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Abstract— Face images convey rich information which can
be perceived as a superposition of low-complexity components
associated with attributes, such as facial identity, expressions,
and activation of facial action units (AUs). For instance, low-
rank components characterizing neutral facial images are asso-
ciated with identity, while sparse components capturing non-rigid
deformations occurring in certain face regions reveal expressions
and AU activations. In this paper, the discriminant incoherent
component analysis (DICA) is proposed in order to extract low-
complexity components, corresponding to facial attributes, which
are mutually incoherent among different classes (e.g., identity,
expression, and AU activation) from training data, even in
the presence of gross sparse errors. To this end, a suitable
optimization problem, involving the minimization of nuclear-
and �1-norm, is solved. Having found an ensemble of class-
specific incoherent components by the DICA, an unseen (test)
image is expressed as a group-sparse linear combination of
these components, where the non-zero coefficients reveal the
class(es) of the respective facial attribute(s) that it belongs to.
The performance of the DICA is experimentally assessed on both
synthetic and real-world data. Emphasis is placed on face analysis
tasks, namely, joint face and expression recognition, face recog-
nition under varying percentages of training data corruption,
subject-independent expression recognition, and AU detection by
conducting experiments on four data sets. The proposed method
outperforms all the methods that are compared with all the tasks
and experimental settings.

Index Terms— Discriminant incoherent component analysis,
incoherent subspaces, sparse-based representation classification,
low-rank, sparsity.

I. INTRODUCTION

FACE analysis has been an active research topic over
the last thirty years. Human face is a rich source

of information consisting of several components which are
related to attributes associated with facial identity, emotional
expression and activation of action units (AUs). These
components are characterized by specific structures which
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can assist the semantic interpretation of content in the
visual stream. For instance, facial expressions manifest them-
selves through sparse non-rigid deformations occurring in
certain face regions [1], [2], while images depicting the neutral
face of the same person are expected to be highly correlated
and thus drawn from a low-rank subspace. Consequently, the
extraction of such features of low-complexity (i.e., exhibiting
low-rank or sparse structure) is essential for accurate face and
expression recognition.

Machine learning approaches to face recognition primarily
aim to extract discriminant features that are invariant to
pose, expression and illumination variations in order to train
classifiers. To achieve this, subspace analysis methods such as
Eigenfaces [3], Fisherfaces [4], Laplacianfaces [5], Locally
Linear Embedding [6], [7] and Isomap [8] aim at feature
extraction, based on the assumption that the high-dimensional
observed faces live in a low-dimensional space. However,
those methods are susceptible to non-Gaussian, gross conta-
mination in the data (e.g., occlusions). A partial remedy to
this issue has been provided by Robust Principal Component
Analysis [9] and other similar approaches (e.g., [10]–[13]),
whose building block is the decomposition of face imagery
into a low-rank part and an error term accounting for sparse
corruptions, occlusions, and outliers. Subspace learning on
Image Gradient Orientations (IGO) [14] also alleviates the
problem of illumination- and corruption-related noise with-
out significantly increasing the computational complexity.
On the other hand, Sparse Representation-based Classifica-
tion (SRC) [15] has boosted the development of methods that
focus more on face representation. The main assumption of
SRC is that an unseen (test) image can be represented as
a sparse linear combination of the training face images or
discriminative, noise-free atoms [16]–[22].

Most works on facial expression recognition focus on
“message judgement” – classifying observed facial expres-
sions in terms of emotions or other messages (e.g. pain,
interest, stance, accent) [23]–[26]. Various features have been
employed for this task, including Gabor features (e.g. [27])
and Local Binary Patterns (LBP) [28], [29]. SRC has been
shown to be efficient also for recognition of emotional
expression [27], [30]–[33]. Other works in the field focus on
“sign judgement” – classifying observed facial expressions
in terms of facial muscle activations (AUs) that produced
the observed expression [1], [2], [34]. These atomic facial
actions correspond to all visually discernible facial movements
and can be measured according to the facial action coding
system (FACS) [35].

Face and facial expression recognition, despite being
two intertwined tasks within the context of face analysis,
have hitherto been targeted jointly by just a few works.
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Vasilescu and Terzopoulos [36] employ an extension of
Singular Value Decomposition (SVD) to tensors to uncover
subspaces generating different faces, expressions, viewpoints,
and illuminations. Another SVD-based work is [37], where
the proposed Higher-Order SVD is used to learn the mapping
between persons and expressions, which is subsequently uti-
lized to perform facial expression decomposition. Recently,
Taheri et al. [11] combine RPCA [9] and K-SVD [38] to
construct one identity and one expression dictionary, which
are in turn fed into a SRC-like framework for joint face and
expression recognition.

The fundamental constraint of the above mentioned methods
for face analysis is that the training data is often assumed to
be noise-free. That is, they are collected under well controlled
conditions in terms of illumination and pose variations and
they do not contain occlusions or disguise. Consequently,
the aforementioned methods are not applicable in practical
scenarios when both training and test data are contaminated
by gross non-Gaussian noise and corruptions (e.g., occlusions
and disguise). Moreover, the majority of these works approach
the tasks of face and expression recognition separately rather
than within a joint framework.

To alleviate the aforementioned drawbacks and motivated by
recent advances in robust subspace learning [13], [39]–[43],
we propose the Discriminant Incoherent Component
Analysis (DICA) in order to decompose training facial
images into a superposition of class-specific structured and
mutually incoherent components accounting for identity,
emotional expression or AUs in the presence of gross but
sparse non-Gaussian corruptions. In other words, we model
expressive faces as expressionless faces capturing the identity,
superimposed by sparse images of non-rigid deformations
corresponding to facial expressions, plus sparse components
corresponding sparse errors of large magnitude, which cannot
be explained by labels. To learn such a decomposition, we
impose low-rank constraints on the components capturing
the face’s identity and sparsity constraints to those related
to expressions. The proposed model can be also used to
recover more localized sparse components related to AUs.
Having found an ensemble of class-specific incoherent
components, a test image is expressed as a group-sparse
linear combination of these components with non-zero
coefficients corresponding to the identity and expression class
that the test sample belongs to. Overall, this discriminative
representation furnished by the DICA proves efficient for the
related classification tasks.

The contributions of this paper are as follows:
1) The DICA provides a generic method to decompose

data into class-specific structured and incoherent com-
ponents, and a sparse matrix accounting for outliers.

2) An efficient Alternating-Directions Method of Multipli-
ers (ADMM)-based algorithm is presented that can solve
suitable optimization problems for the DICA, according
to the desirable component structure.

3) A dictionary-based classification framework is proposed,
according to which a test sample is collaboratively
represented via class-specific components extracted by
the DICA.

The performance of the DICA is assessed by conducting
experiments on joint face and expression recognition, face
recognition under varying percentages of training data corrup-
tion, subject-independent expression recognition under varying
illumination conditions during training, and facial action unit
detection, using 4 datasets. The proposed method outperforms
the methods that is compared to in all the aforementioned
tasks.

The remainder of the paper is as follows. In Section II,
the DICA and its algorithmic framework are detailed.
A dictionary-based framework for classification via the DICA
is described in section III. The performance is assessed exper-
imentally on both synthetic and real-world data in Section IV.
Section V concludes the paper and gives insight for future
research directions.

