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BIT: Biologically Inspired Tracker
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Abstract—Visual tracking is challenging due to image varia-
tions caused by various factors, such as object deformation, scale
change, illumination change and occlusion. Given the superior
tracking performance of human visual system (HVS), an ideal
design of biologically inspired model is expected to improve
computer visual tracking. This is however a difficult task due to
the incomplete understanding of neurons’ working mechanism
in HVS. This paper aims to address this challenge based on
the analysis of visual cognitive mechanism of the ventral stream
in the visual cortex, which simulates shallow neurons (S1 units
and C1 units) to extract low-level biologically inspired features
for the target appearance and imitates an advanced learning
mechanism (S2 units and C2 units) to combine generative and
discriminative models for target location. In addition, fast Gabor
approximation (FGA) and fast Fourier transform (FFT) are
adopted for real-time learning and detection in this framework.
Extensive experiments on large-scale benchmark datasets show
that the proposed biologically inspired tracker performs favorably
against state-of-the-art methods in terms of efficiency, accuracy,
and robustness. The acceleration technique in particular ensures
that BIT maintains a speed of approximately 45 frames per
second.

Keywords—Biologically inspired model, visual tracking, fast
Gabor approximation, fast Fourier transform.

I. INTRODUCTION

ISUAL object tracking is a fundamental problem in

computer vision. It has a wide variety of applications [1]
including motion analysis, video surveillance, human computer
interaction and robot perception. Although visual tracking has
been intensively investigated in the past decade, it is still
challenging caused by various factors such as appearance
variations, pose change, occlusion. To improve visual tracking,
one may need to address all of these challenges by develop-
ing better feature representations of visual targets and more
effective tracking models.
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Target objects in visual tracking are commonly represented
as handcrafted features or automated features. Histogram based
handcrafed features have been introduced to tracking, such as
a color histogram [2] embedded in the mean-shift algorithm
to search the target, a histogram of oriented gradients (HOG)
[3]] to exploit local directional edge information, and a distri-
bution field histogram [4] to balance descriptor specificity and
the landscape smoothness criterion. In addition, local binary
patterns (LBP) [3], scale-invariant feature transform (SIFT) [6]
and Haar-like features [7] have also been explored to model
object appearance. Handcrafted features only achieve partial
success in coping with the challenges of appearance variations,
scale change, and pose changes, yet requiring domain expertise
for appropriate designs. On the other hand, automated feature
extraction is able to learn self-taught features [8] from input
images, which can be either unsupervised such as principal
component analysis (PCA) [9]], or supervised such as lin-
ear discriminant analysis (LDA) [10]. For example, many
recent tracking methods including local linear coding (LLC)
[1L1], sparsity-based collaborative model (SCM) [12]], multi-
task tracker (MTT) [13] and multi-view tracker (MVT) [14]
use learned sparse representations to improve the robustness
against various target variations. However, due to the heavy
computations involved in learning and optimization, most of
these automated features trade real-time efficiency for the
robustness. In summary, both handcrafted and automated fea-
tures have their limitations, and it remains an important task
to develop better feature representations of objects in visual
tracking.

A tracking model is used to verify the prediction of any
state, which can be generative or discriminative. In generative
models [15]], [L6], tracking is formulated as a search for the
region within a neighborhood that is most similar to the target
object. A variety of search methods based on generative models
have been developed to estimate object states; for instance, a
generalized Hough transform [[17] for tracking-by-detection, a
sparsity-based local appearance generative model 18], and an
object similarity metric with a gradient-based formulation [[19]
to locate objects. However, generative models ignore negative
samples in the background, resulting in vulnerability caused by
background confusion. Recently, discriminative models [20],
[21] have been developed which consider the information of
the object and the background simultaneously, and learn binary
classifiers in an online manner to separate the foreground
from the background. Numerous classifiers have been adopted
for object tracking, such as multi-view SVM (MVS) [22],
structured SVM (Struck) [23]], online AdaBoost (OAB) [24],
and online multi-instance learning (MIL) [25], as well as
several semi-supervised models [26]. However, discriminative
models pay insufficient attention to the eigen basis of the



tracking target and are unable to evaluate the credibility of the
tracking results precisely. Therefore, a successful model should
exploit the advantages of both generative and discriminative
methods [12], [27] to account for appearance variations and to
effectively separate the foreground target from the background.

Primates are acknowledged to be capable in high perfor-
mance visual pattern recognition, as they can achieve invari-
ance and discrimination uniformly. Recent research findings in
brain cognition and computer vision demonstrate that the bio-
inspired models are valuable in enhancing the performance
of object recognition [28]], face identification [29], and scene
classification [30]. We expect applying visual cortex research
to object tracking would also be feasible and meaningful.
Robust tracking target representation based on expert bio-
logical knowledge is able to avoid the parameter adjustment
of handcrafted features and the parameter learning of auto-
mated features. In addition, the biological visual cognitive
mechanism provides the inspiration for combining the gener-
ative model and discriminative model to handle appearance
variations and to separate the target from the background
effectively. This paper develops biologically inspired tracker
(BIT) based on the ventral stream in the visual cortex. In line
with expert biological knowledge and heuristics, a new bio-
inspired appearance model is proposed which simulates multi-
cue selective (classical simple cells, S1 units) and multi-variant
competitive (cortical complex cells, C1 units) mechanism in
shallow neurons to target representation, and achieves an
appropriate trade-off between discrimination and invariance. A
two-layer bio-inspired tracking model proposed for advanced
learning combines the generative and discriminative model:
the response of view-tuned learning (S2 units) is a generative
model via convolution and a fully connected classifier simu-
lates neuronal network for task-turned learning (C2 units) as a
discriminative model. BIT exploits fast Gabor approximation
(FGA) to speed up low-level bio-inspired feature extraction
(S1 units and C1 units) and fast Fourier transform (FFT) to
speed up high-level bio-inspired learning and dense sampling
(S2 units and C2 units).

