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Abstract

In this paper, we introduce a novel approach for active
contours with free endpoints. A scheme is presented for
image segmentation and restoration based on a discrete
version of the Mumford-Shah functional where the con-
tours can be both closed and open curves. Additional to
a flow of the curves in normal direction, evolution laws for
the tangential flow of the endpoints are derived. Using
a parametric approach to describe the evolving contours
together with an edge-preserving denoising, we obtain a
fast method for image segmentation and restoration. The
analytical and numerical schemes are presented followed
by numerical experiments with artificial test images and
with a real medical image.

Keywords: Image segmentation, image restoration,
active contours, Mumford-Shah, Chan-Vese, paramet-
ric method, variational methods, free endpoints, open
boundaries.

1 Introduction

This article addresses important classical problems in im-
age processing: image segmentation, edge detection and
image restoration.

Image segmentation aims at partitioning a given image
into its constituent parts, also called regions or phases.
A segmentation of an image can be given by a set of
region boundaries and edges. Different types of edges
can occur in images: edges can be boundaries of objects
and separate these objects from their background or from
each other. But edges can also end inside the image at a
location where no other edge continues.

Boundaries of objects can be modeled with so-called
interface curves. Non-interface curves are curves which
do not separate two different regions in the image. Such
curves have one or two so-called free endpoints.

Image restoration aims at reducing or removing noise
which affects a given image. Typically, a blurring of
the sharp edges in the image should be prevented when
smoothing an image. This results in the need of an edge
preserving image denoising method.
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Image segmentation including edge detection can be
performed with active contours (also called snakes), first
proposed by Kass, Witkin, and Terzopoulos [22] in 1988.
Since this time, the popular method is applied and fur-
ther developed by many authors, e.g. [2, 11,14,15,18,23,
25,31,33]. Using active contours, a curve evolves in order
to minimize a given energy functional. The energy func-
tional should be designed such that a minimizing curve
matches with the region boundaries or edges in the image.

The Mumford-Shah functional [28] can be used for
both image segmentation and image restoration. A pair
(Γ, u) should be found which minimizes the Mumford-
Shah energy, where Γ is a set of curves and u is a piece-
wise smooth function with possible discontinuities across
Γ. Having found a solution (Γ, u), a segmentation of the
image is given by the set of object boundaries and edges
Γ, and a denoised version of the image is given by the
piecewise smooth approximation u.

An important variant of the Mumford-Shah problem
is the restriction to piecewise constant image approxi-
mations u, the so-called minimal partition problem [15].
However if edges with free endpoints, also called crack-
tips [28], occur, the piecewise constant approximation
will not be applicable.

It is also possible to approximate the Mumford-Shah
functional by a sequence of simpler elliptic variational
problems as introduced by Ambrosio and Tortorelli [1].
They replaced the curve Γ by a 2D function for which a
phase field type energy is added to the functional.

Image segmentation and restoration are classical areas
in image analysis, see [22, 28, 33, 34], but still significant
in more present research, see e.g. [3, 8, 12, 13, 15, 17, 20,
27, 37, 38] to mention some selected works. There is also
a variety of related image processing tasks like object
detection [21,31] or pattern recognition [10]), feature ex-
traction [29] and anomaly detection [16].

The image segmentation method, considered and de-
veloped in this article, also uses the evolution of curves.
The resulting evolution equations, derived from the
Mumford-Shah functional, can be written as parabolic
partial differential equations for a parametrization of the
curves Γ. The restoration is performed by solving a diffu-
sion equation for u, also derived from the Mumford-Shah
model. By using the location of the curves Γ, we obtain
an edge-preserving smoothing.

Open active contours, i.e. active contours with free
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endpoints, are also considered by [24], where the au-
thors propose a method for detection of open boundaries
based on an edge detector which uses the image gradient.
Here, we consider approaches based on the Mumford-
Shah model. Using convex relaxation approaches, global
minimizers of the Mumford-Shah functional are deter-
mined in [32]. The method can also handle free end-
points. In [36], the level set method is used for evolving
curves with free endpoints. However, two level set func-
tions and artificial regions are needed to describe a curve
with free endpoints.

During the evolution of curves, topology changes like
splitting or merging can occur, since the number and the
topology type of edges and region boundaries is often not
known in advance. Using indirect methods like level set
and phase field techniques, topology changes are handled
automatically. It is often argued that the inability to
change the topology of curves is the main disadvantage
of parametric methods like the original snake model [22].
In this paper, we extend an efficient method to detect
and perform topology changes (presented in [9] and based
on the original idea of [5, 26]), such that also topology
changes of curves with free endpoints can be handled.

The objective of this article is to solve the Mumford-
Shah problem including curves with free endpoints with
a parametric approach. The method we propose is based
on a parametrization of the evolving curves. We show
how a method developed for interface curves [9] can be
extended for curves with free endpoints. With the pre-
sented concept for image segmentation and restoration,
we can easily process images with both open and closed
edges. Our method is very efficient from a computational
point of view, since the curve evolution problem is a one-
dimensional problem and no artificial regions have to be
used compared to [36].

2 Image Processing with Para-
metric Contours

Let u0 : Ω→ R be an image function describing for each
point in the image domain Ω ⊂ R2 the intensity of the
image.

The Mumford-Shah method [28] for optimal approx-
imation of images aims at finding a set of curves Γ =
Γ1 ∪ . . .ΓNC

and a piecewise smooth function u : Ω→ R
with possible discontinuities across Γ approximating the
original image u0. The energy to be minimized is

E(u,Γ) = σ|Γ|+
∫

Ω\Γ
‖∇u‖2 dx+λ

∫
Ω

(u0−u)2 dx, (1)

where σ, λ > 0 are weighting parameters and |Γ| denotes
the total length of the curves in Γ.

