (c) HMDB51 and (d) Hollywood2 datasets. 

In  addition  to  demonstrating  the  accuracies,  standard 

errors  and  AUC,  ROC  curves  of  the  classification results 

of  different  approaches  are  shown  in  Fig.  7.  The  ROC 

curves are constructed based on the results of N classification 
experiments. As specified in Section IV-C, in each experiment, 

N−1 subsets are used for learning our CSL classifier and we



 
 

evaluate the results on the rest of the set. For each dataset, 

an ROC curve is constructed for all of its subsets together. 

In other words, the confidence output for each testing pair is 

computed in each experiment and all the outputs for N testing 

sets are concatenated together. 

To  gain  further  insight  into  our  experimental  results, 

we illustrate the most confident predictions on the ASLAN 

dataset  made  by  our  CSL  method.  Here,  the  level  of 

confidence is  measured  by  the  value  before  applying  the 

sign function in Eq. (2), i.e., the highest values correspond 

to the most confident predictions. Fig. 6 presents the most 

confident correct  same  and  not-same  predictions,  and  the 

most confident incorrect same and not-same ones. These 

images demonstrate the challenges and complexities of action 

similarity labeling in realistic scenes. Many of the mistakes 

result from misleading context. For instance, same action pairs 

are misclassified because of pose ambiguity and viewpoint 

variance. Meanwhile, not-same action pairs are mistaken as 

same ones due to a similar background and camera motion. 
 
 

B. Comparison With State-of-the-Art 

Since the ASLAN dataset has been collected as a bench- 

mark focusing on the similarity labeling challenge, we further 

compare our method with the state-of-the-art methods. 

Firstly, we evaluate our method in terms of similarity 

learning   by   comparing   with   the   state-of-the-art   metric 

learning methods (i.e., CSML and OSSML). The 3rd to 5th 

rows of Table II  show the results of CSML, OSSML and 

“OSSML after CSML” which are taken from [11]. Initial PCA 

projection was done before applying the OSSML and CSML, 

and “OSSML after CSML” means applying the OSSML 

method with the matrix obtained by using the CSML algorithm 

as the initial projection. Obviously, “OSSML after CSML” 

can always achieve the best performance in comparison with 

its  counterparts, i.e., CSML and OSSML. Specifically, our 

method achieves a 2.00%, 1.77%, 2.15% or 1.43% improve- 

ment over “OSSML after CSML” in  accuracy with  regard 

to different features and their combinations, respectively. 

Therefore, from the table, we can conclude that our learning 

algorithm is well suited for measuring the similarities between 

pairs of videos, even better than some state-of-the-art metric 

learning algorithms. Moreover, by applying very sparse 

random projection, our optimization algorithm is solved in 

the very low (less than 50) dimensional space, which can 

reduce the computational complexity significantly. 

Secondly,   for   fairly   comparing   the   performance   of 

our   method   with   the   state-of-the-art   methods   on   the 

ASLAN  benchmark, we  follow  [13]  and  extract improved 

dense trajectories (IDT) with HOG, HOF and MBH 

concatenated 396-element descriptors using  the  code  from 

Wang and Schmid [45]. After feature extraction, VLAD [18] 

is employed for video representation and its codebook size 

is  fixed to  256  as  commonly  used  in  the  literature  [45]. 

Fig. 8 shows the comparison results with the state-of-the-art 

methods. Apart from [13], both our CSL and CSE methods 

outperform other state-of-the-art methods. The  accuracy of 

our  method is  0.57% less  than  that  of  [13].  It  should be 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.  8.      Comparison  with  the  state-of-the-art  methods  on  the  ASLAN 
benchmark. 

 

 
 
Fig. 9.   Total errors on the training data of the ASLAN dataset using different 
feature descriptors. 

 
noted that [13] utilized a  dimensionality reduction method 

to compress high-dimensional feature vectors and their best 

results were obtained by using 59% compression ratio, which 

reduced the original dimensionality to 874. However, as 

aforementioned, our method is performed on feature vectors 

with  less  than  50  dimensions.  Therefore,  the  very  little 

loss  in  accuracy  is  acceptable  with  large  enhancement in 

computational efficiency. 

 
C. Training Error of CSL 

Since the boosting strategy is employed in our sequential 

learning process, the total error on the training data should 

be evaluated. In particular, we demonstrate the classification 

error on the ASLAN dataset by using different feature rep- 

resentations, i.e., HOG, HOF and HNF. As aforementioned, 

there are totally 10 experiments. A training error illustrated 

in Fig. 9 is averaged over training errors calculated from each 

of the 10 training sets. As shown in Fig. 9, although there 

exist several rising points, the overall total error on the training 

data decreases gradually with the increase of the number of 

iterations. This  downward trend  indicates the  effectiveness 

of our boosting-based sequential learning algorithm. As the 

number of iterations increases, we can learn a pair-wise 

classification model that minimizes the error on the training 

sets step by step. Owing to this fact, we are able to label the 

similarity between pairs of testing examples effectively.



 
 
 

 
 

 
Fig. 10.    Average accuracies of CSL and CSE with different levels of sparsity for random projection matrices by using fused features on the four datasets: 
(a) ASLAN, (b) KTH, (c) HMDB51 and (d) Hollywood2. 

 

 
 

 
Fig. 11.   Average accuracies of CSL and CSE with different iterations by using fused features on the four datasets: (a) ASLAN, (b) KTH, (c) HMDB51 and 
(d) Hollywood2.

