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Antipodally Invariant Metrics For
Fast Regression-Based Super-Resolution
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Abstract—Dictionary-based Super-Resolution algorithms usu-
ally select dictionary atoms based on distance or similarity
metrics. Although the optimal selection of nearest neighbors is
of central importance for such methods, the impact of using
proper metrics for Super-Resolution (SR) has been overlooked
in literature, mainly due to the vast usage of Euclidean distance.
In this paper we present a very fast regression-based algorithm
which builds on densely populated anchored neighborhoods and
sublinear search structures. We perform a study of the nature of
the features commonly used for SR, observing that those features
usually lie in the unitary hypersphere, where every point has a
diametrically opposite one, i.e. its antipode, with same module
and angle, but opposite direction. Even though we validate the
benefits of using antipodally invariant metrics, most of the binary
splits use Euclidean distance, which does not handle antipodes
optimally. In order to benefit from both worlds, we propose
a simple yet effective Antipodally Invariant Transform (AIT)
that can be easily included in the Euclidean distance calculation.
We modify the original Spherical Hashing algorithm with this
metric in our Antipodally Invariant Spherical Hashing scheme,
obtaining the same performance as a pure antipodally invariant
metric. We round up our contributions with a novel feature
transform that obtains a better coarse approximation of the input
image thanks to Iterative Back Projection. The performance
of our method, which we named Antipodally Invariant Super-
Resolution (AIS), improves quality (PSNR) and it is faster than
any other state-of-the-art method.

Index Terms—Super-Resolution, Regression, Antipodes, Spher-
ical Hashing.

I. INTRODUCTION

UPER-RESOLUTION (SR) techniques aim to extend the
S resolution of a signal surpassing the limits of the original
capture device. Increasing the resolution of an image without
further information is a deeply ill-posed problem, and there-
fore, it needs to be addressed with a certain prior knowledge.
Although SR is a relatively young research field, many of those
priors have been proposed.

Some of the simplest and earliest image SR methods
were based on piecewise linear and smooth priors (i.e. bi-
linear and bicubic interpolation, respectively), resulting in fast
interpolation-based algorithms. Tsai and Huang [1] showed
that it was possible to reconstruct higher-resolution images
by registering and fusing multiple images, thus pioneering a
vast amount of approaches on multi-image SR, often called
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Fig. 1: The proposed AIS (Antipodally Invariant Super-
Resolution) achieves both the best quality (PSNR) and the
fastest speed (s) in comparison with most recent state-of-the-
art methods. All algorithms run Setl4 with a x2 upscaling
factor, see Table III for more information.

reconstruction-based SR. This idea was further refined, among
others, with the introduction of iterative back-projection for
improved registration by Irani and Peleg [2], although fur-
ther analysis by Baker and Kanade [3] and Lin and Shum
[4] showed fundamental limits on this type of SR, mainly
conditioned by registration accuracy. Learning-based SR, also
known as example-based, overcame some of the aforemen-
tioned limitations by avoiding the necessity of a registration
process and by building the priors from image statistics. The
original work by Freeman et al. [5] aims to learn from patch-
or feature-based examples to produce effective magnification
well beyond the practical limits of multi-image SR.

Example-based SR approaches using dictionaries are usu-
ally divided into two categories: internal and external
dictionary-based SR. The first exploits the strong self-
similarity prior. This prior is learnt directly from the rela-
tionship of image patches across different scales of the input
image. The opening work on this subcategory was introduced
by Glasner et al. [6], presenting a powerful framework for
fusing reconstruction-based and example-based SR. Further re-
search on this category by Freedman and Fattal [7] introduced
a mechanism for high-frequency transfer based on examples
from a small area around each patch, thus better localizing the
cross-scale self-similarity prior to the spatial neighborhood.
The recent work of Yang et al. [8] further develops the idea
of localizing the cross-scale self-similarity prior arriving to
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the in-place prior, i.e. the best match across scales is located
exactly in the same position if the scale is similar enough.

External dictionary-based SR uses other images to build
their dictionaries. A representative widely used approach is the
one based on sparse decomposition. The main idea behind this
approach is the decomposition of each patch in the input image
into a combination of a sparse subset of entries in a compact
dictionary. The work of Yang et al. [9] uses an external
database composed of related low and high-resolution patches
to jointly learn a compact dictionary pair. During testing, each
image patch is decomposed into a sparse linear combination of
the entries in the low-resolution (LR) dictionary and the same
weights are used to generate the high-resolution (HR) patch
as a linear combination of the HR entries. Both the dictionary
training and testing are costly due to the L regularization
term enforcing sparsity. The work of Zeyde et al. [10] extends
sparse SR by proposing several algorithmic speed-ups which
also improve performance. However, the bottleneck of sparsity
methods still remains in the sparse decomposition. In the
neighbor embedding algorithm of Gao et al. [11] they propose
a method that builds neighborhoods for linear embedding in
a unified feature subspace spanned by LR—-HR image patches
rather than in the original LR feature space alone.

More recently, regression-based SR has received a great deal
of attention by the research community. In this case, the goal is
to learn a certain mapping from the manifold of the LR patches
to that of HR patches, following the manifold assumption
already used in the earlier work of Chang et al. [12].

The mapping of the manifold is assumed to be locally linear
and therefore several linear regressors are used and anchored
to the manifold as a piecewise linearization [13]. The key
observation of performing the neighbor embedding just for
a predefined set of anchor points allowed to preprocess them
during training time, thus lessening substantially the testing
time complexity. Our recent work [14] puts light in how to
properly create the neighborhoods in such methods, obtaining
sizable benefits in terms of reconstruction quality. In addition
to that, we also explored sublinear search structures for the
regressor nearest neighbor search, as this takes a significant
quota of the running time from within the processing of the
whole SR pipeline.