A minimizer of the Mumford-Shah functional provides
(i) a restoration of the possible noisy original image by a
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Figure 1: Image containing an edge with a free endpoint.

piecewise smooth approximation u and (ii) a segmenta-
tion of the image given by a union of curves Γ represent-
ing the set of edges in the image. The curves belonging
to Γ can be sharp edges where the image function rapidly
changes, but they can also be so-called weak edges where
the image function smoothly changes its value, see [15].

The contours Γi, i = 1, . . . , NC , may be closed contours
with ∂Γ = ∅, or open contours with two endpoints. The
endpoints may lie on the image boundary ∂Ω, may be-
long to triple junctions where three curves meet, or may
be free endpoints, cf. the conjecture of Mumford and
Shah [28]. In the latter case, the endpoint is a point in-
side the image domain, where no other curve continues.
Figure 1 shows an image where an edge occurs which
terminates near the image center. The edge can be rep-
resented by a curve with one endpoint located at the left
image boundary ∂Ω and one endpoint being a free end-
point, located close to the image center.

In [9], we proposed a parametric method for image seg-
mentation with piecewise constant image approximations
u and interface curves Γ1, . . . ,ΓNC

, each separating two
regions. There, we considered a decomposition of the im-
age in NR regions Ω1, . . . ,ΩNR

separated by curves Γi,
i = 1, . . . , NC , and approximations u|Ωk

= ck ∈ R. In
that case, the functional (1) reduces to

E(Γ, c1, . . . , cNR
) = σ|Γ|+ λ

NR∑
k=1

∫
Ωk

(u0 − ck)2 dx, (2)

see [15]. Using methods from the theory of calculus of
variations, the following evolution equation can be de-
rived for time-dependent curves Γi(t), t ∈ [0, T ]:

(Vn)i = σκi + Fi, i = 1, . . . , NC , (3)

where (Vn)i is the normal velocity of Γi(t), κi is the cur-
vature, and Fi is given by

Fi( . , t) = λ[(u0 − ck+(i)(t))
2 − (u0 − ck−(i)(t))

2], (4)

with t ∈ [0, T ]. The indices k+(i), k−(i) ∈ {1, . . . , NR}
denote the two regions which are separated by Γi(t). The
coefficients ck(t), k = 1, . . . , NR, are the mean of u0 in
the region Ωk(t).

In practice, the segmentation problem can be solved
in a two-step approach. For discrete time steps t ≥ 0,
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the coefficients ck are computed using the current set
of curves. This is followed by an update of the curves
Γ(t) → Γ(t + ∆t), performed by solving the evolution
equation (3).

For some images, the piecewise constant approximation
is not applicable, see the exemplary image in Figure 1.
For such images, the image domain cannot be decom-
posed in regions separated by interface curves.

Consequently, we modify the two-step approach of [9],
such that also non-interface curves with free endpoints
can be dealt with. In the first step, we will solve a
diffusion equation in the image domain resulting in a
piecewise smooth approximation u. Instead of using the
coefficients ck, we will consider for ~p ∈ Γi(t) the limit
u±(~p) = limε→0,ε>0 u(~p ± ε~νi(~p)), where ~νi is a normal
vector field on Γi(t). Having computed u, we solve the
evolution equation (3) with a modified external term Fi,
using u± instead of constants ck±(i).

Before, presenting further details, we first consider the
regularity of a solution of the Mumford-Shah problem
at the free endpoint. Fixing the curves Γ, let u denote
the minimizer of the Mumford-Shah energy (1). At free
endpoints, problems concerning the regularity of u occur,
cf. [28]. Expressed in polar coordinates (r, φ) centered at
the free endpoint, the solution u is of the form

u(r, φ) = c r1/2 sin(
1

2
(φ− φ0)) + v̂(r, φ), (5)

where v̂ is a C1-function and c, φ0 are constants, see [4].

For image segmentation, we later need to solve the
problem on a discrete set: Let Ωh be a rectangular grid
of nodes covering Ω with grid size h > 0. We replace the
second integral on the right hand side of (1) by a sum
containing difference quotients of the form

∇ihu(~z) =
1

h
(u(~z + h~ei)− u(~z)), ~z ∈ Ωh, (6)

where ~ei ∈ R2 are the standard basis vectors of R2, i =
1, 2. For image segmentation applications, we choose the
pixel grid, i.e. we use h = 1. For the approximating
sum, we have to exclude terms where the line [~z, ~z + h~ei]
intersects with the curve Γ.

Instead of the original Mumford-Shah functional (1),
we thus consider the energy

Eh(Γ, u) = σ|Γ|+
∑
~z∈Ωh

s.t. ~z+h~e2∈Ωh

(1− αx(~z))(∇2
hu(~z))2+

+
∑
~z∈Ωh

s.t. ~z+h~e1∈Ωh

(1− αy(~z))(∇1
hu(~z))2 + λ

∫
Ω

(u0 − u)2 dx,

(7)

where αx(~z), αy(~z) ∈ [0, 1] are scalar terms. If [~z, ~z+h~e1]
intersects with Γ, αy(~z) is set to 1.

2.1 Example

We consider one single open curve Γ. Let ~x : [0, 1]→ R2

with ~x([0, 1]) = Γ be a parameterization of the curve.
Let ~x(0) be a free endpoint and let ~x(1) intersect with
the image boundary.

Figure 2 visualizes a possible situation near the free
endpoint ~x(0). Let ~z++, ~z+−, ~z−−, ~z−+ denote the four
grid points around ~x(0) as shown in Figure 2. In this
example, the tangential vector of the curve at ~x(0) is
~τ(0) = ~xs(0) = ~e1, where s denotes the arc-length of the
curve.

Considering ~z = ~z+−, the line [~z+−, ~z++] and Γ inter-
sect. Thus, αx(~z+−) is set to 1. For ~z = ~z−−, we define
a factor

αx(~z−−) :=
1

h
((~z+−)1 − (~x(0))1) , (8)

where ( . )i denotes the i-th component of a vector, i =
1, 2. The factor αx(~z−−) describes how far the curve has
entered the square given by ~z++, ~z+−, ~z−−, ~z−+.