Notations: Matrices (vectors) are denoted by uppercase
(lowercase) boldface letters, e.g., A, B, (a, b). I denotes the
identity matrix of compatible dimensions. The i th element of
vector x is denoted as xi , while the i th column of matrix
X is denoted as xi. For the set of real numbers, the symbol
R is used. We refer to a set of N real matrices of varying
dimensions as {X(n) ∈ R

pn×qn }Nn=1. Regarding vector norms,

‖x‖ =
√∑

i x2
i denotes the Euclidean norm. Regarding matrix

norms, ‖X‖∗ denotes the nuclear norm, which equals the sum
of singular values, while ‖X‖ denotes the spectral norm, which
equals the largest singular value. ‖X‖1 = ∑

i
∑

j |xi j | is the

element-wise matrix �1-norm, and ‖X‖F =
√∑

i
∑

j x2
i j =√

tr(XT X) is the Frobenius norm, with tr(·) denoting the
trace of a square matrix. Finally, λmax[X] denotes the largest
eigenvalue of a square matrix X.

II. DISCRIMINANT INCOHERENT COMPONENT ANALYSIS

In this section, the DICA is described along with its solver.

A. Problem Statement

The goal of the DICA is to robustly learn components
from training samples that 1) are discriminant and exhibit
low-complexity structures (e.g., low-rank or sparsity)
associated with facial attributes, 2) are mutually incoherent
among different classes, and 3) facilitate the classification of
test samples by means of sparse representation.

Let x ∈ R
d be a vectorized expressive face image and

l ∈ {0, 1}nc the label vector associated with it, whose non-
zero elements are those corresponding to the identity and
expression class it belongs to (nc denotes the total number
of classes). We seek to decompose x as a sum of nc class-
specific components y(i) ∈ R

d , capturing the discriminant
characteristics of each class. Thus, x is expressed as

x =
nc∑

i=1

y(i) (1)

We assume that each class-specific component y(i) lies in a
linear orthonormal subspace spanned by U(i) ∈ R

d×m(i)
, and

V(i) ∈ R
m(i)×d denotes the projection matrix that embeds x

onto the m(i)-dimensional space, while also preserving the
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Fig. 1. The proposed Discriminant Incoherent Component Analysis (DICA), as applied to the multi-label setting of joint face and expression recognition.
The data matrix X containing expressive face images is expressed as a superposition of identity- and expression-specific mutually incoherent components,
under the assumption of possible gross errors (outliers).

structure (e.g., low-rank or sparsity) related to the class-
specific attribute. Therefore, y(i) is written as

y(i) = U(i)V(i)x, (2)

Following [13] and [44], the above mentioned formulation
enables us to impose a specific structure on the projection
spaces V(i), by minimizing a suitable structure-inducing norm
‖V(i)‖(·); this is either the nuclear norm [45] which imposes
low-rank on the projection spaces corresponding to facial
identities, or the �1-norm [46] which enables to learn sparse
projections for facial expressions or AUs. By incorporating (2)
into (1), x is written as

x =
nc∑

i=1

U(i)V(i)x, (3)

Clearly, to perfectly disentangle the class-specific com-
ponents y(i) (i.e., to ensure the identifiability of (1)), the
column spaces that they are stemming from should be mutually
incoherent, that is U(i)T

U( j ) = 0 for i �= j . We observe
that Equation (3), combined with the mutual incoherence
property U(i)T

U( j ) = 0 for i �= j , entails U(i)T � V(i) for
i = 1, 2, . . . , nc. In other words, matrices U(i)T

and V(i)

are proportional for every class i . This further entails that

U(i)T
U( j ) = 0 is equivalent to V(i)V( j )T = 0 for i �= j .

To account also for the possible presence of facial aspects
that cannot be explained by labels, including outliers and
gross corruptions, we include the additive term o ∈ R

d in
the decomposition (3), which is written as

x =
nc∑

i=1

U(i)V(i)x + o, (4)

Having found the decomposition (4), the representation

vector [(V(1)x)T, (V(2)x)T, · · · , (V(nc)x)T ]T is expected to be
group-sparse, with non-zero elements corresponding to the
class(es) the sample x belongs to.

The DICA learns the reconstruction matrices {U(i)}nc
i=1 and

projection matrices {V(i)}nc
i=1 by employing the training matrix

X ∈ R
d×N which contains in its columns the vectorized

training face images, with d being the dimensionality of each
image and N the number of training observations. Let us
denote by XS(i) ∈ R

d×N the column-sparse matrix whose non-
zero columns are the columns of X with label i . Therefore,
with the set W = {{U(i) ∈ R

d×m(i) }nc
i=1, {V(i) ∈ R

m(i)×d }nc
i=1,

O ∈ R
d×N } containing all the unknown variables, the DICA

solves

arg min
W

λ(i)
nc∑

i=1

‖V(i)‖(·) + η
∑

i �= j

‖V(i)V( j )T ‖2F + λ1‖O‖1,

s.t. i) X =
nc∑

i=1

U(i)V(i)XS(i) +O,

i i) U(i)T
U(i) = I, i = 1, 2, . . . , nc, (5)

where the structure-inducing norm ‖V(i)‖(·) is either the
nuclear norm for face-specific projections or the �1-norm
for expression-specific and AU-specific projections. The term∑

i �= j ‖V(i)V( j )T ‖2F induces mutual incoherence among the
projection spaces and O ∈ R

d×N denotes the outlier matrix
accounting for components that cannot be explained by the
summand containing the class-specific reconstructions. The
positive parameters λ(i), η, and λ1 control the norm imposed
on {V(i)}nc

i=1, the mutual incoherence for all component pairs,
and the sparsity of outliers O, respectively.

In Fig. 1, one can see how the proposed DICA is applied
to the multi-label scenario of joint face and expression recog-
nition. In that case, each training image is characterized by
two labels, one for identity and the other for expression. The
data matrix X, containing the vectorized training images, is
accordingly represented as a superposition of discriminant and
mutually incoherent class-specific components (low-rank for
identity and sparse for expression), plus an outlier matrix O
accounting for unbounded sparse errors.
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B. Alternating-Direction Method-Based Algorithm

The Alternating-Directions Method of Multipli-
ers (ADMM) [47] is employed hereby to solve (5). The
(partial) augmented Lagrangian function for (5) is defined as:

L(W, Y, μ)

= λ(i)
nc∑

i=1

‖V(i)‖(·) + η
∑

i �= j

‖V(i)V( j )T ‖2F

+ λ1‖O‖1 + tr

(
YT

(
X−

nc∑

i=1

U(i)V(i)XS(i) −O

))

+ μ

2
‖X−

nc∑

i=1

U(i)V(i)XS(i) −O‖2F , (6)

where μ is a positive parameter and Y ∈ R
d×N is the Lagrange

multiplier related to the linear constraint in (5).
At each iteration, (6) is minimized with respect to each

variable in W in an alternating fashion and, subsequently,
the Lagrange multiplier Y and parameter μ are updated.
The iteration index is denoted herein by t . The notation
L(U(i), Y[t], μ[t]) is used to denote the solution stage in
which all other variables but U(i) are kept fixed, and sim-
ilarly for the other unknown variables. Thus, given the
variables W[t], the Lagrange multiplier Y[t] and the
parameter μ[t] at iteration t , the updates of ADMM are
calculated as follows.

