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Fast and Provably Accurate Bilateral Filtering
Kunal N. Chaudhury, Senior Member, IEEE, and Swapnil D. Dabhade

Abstract—The bilateral filter is a non-linear filter that uses a
range filter along with a spatial filter to perform edge-preserving
smoothing of images. A direct computation of the bilateral filter
requires O(S) operations per pixel, where S is the size of the
support of the spatial filter. In this paper, we present a fast and
provably accurate algorithm for approximating the bilateral filter
when the range kernel is Gaussian. In particular, for box and
Gaussian spatial filters, the proposed algorithm can cut down the
complexity to O(1) per pixel for any arbitrary S. The algorithm
has a simple implementation involving N + 1 spatial filterings,
where N is the approximation order. We give a detailed analysis
of the filtering accuracy that can be achieved by the proposed
approximation in relation to the target bilateral filter. This allows
us to to estimate the order N required to obtain a given accuracy.
We also present comprehensive numerical results to demonstrate
that the proposed algorithm is competitive with state-of-the-art
methods in terms of speed and accuracy.

Index Terms—Edge-preserving smoothing, bilateral filter, ker-
nel, approximation, fast algorithm, error analysis, bounds.

I. INTRODUCTION

Gaussian and box filters typically work well in applications
where the amount of smoothing required is small. For exam-
ple, they are quite effective in removing small dosages of noise
from natural images. However, when the noise floor is large,
and one is required to average more pixels to suppress the
noise, these filters begin to over-smooth sharp image features
such as edges and corners. The over-smoothing can, however,
be alleviated using some form of data-driven (non-linear)
diffusion, where the quantum of smoothing is controlled using
the image features. A classical example in this regard is the
famous PDE-based diffusion of Perona and Malik [2]. The
bilateral filter was proposed by Tomasi and Maduchi [3] as a
filtering-based alternative to the Perona-Malik diffusion. The
bilateral filter has turned out to be a versatile tool that has
found widespread applications in image processing, computer
graphics, computer vision, and computational photography
[4]. More recently, the bilateral filter has received renewed
attention in the context of image denoising [5], [6].

In this paper, we consider a standard form of the bilateral
filter where a Gaussian kernel is used for range filtering, and
a box or Gaussian kernel is used for spatial filtering [3]. In
this setting, the bilateral filtering of an image {f(ı) : ı ∈ I},
where I is some finite rectangular domain of Z2, is given by

fBF(ı) =

∑
j∈Ω w(j) gσr

(f(ı− j)− f(ı)) f(ı− j)∑
j∈Ω w(j) gσr

(f(ı− j)− f(ı))
(1)

where
gσr (t) = exp

(
− t2

2σ2
r

)
. (2)
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The spatial filter is a Gaussian:

w(ı) = exp

(
−‖ı‖

2

2σ2
s

)
(ı ∈ Ω), (3)

or a box:
w(ı) = 1/|Ω| (ı ∈ Ω). (4)

The domain Ω of the spatial kernel is a square neighbourhood,
Ω = [−W,W ]× [−W,W ], where W = 3σs for the Gaussian
filter. We refer the interested reader to [3], [4] for a detailed
exposition on the working of the filter. We note that the
bilateral filter has a straightforward extension to video and
volume data. Another natural extension is the cross (or joint)
bilateral filter [4]. While we will limit our discussion to the
standard bilateral filter, the main ideas in this paper can also
be applied to the above-mentioned extensions.

A. Fast Bilateral Filtering

It is clear that a direct computation of (1) requires O(W 2)
operations per pixel. In fact, the computation is slow for
practical settings of W . To address this issue, researchers
have come up with several fast algorithms [7] - [14]. Most of
these are based on some form of approximation, and provide
various levels of compromise between speed and quality of
approximation. One of the early algorithms for fast bilateral
filtering involved the quantization of the image intensities,
where the final output was obtained via the interpolation of
the output of a set of linear filters [7]. It was later shown
that this approximation can be used to obtain a constant-time
implementation which further improves its speed [8]. In a
different direction, it was observed in [9] that the bilateral filter
can be conceived as a linear filter acting in three-dimensions,
where the three-dimensions are obtained by augmenting the
image intensity to the spatial dimensions. This observation
was used to derive a fast filtering in three-dimensions, which
was then sampled to obtained the final output. We refer the
interested reader to [10] for a survey of fast algorithms for
bilateral filtering.

The algorithms in [10], [11], [12] are particularly relevant
to the present work. Here the authors proceed by approx-
imating (2) using polynomial and trigonometric functions,
and demonstrate how the bilateral filter can be decomposed
into a series of spatial filterings as result. As is well-known,
since spatial box and Gaussian filters can be implemented in
constant-time using separability and recursion [13], the overall
approximation can therefore be computed in constant-time.

B. Present Contribution

We propose a fast algorithm for computing (1) which was
motivated by the line of work in [12], [14]. In particular,
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similar to these papers, we present a novel approximation of
(2) that allows us to decompose the bilateral filter into a series
of spatial convolutions. The fundamental difference between
the above papers and the present approach is that, instead of
approximating (2) and then translating the approximation in
range space, we directly approximate the translated Gaussians
appearing in (1). In particular, the computational advantages
obtained using the proposed approximation are the following:

(1) For a fixed approximation order (to be defined shortly),
the proposed approximation requires half the number of spatial
filterings required by the approximations in [8], [10], [12].