For ~z ∈ Ωh, ~z 6= ~z−−, we set αx(~z) = 0 if [~z, ~z + h~e2] ∩
Γ = ∅ and αx(~z) = 1 else. The factor αy(~z) is defined
similarly.

We now want to vary Γ in direction −~τ(0) at ~x(0). We
consider a second curve Γε, ε > 0, with a parameteriza-
tion ~xε, such that ~xε(0) = ~x(0) − ε~τ(0). We can assume
that ε is small enough, such that ~xε(0) is still inside the
square given by ~z++, ~z+−, ~z−−, ~z−+.

The energy difference is

Eh(Γε, u)− Eh(Γ, u) =σε+ (1− αx(~z−−)− ε)(∇2
hu(~z−−))2

− (1− αx(~z−−))(∇2
hu(~z−−))2

=σε− ε(∇2
hu(~z−−))2.

The energy will decrease if

σ < (∇2
hu(~z−−))2. (9)

Thus a motion of a curve in direction −~τ(0) = −~e1 at
the free endpoint ~x(0) requires that the square of the
difference quotient of u in ~e2-direction at ~z−− is suffi-
cient large compared to the weighting parameter σ of the
length term in the energy (7).

2.2 General Case

We consider a curve with one or two free endpoints
with tangential vector ~τ(ρ) at the free endpoint ~x(ρ),
ρ ∈ {0, 1}. We define the factors αx and αy as follows:
Let ~z++(ρ), ~z+−(ρ), ~z−−(ρ), ~z−+(ρ) denote the four grid
points around ~x(ρ).

If ρ = 0 and ~τ(0) . ~e1 ≥ 0 or if ρ = 1 and ~τ(1) . ~e1 < 0,
we define ~zρ,1 := ~z−−(ρ) and set

αx(~zρ,1) := 1− 1

h

(
(~x(ρ))1 − (~zρ,1)1

)
.
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Γ

~z++

~z+−~z−−

~z−+

~x(0)

αx(~z−−)

Figure 2: Illustration of the pixel grid close to the free
endpoint.

If ρ = 0 and ~τ(0) . ~e1 < 0 or if ρ = 1 and ~τ(1) . ~e1 ≥ 0,
we define ~zρ,1 := ~z+−(ρ) and set

αx(~zρ,1) := 1− 1

h

(
(~zρ,1)1 − (~x(ρ))1

)
.

If ρ = 0 and ~τ(0) . ~e2 ≥ 0 or if ρ = 1 and ~τ(1) . ~e2 < 0,
we define ~zρ,2 := ~z−−(ρ) and set

αy(~zρ,2) := 1− 1

h

(
(~x(ρ))2 − (~zρ,2)2

)
.

If ρ = 0 and ~τ(0) . ~e2 < 0 or if ρ = 1 and ~τ(1) . ~e2 ≥ 0,
we define ~zρ,2 := ~z−+(ρ) and set

αy(~zρ,2) := 1− 1

h

(
(~zρ,2)2 − (~x(ρ))2

)
.

Using these definitions, we define the following factors
for ~z ∈ Ωh:

αx(~z) =


1, if [~z, ~z + h~e2] ∩ Γ 6= ∅, and

~z 6= ~zρ,1, ρ ∈ {0, 1},
αx(~zρ,1), if ~z = ~zρ,1, ρ ∈ {0, 1},
0, else.

and

αy(~z) =


1, if [~z, ~z + h~e1] ∩ Γ 6= ∅, and

~z 6= ~zρ,2, ρ ∈ {0, 1},
αy(~zρ,2), if ~z = ~zρ,2, ρ ∈ {0, 1},
0, else.

For minimizing (7), we propose the following approach:

Assume the case of one curve Γ with two free endpoints
parameterized by ~x : [0, 1]→ R2. In the first step, we fix
u in (7) and consider for ~η : [0, 1] → R2 a variation of ~x
of the form ~x+ ε~η, ε > 0.

Let Γε,η denote the image of ~x+ε~η. We use the notation

Eh(~η) := Eh(Γε,η, u) and compute

d

dε

∣∣∣∣
ε=0

Eh(~η) =
d

dε

∣∣∣∣
ε=0

Eh(Γε,η, u)

=− σ
∫

Γ

~xss . ~η ds−
∫

Γ

F ~ν . ~η ds+

+ σ~xs(1) . ~η(1)− σ~xs(0) . ~η(0)

− sign(~τ(1) . ~e1)~η(1) . ~e1(∇2
hu(~z1,1))2

− sign(~τ(1) . ~e2)~η(1) . ~e2(∇1
hu(~z1,2))2

+ sign(~τ(0) . ~e1)~η(0) . ~e1(∇2
hu(~z0,1))2

+ sign(~τ(0) . ~e2)~η(0) . ~e2(∇1
hu(~z0,2))2.

For this computation, integration by parts and a trans-
port theorem are applied. Further, ~ν is a normal vector
field on Γ such that the pair (~xs, ~ν) is a positive oriented
basis of R2 and F is defined as the jump

F = λ[(u0 − u+)2 − (u0 − u−)2]. (10)

We define the following inner product for functions
~η, ~χ : [0, 1]→ R2:

(~η, ~χ)2,Γ,∂Γ :=

∫
Γ

~η . ~χ ds+ ~η(1) . ~χ(1) + ~η(0) . ~χ(0). (11)

Now, we consider a family of curves Γ(t), t ∈ [0, T ]. Let
~x : [0, 1]× [0, T ]→ R2 be a mapping such that ~x( . , t) is a
parameterization of Γ(t), t ∈ [0, T ]. We call ~x a solution
of the gradient flow equation, if

(~xt, ~η)2,Γ,∂Γ = − d

dε

∣∣∣∣
ε=0

Eh(~η) (12)

holds for all ~η : [0, 1]→ R2.
In the following, we consider particular choices of func-

tions ~η and derive evolution equations for the curve.
First, we consider ~η = η0 ~ν for a scalar function η0 :
[0, 1]→ R with η0(0) = η0(1) = 0. This provides∫

Γ(t)

~xt . ~ν η0 ds =

∫
Γ(t)

(σ~xss . ~ν + F ) η0 ds.