1) Update the Primal Variables:

U(i)[t + 1]
= arg min

U(i)
L(U(i), Y[t], μ[t])

s.t. U(i)T
U(i) = I, i = 1, 2, . . . , nc

= arg min
U(i)

μ[t]
2
‖X−

nc∑

i=1

U(i)V(i)XS(i) −O+ μ[t]−1Y[t]‖2F

s.t. U(i)T
U(i) = I, i = 1, 2, . . . , nc (7)

V(i)[t + 1]
= arg min

V(i)
L(V(i), Y[t], μ[t])

= arg min
V(i)

λ(i)‖V(i)‖(·) + η
∑

i �= j

‖V(i)V( j )T ‖2F

+ μ[t]
2
‖X−

nc∑

i=1

U(i)V(i)XS(i) −O+ μ[t]−1Y[t]‖2F

= arg min
V(i)

λ(i)‖V(i)‖(·) + f (V(i)), i = 1, 2, . . . , nc (8)

O[t + 1]
= arg min

O
L(O, Y[t], μ[t])

= arg min
O

λ1‖O‖1

+ μ[t]
2
‖X−

nc∑

i=1

U(i)V(i)XS(i) −O+ μ[t]−1Y[t]‖2F (9)

2) Update the Lagrange Multiplier:

Y[t + 1] = Y[t] + μ[t]
(

X−
nc∑

i=1

U(i)V(i)XS(i) −O

)
(10)

Equations (7)-(9) are solved by means of the operators and
Lemmas that are introduced next. We begin by defining the
shrinkage operator [9] as Sτ [a] = sgn(a) max(|a| − τ, 0),
whose matrix version is obtained by applying it element-
wise. Also, if A = M�NT denotes the SVD of a matrix A,
the singular value thresholding operator (SVT) is defined as
in [48]: Dτ [A] =MSτ [�]NT . Based again on the SVD of A,
the Procrustes operator is defined as P[A] =MNT and solves
the problem in the following Lemma.

Lemma 1 [44]: The constrained minimization problem:

arg min
B

‖A− B‖2F s.t. BT B = I (11)

has a closed-form solution given by P = P[A].
The solution of (8) is presented in detail in the Appendix

and is based on the SVT (shrinkage) operator when the
nuclear- (�1-) norm is employed for the component V(i).
Moreover, the minimizer of (9) is based on the shrinkage
operator. Finally, (7) is solved as in Lemma 1. The
ADMM-based solver of (5) is wrapped up in Algorithm 1. For
all experiments presented herein, Algorithm 1 is terminated

when ‖X −
nc∑

i=1

U(i)V(i)XS(i) −O‖F/‖X‖F < 10−7, or when

1000 iterations are reached.
Computational Complexity and Convergence: In the case

where the nuclear norm is enforced on {V(i)}nc
i=1, the cost

of each iteration in Algorithm 1 is mainly associated with
the calculation of the SVT operator in Step 7. Hence,
each iteration has a complexity equal to that of SVD, i.e.,
O(max(d2 N, d N2)). In the case where the �1-norm is used,
the shrinkage operator becomes the most time-consuming
calculation, thus entailing linear complexity O(d N). As far
as convergence of Algorithm 1 is concerned, the convergence
of the ADMM to local minima has not been proved for
the cases where the latter is adopted to solve non-convex
problems [47], [49]. A systematic convergence proof does
not fall within the scope of this paper, yet for proof of the
weak convergence of Algorithm 1 one can follow the approach
in [50]. Nonetheless, the experiments in Section IV serve as
a testament to the guaranteed convergence of Algorithm 1.

III. DICA-BASED CLASSIFICATION

In this section, a dictionary-based framework built upon the
DICA (5) is proposed. This can be tailored accordingly to
cope with either a single- or a multi-label scenario. Herein,
the framework is presented for the problems of face and
expression recognition, viewed either as separate single-label
tasks or jointly within a multi-label setting. For the multi-label
scenario, an extension of our framework, which can deal with
the facial action unit detection task, is also described.

A. Single-Label Case: Face/Expression Recognition

Suppose each column xn of our training data matrix
X ∈ R

d×N represents a vectorized image, with subject (expres-
sion) label i ∈ {1, 2, . . . , nc}, where nc equals the number of
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Algorithm 1 ADMM Solver for the DICA (5)

Input: Data: X ∈ R
d×N . Parameters: λ(i), η, λ1, and {m(i)}nc

i=1.
1: Normalize each column of X to unit �2-norm.
2: Initialize: Set {{U(i)[0]}, {V(i)[0]}}nc

i=1, O[0], Y[0] to zero matrices. Set μ[0] = 1/‖X‖, ρ = 1.1, μmax = 1010.
3: while not converged do
4: for i = 1 : nc do

5: Calculate L = 1.02λmax

[
μ[t]XS(i)XT

S(i) + 2η
∑

j �=i

V( j )[t]T V( j )[t]
]

.

6: if V(i) is associated with nuclear norm then

7: V(i)[t + 1] ← Dλ(i)/L

[
V(i)[t] − L−1∇ f (V(i)[t])

]
.1

8: else if V(i) is associated with �1-norm then
9: V(i)[t + 1] ← Sλ(i)/L

[
V(i)[t] − L−1∇ f (V(i)[t])

]
.

10: end if

11: U(i)[t + 1] ← P
[(

X−
∑

j �=i

U( j )[t]V( j )[t + 1]XS( j) −O[t] + μ[t]−1Y[t]
)(

V(i)[t + 1]XT
S(i)

)]
.

12: end for

13: O[t + 1] ← Sλ1/μ[t ]
[

X−
nc∑

i=1

U(i)[t + 1]V(i)[t + 1]XS(i) + μ[t]−1Y[t]
]

.

14: Update the Lagrange multiplier by Y[t + 1] ← Y[t] + μ[t]
(

X−
nc∑

i=1

U(i)[t + 1]V(i)[t + 1]XS(i) −O[t + 1]
)

.

15: Update μ by μ[t + 1] = min(ρ · μ[t], μmax).
16: end while
Output: {U(i) ∈ R

d×m(i)
, V(i) ∈ R

m(i)×d}nc
i=1, O ∈ R

d×N .

subjects (expressions). Let us also denote by X(i) ∈ R
d×n(i)

the matrix that is composed of the n(i) columns of X that are
associated with the subject (expression) label i .

First, for face (expression) recognition, the nuclear- (�1-)
norm is chosen for V(i) in the DICA, as the goal here is to
uncover low-rank (sparse) components. Second, RPCA [9] is
performed on each X(i) for warm initialization of U(i) and V(i)

in (5). Specifically, each basis U(i) and component V(i) is ini-
tialized as U(i) = M(i) and V(i) = M(i)T

, respectively, where
A(i) denotes the low-rank matrix yielded by RPCA for subject
(expression) i and A(i) =M(i)�N(i)T

denotes its skinny SVD.
Note that setting V(i) = M(i)T = U(i)T

is an intuitive choice,
considering that V(i) and U(i)T

are proportional to each other,
as shown in Section II-A. Choosing an initial estimate that
is close to the optimum sought can markedly speed up the
convergence of a non-convex optimization problem like the
DICA [47]. RPCA has been proved efficient in recovering
low-complexity facial components, while also being robust to
gross errors in the data [11]. This motivates its choice for the
initialization step, while its positive impact on the convergence
speed was corroborated by preliminary experiments. Third,
Problem (5) is solved according to Algorithm 1.