(2) The proposed approximation does not involve the tran-
scendental functions cos(ωx) and sin(ωx) which are used in
[12], [14]. It only involves polynomials (and just a single
Gaussian), and hence can be efficiently implemented on hard-
ware [15]. Moreover, the rounding error is small when working
with polynomials.

As will be demonstrated shortly, the proposed algorithm
is generally faster and more accurate than Yang’s algorithm
[8], which is currently considered to be the state-of-the-art
[10], [16]. In particular, we perform an error analysis whereby
we compare the output obtained using the proposed algorithm
with that of the exact bilateral filter. Due to the particular
nature of the proposed approximation, our analysis is much
more simple than that carried out for Yang’s algorithm in
[16]. Nevertheless, compared to Yang’s algorithm, we are
able to establish a smaller bound on the number of spatial
filterings required to achieve a given filtering accuracy. The
latter is defined in terms of the error between the outputs of
the bilateral filter and the fast algorithm (this will be made
precise in Section III). To best of our knowledge, with the
exception of [8], this is the only fast algorithm that comes
with a provable guarantee on the quality of approximation.
At this point, we note that the term “accurate” is used in the
paper not just to signify that the output of the fast algorithm
is visibly close to that of the target bilateral filter. It also has
a precise technical meaning, namely, that we can control the
approximation order to make the error between the outputs of
the bilateral filter and the fast algorithm arbitrarily small.

C. Organization
The rest of the paper is organized as follows. We present

the proposed kernel approximation and the error analysis in
Section II. In Section III, we develop a fast constant-time
algorithm arising from the Gaussian-polynomial approxima-
tion. We then analyze the quality of approximation that can
be achieved using our algorithm. This gives us a simple rule
for tuning the approximation order for a given user-defined
accuracy. We present exhaustive numerical results in Section
IV, and demonstrate the superior performance of the proposed
algorithm over some of the existing algorithms.

II. GAUSSIAN-POLYNOMIAL APPROXIMATION

The present idea is to consider the translated kernel gσr
(t−

τ) that appears in (1), where t = f(ı − j) and τ = f(ı). We
can write

gσr (t− τ) = exp

(
− τ2

2σ2
r

)
exp

(
− t2

2σ2
r

)
exp

(
τt

σ2
r

)
. (5)

For a fixed translation τ , this is a function of t. Notice that
the first term is simply a scaling factor, while the second
term is a Gaussian centered at the origin. In fact, the second
term essentially contributes to the bell shape of the translated
Gaussian. The third term is a monotonic exponential, which
is increasing or decreasing depending on the sign of τ ; this
term helps in translating the Gaussian to t = τ .

We assume (without loss of generality, as will be explained
at the start of Section III) that the dynamic range of the image
is [−T, T ]. That is, the arguments t = f(ı− j) and τ = f(ı)
in (5) take values in [−T, T ]. This means that the product
τt appearing in (5) takes values in [−T 2, T 2]. Consider the
Taylor expansion of the exponential term about the origin:

exp

(
τt

σ2
r

)
=

N−1∑
n=0

1

n!

(
τt

σ2
r

)n
+ higher-order terms. (6)

By dropping the higher-order terms, we obtain the following
approximation of (5):

φN,σr (t, τ) = exp

(
− t

2 + τ2

2σ2
r

)[N−1∑
n=0

1

n!

(
τt

σ2
r

)n ]
. (7)

Being the product of a bivariate Gaussian and a polynomial,
we will henceforth refer to (7) as a Gaussian-polynomial,
where N is its approximation order. By construction, we have
the pointwise convergence

lim
N→∞

φN,σr (t, τ) = gσr (t− τ). (8)

We would like to note that the above idea of splitting the kernel
and approximating a part of its using Taylor polynomials was
employed in [17] in the context of the fast Gauss transform.
To the best of our knowledge, this idea has not been exploited
for fast bilateral filtering along the lines of the present work.

In Figure 1, we study the approximations corresponding to
different N . The fundamental difference between the Taylor
approximation in [11] and the Gaussian-polynomial approxi-
mation (8) is that instead of approximating the entire Gaussian,
we approximate one of its component, namely the exponential
function in (5). The intuition behind this is that the Taylor
polynomial blows up as one moves away from the origin. This
makes it difficult to approximate the tail part of a Gaussian
using such polynomials. On the other hand, the exponential
in (5) is monotonic, and hence can be closely approximated
using polynomials. This point is explained with an example in
Figure 2. In particular, notice in Figure 2b that the Gaussian-
polynomial approximation is quite precise over the range of
interest, and is comparable to the raised-cosine approximation
of same order [12].