Since η0 is arbitrary chosen (with value 0 at the end-
points), we conclude the following equation for the nor-
mal velocity of the curve:

Vn := ~xt . ~ν = σκ+ F, (13a)

using the identity
κ~ν = ~xss. (13b)

Next, we choose ~η = η0~τ , where η0 : [0, 1] → R is a
scalar function with η0(0) 6= 0 and η0(1) = 0, i.e. ~η(0) =
~τ(0)η0(0) and ~η(1) = ~0. Inserting ~η in (12), and using
(13a), (13b) and ~τ = ~xs, leads to

~xt(0) . ~τ(0)η0(0) = ση0(0)

− sign(~τ(0) . ~e1)~τ(0)η0(0) . ~e1(∇2
hu(~z0,1))2+

− sign(~τ(0) . ~e2)~τ(0)η0(0) . ~e2(∇1
hu(~z0,2))2.
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Since η0(0) is arbitrary and sign(~τ(0) . ~ei)~τ(0) . ~ei =
|~τ(0) . ~ei| for i = 1, 2, we conclude for the tangential ve-
locity

Vtan(0) :=~xt(0) . ~τ(0)

=σ − |~τ(0) . ~e1|(∇2
hu(~z0,1))2

− |~τ(0) . ~e2|(∇1
hu(~z0,2))2. (13c)

Choosing η0(0) = 0 and η0(1) 6= 0, we can derive the
following equation for the tangential velocity in ~x(1):

Vtan(1) :=~xt(1) . ~τ(1)

=− σ + |~τ(1) . ~e1|(∇2
hu(~z1,1))2

+ |~τ(1) . ~e2|(∇1
hu(~z1,2))2. (13d)

Similarly, choosing ~η = η0~ν, provides the following
equations for the normal velocity at the free endpoints:

Vn(0) :=~xt(0) . ~ν(0)

=− sign(~τ(0) . ~e1)~ν(0) . ~e1(∇2
hu(~z0,1))2

− sign(~τ(0) . ~e2)~ν(0) . ~e2(∇1
hu(~z0,2))2, (13e)

Vn(1) :=~xt(0) . ~ν(0)

= + sign(~τ(1) . ~e1)~ν(1) . ~e1(∇2
hu(~z1,1))2

+ sign(~τ(1) . ~e2)~ν(1) . ~e2(∇1
hu(~z1,2))2. (13f)

The curve Γ will grow locally at ~x(0), if the curve moves
in direction −~τ(0). In this case Vtan(0) = ~xt(0) . ~τ(0) < 0.
Therefore,

σ < |~τ(0) . ~e1|(∇2
hu(~z0,1))2+|~τ(0) . ~e2|(∇1

hu(~z0,2))|2 (14)

has to be satisfied such that the curve length increases.
For the exemplary case ~τ(0) = ~e1, the condition reduces
to (9), i.e. to the condition from the introductory exam-
ple.

The curve Γ(t) will grow at ~x(1), if the curve moves
in direction ~τ(1) leading to Vtan(1) > 0. Therefore, the
inequality

σ < |~τ(1) . ~e1|(∇2
hu(~z1,1))2 + |~τ(1) . ~e2|(∇1

hu(~z1,2))2 (15)

has to be satisfied.
Since the term σ|Γ| in the energy (7) penalizes the

length of the curve, a curve can only grow in direction
−~τ(0) or ~τ(1), if the derivative terms (∇ihu)2, i = 1, 2,
are large compared to σ.

The scheme (13) describes the motion of the curve. For
NC curves Γ1, . . . ,ΓNC

, we can solve (13) for each curve.
For a closed curve Γi, only the normal velocity (13a) with
the relation (13b) needs to be considered, on noting that
~xi(0) = ~xi(1). In the case of triple junctions and intersec-
tions with the image boundary, additional conditions for
the involved endpoints have to be considered. If triple
junctions occur, the evolution equations for the corre-
sponding three curves which meet at the junction are

coupled. The cases with triple junctions and boundary
intersection points are described in [9] in detail.

We alternately solve the scheme of evolution equations
(13) and recompute the approximating function u using
the updated curve set. The function u is obtained by
solving a diffusion equation on Ωh. We note that (7) is
formulated for a discrete set Ωh. We will describe in the
next section, how u is computed numerically.

3 Numerical Approximation

3.1 Numerical Solution of the Evolution
Equations

For computing the position of the evolving curves Γ nu-
merically, we consider a decomposition of the interval
[0, 1] of the form 0 = qi0 < qi1 < . . . < qiNi

= 1, for
i = 1, . . . , NC . If Γi is a closed curve, we make use of the
periodicity Ni = 0, Ni + 1 = 1, −1 = Ni − 1, etc.