To evaluate the proposed BIT in terms of tracking accuracy,
robustness, and efficiency, we conduct extensive experiments
on the CVPR2013 tracking benchmark (TB2013) [31] and
the Amsterdam Library of Ordinary Videos (ALOV300++)
database [32]. Experimental results show that BIT outperforms
existing top-performing algorithms in terms of accuracy and
robustness. Moreover, BIT enhances speed via fast Gabor
approximation and fast Fourier transform. It processes approx-
imately 45 frames per second for object tracking on a computer
equipped with Intel i7 3770 CPU (3.4GHz) and is therefore
suitable for most real-time applications.

The remainder of this paper is organized as follows. In
Section [} we review the research works related to bio-inspired
models and the tracking methods based on bio-inspired mod-
els. In Section we introduce the proposed biologically
inspired tracker (BIT) and discuss both the appearance model
and the tracking model in detail. Section [[V] gives the experi-
mental results on both the qualitative and quantitative analysis,
including the comparison with other methods and an analysis
of each part of our method. We conclude our paper in Section

II. RELATED WORK

Humans and primates outperform the best machine vision
systems on all vision tasks with regard to most measures, and
thus it is critical yet attractive to emulate object tracking in the
visual cortex. Understanding how the visual cortex recognizes
objects is a critical question for neuroscience. A recent theory
[33] on the feed-forward path of visual processing in the cortex
is based on the ventral stream processing from the primary
visual cortex (V1) to the prefrontal cortex (PFC), which is
modeled as a hierarchy of increasingly sophisticated repre-
sentations. In the ventral stream, a bio-inspired model called
HMAX [34] has been successfully applied to machine vision
and consists of alternating computational units called simple
(S) and complex (C) cell units. In the primary visual cortex,
the simple units combine intensity inputs with a bell-shaped
tuning function to increase scale and direction selectivity. The
complex units pool their inputs through a pooling operation
(e.g. MAX, AVG or STD), thereby introducing gradual in-
variance to scale and translation. In the inferotemporal (IT)
cortex (the so-called view-tuned units), samples of features
were suggested that were highly selective for particular objects
while being invariant to ranges of scales and positions. Note
that a network comprised of units from the IT cortex to PFC
is among the most powerful in terms of learning to generalize,
which is equivalent to regularizing a classifier on its outputs
tuning function.

Deep neural networks as a bio-inspired model can self-
learn features from raw data without resorting to manual
tweaking, and have achieved state-of-the-art results in several
complicated tasks, such as image classification [35]], object
recognition and segmentation [36]. However, considerably less
attention has been given to applying deep networks for visual
tracking, because only the target state in the first frame is avail-
able to train deep networks. Fan et al. [37] proposed a human
tracking algorithm that learns a specific feature extractor with
convolutional neural networks from an offline training set of
20000 samples. In [38], Wang and Yeung proposed a deep
learning tracking method that uses a stacked de-noising auto-
encoder to learn the generic features from 1 million images
sampled from the Tiny Images dataset [39]. Both methods
pay particular attention to the offline learning of an effective
feature extractor with a large amount of auxiliary data, yet
they do not fully take into account the similarities in local
structural and inner geometric layout information between the
targets over subsequent frames, which is useful and effective
for distinguishing the target from the background for visual
tracking. In addition, the above tracking methods based on
deep networks cannot guarantee real-time performance because
multilayer operations take intensive computation.

In the ventral stream, an HMAX model [34] proposed
for object recognition and scene classification has proven
to be effective. However, the original bio-inspired model is
designed for classification problems and is therefore difficult
to apply straightforwardly to object tracking. In [40]], A bio-
inspired tracker called discriminant saliency tracker (DST)



uses a feature-based attention mechanism and a target-tuned
top-down discriminant saliency detector for tracking, which
does not explicitly retain appearance models in the previous
frames resulting in invalidation in the challenges of occlusion
or background cluster. Zheng et al. [41] presented an object
tracking algorithm by using a bio-inspired population-based
search algorithm, called particle swarm optimization (PSO).
PSO introduces the cognitive mechanism of birds and fishes
to accelerate the convergence in the potential solution space, so
that the optimal solution can be found in a short time. However,
PSO only focuses on the tracking model and loses sight of the
importance of features. Li et al. [42]] proposed a simplified
biologically inspired feature (SBIF) for object representation
and combined SBIF with a Bayesian state inference tracking
framework which utilized the particle filter to propagate sample
distributions over time. The SBIF tracker extracts a robust
representation feature, but ignores the advanced learning mech-
anism in the ventral stream and applies the time-consuming
particle filter as the tracking model. In [43], a simple convolu-
tional network encodes the local structural information of the
tracking object using a set of normalized patches as filters,
which are randomly extracted from the target region in the
first frame. All the convolution maps are extracted from raw
intensity images, therefore no importance is attached to the
low-level bio-inspired feature. In this paper, a novel visual
tracker based on a bio-inspired model is developed to improve
the aforementioned shortcomings.

III. BIOLOGICALLY INSPIRED TRACKER

BIT is an HMAX model [34] that partially mimics the
ventral stream. It is particularly designed for visual tracking,
and can be divided into two main components: a bio-inspired
appearance model and a bio-inspired tracking model (as shown
in Fig. [I). The bio-inspired appearance model is subdivided
into classical simple cells (S1 units) and cortical complex
cells (C1 units); the bio-inspired tracking model is divided into
view-tuned learning (S2 units) and task-dependent learning (C2
units). In addition, FGA and FFT are exploited to significantly
save computations.

A. Bio-inspired Appearance Model

Appearance representation plays an important role in a
vision system, and we present a bio-inspired appearance
model. In line with bioresearch on the striate cortex and
extrastriate cortex, classical simple cells (S1 units) show that a
variety of selective and cortical complex cells (C1 units) main-
tain feature invariance. The proposed bio-inspired appearance
model achieves the unification of invariance and discrimination
between different tracking targets by a hierarchical model.