A. Quantitative Error Analysis

Before explaining how we can use Gaussian-polynomials
to derive a fast bilateral filter in Section III, we study the
kernel error incurred by approximating (2) using Gaussian-
polynomials. We will see in Section III that a bound on the
kernel error can in turn be used to bound the filtering accuracy
of the fast algorithm. Note that (8) tells us that Gaussian-
polynomial can be used to approximate the range kernel with
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Fig. 1. Approximation of g30(t−τ) using Gaussian-polynomials φN,30(t, τ)
with different N . The bivariate functions g30(t − τ) and φN,30(t, τ) have
been sampled along t = −τ to generate a one-dimensional profile.
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Fig. 2. Comparison of the approximations of g30(t−10) using raised-cosine
[12], Taylor polynomial [11], and Gaussian-polynomial of order 10. We notice
in (a) that the Taylor polynomial quickly goes off to +∞ as one moves away
from the origin. For this reason, we restricted the plot to [−90, 90], although
the desired approximation range is the full dynamic range [−128, 128]. The
plots over [−80, 80] are separately provided in (b) for comparing the raised-
cosine and the Gaussian-polynomial approximations with the target Gaussian.

arbitrary accuracy. However, in practice, we will be required to
use a Gaussian-polynomial of some fixed order N . A relevant
question is the size of error incurred for a given N? A related
question is that, given some error margin ε > 0, how do we
fix the smallest N such that the corresponding error is within
ε?

To begin with, we define the error function

EN,σr (t, τ) = gσr (t− τ)− φN,σr (t, τ)

= exp

(
− t

2 + τ2

2σ2
r

) ∞∑
n=N

1

n!

(
τt

σ2
r

)n
. (9)

The mathematical problem is one of bounding (9) for fixed N
and σr. In this work, we consider the `∞ error given by

‖EN,σr
‖∞ = max

{
|EN,σr

(t, τ)| : −T ≤ t, τ ≤ T
}
. (10)

This is also referred to as the worst-case or uniform error. We
note that one can measure the error using other means, e.g.,
using the `2 metric. The reason why we choose the `∞ metric
is that our ultimate goal is to quantify the `∞ accuracy of the
final filtering arising from the approximation, and a bound on
(10) is sufficient for this purpose. Moreover, computing the
`∞ error is relatively simple.

Using the inequality (t2 + τ2)/2 ≥ |τt|, we can bound the
first term in (9) by exp(−|τt|/σ2

r). Therefore, we have

‖EN,σr‖∞ ≤ max
s∈[0,T 2]

ψN,σr (s), (11)

(a) (b)

Fig. 3. Comparison of the actual error (9) and the bound in (12) for T = 128
and σr = 30. We plot the samples of the error function E40,30(t, τ) over
the square domain −128 ≤ t, τ ≤ 128 in (a). We compare this with the
samples of (12) over the same domain in (b), where we have set s = |τt|.
Notice that the supremum of either plots are of the same order of magnitude.

where

ψN,σr
(s) = exp

(
− s

σ2
r

)[ ∞∑
n=N

1

n!

(
s

σ2
r

)n ]
. (12)

Using (11), we obtain the following result. We note that this
bound is stronger than that derived for the fast Gauss transform
in [17].

Proposition II.1.

‖EN,σr
‖∞ ≤

∞∑
n=N

e−λλn

n!

(
λ = T 2/σ2

r

)
. (13)

To arrive at (13), we proceed by writing (12) as

ψN,σr
(s) = 1− exp

(
− s

σ2
r

)N−1∑
n=0

1

n!

(
s

σ2
r

)n
.

After differentiation, we get

ψ′N,σr
(s) =

1

(N − 1)!σ2
r

(
s

σ2
r

)N−1

exp

(
− s

σ2
r

)
≥ 0.

Thus, (12) is non-decreasing on [0, T 2], whereby we conclude
that the maximum in (11) is attained at s = T 2. This
establishes Proposition II.1.

To get an idea of the tightness of the bound in (13), we
compare the mesh plots of (9) and (12) in Figure 3 when σr =
30 and N = 40. While there is a gap between the error and the
corresponding bound at certain values of (t, τ), the supremum
of the latter (which occurs at one of the boundaries as predicted
above) is nevertheless of the same order of magnitude as the
supremum of the former.

B. Relation between N and Kernel Error

Having obtained a bound on the approximation error, we
consider the problem of finding the smallest N such that (10)
is within some allowed error margin ε > 0. Note that the
quantity on the right in (13) is simply the tail probability of
a Poisson random variable with parameter λ. We recall that
a random variable X taking values in {0, 1, 2, . . .} is said to
follow a Poisson distribution with parameter λ > 0 if

Prob(X = n) =
e−λλn

n!
(n = 0, 1, 2, . . .).
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TABLE I
COMPARISON OF THE GAUSSIAN-POLYNOMIAL ORDER OBTAINED USING

(18), WHERE (1) W0 IS COMPUTED USING THE MATLAB FUNCTION
LAMBERTW (N ′0), (2) W0 IS GIVEN BY (19) (N ′′0 ), AND (3) THE SERIES
EVALUATION IS REFINED USING THREE NEWTON ITERATIONS (N ′′′0 ).