Further, let 0 = t0 < t1 < . . . < tM = T be a
partitioning of the time interval [0, T ] with time steps
∆tm := tm+1 − tm, m = 0, . . . ,M − 1. Smooth curves
Γi(tm), i = 1, . . . , NC , m = 0, . . . ,M are replaced by

polygonal curves Γmi given by nodes ~Xm
i,j which are ap-

proximations of ~xi(q
i
j , tm). Further, let κmi,j be an approx-

imation of κi(q
i
j , tm). The derivative terms with respect

to time are replaced by difference quotients of the form

(~xi)t(q
j
i , tm) ≈ 1

∆tm

(
~Xm+1
i,j − ~Xm

i,j

)
. (16)

Let hm
i,j− 1

2

= ~Xm
i,j − ~Xm

i,j−1, i = 1, . . . , NC , j = 1, . . . , Ni,

be the distance between two neighboring nodes. For each
curve, we define a discete normal vector field ~νmi by

~νmi |[qij−1,q
i
j ] := ~νmi,j− 1

2
:=

( ~Xm
i,j − ~Xm

i,j−1)⊥

hm
i,j− 1

2

,

see also [6,7,9]. Here, ⊥ denotes the anti-clockwise rota-
tion of a vector by π/2. Further, we define the following

weighted approximating normal vector at ~Xm
i,j by

~ωmi,j :=
hm
i,j− 1

2

~νm
i,j− 1

2

+ hm
i,j+ 1

2

~νm
i,j+ 1

2

hm
i,j− 1

2

+ hm
i,j+ 1

2

=
( ~Xm

i,j+1 − ~Xm
i,j−1)⊥

hm
i,j− 1

2

+ hm
i,j+ 1

2

,

for j = 1, . . . , Ni if ∂Γmi = ∅ and for j = 1, . . . , Ni − 1 if
∂Γmi 6= ∅. In the latter case, we set

~ωmi,0 := ~νmi, 12
=

( ~Xm
i,1 − ~Xm

i,0)⊥

hm
i, 12

,

~ωmi,Ni
:= ~νmi,Ni− 1

2
=

( ~Xm
i,Ni
− ~Xm

i,Ni−1)⊥

hm
i,Ni− 1

2

.
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The external term F is approximated by

Fmi,j :=λ
[
(u0( ~Xm

i,j)− u( ~Xm
i,j + a~ωmi,j))

2

−(u0( ~Xm
i,j)− u( ~Xm

i,j − a~ωmi,j))2
]
,

with a small real number a > 0 if j is not the index of a
free endpoint, and we set Fmi,j = 0 else.

The equation for the normal velocity (13a) is approxi-
mated by

1

∆tm

(
~Xm+1
i,j − ~Xm

i,j

)
. ~ωmi,j = σκm+1

i,j + Fmi,j . (17a)

Thus, for computing Γm+1
i , we use the previous curve Γmi

for the external term Fmi,j and for the weighted normal
~ωmi,j .

For an approximation of (13b), we need to define an
approximation of (~xi)ss(q

i
j , tm+1). For that, we make use

of difference quotients of the form

∆h,m
2

~Xm+1
i,j :=

2

hm
i,j− 1

2

+ hm
i,j+ 1

2

(
( ~Xm+1

i,j+1 − ~Xm+1
i,j )/hmi,j+ 1

2

−( ~Xm+1
i,j − ~Xm+1

i,j−1)/hmi,j− 1
2

)
,

for i = 1, . . . , NC and j = 1, . . . , Ni, if ∂Γmi = ∅,
and j = 1, . . . , Ni − 1, else. In case of equal spatial
step sizes hm

i,j− 1
2

= hm
i,j+ 1

2

=: hmi , the term reduces to

( ~Xm
i,j−1 − 2 ~Xm

i,j + ~Xm
i,j+1)/((hmi )2), see also [9], where we

also defined and used these difference quotients.
The equation (13b) is now approximated by

κm+1
i,j ~ωmi,j = ∆h,m

2
~Xm+1
i,j , (17b)

for i = 1, . . . , NC , j = 1, . . . , Ni in case of closed curves
and j = 1, . . . , Ni − 1 in case of open curves.

In case of open curves, additional equations for the
endpoints are needed. The case of triple junctions and
boundary intersection points is described in [9]. For
curves with free endpoints we introduce the tangential
vectors ~τmi,0 = ( ~Xm

i,1 − ~Xm
i,0)/hi, 12 , and ~τmi,Ni

= ( ~Xm
i,Ni
−

~Xm
i,Ni−1)/hi,Ni− 1

2
. The equations (13c) and (13d) are ap-

proximated by

1

∆tm

(
~Xm+1
i,0 − ~Xm

i,0

)
. ~τmi,0 =

=σ − |~τmi,0 . ~e1|(∇2
hu(~z0,1))2 − |~τmi,0 . ~e2|(∇1

hu(~z0,2))2,

(17c)

and

1

∆tm

(
~Xm+1
i,Ni

− ~Xm
i,Ni

)
. ~τmi,Ni

=

=− σ + |~τmi,Ni
. ~e1|(∇2

hu(~z1,1))2 + |~τmi,Ni
. ~e2|(∇1

hu(~z1,2))2.

(17d)

Similarly, discrete versions of (13e) and (13f) can be
stated using ~ωmi,0 and ~ωmi,Ni

as discrete normal vectors.

The scheme (17) is a numerical approximation of the
scheme (13), where the parametric curves are replaced by
polygonal curves, and the smooth functions ~xi and κi are
replaced by continuous functions uniquely given by their
values at the nodes qij , i = 1, . . . , NC , j = 0, . . . , Ni.

The discrete scheme can be rewritten to a linear system
with a sparse system matrix, similar as presented in [9],
and can be solved with a fast direct solver like for example
the UMFPACK algorithm [19].

3.2 Numerical Solution of the Denoising
Problem

For computing a numerical solution uh for the piece-
wise smooth, denoised version u of u0, we consider for
Nx, Ny ∈ N the discrete set

Ωh := {(ih, jh) : i = 0, . . . , Nx, j = 0 . . . , Ny} ,

where Nx and Ny are the number of pixels in x- and
y-direction. We define for i = 1, . . . , Nx, j = 1, . . . , Ny

Ax(i, j) =

 h2, if [(i− 1)h, ih]× {j} ∩ Γmi0 = ∅,
∀i0 ∈ {1, . . . , NC},

0, else,

Ay(i, j) =

 h2, if {i} × [(j − 1)h, jh] ∩ Γmi0 = ∅,
∀i0 ∈ {1, . . . , NC},

0, else.