Following a SRC-like approach, the class-specific recon-
struction images {D(i) = U(i)V(i)X(i)}nc

i=1 are concatenated
to construct the dictionary D. Then, for each query image
y ∈ R

d×1 a vector α̂ ∈ R
N×1 is sought so that y is represented

as a sparse linear combination of the dictionary atoms, i.e.,
y = Dα̂. The sparse coefficient vector α̂ is obtained by solving

1 f is the smooth differentiable part of the minimizer (8).

the Lasso minimization problem:

α̂ = arg min
α

1

2
‖y − Dα‖2 + λLasso‖α‖1 (12)

Finally, the subject (expression) label i∗ is estimated as that
accounting for the minimum class-specific reconstruction error
of y, i.e.,

i∗ = arg min
i∈{1,2,...,nc}

‖y − Dδ(i)(α̂)‖, (13)

where α̂ is the solution of (12), and {δ(i)(·) : R
N×1 	→

R
N×1}nc

i=1 are class-specific selector operators calculated as

δ(i)(qn) =
{

qn, if n ∈ S(i)

0, otherwise
(14)

The proposed single-label framework is summarized in
Algorithm 2 for face/expression recognition.

B. Multi-Label Case: Joint Face and Expression
Recognition & Action Unit Detection

The framework described in the previous section is
extended to the multi-label case, where each observation
is associated with multiple labels w.r.t. different attributes.
Two face analysis tasks that fall in this multi-label case are
(a) joint face and expression recognition, and (b) facial action
unit (AU) detection. In this section, we choose to present the
DICA-based classification framework tailored to the afore-
mentioned tasks, on which our experimental validation in
Section IV is based.
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Algorithm 2 Framework for Face/Expression Recognition

Input: Data: training set X ∈ R
d×N , query image y ∈ R

N×1.
Parameters: λLasso.
1: Normalize each column of X to unit �2-norm.
2: Compute low-rank matrices {A(i)}nc

i=1 by performing
RPCA [9] on each class-specific sub-matrix X(i).

3: Initialize: For each subspace i ∈ {1, 2, . . . , nc}, set

U(i)[0] = M(i), and V(i)[0] = M(i)T
, where A(i) =

M(i)�N(i)T
is the skinny SVD of A(i).

4: Calculate {V(i)}nc
i=1 according to Algorithm 1, using the

nuclear- (�1-) norm in Problem (5) for face (expression)
recognition.

5: Form dictionary D = [
D(1), D(2), . . . , D(nc)

]
, with D(i) =

U(i)V(i)X(i), i ∈ {1, 2, . . . , nc}.
6: Normalize each column of D to unit �2-norm.

7: Perform SRC: α̂ = arg min
α

1

2
‖y − Dα‖2 + λLasso‖α‖1.

8: for i = 1 : nc do
9: err(i) = ‖y − Dδ(i)(α̂)‖.

10: end for
11: i∗ ← arg mini∈{1,2,...,nc} err(i).
Output: subject (expression) label i∗.

a) Joint face and expression recognition: First, the
DICA (5) is solved for the total number of classes nc = ns +
ne, with ns (ne) being the number of subjects (expressions).
Similarly to the single-label case, for the subject- (expression-)
specific components i ∈ {1, 2, . . . , ns} (i ∈ {ns + 1, ns +
2, . . . , ns + ne}) the nuclear- (�1-) norm is enforced on the
corresponding V(i). Second, the derived identity-related recon-
struction images are used to form the identity dictionary DI ,
while the expression-related reconstruction images are used
to form the expression dictionary DE . The final dictionary
consists of the concatenation of DI and DE as D = [

DI DE
]
.

Subsequently, the SRC algorithm is modified accordingly to
solve jointly for the identity and expression coefficient vectors
α̂I and α̂E , respectively:

α̂I , α̂E = arg min
αI ,αE

1

2
‖y − [

DI DE
] [

αI
αE

]
]‖2

+ λLasso

2
‖
[
αI
αE

]
‖1

= arg min
αI ,αE

1

2
‖y − DIαI − DEαE‖2

+ λLasso

2
‖αI‖1 + λLasso

2
‖αE‖1 (15)

Finally, the component separation approach of [11] is fol-
lowed, where the reconstruction image ŷI = DI α̂I based on
the identity dictionary DI is utilized for face recognition, and,
similarly, the reconstruction image ŷE = DE α̂E based on the
expression dictionary DE is utilized for expression recognition,
according to the following minimum-residual rules:

i∗I = arg min
i∈{1,2,...,ns }

‖ŷI − DIδ(i)(α̂I)‖ (16)

i∗E = arg min
i∈{ns+1,ns+2,...,ns+ne}

‖ŷE − DEδ(i)(α̂E )‖ (17)

Fig. 2. Decomposition of an expressive image from the CK+ Dataset into
an identity component, an expression component and a sparse error term
accounting for outliers, as produced by the DICA.

In Fig. 2, one can see the decomposition of an expressive
image into a identity-related component, an expression-related
component and a sparse error term. The identity (expression)
component is formed out of the reconstruction of the origi-
nal image based on the corresponding subject- (expression-)
specific subspace. It can be visually verified that indeed
the identity (expression) component contains no expression-
(subject-) related information, due to its calculation based on
images of all training expressions (subjects) and the mutual
incoherence property. Finally, the outliers term encodes what-
ever image features deviate in a non-Gaussian sense from the
class-specific decomposition that model (5) dictates.

b) Facial action unit detection: The DICA (5) is
applied for the total of nc of AU-specific classes, using the
�1-norm to enforce sparse structure on the respective compo-
nents {V(i)}nc

i=1. Note that a training image with more than
one AUs activated can appear multiple times in (5), through
the corresponding class-specific sub-matrices XS(i) . Similarly
to Algorithm (2), reconstruction images are next used to
form class-specific dictionaries D(i) = U(i)V(i)X(i), i ∈
{1, 2, . . . , nc}, each of which is associated only with the
respective AU label, regardless of the possible presence of
other AUs in the corresponding training images. The final
dictionary D ∈ R

d×N is formed out of the concatenation of
all class-specific dictionaries {D(i)}nc

i=1. Next, for each test set
vector y ∈ R

d×1 the sparse coefficient vector α̂ ∈ R
N×1

and the reconstructed test vector ŷ = Dα̂ are obtained by
solving (12).