 

D. Evaluation of Parameters 

To  further study  the  influence of  several parameters on 

the performance of CSL and CSE, we evaluate our methods 

based on different settings of parameters, i.e., number of 

iterations w.r.t boosting and sparsity of the random projection 

matrix. Firstly, as shown in Fig. 10, we demonstrate the 

performance by using different levels of sparsity ξ for random 

projection  matrices.  Fig.  10  shows  the  average  accuracies 

using the combination of three feature descriptors on all the 

four datasets, respectively. As shown in Fig. 10, there is less 

than 2% difference between a lowest average accuracy and 

a  highest one  on  all  the  four  datasets. Therefore, we  can 

conclude that the sparseness of the random projection matrix 

has little influence on the final performance. Particularly, we 

can employ a very sparse measurement matrix to project the 

high dimensional data, which will result in a significant speed- 

up in computational efficiency. Secondly, the performance of 

our method is illustrated with the increasing iterations of the 

boosting process. From Fig. 11, we can see that only five 

iterations can already achieve acceptable performance. In most 

cases, more iterations usually guarantee a  higher accuracy. 

Specifically, the performance grows rapidly when the number 

of iterations increases to 20, especially on the ASLAN and 

KTH datasets. In addition, there is little variation in terms 

of the accuracy after 50 iterations on most datasets. Although 

more iterations will result in higher accuracies, this will in turn 

cost more computing time. Therefore, in our experiments, we 

set the number of iterations as 50 to ensure a good balance 

between the performance and the computational efficiency. 
 

E. Evaluation of the Overall Framework 

As our framework consists of two major steps: dimension- 

ality reduction via sparse random projection and sequential 

learning/encoding via boosting, we further validate the choices 

for  each  step  by  replacing our  method  with  several  other 

 

methods in each step. Firstly, for dimensionality reduction, 

we utilize two methods, i.e., PCA and PCA with orthogonal 

random rotation (ORR) as suggested by Jégou et al. [18], 

instead of our sparse random projection (SRP). The original 

feature  space  is  reduced  to  50  dimensions  after  applying 

these  two  methods.  Then  we  utilize  our  sequential  learn- 

ing (SL) or sequential encoding (SE) method based on the 

low dimensional space. Note that our sequential learning (SL) 

or encoding (SE) method can be seen as an  alternative to 

each other. If we apply the sign function, our method can 

be seen as a classification method specifically developed for 

pair-wise data, otherwise our method can be regarded as a 

compact  encoding  method.  Therefore, for  fairly  validating 

the choice for the second step, we first reduce the original 

dimension using our SRP method and conduct the experiments 

from two perspectives. Firstly, we replace our choice for this 

step  with  several  other  classification methods,  i.e.,  Gentle 

AdaBoost [34], Real AdaBoost [33], SVM [46] and K Nearest 

Neighbours (KNN), for comparisons with our CSL method. 

Secondly, we utilize Gentle AdaBoost and Real AdaBoost as 

encoding methods by discarding the sign function, followed 

by a linear SVM classifier for the final classification, and this 

is comparable to our CSE method. 

When validating the choice for the second step, our pair- 

wise  sequential learning/encoding method is  substituted by 

other methods, so we need to represent the similarity between 

a  pair  of  video clips. Here,  we  follow [14]  and  [15] and 

transform representations of each pair, i.e., xi and yi to a single 

vector by performing point-wise multiplications of the two 

vectors (xi . ∗ yi , where .∗ denotes point-wise multiplication). 

All the results by using different features are demonstrated in 

Table VI and VII, and the last column shows the fusion results 

based  on  the  aforementioned weighted  voting  or  stacking 

technique [44]. It can be seen that, our choices (i.e., SRP, 

SL and SE) consistently outperform different choices of other



 
 

 
TABLE VI 

E VA L UAT I O N O F T H E FIR ST STEP (i.e., DI M ENS I ONALI T Y REDUCTI ON ) OF OUR OVERALL  FRAMEWO RK ON THE  ASL AN BENCHMARK : 
ACCURACY ± STANDARD E RROR AND  (AUC) (%), AVERAGED OVER T HE  10-FOLDS . PLEAS E SEE  T EXT F OR MORE DETAI LS  

 

     
     
     

     
     
     
     

 

 
 

TABLE VII 

E VA L UAT I O N O F T H E SECOND  STEP (i.e., SEQUENTI A L L EARNI N G /E NC O DI N G ) OF OUR OVERALL  FRAMEWO RK ON THE  ASL AN BENCHMARK : 
ACCURACY ± STANDARD E RROR AND  (AUC) (%), AVERAGED OVER T HE  10-FOLDS . PLEAS E SEE  T EXT F OR MORE DETAI LS  

 

     
     
     
     
     

     
     
     
     

 
 

methods for different steps, which proves the superiority of 

our overall framework. 

 
VI.  CONCL USION 

In  this  paper, we  consider the  action similarity labeling 

challenge in realistic scenarios. A novel method named 

Compressive Sequential Learning (CSL) has been presented 

for learning the similarities between pairs of actions. A very 

sparse random projection based on the Restricted Isometry 

Property in the compressive sensing theory is employed for 

projecting data  points  to  a  low  dimensional vector  space, 

where the distances between the points are preserved. We then 

address the similarity measurement as a greedy optimization 

problem, by incorporating a boosting trick globally and 

optimizing non-linear weak classifiers for pair-wise data 

locally. Our method has been systematically evaluated on the 

ASLAN, KTH, HMDB51 and Hollywood2 action datasets. The  

results  demonstrate  the  superiority  of   our  method over  

other  state-of-the-art  methods.  For  future  work,  we plan to 

further improve the optimization algorithm, e.g., to employ 

more sophisticated weak learners, and investigate its 

applications to other related areas. 
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