Fixing the set of curves Γ, we consider the following
discrete energy:

Ediscr(u
h) =

Nx∑
i=1

Ny∑
j=1

Ax(i, j)

(
uhi,j − uhi−1,j

h

)2

+ Ay(i, j)

(
uhi,j − uhi,j−1

h

)2


+ λ

Nx∑
i=0

Ny∑
j=0

h2
(
u0(ih, jh)− uhi,j

)2
, (18)

which is a discrete analogue of∫
Ω\Γ

(
‖∇u‖2 dx+

∫
Ω
λ(u0 − u)2

)
dx. Here uhi,j ap-

proximates u at the node (ih, jh). The piecewise
continuous function uh is uniquely given by its value at
the points in Ωh.

By setting the terms Ax(i, j) or Ay(i, j) to zero at
points where the line [(i − 1)h, jh), (ih, jh)] or [(ih, (j −
1)h), (ih, jh)] intersects with one of the curves, we ap-
proximate the integral over the set Ω \ Γ.

Taking the derivative of the right hand side of (18) with
respect to uhi,j and setting the resulting term to zero, leads
to a linear system. The corresponding system matrix is

6



sparse since each node (ih, jh) ∈ Ωh is only coupled to
a few neighboring nodes. The resulting linear system
can be solved with a fast direct or iterative solver by
employing the sparse matrix structure.

Considering h→ 0, we obtain in the limit ∇u . ~ν = 0 at
the curves belonging to Γ, and ∇u . ~n∂Ω = 0 at the image
boundary ∂Ω, where ~n∂Ω is a normal vector field at ∂Ω.
For details, we refer to [9]. Consequently, we obtain an
edge preserving image smoothing if Γ matches with the
edges in the given image.

3.3 Topology Changes

During the evolution of curves, topology changes can oc-
cur, since the edge set in the image and the boundaries
of objects are not known in advance. Therefore, curves
can split into two or more subcurves, curves can merge
to one single curve, triple junctions and new curves may
occur and curves can intersect with the image bound-
ary such that new boundary nodes emerge. Further, a
curve needs to be deleted if its length becomes too small.
In [9], we extended the idea of [5, 26], and described a
method to detect topology changes of curves efficiently.
The main idea is the use of an artificial background grid
which covers the entire image domain Ω. We consider
successively all nodes ~Xm

i,j and mark a grid element with

(i, j) if ~Xm
i,j is the first node located in this array. If a

grid element is already marked with (i1, j1) and the nodes
~Xm
i,j and ~Xm

i1,j1
are not neighbor nodes, a topology change

likely occurs close to this pair. Details on this method
for curves without free endpoints are given in [9].

In principle, topology changes involving curves with
free endpoints can be detected similarly by using such a
background grid. In addition to the topology changes
listed above (splitting, merging, emergence of triple
junctions and boundary intersection points), topology
changes involving the free endpoints can occur: If two free
endpoints of one curve are located in one square of the
background grid, an open contour becomes a closed con-
tour. If two free endpoints of two different curves meet,
the two curves merge to one single curve, and the former
free endpoints become inner nodes of the new curve. If a
free endpoint and an inner point of a curve meet, a triple
junction is created.

3.4 Summary of the Algorithm

We propose the following algorithm for image segmenta-
tion and image restoration with parametric contours with
possible free endpoints:

Given a set of polygonal curves Γ0 = (Γ0
1, . . . ,Γ

0
NC

)

and ~X0 = ( ~X0
1 , . . . ,

~X0
NC

) with ~X0
i ([0, 1]) = Γ0

i , perform
the following steps for m = 0, 1, . . . ,M − 1:

1. Compute a denoised image approximation uh by
minimizing (18) (solve the corresponding sparse lin-
ear system).

2. Compute the external terms Fmi,j by using the solu-

tion uh of step 1. Compute ~Xm+1 by solving the
linear equation derived from the scheme (17).

3. Check whether topology changes occur. If so, exe-
cute the topology change.

A segmentation of the image is given by the final set of
curves ΓM . An image restoration is given by the image
approximation uh from the time step tM .

3.5 Modifications

Step 2 of the algorithm above can additionally be split
in two sub-steps: First, we fix the free endpoints and
we let the inner nodes of the curve evolve. Then, we let
the endpoints evolve according to the above presented
discrete scheme.

The main effort of this method compared to the Chan-
Vese method for interface curves is that we have to solve
a two-dimensional diffusion equation (bulk equation) sev-
eral times during the segmentation. In the experiments
described in the next section, we perform 10 steps of
curve evolution followed by a solution of the bulk equa-
tion. Having computed uh, we use it for the next 10 curve
evolution steps.

As an alternative, we can start the segmentation using
interface curves and the image segmentation method de-
scribed in [9] (based on the Chan-Vese method [15]) with
piecewise constant approximations. As a postprocessing
step, we can consider the derivatives of the image func-
tion in normal direction at the final curves (or the jump
of the image function across the curves). We replace in-
terface curves by curves with free endpoints if the deriva-
tives in normal direction are locally very small. For that,
we delete those parts of a curve where the derivative is
small which results in curves with free endpoints. Next,
we compute some steps of the segmentation method with
free endpoints to obtain the final contours.

Topology changes occur only in rare cases when using
a postprocessing evolution of curves with free endpoints.
In most situations, topology changes are already detected
in the previous evolution.

4 Results and Discussion

The method for image segmentation and restoration pre-
sented in sections 2 and 3 are applied on some exem-
plary test images. For all experiments presented in this
section, we use constant time steps sizes ∆tm = ∆t,
m = 0, . . . ,M − 1.