Classical SRC, formulated as in Equation (13), is not
directly applicable to the action unit detection task, as
the latter necessitates binary classification for each of the
AU-specific classes. The sparse similarity voting approach
in [55] is adopted herein for classification. Let ln ∈ {0, 1}nc be
the binary label vector associated with the dictionary atom dn.
By construction, only one element of ln will be non-zero for
our framework, i.e., that which corresponds to the AU label of
the class-specific dictionary dn. Let also L ∈ {0, 1}nc×N be the
label matrix for the whole dictionary, with corresponding label
vectors ln in its columns. Then, the multi-label confidence
vector c ∈ R

nc for the test sample y, is given by

c =
N∑

n=1

wn ln = Lw, (18)

where wn denotes the similarity between the test vector y and
its reconstruction by the n-th dictionary atom, given by

wn = α̂ndn
T y

‖y‖‖ŷ‖ (19)
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Each element ci of the label vector c in (18) can be perceived
as a confidence score with regards to the test sample belonging
to the i -th AU class. Finally, binary labels for the test sample
with respect to each class are obtained by thresholding each
ci via ROC analysis [56].

IV. EXPERIMENTS

Our method is evaluated on four distinct tasks: (a) face
recognition, (b) facial expression recognition, (c) joint face
and expression recognition, and (d) facial action unit detection.
Our dictionary-based framework for joint face and expression
recognition is evaluated on CK+ Dataset [51], while exper-
iments on subject-independent facial expression recognition
are conducted on both CK+ [51] and CMU Multi-PIE [53]
datasets. For face recognition experiments and action unit
detection experiments, AR database [52] and GEMER-FERA
database [54] is used, respectively.

The proposed method is compared to the approaches of Lin-
ear Regression Classifier (LRC) [57], Sparse Representation-
based Classification (SRC) [15], as well as Robust Principal
Component Analysis and SRC (RPCA+SRC) and Low-Rank
Matrix Recovery with Structural Incoherence (LRSI) com-
bined with SRC [12]. For RPCA+SRC, RPCA [9] is applied
for each subject and the resulting low-rank (sparse) matrices
are used for SRC-based face (expression) recognition similarly
to [11]. For LRSI, the algorithm in [12] is applied subject-
wise for face recognition and expression-wise for expression
recognition; the nuclear norm is used for all components.
In case of identical experimental protocol, LRSI results cor-
respond to those reported in [12]. Unlike [12], where PCA is
used to reduce dimensionality, vectorized images in the pixel
domain are used for all experiments, with the exception of
AU detection experiments in Section IV-E.

Implementation Details: For both our method and LRSI, the
parameter η that controls incoherence is set to the value 10−1,
which was proved efficient upon preliminary experiments. For
the DICA, various values, different for each task, are examined
for the parameter λ(i) controlling the norm ‖V(i)‖(·) and the
outlier-related parameter λ1 in Problem (5), and the best
score achieved is reported each time. For each RPCA+SRC
and LRSI optimization problem applied class-wise, the value

λ1 = 1/
√

max(d, n(i)) is used for the parameter associated
with the sparse error term, which is an efficient heuristic
according to [9].

For the face recognition experiments in Section IV-C,
the Lasso minimization problem (12) for the SRC-based
approaches is solved by means of the Homotopy method [58],
in order for our results to be comparable to those in [12]. For
all SRC-based experiments in Sections IV-B, IV-D, and IV-E,
the Efficient Euclidean Projections method [59] is chosen to
solve the Lasso problems (12) and (15), thanks to its fast
implementation and robustness to matrix singularities.

For all experiments with the DICA, the regularization para-
meter λLasso of the Lasso minimization problems (12) and (15)
is examined amongst the values {10−5, 5 · 10−5, 10−4, . . . , 5 ·
10−1}, and the best result is reported each time. For joint face
and expression recognition, recognition accuracies reported
correspond to the best average score over the two tasks. For all

Fig. 3. Example registered images from each of the 4 datasets used. From top
to bottom: CK+ [51], AR [52], CMU Multi-PIE [53], GEMEP-FERA [54].

experiments with the other SRC-based approaches, that is,
SRC, RPCA+SRC, and LRSI, λLasso is fixed to 10−3.

The DICA is also evaluated by means of experiments with
synthetic data in Section IV-A. The results of these experi-
ments serve as an important proof of concept since (a) they
validate the effectiveness of our method both qualitatively and
quantitatively, and (b) they provide evidence that our method
can be applied equally well to any labeled data populations,
thus serving diverse applications other than face analysis tasks.

A. Experiment on Synthetic Data

Our method is first evaluated on synthetic data corrupted
with sparse, non-Gaussian noise. Each data point is con-
structed as a superposition of a low-rank and block-sparse
component. In more detail, we first create a rank-2 component
X(1) with column space U(1) ∈ R

600×2, based on the first two
principal components of a random matrix A ∈ R

600×300. Next,
we form a second rank-2 component X(2) with column space
U(2) = RU(1), where R is a random orthogonal matrix; as
a result of this, the two components are mutually incoherent.

Subsequently, four block-sparse components X(i) ∈ R
600×150

(3 ≤ i ≤ 6) are constructed, with their non-zero elements
corresponding to visually discernible shapes, that is, triangle,
asterisk, circle and butterfly, respectively. Those are then added
to the low-rank components to form the matrices Y1 =
X(1) + X(3) + X(4) and Y2 = X(2) + X(5) + X(6). Our final
clean data matrix Y is the result of concatenation of Y1 and Y2
along the second dimension, and can be seen in Fig. 4a.

Subsequently, sparse, non-Gaussian noise is added to the
original signal Y to simulate a more realistic scenario. First,
a matrix containing only values in {+1,−1} is created as
E = sgn(B), where B ∈ R

600×600 is a random matrix and sgn
denotes the sign function. The final error matrix O is formed
by setting to zero those entries of E whose indices i and j
satisfy the rule N [i, j ] ≤ 0.8, where N ∈ R

600×600 is a matrix
whose elements follow the Normal distribution. The final
corrupted signal Ỹ = Y + O and the low-rank/sparse recon-
struction produced by the DICA (5) can be seen in Fig. 4b and
Fig. 4c, respectively. It is evident that our method reconstructs
accurately all components, both the low-rank components
lying in the background and the sparse components appearing
as shapes, while, at the same time, isolates the sparse, gross
errors. Quantitative results are reported in Table I, in terms
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Fig. 4. Illustration of corrupted synthetic data reconstruction, as produced by the DICA. Each 600×150 subset of the data matrix (where the first dimension
is the feature space and the second dimension is the ambient space) is a superposition of one of the two low-rank components (depicted as 600×300 blue
striped backgrounds in (a)) and one of the four block-sparse components, which form a shape of filled triangle, asterisk, circle and butterfly, respectively.
(a) Original synthetic data, (b) Synthetic data of (a) contaminated with additive sparse noise, (c) Low-Rank/Sparse Reconstruction of the corrupted signal as
produced by the DICA.

TABLE I

QUANTITATIVE RECONSTRUCTION RESULTS PRODUCED BY THE DICA ON

THE SYNTHETIC DATA SHOWN IN FIG. 4. FOR A GIVEN COMPONENT

X(i) , THE RECONSTRUCTION METRIC USED HERE CORRESPONDS

TO ‖X(i) − X̂(i)‖F/‖X(i)‖F , WHERE X̂(i) = U(i)V(i)X(i)

of normalized reconstruction error for each component, that
is, ‖X(i) −U(i)V(i)X(i)‖F /‖X(i)‖F . It is worth noting that all
subspace-specific reconstruction errors along with the clean
signal reconstruction error ‖Y−∑6

i=1 U(i)V(i)XS(i)‖F/‖Y‖F

have low value, corroborating the conclusions drawn for our
method from the qualitative inspection of Fig. 4.