1) SI units — classical simple cells: In the primary visual
cortex (V1) [44], a simple cell receptive field has the ba-
sic characteristics of multi-orientation, multi-scale and multi-
frequency selection. S1 units can be described by a series of
Gabor filters [45], which have been shown to provide an appro-
priate model of cortical simple cell receptive fields. In contrast
to the traditional bio-inspired feature of the HMAX model,
which uses single even Gabor filters (contrast insensitive), we

consider that odd Gabor filters (contrast sensitive) are also
important for target representation, because they can extract
not only the texture intensity but also the texture gradient
direction. The odd and even Gabor functions have been shown
to provide a good model of cortical simple cell receptive fields
and are defined by
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filter patch coordinate (x,y), the orientation 6, scales s with
2 parameters (the effective width o and the wavelength X).
Following [45], we arranged a series of Gabor filters to
form a pyramid of scales, spanning a range of sizes from
7 x 7 to 15 x 15 pixels in steps of two pixels to model
the receipt-field ¢ of the simple cells (parameter values of
Gabor filters shown in Table [I] are the standard setting in
bio-inspired model). The filters come in 4 orientations (6 =
0,7/4,7/2,3m/4) on even Gabor filters and 8 orientations
(@ = 0,+m/4,+7/2,+£37/4,m) on odd Gabor filters, thus
leading to 60 different S1 receptive field types in total. The
corresponding result of classical simple cells is given by

Slgabor (1‘, Y, 9; S) =1 (l’, y) & Geven/odd (l’, Y, 87 S) 5 (2)

where I (x,y) is the original gray-scale image of tracking
sequences.

In scene classification [46]] and saliency detection [47], the
joint color and texture information is shown to be important.
To effectively represent a color target, we unify S1 units with
both the color and texture information. The color units are
inspired by the color double-opponent system in the cortex
[48]. Neurons are fired by a color (e.g., blue) and inhibited
by another color (e.g., yellow) in the center of the receptive
field, as are neurons in the surrounding area. Color names (CN)
[49] are employed to describe objects, and these are linguistic
color labels assigned by humans to represent colors in the real
world. There are 11 basic colors: black, brown, green, pink,
red, yellow, blue, grey, orange, purple and white. However, the
use of RGB color in computer vision can usually be mapped to
a probabilistic 11 dimensional color attributes by the mapping
matrix, which is automatically learned from images retrieved
by Google Images search. Color name probabilities are defined
by

Slcolo’r (.’E, Y, C) = Map (R ((E, y) ’ G (.’17, y) ’ B (l’, y) ) C) 7(3)
where R (z,y), G (z,y), B (z,y) correspond to the RGB color
values of images, c is the index of color names, and Map()
indicates a mapping matrix from RGB to 11 dimensional color
probabilities. In order to keep the same feature dimension as
S1gabor in one scale, S1coior (2,y,12) is set to 0 and S1coor
is set to O for gray image.

In this paper, a color target is represented by 60 feature maps
of complex number, of which 60 texture feature maps are ob-
tained from multi-scale Gabor filters convoluted with the input
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Fig. 1.

Biologically inspired tracker. BIT cascades four units including appearance model (S1 and C1 units) and tracking model (S2 and C2 units): S1 units

extract texture and color information by Gabor filters and color names; C1 units pool texture and color features and combine them by complex response maps;
S2 units learn view-turned feature by a linear convolution between the input X and the stored prototype P; C2 units apply a full-connection neural network for

task-dependent learning.

image as the real part, and 12 color feature maps are copied
five times corresponding to 5 scales as the imaginary part.
Combining the texture feature with the color feature through
the real and imaginary parts, complex feature maps maintain
the balance between different types of features and take full
advantage of the complex frequency signal information of FFT
to reduce the computation operations by almost half.

2) C1 units — cortical complex cells: The cortical complex
cells (V2) receive the response from simple cells and have the
function of primary linear feature integration. C1 units [S0]
correspond to complex cells, which show the invariance to
have larger receptive fields (shift invariance). Ilan et al. [51]
suggested that the spatial integration properties of complex
cells can be described by a series of pooling operations.
Riesenhuber and Poggio [33] argued for and demonstrated
the advantages of using the nonlinear MAX operator over the
linear summation operation SUM, and Guo et al. [52] proposed
another nonlinear operation called standard deviation STD for
human age estimation. In this paper, a different pooling method
is used for shift competing on each different feature map.

In order to keep C1 unit features what are changes in bias,
invariance to gain can be achieved via local normalization. In
[52], the STD operation has been shown to outperform pure
MAX pooling for revealing the local variations that might be
significant for characterizing subtlety. Dalal and Triggs [53]
used four different normalization factors for the histograms
of oriented gradients. Based on [33], [52], an enhanced STD
operation in a cell grid ¥ of size ng X ng = 4 x 4 is shown as
(@), where Ns, 5, (,y) is a normalization factor and (,d,)
is the shift bias.
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In addition, the mapping of the S1 color units from the RGB
image by point-to-point is sensitive to noise, therefore an AVG
pooling operation is used for color features. The C1 color unit
responses are computed by subsampling these maps using a
cell grid X of size ng X ng = 4 x 4 as CI texture units. From
each grid cell, a single measurement is obtained by taking the
mean of all 16 elements. In summary, C'1..;,, response is

Z Slcolor (xa y) (6)
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B. Bio-inspired Tracking Model

The tracking model is developed to verify any object state
prediction, which can be either generative or discriminative.
Based on the learning mechanism of advanced neurons, the IT
cortex and PFC are explored to design bio-inspired tracking
model. In this paper, a tracking method based on an advanced
learning mechanism is presented to combine generative and
discriminative models, corresponding to the view-tuned learn-
ing (S2 units) and the task-dependent learning (C2 units).

1) S2 units — view-tuned learning: The tuning properties
of neurons in the ventral stream of the visual cortex, from
V2 to the IT cortex, play a key role in visual perception in
primates, and in particular for object recognition abilities [34].
This training process can be regarded as a generative model, in
which S2 units pool over afferent C1 units within its receptive
field. Each S2 unit response depends on a radial basis function
(RBF) [45]] on the Euclidean distance between a new input X
and a stored prototype P. For an image patch from the previous
C1 layer, the response g2 of the corresponding to S2 units is
given by:

T§2 = exp (—BHX - P||2) , @)



where [ defines the sharpness of the tuning coefficient. At
runtime, S2 response maps are computed across all positions
by (7) for each band of C2 units.