σr 10 15 20 25 30 35 40 45 50
N ′0 214 107 67 48 37 30 25 21 19
N ′′0 270 124 74 50 37 30 25 21 19
N ′′′0 214 107 67 48 37 30 25 21 19

We can thus interpret the quantity on the right in (13) as
the probability Prob(X ≥ N). In this context, the leading
question is the following: given ε > 0, find the smallest N
such that Prob(X ≥ N) ≤ ε. The advantage of expressing the
problem in this form is that it brings to our disposal various
tools for bounding the tail probability. For example, assuming
that N > λ, we have the Chebyshev bound [18]:

Prob(X ≥ N) ≤ λ

(N − λ)2
. (14)

On the other hand, the Chernoff bound [18] when N > λ is
given by

Prob(X ≥ N) ≤ e−λ(eλ)
N

NN
. (15)

Numerical experiments suggest that for σr < 70 and for a
range of values of ε (to be reported shortly), the empirically
computed N is always larger than λ. Under this assumption,
we have the following estimate of the smallest N using (14):

N0 = [λ+
√
λ/ε], (16)

where [x] is the smallest integer greater than or equal to x.
As is well-known, the Chernoff bound (15) is typically

tighter than the Chebyshev bound. However, finding the small-
est N such that

e−λ(eλ)
N

NN
≤ ε (17)

is somewhat more involved.

Proposition II.2. Let t 7→ W0(t) be the inverse of the map
t 7→ t exp(t) on (0,∞]. Then the smallest integer greater than
λ for which (17) holds is

N0 = [q/W0(qe−p)], (18)

where p = 1 + log(λ) and q = −λ− log ε.

The details are provided in Appendix VI-A. While W0(t)
can be computed using the Matlab script lambertw(0,t),
we note that W0(t) can be approximated using a series
expansion [19]. In particular, the first four terms are

W0(t) = t− t2 +
3

2
t3 − 8

3
t4. (19)

However, we observed that (19) provides inexact estimates
when λ is large, that is, when σr is small. An extremely large
number of terms of the series are required to get a precise
estimate. To address this problem, we propose to use Newton
iterations for finding the positive root of ν(x) = x log x −
px − q = 0 (see Appendix VI-A for notations), where the
initialization is done using (18) and (19). Namely, starting

with x0 = q/W0(qe−p), we run the following iterations for
k ≥ 0:

xk+1 = xk −
ν(xk)

ν′(xk)
= xk −

xk log xk − pxk − q
log xk + 1− p

. (20)

In practice, we noticed that about 3-4 iterations are sufficient
to produce a good solution. In Table III, we illustrate the
improvement obtained after performing the Newton iterations.
The complete scheme for computing the order for a given
accuracy ε is summarized in Algorithm 1.

Data: σr, ε, T .
Result: N0.

1 if σr ≥ 70 then
2 N0 = 10;
3 else
4 λ = (T/σr)

2;
5 p = 1 + log(λ);
6 q = −λ− log ε;
7 t = q/(eλ);
8 W0 = t− t2 + 3t3/2− 8t3/4;
9 N0 = q/W0;

10 if σr < 30 then
11 for k = 1, 2, 3 do
12 N0 = N0 − N0 log(N0)−pN0−q

logN0+1−p ;
13 end
14 end
15 end
16 N0 = [N0];

Algorithm 1: Estimation of the approximation order.

Note that for σr > 70, we use a fixed order of 10. This is
because the condition N > λ in (14) and (15) is violated in this
regime. Moreover, we have noticed that a small order suffices
when σr is large. In Figure 4, we compare the estimated
order N0 obtained using the following methods: Chebyshev
(16), Chernoff (18) along with (19), and Chernoff followed by
Newton iterations (20). We also compare the corresponding
errors (computed using exhaustive search) given by (10).
Notice that the estimates are close to that obtained using
exhaustive search when ε = 0.1; however, when ε = 0.001,
the Chebyshev bound is quite loose.

III. FAST BILATERAL FILTERING

We now explain how Gaussian-polynomials can be used to
derive a fast algorithm for implementing (1). As a first step,
we center the intensity range {f(ı) : ı ∈ I} around the origin.
This is in keeping with the Taylor expansion in (7) which is
performed around the origin. A simple means of doing so is
to set tc = T , assuming the dynamic range to be [0, 2T ], and
to consider the centred image {h(ı) : ı ∈ I} given by

h(ı) = f(ı)− tc (ı ∈ I). (21)

The crucial observation is that that the shift operation in (21)
commutes with the non-linear bilateral filtering.
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Fig. 4. For ε = 0.1 and 0.001, we compare the order N0 obtained using
various methods (top row) and the corresponding error (bottom row).

Proposition III.1. For ı ∈ I ,

fBF(ı) = hBF(ı) + tc. (22)

In other words, we can first centre the intensity range, apply
the bilateral filter, and finally add back the centre to the output.
Henceforth, we will assume that the range of the input image
is [−T, T ]. For an 8-bit grayscale image, T = 128.

A. Fast Algorithm

The underlying mechanism of the proposed fast algorithm
is related to the fast algorithms in [12], [14]. The subtle
difference is that instead of directly approximating (2), we
approximate its translates in (1). In particular, we fix some
order N , and approximate the range kernel in (1) using (7).
This gives us the following Gaussian-Polynomial Approxima-
tion (GPA) of (1):

fGPA(ı) =

∑
j∈Ωw(j)φN,σr

(f(ı− j)− f(ı))f(ı− j)∑
j∈Ω w(j)φN,σr

(f(ı− j)− f(ı))
. (23)

Next, for n = 0, . . . , N − 1, we define the images

Gn(ı) =

(
f(ı)

σr

)n
, Fn(ı) = exp

(
−f(ı)2

2σ2
r

)
Gn(ı), (24)

and set

F̄n(ı) = (Fn ∗ w) (ı) =
∑
j∈Ω

w(j)Fn(ı− j). (25)