B. Joint Face & Expression Recognition on CK+ Dataset

Our method is evaluated on the two-label setting of joint
face and expression recognition. CK+ [51] has been widely
used for the task of face and posed expression recognition.
It contains 123 subjects in a total of 593 sequences, 327 out
of which are annotated with respect to the emotion portrayed.
As our method does not consider the temporal dimension,
only the last 4 frames are used as expressive images for
each sequence, as those are close to the apex phase of
the expression. The experimental setup is identical to that
of [11]. Specifically, a subset of 25 subjects, corresponding
to 108 sequences, is used herein that meet the following
criteria: (a) there are at least 4 annotated sequences for
each of them, and (b) they perform one of the 6 universal
emotions2 (Anger, Disgust, Fear, Happiness, Sadness and
Surprise). The first condition is essential in order for the
subjects to appear with a sufficient amount of images in the

218 sequences depicting ‘Contempt’ are not included.

Fig. 5. Face and expression recognition accuracies (%), as produced by the
DICA and SRC for the first fold of the protocol for the CK+ Dataset, varying
with the image resolution.

training set (at least 12 images), and the resulting dictionary
to be balanced (for the face recognition part). Example images
for a female subject of CK+ can be seen in Fig. 3.

To examine how image dimensionality affects accuracy in
both face and expression recognition and tune it accordingly,
the following experiment is conducted. Specifically, the DICA
and SRC are tested on joint face and expression recognition
with the image resolution varying through the range 32× 32,
40×40, 48×48 and 56×56 pixels. Note that all images have
been previously converted to gray scale and aligned based
on the location of the eyes. For each subject, 3 sequences
are randomly picked to be used for training, leaving the
rest for testing. The parameters of the DICA and SRC are
optimized separately for each resolution and the best accuracy
obtained is reported in Fig. 5. The choice of 32 × 32 pixels
for the image size consistently leads to the best performance.
This behaviour was expected as by using a smaller image
size the curse of dimensionality is avoided (given that no
feature extraction is performed to the aim of dimensionality
reduction). It is also worth mentioning that using a smaller
resolution for the DICA has the additional benefit of speeding-
up the convergence, which increases quadratically with the
dimensionality owing to the SVT operator (see Section II-B).
Accuracies achieved using the three remaining resolutions
do not vary largely. In view of the above, the image
size is fixed to 32×32 pixels for all experiments of this
section.
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TABLE II

RECOGNITION RATES (%) FOR JOINT FACE & EXPRESSION RECOGNITION AND SUBJECT-INDEPENDENT EXPRESSION RECOGNITION ON CK+ DATASET

For joint face and expression recognition, for each subject,
3 sequences are randomly selected to be used for training, and
the remaining sequences are used for testing. This process is
repeated 10 times, and the average scores for the face and
expression recognition tasks are reported. Leave-one-subject-
out expression recognition experiments are also conducted and
the average rate over 25 folds is reported. For all experiments,
parameters λ(i) controlling the nuclear norm of the identity-
related V(i) in Problem (5) are set to 1. For joint face and
expression recognition, the values for λ1 and the expression-
related λ(i) accounting for the best average score over the
two tasks were found to be 10−2 and 10−2, respectively.
For expression recognition, the corresponding values were
10−2 and 5 · 10−2, respectively.

Recognition rates for both tasks are reported in Table II.
The merits of the DICA for face and expression recognition are
directly evident from Table II: it is the best-performing method
for both tasks, yielding face and expression recognition accu-
racies of 96.7% and 83.6%, respectively.3 LRSI comes second
in performance, by a negative margin of 3.8% and 8.1%
for face and expression recognition, respectively. Surprisingly,
LRC provides scores close to those obtained by RPCA+SRC,
presumably due to the beneficial effect of small training size
and the similarity between training and test data populations.
It is worth stressing that results of the DICA and RPCA+SRC
correspond to the same sparsity parameter λLasso/2 being used
for the two dictionaries in (15). We believe that by separately
optimizing the sparsity parameters for the SRC coefficients of
identity and expression classes, that is, αI and αE , respec-
tively, one can achieve even higher performance.

Our method achieves the best score of 75.7% in the second
setup also, where facial expression is recognized on data
from subjects unseen in the training phase. LRSI is again the
second-best-performing method with 71.4%. SRC performs
poorly in this setup too, primarily due to test images being
associated with sparse linear combinations of similar faces
rather than similar expressions in the dictionary.

Fig. 6 illustrates the low-rank identity-based
reconstruction (Fig. 6b) and the sparse expression-based

3The recognition scores obtained for the dictionary-based component sep-
aration (DCS) algorithm from [11] are 99.1% and 81.6% for joint face
and expression recognition, respectively, and 86.8% for subject-independent
expression recognition. These results are only to some extent comparable to
those reported in Table II, given that the dataset and protocol are identical.
However, bear in mind that in [11], K-SVD [38] is also applied to refine the
identity and expression dictionaries, which are initially provided by RPCA [9].
For this reason, the corresponding results are not considered in the discussion
of this section.

Fig. 6. Joint Face and Expression Recognition on the CK+ Database:
(a) Training images from six subjects showing various expressions, (b) Low-
rank reconstruction produced by the DICA for each identity class, (c) Training
images from six expression classes (from top to bottom: Anger, Disgust,
Fear, Happiness, Sadness, Surprise) posed by various subjects, (d) Sparse
reconstruction produced by the DICA for each expression class.

reconstruction (Fig. 6d), as produced by our method for
the joint face and expression recognition experiment on
CK+ images, grouped by subject (Fig. 6a) and by expression
(Fig. 6c), respectively. Note that no expression variations
are retained in the subject-based reconstruction, while, at
the same time, the sparse expression components contain
no subject-related information. It is also worth observing
that the expression components (Fig. 6d) are ‘denser’ and
also account for higher values in the image regions where
the action units ‘shaping’ each corresponding expression
lie [60] (e.g., Brow-Lowerer AU4 for ‘Anger’, or Lip
Corner Depressor AU15 for ‘Sadness’). Overall, the resulting
reconstructions are discriminant for both tasks.

C. Face Recognition on AR Dataset

For the task of face recognition, the focus of experiments is
to investigate methods’ performances for varying percentage of
face images corrupted due to occlusion in the training set. This
is a frequently-occurring scenario in real-world biometrics
applications, where noise-free training data is hard to be
attained (e.g., due to uncontrolled recording conditions and
huge amount of data). To this end, the AR Database [52]
is used, which includes a total of 4,000 frontal images for
126 individuals. The face images exhibit variations with
respect to expression, illumination and two types of occlusion,
that is, sunglasses and scarf (see Fig. 3). For each subject,
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TABLE III

RECOGNITION RATES (%) FOR PROTOCOL 1 (SUNGLASSES) AND PROTOCOL 2 (SCARF) WITH VARYING
PERCENTAGE OF OCCLUDED IMAGES (no/7) IN THE AR DATABASE TRAINING SET

TABLE IV

RECOGNITION RATES (%) FOR PROTOCOL 3 (SUNGLASSES+ SCARF) WITH VARYING PERCENTAGE OF

OCCLUDED IMAGES (2no/(7+ 2no)) IN THE AR DATABASE TRAINING SET

images are taken in two sessions, each one constituent of
13 images: 3 images with sunglasses, 3 with scarves, 4 with
different expressions, and the remaining 3 with different
illuminations. The latter 7 images, which do not include occlu-
sions, are considered as neutral images for the experiments in
this section.