According to (7), we know the S2 units response corre-
sponds to a kernel method based on RBEF, which can be
rewritten smnlarly to the linear function as follows (8), when
the RBF is a standard normal function (5 =1 / 202 =1/2).

r's2 = €xp <_WHX - P||2>

1
—5 (XTX 4+ PTP - 2XTP)) ®
~ exp (XTP) ~XTpP

Here XTX and PTP as self-correlation coefficient almost
keep changeless nearly constant with marginal effects on
S2 units, and X7 P roughly locates in the linear region
of exponential function. Moreover, linear kernel is usually
preferred in time-critical problems such as tracking, because
the weight vector can be computed explicitly. Therefore, the
S2 units dense response map was calculated using a linear
function instead of RBF. The C1 units response of new input
X is expressed as C'1X (z,y,k) and the response of stored
prototype P is C17 (x, vy, k), where k is the index of 60 feature
maps corresponding to 12 orientations and 5 scales. To achieve
scale and orientation invariance, an AVG pooling operation is
used for the fusion of multi-feature maps:

52 (w,y) = szx (z,y,k) © C17 (z,y,K) )

2) C2 units — task-dependent learning: The task-specific
circuits from the IT cortex to the PFC learn the discrimination
between target objects and background clusters. According to
bioresearch [54], the routine running in PFC as a classifier is
trained on a particular task in a supervised way and receives
the activity of a few hundred neurons in the IT cortex. The
classifier can indeed read-out the object identity and object
information (such as position and size of the object) from
the activity of about 100 neurons in the IT cortex with high
accuracy and in an extremely short time. Supervised learning at
this stage involves adjusting the synaptic weights to minimize
error in the training set. In this paper, a convolutional neural
network (CNN) is used as (T0), which corresponds to the task-
specific circuits found in C2 units with neurons from the IT
cortex to the PFC.

C2(z,y) = W(z,y) @ S2(x,y), (10)

where W is the synaptic weights of the neural network. In
addition, a fast estimate method of W will be introduced in
the next subsection

C. Real-time bio-inspired tracker

Due to the time-sensitive nature of tracking, modern trackers
walk a fine line between incorporating as many samples as
possible and keeping computational demand low. A practical
visual tracker should reach a speed of at least 24 frames per

second (the standard frame rate of films). Past visual trackers
based on bio-inspired models are unable to maintain real-time
because of complex neuron simulation, such as SBIF tracker
[42] and discriminant saliency tracker [40]. In this paper, an
FGA and an FFT are applied to speed up the hierarchical bio-
inspired model.

1) Fast Gabor Approximation (FGA): To retain the invari-
ance of bio-inspired feature, a series of multi-scale and multi-
orientation Gabor filters is used for convolution with gray
images. Therefore, a 60 times convolution operation seriously
affects the instantaneity of the BIT framework. In this paper,
we propose FGA to reduce the computational cost, which
is inspired by histograms of oriented gradients (HOG)[S3].
HOG uses horizontal and vertical gradients to approximate the
gradient intensity in each orientation. Using several pairs of
1-D Gabor filters (G (z, s (0, ) and Gy, (y, s (0, \))), which
are at 5 different scales and orthogonal to each other as in
Section [[lI-AT] 10 multi-scale orthogonal Gabor response maps
at a pixel (z,y) are computed as

{ Dy (z,y,5(0,N) = I (7,y) ® Gy (% o,\))
Dy(x,y,s(a,A)):I(x,y)®Gy Y,s 7>‘

2w
£)al

an
Let © (x,y,s(0,A)) and A (z,y,s(o,))) be the orientation
and magnitude of the Gabor gradient at a pixel (z,y) in an

image showing as (IZ), by which the response of the multi-
orientation S1 units is approximated.

T Dy, (z,y,s(0,N)
OmysloA) =t (Dz (év»yvs(fn/\))> (12)
/D3 (.. 5) + D3 (2., 5)
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where

Alz,y,s(0,A)) =

We define a pixel-level feature map that specifies a sparse
response of Gabor magnitudes at each pixel (x,y) to approxi-
mate multi-orientation in the S1 units. When © (z,vy, s (o, A))
belongs to the range of corresponding orientations, the magni-
tude A (z,y,0,s (o, \)) is set as the approximate response of
S1 units as

1,4 () _ { é(()t)}ié%fw?sg) € [9 — 77/8,9 +7T/8) (13)

A(),if©()eld—7/8,0+m/38)U
Sleven () = { [0+ 77/8,60 +97/8)
0, otherwise
(14)

2) Fast Fourier Transform (FFT): Many tracking ap-
proaches [S3], [12], [18]] have featured tracking-by-detection,
which stems directly from the development of discriminative
methods in machine learning. Almost all of the proposed
tracking-by-detection methods are based on a sparse sampling
strategy. In each frame, a small number of samples are col-
lected in the target neighborhood by particle filter, because the
cost of not doing so would be prohibitive. Therefore, speeding
up the dense sampling of the S2 and C2 response calculation is



a key feature of BIT. In this subsection, a real-time BIT based
on dense sampling via FFT [56] will be introduced. At time
t, a S2 units dense response map was calculated by a linear
function instead of RBF as

S2p1 (0y) = chm ,y,k) @ C1f (z,y,k) (15)

According to dot-product in frequency-domain equivalent to
convolution in time-domain [57], we note that (I3) can be
transformed to the frequency domain, in which FFT can be
used for fast convolution. That is,

Z]: Clt+1
(16)

where F [ | denotes the FFT function and @ is the elementwise
dot-product.