In the first experiment, we consider an example where
a contour with two free endpoints evolves in the image
domain and detects an edge. Figure 3 presents the results
of image segmentation and denoising. It can be observed
that the image is not smoothed out across the curve Γ.
Further a growth of the curve in tangential direction can
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Figure 3: Example image showing a contour with two
free endpoints. Original image and evolving contours (1st
row) and denoised image (2nd row) for m = 1, 1000, 6000
using ∆t = 0.032, σ = 2e− 5 and λ = 0.002.

be observed. The growth stops when the inequalities (14)
and (15) become equalities. This depends on the absolute
values of the difference quotients |∇ihu|, i = 1, 2, and
the weighting parameter σ. The image approximation
u attends values in [0, 1]. In this image, differences of
the form u(~x + h~ei) − u(~x) are typically of magnitude
10−2. Since Ω = [1, 300] × [1, 300] and h = 1, |∇ihu|2 is
of magnitude 10−4. Therefore, we have to choose a small
value for the weighting parameter σ, here, we choose σ =
2e−5. If we used a normalized image domain Ω = [0, 1]×
[0, 1], the pixel grid would have a grid size of h = 1/300
and h2 = 1/90000. In this case, we would choose a weight
σ of magnitude 1.

In a second experiment, we study a crack tip problem
which has also been considered in [32]. The image func-
tion is given by

u0(~x) = a
√
r(~x) sin(θ(~x)/2) + b, (19)

where r(~x) ≥ 0, θ(~x) ∈ (−π, π] are polar coordinates with
r = 0 corresponding to the image center, and a, b ∈ R are
constants such that u0 attends values in [0, 1].

Figure 4 shows the evolution of a contour with one
free endpoint. The second endpoint belongs to the image
boundary. At time step m = 3000, the free endpoint is
located at the image center and the curve matches with
the edge in the image. As discussed above (see also Equa-
tions (14) and (15)), the parameter σ, which weights the
length term, needs to be chosen small enough such that
the curve can extend. If σ is fixed, the absolute value of
the difference quotients must be large enough such that
the length of the curve increases. In this example, the
edge is a horizontal line and the position where the curve
stops depends on the value of ∇2

hu, i.e. on the difference
quotient in y-direction.

We rerun the example using σ = 0.002 and σ = 0.01
instead of σ = 2e− 5. Figure 5 shows the results at time
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Figure 4: Example image showing a contour with one
free endpoint and one boundary intersection point, see
also [32]. Evolving contours for m = 1, 500, 3000 using
∆t = 0.001, σ = 2e− 5 and λ = 0.002.
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Figure 5: Dependency on the weighting parameter using
σ = 0.002 (left) and σ = 0.01 (right), ∆t = 0.001 and
λ = 0.002 for m = 3000. If a too large weight is chosen
for the length term in (7), the curve does not reach the
image center.

step m = 3000. In both cases, the free endpoint does
not reach the center of the image since the value of σ has
been set larger. The growth of the curve already stops
at larger values of ∇2

hu, recall conditions (14) and (15)).
We even let the curve evolve until time step m = 5000,
but we observed no significant motion between m = 3000
and m = 5000.

In another experiment, which demonstrates the evo-
lution of curves with free endpoints, we first apply the
parametric method of [9] to the Chan-Vese problem [15]
using interface-curves. This means, that we first seg-
ment a given image in regions separated by interface
curves, see Figure 6. We start with one large initial curve
which splits up in two sub-curves. This example thus also
demonstrates the handling of a topology change.

In a postprocessing step, we delete those nodes where
the jump of u0 across the curve is smaller than a given
tolerance of tol = 0.1. This results in one closed curve,
where no points are deleted (blue curve in Figure 7), and
in one curve with two free endpoints (red curve). Fig-
ure 7 shows the results of a postprocessing evolution of
the curve. This example shows that our methods for im-
age segmentation and denoising can be applied also on
images with both open and closed edges.

Table 1 shows the values of the discrete Mumford-Shah
energy (7) for the last step of the Chan-Vese piecewise
constant segmentation with closed region boundaries (cf.
Figure 6, m = 1200) and for the initial and final step
of the postprocessing with one open boundary (cp. Fig-
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Figure 6: Image segmentation result using Chan-Vese,
interface curves and a piecewise constant image approx-
imation. Original image and contours (first row) and
piecewise constant approximation (second row) for m =
1, 1050, 1200.
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Figure 7: Postprocessing evolution with a contour with
two free endpoints using tol = 0.1 to obtain the initial
contour. Original image and contours (left, center) for
m = 1, 400 using ∆t = 0.05, σ = 2e − 5, λ = 2e − 4 and
denoised image for m = 400 (right).

Table 1: Comparison of discrete Mumford-Shah Energy

Processing
Method

Step Nr Discrete
Mumford-
Shah En-
ergy

Chan-Vese,
piecewise con-
stant

1200 (fi-
nal)

22364.94

Postprocessing,
free endpoints

1 (start) 23162.04

Postprocessing,
free endpoints

400
(final)

18284.36

ure 7, m = 1 and m = 400). Note, that the absolute
values are large, since the image consists of 90000 pixels
and the size of each pixel is 1× 1. The average contribu-
tion of each pixel to the energy is < 1; however, it sums
up to a value of magnitude 2 · 104.

From Table 1, we can observe that the energy even
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Figure 8: Postprocessing evolution with a contour with
two free endpoints using tol = 0.5 to obtain the initial
contour. Original image and contours (left, center) for
m = 1, 600 using ∆t = 0.05, σ = 2e − 5, λ = 2e − 4 and
denoised image for m = 600 (right).

slightly increases from the last step of the Chan-Vese
piecewise constant method to the first step of the post-
processing evolution. Deleting part of the curve does not
decrease the energy in this example. However, at the end
of the postprocessing evolution with one open contour, we
obtain a decrease of the energy. The energy at m = 400
of the postprocessing is 81.75% of the energy of the last
step of the piecewise constant segmentation with closed
boundaries. Therefore, if we delete part of the curve and
if we let the curve with free endpoints evolve again, we
will obtain a final curve such that the corresponding dis-
crete Mumford-Shah energy (7) is reduced compared to
the Chan-Vese piecewise constant result.