A randomly picked subset of 100 subjects is used for our
experiments. Three protocols are tested in an identical way
as in [12], corresponding to occlusion in the training images
due to (1) sunglasses, (2) scarf, and (3) sunglasses and scarf,
respectively. Note that sunglasses account for occlusion of
about 20% of the face image, whereas for the scarf scenario
this percentage amounts to about 40%.

The three protocols are outlined below:
• Protocol 1: For each subject, ncl neutral images and no ∈
{0, 1, 2, 3} occluded images (sunglasses) from Session 1
are used for training, where ncl+no = 7. 7 neutral images
and 3 occluded images (sunglasses) from Session 2 are
used for testing.

• Protocol 2: Same as Protocol 1, with occluded images
containing scarf rather than sunglasses.

• Protocol 3: For each subject, ncl = 7 neutral images,
nsg ∈ {0, 1, 2, 3} sunglasses images, and nsc ∈ {0, 1, 2, 3}
scarf images, from Session 1 are used for training, where
nsg = nsc. Here, the amount of training images per
subject varies from 7 to 13, as opposed to the first
two protocols, in which it is fixed to 7. All 13 images
(7 neutral, 3 sunglasses, 3 scarf) from Session 2 are used
for testing.

Results are shown in Table III for Protocols 1 and 2,
and in Table IV for Protocol 3. The DICA achieves the
most accurate recognition in all scenarios, reaching 95.4%
accuracy in Protocol 3 when 46% of training images are
corrupted. The value of parameter λ1 that yielded the best
scores for our method was 10. It is worth noting that all

methods show a significant increase in performance in all three
protocols when at least one occluded image per subject is
included in the training set, as compared to the case of 100%
clean data. Notably, the performance achieved by the DICA
fluctuates less as the percentage of training set corruption
increases, as compared to that of the other methods. This
is because components produced in the output of the DICA
are by definition mutually incoherent, regardless of how many
images with similar corruptions in similar face regions across
classes are used for training. In Protocol 3, where two different
kinds of data corruption are present, RPCA+SRC consistently
achieves the second-best accuracy. It is also worth observing
that, even for large percentages of training set corruption, SRC
performs quite accurately also. This can be attributed to the
efficiency of SRC in scenarios where the training and test
set distributions are characterized by similar variations [61].
LRSI shows poor performance possibly due to its inability to
suppress the effect of occlusion in the generated subspaces.
LRC underperforms the rest of the methods in all cases.
This can be largely attributed to singularities occurring in the
matrix DTD, where D is the dictionary matrix (see [57], [61]).

In Fig. 7, the performance of our method and RPCA is
comparatively illustrated on an instance of Protocol 1, that
is, 7 images of a male subject, 3 of which are occluded by
sunglasses. One can observe that both methods successfully
remove variations caused by expression or illumination in
the derived low-rank reconstruction. Nonetheless, our method
succeeds to discard the occlusion in the reconstruction images,
as opposed to the RPCA. This is due to the fact that presence
of sunglasses in the reconstructed images of all subject classes
would clash with the mutual incoherence property, which
entails that class-specific components are as close as possible
to being orthogonal. The same holds for Protocol 2, where the
occlusion due to scarf covers even larger part of the image.
Reconstructions yielded by our method for images of the
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Fig. 7. Face Recognition on the AR Database: Reconstruction images, as
produced by the RPCA (b), and the DICA (c), on all training images of a
subject in Protocol 1 (3/7 = 43% of occluded images (sunglasses)) (a).

Fig. 8. Face Recognition on the AR Database: Reconstruction produced by
the DICA ((b), (d)), on all training images of a subject in Protocols 1 and 2
(3/7 = 43% of occluded images - sunglasses in (a) and scarf in (c),
respectively).

same subject in Protocols 1 and 2 are shown in Fig. 8, for
the scenario in which the occluded images cover 3/7 of the
training set.

D. Expression Recognition on CMU Multi-PIE Dataset

In Section IV-B we presented expression recognition exper-
iments for the case of different subjects being included in the
training and test set. Aiming to evaluate the effectiveness of
our method in a scenario where labels from an additional
source of variation, such as illumination, are not utilized
in our discriminant analysis during training, we perform

TABLE V

RECOGNITION RATES (%) FOR SUBJECT-INDEPENDENT
EXPRESSION RECOGNITION ON MULTI-PIE DATASET

expression recognition also on the CMU Multi Pose Illumina-
tion, and Expression (Multi-PIE) Database [53]. This dataset
contains 337 subjects, corresponding to about 750,000 images
with 19 illumination variations, 15 different poses, and
6 facial expressions (Neutral, Smile, Surprise, Disgust,
Scream, Squint). In the current study, only the frontal pose
images are considered. For the presented experiments, 50 sub-
jects are randomly selected. For each subject, 5 different
illumination conditions are generated (corresponding to pan
angles −30°, −15°, 0°, 15°, 30°) for all 6 expressions,
resulting in 30 images per subject. Some characteristic images
from Multi-PIE are illustrated in Fig. 3.

The same protocol used in Section IV-B is adopted for facial
expression recognition. Subject-independent experiments are
conducted and the average score over 50 runs is reported. The
best values for the sparsity-controlling parameters λ1 and λ(i)

for the expression components were found to be 10 and 1,
respectively. Recognition rates are reported in Table V. Here,
illumination conditions vary a lot across training images,
rendering the task even more challenging. Still, our method
achieves the best accuracy of 74.4%, followed by LRSI
that achieves 67.3%. RPCA+SRC and SRC perform rather
similarly, meaning that RPCA pre-processing fails in this case
to uncover the class-specific low-rank manifolds. Note also
that LRC shows a surprisingly poor performance. Again, the
DICA efficiently decouples expression-related deformations
from subject-specific characteristics and other effects, thereby
enabling us to construct a much more discriminative expres-
sion dictionary.

E. Facial Action Unit Detection on GEMEP-FERA Dataset

In this section, the efficiency of the DICA in decom-
posing an expressive image into mutually incoherent sparse
components related to AUs is examined. The training sub-
set of the GEMEP-FERA [54] dataset is used for subject-
independent action unit detection experiments. It contains
7 subjects depicted in 87 image sequences, which are
FACS-labeled on a frame-by-frame basis in terms of AUs.
In this paper, we use only the images in which at
least one out of 8 action units is activated. The AUs
considered are: AU1 (Inner Brow Raiser), AU2 (Outer
Brow Raiser), AU4 (Brow Lowerer), AU6 (Cheek Raiser),
AU7 (Lid Tightener), AU12 (Lip Corner Puller), AU15 (Lip
Corner Depressor), and AU17 (Chin Raiser). Images are
converted to gray scale, aligned based on the location of
the eyes, and, subsequently, resized to 128 × 128 pixels.
Characteristic images are shown in Fig. 3. Intensities from
22×22 pixel patches around 15 facial points (extracted by the
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TABLE VI

F1 SCORES (%) FOR EACH ACTION UNIT AND METHOD EXAMINED IN
THE ACTION UNIT DETECTION EXPERIMENTS ON THE

GEMEP-FERA DATABASE TRAINING SET

tracker in [62]) are gathered in a single vector for each image.
The final feature vector is composed of PCA coefficients
corresponding to components that account for 98% of the total
variance (374 components in our experiments).