As with S2 units, the FFT algorithm can also be used for
fast convolution and deconvolution in C2 units. Note that
the convolutional neural network is comprised of units with
Gaussian-like tuning function together on their outputs. In
order to estimate the neuronal connection weights W, the C2
units response map of an object location is modeled as

C2(,y) = exp (—2; ((w‘ —2)’ + (y — yo)2)) , (17

F 8241 ()

where o is a scale parameter and (z,,y,) is the center of the
tracking target. The neuron connection weights W is therefore
shown as

F [52 (z, y)}
F[52(z,y)]

The object location (Z, §) in the (¢+ 1)-th frame is determined
by maximizing the new C2 response map.

FW (z,y)] = (18)

(2,9) = argmax C2;41 (z,y), (19)
(z,y)

where C211 (z,y) = F 1 [F W, (2,9)] © F[S2¢41 (2, y)]]
and F~1[ ] denotes the inverse FFT function.

Depending on the spatial and frequency domains, a classical
method of tracking model update is used in this paper. At the
t-th frame, the BIT is updated by

{ Clﬁ»l (:E?ya k) = pCl ( + ( p) C]-P (x Y, k)

k) + (1=
F Wi (@,y)] = pF W (&,9)] + (1 —p) F [Wt (z, y()%0)7
where p is a learning parameter, C'1 (&, ¢, k) is the C1 units
spatial model and F [W (Z,9)] is the frequency model of
neural weights computed by (T8).
Based on FGA and FFT, the proposed real-time bio-inspired
tracker is summarized in Algorithm [T}

IV. EXPERIMENTS

We evaluate our method on two popularly used visual
tracking benchmarks, namely the CVPR2013 Visual Tracker
Benchmark (TB2013) [31] and the Amsterdam Library of

Algorithm 1 Real-time Bio-inspired Tracker

Input: Gray images I (x,y), Color images RGB (z,y)
Output: Tracking result (£, 9)

I: Set C2=F (eXp (_%iﬁ ((30 — o)+ (y - y°)2)>)

2: Set C1F (z,y,k) = C1(z,y,k) when t =1

3: fort=1,2,... do

4.  Bio-inspired appearance model

5. S1 units:
S1gabor is calculated from I (x,y) by and (T4).
S1cotor 18 calculated from RGB (z,y) by (3)

6:  CI units:
Clgapor (x,y, k) is STD pooled from S1,4p0r by @).
Cleotor (,y, k) is AVG pooled from S1..10- by (6)
C1 (2177 Y, k) = Clgabor ($7 Y, k) + Cleoior (557 Y, k) i

7. Bio-inspired tracking model

8:  S2 units:

1 K
FS2(z,y)] = & kZ F(CL(z,y, k)] F [C17 (z,y, k)]
=1
9:  C2 units:
C2(z,y) = F ' [F[W (z,9)] © F[S2(z,y)]]
10:  Find target: (Z,9) = argmax C2 (x,y)
(z,y)
11:  Update Model:
C17 (z,y, k) = pC1 (,

]Q k) + (1 _p) ClP (.’L‘,y,kj)
Yl =pF W (z,9)]+ (1

F W (z, = p) F[W (z,y)]
12: end for
TABLE 1. SUMMARY OF PARAMETERS USED IN S1 UNITS
Scale s | Receipt-field & o A
1 TXT7 2.8 | 3.5
2 9x%x9 36 | 4.6
3 11 x 11 45 | 5.6
4 13 x 13 54 | 6.8
5 15 x 15 63 | 79

Ordinary Videos Benchmark (ALOV300++) [32]. These two
benchmarks contain more than 350 sequences and cover almost
all challenging scenarios such as scale change, illumination
change, occlusion, cluttered background, and/or motion blur.
Furthermore, these two benchmarks evaluate tracking algo-
rithms with different measures and criteria, which can be used
to analyze the tracker from different views.

We use the same parameter values of BIT on the two
benchmarks. Parameters of the bio-inspired appearance model
are given in Table [} Tracking model parameters mentioned in
Sec. are specified as follows: the learning rate p is set to
0.02, and the scale parameter o, of C2 is set to 0.1 or 0.08
according to the C2 response in the first five frames. (When
the average trend is ascending, o is set to 0.1 or is set to 0.08
otherwise). The proposed tracker is implemented in MATLAB
2014A on a PC with Intel i7 3770 CPU (3.4GHz), and runs
more than 45 frames per second (fps) on this platform.

A. Comparison of results on the CVPR2013 benchmark

The CVPR2013 Visual Tracker Benchmark (TB2013) [31]
contains 50 fully annotated sequences, as shown in Fig. [2]



These sequences include many popular sequences used in
the online tracking literature over the past several years. For
better evaluation and analysis of the strength and weakness
of tracking approaches, these sequences are annotated with
11 attributes: illumination variation (IV), scale variation (SV),
occlusion (OCC), deformation (DEF), motion blur (MB), fast
motion (FM), in-plane rotation (IPR), out-of-plane rotation
(OPR), out-of-view (OV), background clutter (BC), and low
resolution (LR). In this paper, we compare our method with
11 representative tracking methods. Among the competitors,
RPT [58]], TGPR [59]], ICF [60] and KCF [3] are the most
recent state-of-the-art visual trackers; Struck [23]], SCM [12],
TLD [55], VTS [61] are the top four methods as reported in
the benchmark; IVT [9] and MIL [25] are classical tracking
methods which are used as comparison baselines.

The best way to evaluate trackers is still a debatable subject.
Averaged measures like mean center location error or average
bounding box overlap penalize an accurate tracker that briefly
fails more than they penalize an inaccurate tracker. According
to [31]], the evaluation for the robustness of trackers is based
on two different metrics: the precision plot and success plot.
The precision plot shows the percentage of frames on which
the Center Location Error (CLE) of a tracker is within a
given threshold e, where CLE is defined as the center distance
between the tracker output and the ground truth. The success
plot also counts the percentage of successfully tracked frames
by measuring the Intersection Over Union (IOU) metrics on
each frame, and the ranking of trackers is based on the Area
Under Curve (AUC) score. Following the setting in [31], we
conduct the experiment using the one-pass evaluation (OPE)
strategy for a better comparison with the latest methods.