Next, we investigate the influence of the tolerance value
tol, which is used for the deletion of some nodes of the
curve. Note, that the image function attends values in
[0, 1] where 0 corresponds to black and 1 corresponds to
white color. The exact value of the tolerance tol influ-
ences only the start curve of the second curve evolution.
We repeat the postprocessing evolution and use tol = 0.5
as tolerance resulting in a different initial curve.

Figure 8 shows the postprocessing evolution of the
curve. Of course, since the initial contour in Figure 8
(left) is smaller compared to the initial contour in Fig-
ure 7, more iteration steps are needed to obtain the final
contour.

The final result is independent on the exact initial
curve as long as it is of the same type, i.e. open with
free endpoints; not closed or not fully deleted. In our ex-
ample the largest jump of u0 across the final red curve of
the first evolution (cf. Figure 6, right sub-figures) is 0.61,
the smallest jump is 0.05. The large difference between
the largest and smallest jump can be used as an indicator
to replace the interface-curve by a curve with two free
endpoints. (On the contrary, the jump across the blue
curve is constant in this example.) As tolerance value tol
any value larger than 0.05 and smaller than 0.61 could be
chosen. For tol ≤ 0.05 no node point would be deleted
resulting in an unchanged curve. For tol ≥ 0.61 all nodes
and therefore the entire curve would be deleted. All val-
ues between the two thresholds can be theoretically used.
Therefore, in this example, the final result is independent
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Figure 9: Medical image segmentation using Chan-Vese,
interface curves and a piecewise constant image ap-
proximation. Original image and contours for m =
1, 400, 1000, 2500. Image courtesy: Dr. Declan O’Regan
and the Robert Steiner MR Unit, MRC Clinical Sciences
Centre, Imperial College London.
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Figure 10: Postprocessing segmentation with free end-
points. Original image and contours (far left, left, right)
for m = 1, 100, 500 using ∆t = 0.008, σ = 3.3e − 5,
λ = 0.0167 and denoised image (far right) for m = 500.
Image courtesy: Dr. Declan O’Regan and the Robert
Steiner MR Unit, MRC Clinical Sciences Centre, Impe-
rial College London.

on the exact value of tol as long it is in (0.05, 0.61).

Next, we demonstrate an example where a real, med-
ical image is processed. Figure 9 and Figure 10 show
an excerpt of a medical image and the result of an edge
detection. We first use the Chan-Vese algorithm with
piecewise constant image approximation for segmenting
the image, see Figure 9. In this first segmentation step,
also topology changes occur. The initial closed curve
touches twice the image boundary and splits up in two
open curves each with two boundary intersection points.
After the preceding segmentation, a part of the red curve
is deleted (using a tolerance of 0.1 for the jump across the
curve) resulting in a curve with free endpoints. Figure 10
shows the result of the postprocessing evolution. Small
tangential motions of the free endpoints can be observed.

Finally, we study an example where several topology
changes occur. Figure 11 shows an example where we
start with many small initial curves. A similar image is
also considered in [32]. Many of the small initial lines
shrink and are deleted when their curve length becomes
too small. Additonal topology changes occur: Near the
upper left corner of the image, two curves merge at their
free endpoints to one curve. Further, three free endpoints
become boundary intersection points, and a triple junc-
tion emerges when a free endpoint meets another curve
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Figure 11: Image segmentation and contour detection
with topology changes. The final segmentation contains
two free endpoints, one triple junctions and three bound-
ary intersection points. Original image and contours for
m = 1, 100, 250, 400, 750, 1200 using ∆t = 1, σ = 1e − 4,
λ = 1e− 3.

at an inner node. The topology changes are detected as
described in Section 3.3 and [9].

An advantage of the parametric method is that we
can easily handle non-interface curves and complex curve
networks including triple junctions. The curve evolution
scheme is very similar to the scheme presented in [9] for
interface-curves. Instead of computing the mean value of
the image function in regions, we have to solve a diffusion
bulk equation. Additional to the motion of the curve in
normal direction, free endpoints can move in tangential
direction.

There are alternatives to parametric methods to de-
scribe an evolving curve. The level set method [30] is very
popular for image processing applications and in partic-
ular for active contours methods, see e.g. [25], [11], [23],
[15], [37], [35] to mention a few. In level set methods, a
hypersurface is embedded as the zero level set of a func-
tion defined on the image domain Ω. With level set tech-
niques, free endpoints however cannot be handled with
one single level set function: Since level set methods em-
bed a curve as zero level set of a function Φ : Ω→ R, the
curve is an interface between two regions {Φ > 0} and
{Φ < 0}. Therefore level sets are always closed or meet
the image boundary at their endpoints. Non-interface
curves can be handled by using two level set functions Φ
and Ψ and by using artificial regions, see [36]. A curve
with free endpoints can then be represented by the inter-
face between the artificial regions {Φ > 0}∩{Ψ > 0} and
{Φ > 0} ∩ {Ψ < 0}, for example.

Using our direct, parametric approach it is not neces-
sary to introduce artificial regions. Further our method
is very efficient, since the curve evolution is only a one-
dimensional problem.
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5 Conclusion

We proposed a new parametric approach for active con-
tours with free endpoints. The image segmentation and
denoising method presented in this article is based on
a discrete version of the Mumford and Shah functional.
For curves with free endpoints a flow in normal direc-
tion and a flow of the endpoints in tangential direction
attracts the curves to the edges in the image. With the
presented approach, we can handle both open and closed
curves. The method is also suitable to be employed as
postprocessing step to improve the result of a previous
Chan-Vese like segmentation with interface curves and
piecewise constant image approximations.
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