Seven-fold subject-independent cross-validation is per-
formed, so that all images for the 7 subjects are tested. For
each fold, a randomly selected subset of the training images,
evenly distributed across subjects and AU labels, is used.
For the DICA, the action unit detection framework described
in Section III-B is used. Specifically, the rank m(i) of each
subspace is set to 5, while the remaining parameters are
optimized similarly to the previous experiments. The values of
the sparsity-controlling parameters λ1 and λ(i) accounting for
the best performance were found to be 0.05 and 1, respectively.

Except for the DICA, LRC and SRC are also examined,
while RPCA+SRC and LRSI are not considered, as their
design is not adaptable to this task. Multi-Label k-Nearest
Neighbours (ML-kNN) [63] (k = 10 neighbours) and
Rank-SVM [64] (with polynomial kernel of degree 8) are
also examined, as they are general-purpose algorithms for
multi-label classification. For the DICA, each dictionary atom
is associated with a single AU label (see Section III-B), as
opposed to other methods, for which the training data retain
their initial multi-class labelling. For the dictionary-based
methods, namely the DICA, LRC and SRC, ROC ranking [56]
is employed to threshold the class-specific confidence scores
obtained by (18) and thus provide multi-class predictions
for each test sample. Finally, for all algorithms examined
in the experiments of this section, the F1 score, defined as
F1 = 2 · Precision·Recall

Precision+Recall , is used as the evaluation metric.
Action unit detection results in terms of F1 score, as

produced by each method, are reported in Table VI for
each action unit along with the average performance over all
AU classes. For comparison purposes, we choose to also
include in Table VI the results reported in [65] for the same
evaluation protocol for Selective Transfer Machine (STM),
which is a recently published successful method for AU
detection. The DICA achieves similar performance to that
of STM,4 while it outperforms all other methods. SRC also
achieves high performance, thus validating previous evidence
that sparse representation is efficient for the AU detection
task [27]. LRC, as well as the baseline methods ML-kNN
and Rank-SVM, attain much poorer performance.

4The difference in average performance over all AUs achieved by the DICA
and the STM is not significant, according to a paired t-test at significance
level 0.05.

V. CONCLUSION AND FUTURE WORK

A method for recovering mutually incoherent and struc-
tured components in face imagery, relying on discriminant
information as well as structure-inducing norms on the facial
aspects, has been proposed in this paper. An ADMM-based
algorithm that can solve appropriate minimization problems
for the DICA, according to the matrix norm imposed, while
also being robust to gross outliers through sparsity regular-
ization, has been also proposed. Finally, a dictionary-based
framework that combines the DICA with sparse representation
to jointly address interrelated classification tasks within multi-
label scenarios has been presented. The experimental valida-
tion of our method was primarily focused on face analysis
tasks. The effectiveness of the DICA was first demonstrated
on synthetic data contaminated with sparse, non-Gaussian
noise. Next, extensive experiments were conducted on joint
face and expression recognition, face recognition for varying
percentages of corrupted images in the training set, subject-
independent expression recognition under varying illumina-
tion conditions during training, as well as facial action unit
detection. The DICA outperformed all methods that were
used for comparison, in all tasks and experimental scenarios.
Overall, the DICA is a robust framework that can generalize
to classification of any number or type of labelled attributes
that manifest themselves in the visual stream through spe-
cific structures, associated with mutually incoherent modes of
variation.

Possible future research directions include the exploitation
of alternative structures for component extraction induced
by other matrix norms, the extension of the DICA to the
temporal dimension, and its coupling with hierarchical/deep
architectures, aiming at extracting incoherent, invariant
subspaces.

APPENDIX A
SOLUTION OF PROBLEM (8)

Let us consider the problem (8). In this step of ADMM,
we are minimizing w.r.t. V(i) at iteration t , with {U(i)}nc

i=1,
{V( j )[t]} j �=i , and O kept fixed. Let us re-write the problem
for clarity of presentation:

V(i)[t + 1]
= arg min

V(i)
L(V(i), Y[t], μ[t])

= arg min
V(i)

λ(i)‖V(i)‖(·) + η
∑

i �= j

‖V(i)V( j )T ‖2F

+ μ[t]
2
‖X−

nc∑

i=1

U(i)V(i)XS(i) −O+ μ[t]−1Y[t]‖2F

= arg min
V(i)

λ(i)‖V(i)‖(·) + f (V(i)) (20)

The minimizer (20) consists of a non-smooth term, induced
by a norm function ‖ · ‖(·), and a smooth, twice differentiable
term described by the function f . It can easily be proved that
the gradient ∇ f is Lipschitz-continuous.

By linearizing f in the vicinity of the current point V(i)[t],
and by exploiting the Lipschitz-continuity of ∇ f , we obtain
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the following equivalent problem

min
V(i)

λ(i)‖V(i)‖(·) + f (V(i)[t])

+ tr
(
∇ f (V(i)[t])T (V(i) − V(i)[t])

)

+ L

2
‖V(i) − V(i)[t]‖2F (21)

where L > 0 is an upper bound on the Lipschitz constant
of ∇ f . Problem (21) is re-written as

min
V(i)

λ(i)‖V(i)‖(·) + 1

2
‖V(i) − (V(i)[t] − 1

L
∇ f (V(i)[t])‖2F

(22)

Having expressed the minimizer in this form, we now
directly apply the SVT (shrinkage) operator, in case the
nuclear- (�1-) norm is chosen for the first term of (22). For
the nuclear norm, the solution is given by

V(i)[t + 1] ← Sλ(i)/L

[
V(i)[t] − 1

L
∇ f (V(i)[t])

]
, (23)

whereas for the �1-norm the solution is given by

V(i)[t + 1] ← Dλ(i)/L

[
V(i)[t] − 1

L
∇ f (V(i)[t])

]
(24)

The gradient ∇ f (V(i)[t]) is computed as

∇ f (V(i)[t]) =
(
−μ[t]U(i)[t]T

)(
X−

nc∑

i=1

U(i)[t]V(i)[t]XS(i)

−O[t] + μ[t]−1Y[t]
)

XT
S(i)

+ 2η
∑

j �=i

V( j )[t]T V( j )[t], (25)

whereas an upper bound on the Lipschitz constant of ∇ f is
given by

L = 1.02λmax

[
μ[t]XS(i)XT

S(i) + 2η
∑

j �=i

V( j )[t]T V( j )[t]
]

(26)

The respective closed-form solutions are obtained by
substituting (25) and (26) into (23) or (24).
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