Fig. 3| shows the qualitative comparison with selected track-
ers over all 50 sequences on the TB2013. BIT mainly focuses
on the position of the bounding box and ensures the scale
robustness by multi-scale filters in S1 units, resulting in the
lack of size adjustment of the bounding box. The AUC score
is sensitive to bounding box size. In the success plot, a scale
estimation method [62] is only used to estimate bounding box
size, not to aid target location and model updating. However,
many trackers (eg. TGPR [59], KCF [3]], Struck [23]]) are the
lack of size adjustment of the bounding box, so the precision
plot is emphatically analyzed. According to the precision
plot ranked by a representative precision score (e = 20),
our method achieves better average performance than other
trackers. The performance gap between our method and the
reported best result in the literature is 0.6% for the tracking
precision measure; our method achieves 81.7% accuracy while
the best state-of-the-art is 81.1% (RPT [38]]). Moreover the BIT
significantly outperforms the best tracker in the benchmark
[31] by 15.4% (Struck [23]]) in mean CLE at the threshold of
20 pixels. The results for all the trackers and all the video
sequences are given in Table [l Our biologically inspired
tracker ranks as the best method 23 times. The equivalent
number of best place rankings for RPT, TGPR, ICF and KCF
are 23, 11, 20 and 15 respectively. Another observation from
Table [II] is that the BIT rarely performs inaccurately; there
are only eight occasions when the proposed tracker performs
significantly worse than the best method (no less than 80% of

the highest score for one sequence).

Table and Fig. [ show the performance plots for
11 kinds of challenge in visual tracking, i.e., fast-motion,
background-clutter, motion-blur, deformation, illumination-
variation, in-plane-rotation, low-resolution, occlusion, out-of-
plane-rotation, out-of-view and scale-variation. Clearly, the
BIT almost achieved excellent performances in 11 typical chal-
lenge subsets, especially on IV, SV, OCC, DEF, IPR, OPR, and
OV. Multi-direction Gabor filters used in S1 units contribute
to the robustness of illumination (IV) and rotation (IPR and
OPR). Pooling operations in C1 and S2 units provide the shift
and scale competitive mechanism to deal with deformation
(DEF) and scale variation (SV). Moreover, the generative
model in S2 units and the discriminative model in C2 units rise
to the challenges of OCC and OV respectively. However, the
STD pooling operation in C1 units achieves the shift invariance
and at the same time weakens the appearance ability to low
resolution (LR) targets.

B. Comparison of results on ALOV300++

To further validate the robustness of the BIT, we conduct
the second evaluation on a larger dataset [32], namely the
Amsterdam Library of Ordinary Videos (ALOV300++), which
was recently developed by Smeulders et al.. It consists of 14
challenge subsets, with 315 sequences in total, and focuses on
systematically and experimentally evaluating the robustness of
trackers in a large variety of situations including light changes,
low contrast, occlusion, etc. In [32], survival curves based
on F-score were proposed to evaluate each trackers robust-
ness and demonstrate its effectiveness. To obtain the survival
curve of a tracker, a F-score for each video is computed
F = 2 x (precision x recall)/(precision + recall), where
precision = ntp/(ntp + nfp), recall = ntp/(ntp + nfn),
and ntp, nfp, nfn respectively denote the number of true
positives, false positives and false negatives in a video. A
reasonable choice for the overlap of target and object is
the PASCAL criterion [63): |T* (N GT*|/ |T*JGT?| > 0.5,
where T* denotes the tracked bounding box in frame i, and
GT' denotes the ground truth bounding box in frame i. A
survival curve shows the performance of a tracker on all
videos in the dataset. The videos are sorted according to the
F-score, and the graph gives a birds eye view of the cumulative
rendition of the quality of the tracker on the whole dataset.

To evaluate the BIT on the ALOV300++ dataset [32],
we ran the BIT on all 315 sequences using the ground
truth of the first frame as the initialization and the same
parameters as the previous evaluation. Because the F-score
is also sensitive to bounding box size, DSST [62] is only
used to estimate bounding box size same as the success plot
in Section We compare our tracker with the top four
popular trackers (Struck [23], VTS [61], FBT [64], TLD [55])
which were evaluated in [32]. In addition, we also run ICF
[60], DSST[62], KCF [3] and TGPR [59] on ALOV300++,
which are recognized as the state-of-art trackers in the previous
evaluation, and two classical trackers (IVT [9] and MIL [25]))
are used as comparison baselines. The survival curves of the
ten trackers and the average F-scores over all sequences are



TABLE IL THE TRACKING SCORES OF THE BIT AND OTHER VISUAL TRACKERS ON THE TB2013. THE TOP SCORES ARE SHOWN IN RED FOR EACH
ROW; A SCORE IS SHOWN IN BLUE IF IT IS HIGHER THAN 80% OF THE HIGHEST VALUE IN THAT ROW.