We can then write (23) as (cf. Appendix VI-B)

fGPA(ı) =
P (ı)

Q(ı)
, (26)

where

P (ı) = σr

N−1∑
n=0

1

n!
Gn(ı)F̄n+1(ı), (27)

and

Q(ı) =

N−1∑
n=0

1

n!
Gn(ı)F̄n(ı). (28)

Notice that we have effectively transferred the non-linearity
of the bilateral filter to the intermediate images in (24), which
are obtained from the input image using simple pointwise
transforms. The computational advantage that we get from
the above manipulation is that the spatial filtering in (25) can
be computed using O(1) operations per pixel when w is a
box or a Gaussian [13]. The overall cost of computing (23)
is therefore O(1) per pixel with respect to the filter size W .
This is a substantial reduction from the O(W 2) complexity of
the direct implementation of (1).

The complete algorithm for computing (23) is summarized
in Algorithm 2, which we will continue to refer as GPA. Note
that we efficiently implement steps (24) to (28) by avoiding
redundant computations. In particular, we recursively compute
the images in (24) and the factorials in (27) and (28). Notice
that steps 6-11, 16-17, 21-22, and 26 are cheap pointwise
operations. The main computation in Algorithm 2 is the spatial
filtering in step 19, and the initial filtering in step 13. That is,
the overall cost is dominated by the cost of computing N + 1
spatial filtering. In this regard, we note that for the same degree
N , the number of spatial filterings required in [12], [14] is 4N ,
and that in [8] is 2N . Moreover, we note that the proposed
algorithm involves the evaluation of a transcendental function
just once, namely in step 7. In contrast, the algorithm in [8]
requires N evaluations of the Gaussian over the whole image.
Thus, the present algorithm has smaller rounding errors, and
is better suited for hardware implementations [15] compared
to the above mentioned algorithms. Yet another key advantage
with the Algorithm 2 is that we need just six images (excluding
the input and output images) for the complete pipeline. As
against this, the algorithm in [8] requires the computation and
storage of N principal images, which are interpolated to get
the final output.

B. Filtering Accuracy

It is clear that the kernel error, and hence the overall quality
of approximation, is controlled by the order N . In this regard,
we need a rule to fix N in Algorithm 2. As before, we will
consider the worst-case error given by

‖fBF − fGPA‖∞ = max
{
|fBF(ı)− fGPA(ı)| : ı ∈ I

}
. (29)

By bounding (29), we can control the pixelwise difference
between the exact and the approximate bilateral filter. In par-
ticular, we have the following result which formally establishes
the intuitive fact that the filtering accuracy is essentially within
a certain factor of the kernel error given by (10). The details
of the derivation are provided in Appendix VI-C.

Proposition III.2. Suppose that the spatial filter is non-
negative and normalized, i.e., w(j) ≥ 0 for all j ∈ Ω, and∑

j∈Ω

w(j) = 1. (30)
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1 Input: {f(ı) : ı ∈ I} taking values in [0, 2T ];
2 Spatial Filter: Ω and {w(ı) : ı ∈ Ω};
3 Parameters: σr and N ;
4 Output: {fGPA(ı) : ı ∈ I} given by (23);
5 for i ∈ I do
6 h(ı) = f(ı)− T ;
7 F (ı) = exp(−h(ı)2/2σ2

r);
8 G(ı) = 1;
9 P (ı) = 0;

10 Q(ı) = 0;
11 H(ı) = h(ı)/σr;
12 end
13 F̄ (ı) = (F ∗ w) (ı);
14 for n = 1, . . . , N do
15 for i ∈ I do
16 Q(ı) = Q(ı) +G(ı)F̄ (ı);
17 F (ı) = H(ı)F (ı);
18 end
19 F̄ (ı) = (F ∗ w) (ı);
20 for i ∈ I do
21 P (ı) = P (ı) +G(ı)F̄ (ı);
22 G(ı) = H(ı)G(ı)/n;
23 end
24 end
25 for i ∈ I do
26 fGPA(ı) = σr (P (ı)/Q(ı)) + T ;
27 end

Algorithm 2: Gaussian-Polynomial Approximation (GPA).

Then
‖fBF − fGPA‖∞ ≤ 2

T‖EN,σr‖∞
w(0)− ‖EN,σr

‖∞
. (31)

We note that the spatial filters (3) and (4) are non-negative,
and that w(ı) appears in both the numerator and denominator
of (1) and (23). Therefore, we can assume (30) without any
loss of generality. In fact, (30) is automatically true for the box
filter. We also recall that the range of the image is assumed to
be centered; the intensity values are in the interval [−T, T ],
where T ≈ 128 for most grayscale images.

C. Relation between Accuracy and N0

Note that by combining (31) with the bound in (15), we
get a direct control on the filtering accuracy in terms of the
approximation order. In particular, suppose that we want (29)
to be within ±δ. A sufficient condition for this is that

‖EN,σr
‖∞ ≤

w(0)δ

2T + δ
.

To summarize, we have the following guarantee that follows
from (31).

Corollary III.3. Suppose that N is set using Algorithm 1,
where ε is given by

ε =
w(0)δ

2T + δ
. (32)

Then the output of Algorithm 2 is within ±δ of the output of
the bilateral filter.