BIT RPT[58] [ TGPR[39] | ICF[60] | KCF[3] | Struck[23] | SCM[12] [ TLD[533] [ VTS[ell | MIL[25] | IVT[O]
Basketball 1.000 0.924 0.994 1.000 0.923 0.120 0.661 0.028 1.000 0.284 0.497
Bolt 1.000 0.017 0.017 1.000 0.989 0.020 0.031 0.306 0.089 0.014 0.014
Boy 1.000 1.000 0.987 1.000 1.000 1.000 0.440 1.000 0.980 0.846 0.332
Card 0.973 0.980 1.000 1.000 0.950 0.992 0.974 0.874 0.363 0.354 1.000
CarDark 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.639 1.000 0.379 0.807
CarScale 0.718 0.806 0.790 0.806 0.806 0.647 0.647 0.853 0.544 0.627 0.782
Coke 0.931 0.962 0.945 0.887 0.838 0.948 0.430 0.684 0.189 0.151 0.131
Couple 0.607 0.679 0.600 0.107 0.257 0.736 0.114 1.000 0.100 0.679 0.086
Crossing 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.617 0.417 1.000 1.000
David 1.000 1.000 0.977 1.000 1.000 0.329 1.000 1.000 0.962 0.699 1.000
David2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.978 1.000
David3 1.000 1.000 0.996 1.000 1.000 0.337 0.496 0.111 0.742 0.738 0.754
Deer 0.831 1.000 0.859 0.817 0.817 1.000 0.028 0.732 0.042 0.127 0.028
Dogl 1.000 1.000 1.000 0.994 1.000 0.996 0.976 1.000 0.811 0.919 0.980
Doll 0.986 0.987 0.943 0.947 0.967 0.919 0.978 0.983 0.946 0.732 0.757
Dudek 0.862 0.849 0.751 0.899 0.859 0.897 0.883 0.597 0.871 0.688 0.886
FaceOccl 0.877 0.663 0.664 0.855 0.878 0.575 0.933 0.203 0.485 0.221 0.645
FaceOcc2 0.933 0.990 0.468 0.968 0.972 1.000 0.860 0.856 0.936 0.740 0.993
Fish 1.000 1.000 0.975 1.000 1.000 1.000 0.863 1.000 0.992 0.387 1.000
FleetFace 0.581 0.562 0.453 0.627 0.556 0.639 0.529 0.506 0.642 0.358 0.264
Football 0.798 0.801 0.997 0.801 0.796 0.751 0.765 0.804 0.796 0.790 0.793
Footballl 0.973 0.932 0.986 0.986 0.959 1.000 0.568 0.554 0.892 1.000 0.811
Freemanl 1.000 0.972 0.933 0.393 0.393 0.801 0.982 0.540 0.969 0.939 0.807
Freeman3 0.817 0.996 0.774 0.896 0911 0.789 1.000 0.767 0.702 0.048 0.761
Freeman4 0.993 0.880 0.580 0.951 0.530 0.375 0.509 0.410 0.219 0.201 0.346
Girl 1.000 0.924 0.918 0.916 0.864 1.000 1.000 0.918 0.874 0.714 0.444
Tronman 0.157 0.181 0.217 0.199 0.217 0.114 0.157 0.120 0.247 0.108 0.054
Jogging.1 0.977 0.228 0.993 0.977 0.235 0.241 0.228 0.974 0.225 0.231 0.225
Jogging.2 1.000 0.179 0.997 0.186 0.163 0.254 1.000 0.857 0.186 0.186 0.199
Jumping 0.093 1.000 0.946 0.383 0.339 1.000 0.153 1.000 0.236 0.997 0.208
Lemming 0.491 0.537 0.349 0.509 0.495 0.628 0.166 0.859 0.554 0.823 0.167
Liquor 0.986 0.937 0.271 0.431 0.423 0.390 0.276 0.588 0.364 0.199 0.207
Matrix 0360 0.440 0.390 0.350 0.170 0.120 0.350 0.160 0.200 0.180 0.020
Mhyang 1.000 1.000 0.947 1.000 1.000 1.000 1.000 0.978 1.000 0.460 1.000
MotorRolling 0.049 0.049 0.091 0.049 0.043 0.085 0.037 0.116 0.049 0.043 0.030
MountainBike | 0.987 1.000 1.000 1.000 1.000 0.921 0.969 0.259 0.996 0.667 0.996
Shaking 0.970 0.995 0.970 0.025 0.025 0.192 0.814 0.405 0.921 0.282 0.011
Singerl 1.000 0.986 0.684 0.689 0.980 0.641 1.000 1.000 1.000 0.501 0.963
Singer2 0.036 0913 0.970 0.038 0.945 0.036 0.112 0.071 0.358 0.404 0.036
Skating1 1.000 1.000 0.805 1.000 1.000 0.465 0.768 0.318 0.890 0.130 0.108
Skiing 0.136 0.136 0.123 0.111 0.074 0.037 0.136 0.123 0.062 0.074 0.111
Soccer 0.949 0.944 0.158 0.967 0.793 0.253 0.268 0.115 0.505 0.191 0.173
Subway 1.000 1.000 1.000 1.000 1.000 0.983 1.000 0.251 0.240 0.994 0.223
Suv 0.979 0.529 0.658 0.979 0.979 0.572 0.978 0.909 0.535 0.123 0.447
Sylvester 0.839 0.979 0.955 0.851 0.843 0.995 0.946 0.949 0.820 0.651 0.680
Tigerl 0.927 0.977 0.284 0.958 0.975 0.175 0.126 0.456 0.117 0.095 0.080
Tiger2 0.449 0.814 0.723 0.485 0.356 0.630 0.112 0.386 0.162 0.414 0.082
Trellis 1.000 1.000 0979 1.000 1.000 0.877 0.873 0.529 0.503 0.230 0.332
Walking 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.964 1.000 1.000 1.000
Walking?2 0.440 0.684 0.988 1.000 0.440 0.982 1.000 0.426 0.408 0.406 1.000
Woman 0.940 0.938 0.968 0.938 0.938 1.000 0.940 0.191 0.198 0.206 0.201
ALL 0.817 0.811 0.766 0.764 0.739 0.656 0.649 0.608 0.575 0.475 0.499
No. Best 23 23 11 20 15 14 14 11 8 3 8
No. Worst 8 10 14 12 15 26 23 28 29 41 33
TABLE III. THE TRACKING SCORES ON THE TB2013 FOR 11 KINDS OF TRACKING DIFFICULTY. RED INDICATES THE BEST WHILE BLUE
THE SECOND BEST.
BIT RPT[58] [ TGPR[39] | ICF[60] | KCF[3] | Struck[23] | SCM[12] [ TLD[53] [ VTS[ell | MIL[253] | IVT[9]
v 0.764 0.827 0.687 0.696 0.717 0.558 0.594 0.537 0.573 0.349 0.418
N 0.786 0.802 0.703 0.707 0.667 0.639 0.672 0.606 0.582 0.471 0.494
oCC 0.854 0.765 0.708 0.817 0.744 0.564 0.640 0.563 0.534 0.427 0.455
DEF 0.817 0.748 0.768 0.754 0.751 0.521 0.586 0.512 0.487 0.455 0.409
MB 0.663 0.783 0.578 0.654 0.621 0.551 0.339 0.518 0.375 0.357 0.222
FM 0.643 0.745 0.575 0.612 0.581 0.604 0.333 0.551 0.353 0.396 0.220
IPR 0.783 0.795 0.706 0.739 0.731 0.617 0.597 0.584 0.579 0.453 0.457
OPR 0.831 0.807 0.741 0.741 0.724 0.597 0.618 0.596 0.604 0.466 0.464
oV 0.654 0.641 0.495 0.584 0.555 0.539 0.429 0.576 0.455 0.393 0.307
BC 0.789 0.840 0.761 0.698 0.725 0.585 0.578 0.428 0.578 0.456 0.421
LR 0.369 0.478 0.539 0.516 0.379 0.545 0.305 0.349 0.187 0.171 0.278

INDICATES
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Fig. 3. Precisions plots and success plots on the TB2013

shown in Figure [5} which demonstrates that the BIT achieves
the best overall performance compared to the 10 trackers in
this comparison. From the figure, we can see that the proposed
tracker outperforms ICF [60] by 0.008 in mean F-score and
the survival rate (F' > 0.8) of the BIT is 59.36% compared to
the second best tracker 55.87% - a difference of 3.49%.

C. Tracking model analysis

According to the introduction, tracking model can be
generative or discriminative. For generative models, tracker
searches for the most similar region to the target object
within a neighborhood. For discriminative models, tracker is
a classifier to distinguish the target object from the back-
ground. However, generative models ignore negative samples
in the background and discriminative models pay insufficient
attention to the eigen basis of the tracking target. In this
paper, BIT proposed for advanced learning combines the
generative and discriminative model: the response of view-
tuned learning (S2 units) is a generative model and a fully-
connected network classifier simulates for task-turned learn-
ing (C2 units) as a discriminative model. In order to prove
the effect of hybrid-model, we compare the tracking scores
between BIT without C2 units, BIT without S2 units and
intact BIT on the TB2013 showed in Fig. [6] For the gen-

Qualitative evaluations on the CVPR2013 Tracking Benchmark. We compare BIT with the top-performing RPT, TGPR,

, KCF and Struck.

erative model only (without C2 units), the object location
(z,9) is determined by maximizing the S2 response map as
(#,9) = argmin,,)S2 (x,y). For the discriminative model
only (without S2 units), the convolutional neural network in C2
units receives the activity from C1 units directly as C2 (z,y) =
/K>, FLHF[W (2,y, k)] ® F[C1(z,y,k)]]. Clearly, the
hybrid-model (81.7%) achieved excellent performances in
comparison to single-model (74.9% and 51.7%). In addition,
the performance gap between the discriminative model and the
generative model in the literature is 23.2% for the tracking pre-
cision measure. Because background information is critical for
effective tracking, which can be exploited by using advanced
learning techniques to encode the background information in
the discriminative model implicitly or serving as the tracking
context explicitly.

D. Tracking speed analysis

The experiments were run on a PC with Intel i7 3770
CPU (3.4GHz), and we report the average speed (in fps)
of the proposed BIT method in Table [IV] and compare it
with the state-of-the-art visual trackers referred to in Sec.
In this paper, the average speed score is defined as the
average fps over all the sequences, which objectively evaluates
sequences where the initialization process usually dominates
the computational burden. According to the standard frame rate
of films, we consider that a processing speed of more than 24
fps is equivalent to real-time processing.

Table [[V]and Fig[7]show the tracking speed and the tracking
scores on the TB2013 [31]]. According to the table, our method
tracks the object at an average speed of 45fps, which is
significantly faster than the second best tracker RPT (4.1
fps). Furthermore, the speed of our proposed BIT is close to
twice that of the real-time criterion, which leaves a substantial
amount of time in which to increase modified strategies to
further improve tracking performance.
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V. CONCLUSION

In this paper, we successfully applied a bio-inspired model
to real-time visual tracking. To the best of our knowledge, this
is the first time this has been achieved. Inspired by bioresearch,
the proposed novel bio-inspired tracker models the ventral
stream of the primate visual cortex, extracting low-level bio-
inspired features in S1 and C1 units, and simulating high-level
learning mechanisms in S2 and C2 units. Furthermore, the

complicated bio-inspired tracker operates in real-time since
fast Gabor approximation (FGA) and fast Fourier transform
(FFT) are used for online learning and detection. Numerous
experiments with state-of-the-art algorithms on challenging
sequences demonstrate that the BIT achieves favorable results
in terms of robustness and speed.

The human visual system is a complex neural network which
is multi-layered and multi-synaptic, and the BIT pays little



TABLE IV. THE TRACKING SPEED AND SCORES ON THE TB2013 (M:
MATLAB, C:C/C++, MC: MIXTURE OF MATLAB AND C/C++, SUFFIX E:
EXECUTABLE BINARY CODE).

Tracker Speed (fps) | Precision (%) Code
BIT 44.9 81.7 MC
ICF[60] 68.8 76.4 MC
Real-time KCF[3] 284.4 73.9 MC
TLD[55] 28.1 60.8 MC
MIL[25] 38.1 49.9 C
IVT[9] 334 47.5 MC
RPT[58] 4.1 81.1 MC
TGPR[59] 0.7 76.6 C
Non real-time | Struck[23] 20.2 65.6 C
SCM[12] 0.5 64.9 MC
VTS[6l]] 5.7 57.5 MC-E
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Fig. 7. Cost performance on the TB2013. The dashed line is the boundary
between real-time and non-real-time.

attention to a number of visual cognitive mechanisms. A well-
known multi-store memory model (which includes sensory
memory, short-term memory, and long-term memory) is pro-
posed by Atkinson and Shiffrin [65], which provides some
ideas for tracking-by-detection to improve out-of-view and
long-term challenges. Moreover, a multi-stored prototype [34]
is used for object recognition in S2 units, which has proved
to be effective for local occlusion and partial deformation. In
addition, C2 units using a single layer convolutional network
cannot perfectly simulate neuron connections in PFC, which
provides a good starting platform for further research into
multi-layer neural networks.
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