IV. EXPERIMENTS AND DISCUSSION

We implemented the proposed GPA algorithm using Matlab
8.4 on an Intel 3.4 GHz Linux system with 8 GB memory.
The Matlab implementation has been shared here [20]. The
set of grayscale images used for the experiments are shown
in Figure 5. We compared the proposed algorithm with the
following fast algorithms: Yang [8], Paris [9], Weiss [22], and
the Shiftable Bilateral Filter (SBF) [14]. We used the Matlab
implementation of these algorithms to make the comparison
fair; moreover, we used the parameter settings suggested in
the respective papers. For determining the order in [8] for a
given accuracy parameter δ, we have used (34).

Experiment 1 The output of the proposed GPA algorithm
on a couple of images are shown in Figures 6 and 7. We also
provided the output obtained using exact bilateral filtering.
We performed the comparison using the box and the Gaussian
kernels for the spatial filter. Notice that the speedup obtained is
significant. Moreover, the filtered images are visually identical
and numerically very close, in terms of the `∞ and mean-
squared errors. We have used the following definition of mean-
squared error (MSE):

MSE = 10 log10

{
|I|−1

∑
ı∈I

(
fBF(ı)− fGPA(ı)

)2}
,

where |I| denotes the number of pixels in the image.
To get a better understanding of how N0 varies with δ, we

used the following approximation (see Appendix VI-D):

N0 ≈ 1.72

(
T

σr

)2

+ log

(
2T

w(0)δ

)
. (33)

An important point to note in (33) is the logarithmic depen-
dence on δ. In fact, the log(1/δ) factor can be traced back
to the tail bound in (15), which, in turn, follows from the
particular splitting in (7). The implication of the logarithmic
dependence is that we can force δ to be quite small without
blowing up N0.

To further highlight the importance of (33), we compared
(33) with the corresponding estimate for Yang’s algorithm [8]:

N0 ≈
1.14× 105

δ1/2σ2
r

. (34)

(a) I1 (b) I2 (c) I3 (d) I4

(e) I5 (f) I6 (g) I7 (h) I8

Fig. 5. List of grayscale images used for the experiments in Section IV. The
images were obtained from [21]. All images are of size 512× 512.
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(a) BF (10.2 sec). (b) GPA (0.77 sec, -72 dB, -174 dB). (c) BF (9.4 sec). (d) GPA (0.85 sec, -58 dB, -162 dB).

Fig. 6. Comparison of the exact bilateral filter (BF) and the proposed approximation (GPA) on images I1 and I2. A Gaussian kernel (σs = 5) is used for
the spatial filter, and σr = 50 for the Gaussian range kernel. The accuracy parameter was set to δ = 0.1 for the GPA. In the caption of (a) and (c), we report
the run time of the BF. In the caption of (b) and (d), we report the run time of the GPA, and the `∞ and mean-squared errors between BF and GPA.

(a) BF (4.3 sec) (b) GPA (0.61 sec, -65 dB, -164 dB). (c) BF (4.22 sec) (d) GPA (0.62 sec, -54 dB, -155 dB).

Fig. 7. The setup here is identical to that in Figure 6, with the difference that a box kernel (W = 10) is used for the spatial filter instead of the Gaussian.
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(c) W = 4.
Images

I
1

I
2

I
3

I
4

I
5

I
6

I
7

I
8

M
S
E

(d
B
)

-180

-140

-100

-60 

-20 

GPA Yang Weiss SBF

(d) W = 4.

Fig. 10. Comparison of the filtering accuracy (`∞ error and MSE) of various fast algorithms on the images in Figure 5. The red horizontal lines in 10a and
10c represent the accuracy parameter δ used for GPA and Yang’s algorithm. The tolerance for SBF was set to be 0.01. In 10a - 10b, we show the results for
a Gaussian spatial kernel, and in 10c - 10d we show the results for a box kernel. We used σr = 30 for the Gaussian range kernel in all the experiments.

The above estimate was recently derived in [16]. In particular,
notice that the dependence on σr is similar to that in (33).
However, the dependence on δ is much more strong in (34)
compared to (33), since log(1/δ) � δ−1/2 when δ < 1.
Moreover, the leading constant in (34) is much larger than
the constant in the first term in (33). As an example, when
δ = 3 and σr = 50, we have N0 ≈ 27 for Yang’s algorithm
(this is the estimate reported in [16]). On the other hand,
the corresponding estimate for our algorithm is N0 ≈ 19
(assuming that T = 128 and that we use a box filter of
size 3 × 3). The difference becomes dramatic for smaller
values of δ. For example, when σr = 50 and δ = 0.01, the

estimate from (33) is 24, while that from (34) is 456. Further
comparisons are provided in Table II. Notice that the order
for Yang’s approximation explodes when δ < 1 (sub-pixel
accuracy). It is also seen from the table that (33) provides a
close approximation of (18) for the setting under consideration.

Experiment 2 A graphic comparison of the algorithms for
various settings of the spatial and range kernels is presented in
Figures 8 and 9. As before, we performed the comparison for
both the box and Gaussian spatial filters. It is evident from
these results that the proposed method is competitive with
existing methods in terms of the speed-accuracy tradeoff.

Experiment 3 We next compared the proposed algorithm
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(d) σr = 30.

Fig. 8. Comparison of the filtering accuracy and the run time of four different
algorithms as a function of the parameters σs (Gaussian spatial filter) and σr .
We used image I1 in Figure 5 for the comparison. We used δ = 1 for GPA
and Yang’s algorithm [8]. A tolerance of 0.01 was used for the SBF [14].
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Fig. 9. Comparison of the filtering accuracy and the run time as a function
of W and σr . The settings are identical to that in Figure 8; the difference
here is that we have used a box spatial kernel instead of a Gaussian kernel.

with existing fast algorithms on the images shown in Figure
5. A summary of the comparisons (in terms of maximum
pixelwise error and MSE) is provided in Figure 10.

Experiment 4 Finally, we performed a detailed comparison
of the proposed algorithm with Yang’s algorithm, which is
widely considered to be the state-of-the-art algorithm. In the
first comparison, we fixed an image and the parameters of

the bilateral filter. The order N was then varied and the
corresponding error and run times were noted. The results
are presented in Table III. Notice that the run time of GPA
is consistently smaller than that of Yang’s algorithm for both
the box and Gaussian kernels. Indeed, as remarked earlier,
for a fixed order N , Yang’s algorithm [8] requires 2N spatial
filterings, while GPA requires only N + 1 spatial filterings.
Thus, the runtime of GPA is about half of that of Yang’s
algorithm. Moreover, beyond a certain N , GPA provides much
better filtering accuracy. We performed a similar experiment by
varying δ, the results of which are reported in Table IV. Notice
that the run time of Yang’s algorithm becomes prohibitively
large when δ is small.

V. CONCLUSION

We presented a novel fast algorithm for approximating the
bilateral filter. The algorithm was shown to be both fast and
accurate in practice using extensive experiments. The space
and time complexity of the proposed algorithm is smaller than
the state-of-the-art algorithm of Yang [8], and, moreover, was
shown to provide much better accuracy. We also performed
an error analysis of the approximation scheme, and presented
a rule for setting the approximation order that can guarantee
the filtering accuracy to be within a desired margin. Before
concluding, we note that the proposed algorithm can be used
to perform cross bilateral filtering, and can also be extended
for the filtering of video and volume data.

VI. APPENDIX

A. Derivation of (18)

Taking the logarithm of (17), we can restate the problem as
one of finding the smallest integer x > λ such that

ν(x) = x log x− px− q ≥ 0 (35)

where p = 1 + log(λ) and q = −λ− log ε.
Notice that ν′(λ) = 0 and ν′′(x) = 1/x > 0. Hence, ν(x)

is strictly convex over (0,∞) with a minimum at x = λ. Since
ν(λ) = log ε < 0 when ε < 1, we conclude that there exists
some θ > λ for which ν(θ) = 0. The smallest integer solution
of (17) is precisely [θ]. To find θ, we solve the equations
ν(θ) = 0 and θ > λ. Note that we can write ν(θ) = 0 as

q

θ
exp

(q
θ

)
= qe−p, (36)

which is of the form y exp(y) = qe−p, where y = q/θ.
The inverse of the mapping y 7→ y exp(y) is a well-studied
function called the Lambert W-function [19]. In particular, the

TABLE II
COMPARISON OF THE ORDER N0 REQUIRED TO ACHIEVE A DESIRED

ACCURACY δ WHEN σs = 5 AND σr = 30.

δ 10−3 10−2 0.05 0.1 1 3
[N0] using (18) 49 46 45 44 41 40
[N0] using (33) 49 47 45 44 42 41
[N0] using (34) 4006 1267 566 401 127 73
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TABLE III
COMPARISON OF THE PROPOSED GPA ALGORITHM WITH YANG’S ALGORITHM [8] FOR DIFFERENT ORDER N . THE `∞ ERROR AND THE MSE ARE IN
DECIBELS, WHILE THE TIME IS IN MILLISECONDS. THE COMPARISON IS DONE ON IMAGE I5 USING BOTH BOX AND GAUSSIAN SPATIAL FILTERS; THE
TYPE OF SPATIAL FILTER IS MENTIONED WITHIN BRACKETS. THE RESPECTIVE PARAMETERS FOR THE BOX AND GAUSSIAN FILTER ARE W = 4 AND

σs = 5, AND σr = 30 FOR THE GAUSSIAN RANGE KERNEL. NOTICE THAT THE ACCURACY OF GPA SATURATES ABOVE N = 60.

N GPA (Gaussian) Yang (Gaussian) GPA (Box) Yang (Box)
`∞ MSE time `∞ MSE time `∞ MSE time `∞ MSE time

10 14.87 8.48 85 10.55 11.08 217 15.81 6.61 85 10.30 9.24 252
20 2.97 -20.07 146 7.90 4.88 365 1.55 -22.24 152 7.63 3.08 413
30 -18.23 -67.35 210 6.44 1.33 519 -18.63 -69.46 173 6.09 -0.46 455
40 -50.81 -137.34 275 5.15 -1.19 695 -50.80 -139.08 197 4.79 -2.98 546
50 -93.31 -225.95 346 4.29 -3.12 857 -92.72 -226.90 300 3.87 -4.91 805
60 -119.03 -254.19 407 3.46 -4.72 995 -120.69 -258.14 295 3.06 -6.51 767
65 -119.03 -254.19 439 3.11 -5.41 1067 -120.69 -258.14 323 2.70 -7.20 840
70 -119.03 -254.19 477 2.79 -6.06 1175 -120.69 -258.14 456 2.38 -7.85 1216

TABLE IV
COMPARISON OF THE GPA ALGORITHM WITH YANG’S ALGORITHM [8] AT DIFFERENT δ. SEE TABLE III FOR THE PARAMETER SETTINGS.

δ GPA (Gaussian) Yang (Gaussian) GPA (Box) Yang (Box)
N0 `∞ time N0 `∞ time N0 `∞ time N0 `∞ time

0.05 45 -71.15 445 567 -6.29 11143 44 -66.51 429 567 -6.71 8905
0.1 44 -66.89 383 401 -4.78 8407 43 -62.45 207 401 -5.20 5381
0.5 42 -58.65 376 180 -1.29 3776 41 -54.59 282 180 -1.71 3092
1 41 -54.68 370 132 -0.22 2635 41 -54.59 288 132 -0.20 1981
2 41 -54.68 377 90 1.71 1692 40 -50.80 192 90 1.30 1137
3 40 -50.81 295 74 2.55 1305 39 -47.10 262 74 2.14 1246

inverse (which is generally multivalued) in this case is given
by

q

θ
= W0(qe−p),

where W0(t) is one of the two branches of the Lambert W-
function [19]. This gives us estimate (18).

B. Derivation of (26)

In terms of (24), we can write φN,σr
(f(ı−j)−f(ı))f(ı−j)

as

σr exp

(
−f(ı)2

2σ2
r

)N−1∑
n=0

1

n!
Gn(ı)Fn+1(ı− j). (37)

On substituting (37) in the numerator of (23), and exchanging
the summations, we get∑
j∈Ω

w(j)φN,σr(f(ı− j)− f(ı))f(ı− j) = exp

(
−f(ı)2

2σ2
r

)
P (ı),

which gives us (27) where we have used (25). Similarly, on
substituting (37) in the denominator of (23), and exchanging
the summations, we get∑

j∈Ω

w(j)φN,σr (f(ı− j)− f(ı)) = exp

(
−f(ı)2

2σ2
r

)
Q(ı),

where Q(ı) is given by (28). Cancelling the common exponen-
tial term from the numerator and denominator, we get (26).

C. Derivation of (31)

To establish (31), we write (1) as fBF(ı) = P1(ı)/Q1(ı),
where

P1(ı) =
∑
j∈Ω

w(j) gσr
(f(ı− j)− f(ı)) f(ı− j),

and
Q1(ı) =

∑
j∈Ω

w(j) gσr
(f(ı− j)− f(ı)).

Similarly, we write (23) as fGPA(ı) = P2(ı)/Q2(ı), where

P2(ı) =
∑
j∈Ω

w(j) φN,σr
(f(ı− j)− f(ı)) f(ı− j),

and
Q2(ı) =

∑
j∈Ω

w(j) φN,σr
(f(ı− j)− f(ı)).

We can then write fBF(ı)− fGPA(ı) as

=
P1(ı)(Q2(ı)−Q1(ı)) +Q1(ı)(P1(ı)− P2(ı))

Q1(ı)Q2(ı)

=
1

Q2(ı)

[
fBF(ı)(Q2(ı)−Q1(ı)) + P1(ı)− P2(ı)

]
. (38)

We uniformly upper-bound (resp. lower-bound) the numerator
(resp. denominator) in (38). In particular, note that

‖fBF‖∞ ≤ T. (39)

This follows from the fact that fBF(ı) in (1) can be expressed
as a convex combination of {f(ı− j) : j ∈ Ω}. On the other
hand, Q2(ı)−Q1(ı) is∑
j∈Ω

w(j) [gσr (f(ı− j)− f(ı))− φN,σr (f(ı− j)− f(ı))] .

Therefore, using (30), we get

‖Q1 −Q2‖∞ ≤ ‖EN,σr‖∞. (40)

Similarly,
‖P1 − P2‖∞ ≤ ‖EN,σr

‖∞T. (41)
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To uniformly lower-bound Q2(ı), we note that for ı ∈ I ,

Q1(ı) = w(0)gσr
(0)+

∑
j∈Ω\{0}

w(j)gσr
(f(ı−j)−f(ı)) ≥ w(0),

where we have used the non-negativity of the range and spatial
kernels. Using the inverse triangle inequality along with (40),
we have for ı ∈ I ,

|Q2(ı)| ≥ Q1(ı)−|Q2(ı)−Q1(ı)| ≥ w(0)−‖EN,σr
‖∞. (42)

Combining (38) - (42), we arrive at (31).

D. Derivation of (33)

Note that typically δ � T . For example, T is in hundreds
for a grayscale image, whereas, δ ∼ 1. Therefore, it follows
from (32) that ε ≈ w(0)δ/(2T ). On the other hand, from (18)
and (19), we have

N0 ≈
q

t− t2
=

eλ

1− (q/eλ)
,

where t = q/eλ and q = −λ+ log(1/ε). Since |q| < eλ,

1

1− (q/eλ)
≈ 1 + (q/eλ).

Therefore, N0 ≈ eλ+ q = (e− 1)λ+ log(1/ε).
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