In this paper we follow the same research direction and we
introduce the following contributions:

1) We study and provide insight about the behavior of
distance metrics used during the regression process. We
detect the importance of antipodal invariance.

2) We provide a suitable and efficient spherical hashing
framework to exploit a fast regressor search. In order to
benefit from antipodal invariance, we introduce a new
simple yet effective transform which makes Euclidean
distance (and also spherical hashing) antipodally invari-
ant.

3) We present a novel feature transform based on gradients
and Iterative Back Projection which improves the quality
of the upscaled image thanks to a better first coarse
approximation

The confluence of all the mentioned contributions yields
state-of-the-art speed and quality results. With our proposed
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approximate regressor search we are the fastest (about x4 —11
times faster) and we greatly improve in quality (about 0.2dB
higher) compared to our predecessor A™. In addition, when
performing exhaustive search we obtain even better PSNR
results (up to 0.32dB higher).

The rest of this paper is organized as follows. Section II
defines the problem and reviews the state-of-the-art and related
work. In Section III we describe our proposed algorithm. In
Section IV we discuss and assess the performance of the
presented contributions separately. Experimental results and
comparisons with state-of-the-art methods are provided in
Section V. We conclude the paper in Section VL.

II. RELATED WORK

In the upcoming section we introduce the SR problem and
how example-based approaches tackle it, followed by a review
of relevant methods among the state of the art.

A. Problem statement

Super-Resolution aims to upscale images which have an un-
satisfactory pixel resolution while preserving the same visual
sharpness, more formally

X=1()st. X~), (1)

where Y is the input image, X is the output upscaled image,
1 (-) is an upsampling operator and calligraphic font denotes
the spectrum of an image.

In the literature this transformation has usually been mod-
eled backwards as the restoration of an original image that has
suffered a certain degradation [9]

Y =1 (B(X)), 2)

where B(-) is a blurring filter and | (-) is a downsampling
operator. The problem is usually addressed at a patch level,
denoted with lower case (e.g. y, ) and extracted from the
respective uppercase image (e.g. Y, X).

The example-based SR family tackles the super-resolution
problem by finding meaningful examples from which a HR
counterpart is already known, namely the couple of dictionar-
ies D; and Dy,.

The low resolution patch y is decomposed as a linear
combination of the atoms in the LR dictionary D;.

min |y = D83 + A8l 3)

where  selects and weights the elements in the dictionary and
A weights a possible L,-norm regularization term. Once this
linear combination of atoms g is obtained, the high resolution
patch x can be obtained by applying those weights to the HR
dictionary Dy, as * = Dy 3. The Ly-norm selection and the
dictionary-building process depend on the chosen priors and
they further define the SR algorithm.
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B. State of the art

Regression-based SR methods have been one of the most
prolific SR families of the recent years. This section we re-
views some of the most relevant publications taking advantage
of regression strategies, with a special emphasis on, but not
limited to, piecewise linear regression schemes.

In regression-based SR the objective of training a given
regressor R is to obtain a certain mapping function from
LR to HR patches. LR patches form an input manifold M
of dimension m and HR patches form a target manifold N
of dimension n. Formally, for training pairs (yr, x) with
yr € M and z € N, we would like to infer a mapping
U:MCR™— NCR"

The work of Kim et al. [15] on example-based learning
builds on the framework of Freeman et al. [5] and aims to
recover the HF content of X through a non-linear regression
stage, which is then added to the bicubic interpolation. The
regression consist in a Kernel Ridge Regression (KRR) whose
cost functional reads:

!
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where the f* is expressed as a Gaussian kernel:
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The solution to the minimization problem of (4) is found
only for a certain basis set of [, elements much smaller than the
full training set size (I, < 1), due to prohibitive time complex-
ity. These basis points are selected from the training datapoints
through an incremental approach based on Kernel Matching
Pursuit and gradient descent, having the necessity to apply
additional simplifications to further reduce the complexity. The
training time reported by the authors is still about a day in a
desktop PC. After the KRR stage, the number of candidates
for each final pixel is combined following a certain weighting
learnt during training, contrasting with the usual overlapping
weighting done in most SR algorithms. As the output of these
two stages presents ringing artifacts, a modified natural image
prior based on the one of Tappen et al. [16] is applied through
Belief Propagation (BP).

The recent work of Timofte et al. [13] is especially re-
markable for its low-complexity nature which achieves orders
of magnitude speed-ups while having competitive quality
results compared to the state-of-the-art. They propose a re-
laxation of the Lji-norm regularization commonly used in
most of the Neighbor Embedding (NE) and Sparse Coding
(SC) approaches, reformulating the problem as a least squares
(LS) Lo-norm regularized regression, also known as Ridge
Regression. While solving Lj-norm constrained minimization
problems is computationally demanding, when relaxing it to a
Lo-norm, a closed-form solution can be used. Their proposed
minimization problem reads

mﬁinllyF—sz@HHmlg, 6)

where N; is the LR neighborhood chosen to solve the problem
and yr is a feature extracted from a LR patch. The algebraic
solution is

B = (NIN; + M) 'Nlyp. (7)

The coefficients of 3 are applied to the corresponding HR
neighborhood N}, to reconstruct the HR patch, i.e. x = N,0.
This can also be written as the matrix multiplication x = Ryp,
where the projection matrix (i.e. regressor) is calculated as:

R = N,(NI'N, + \I)7' N} (8)

and can be computed offline, therefore moving the minimiza-
tion problem from testing to training time.

They propose to use sparse dictionaries of d; atoms size,
trained with the K-SVD algorithm [17]. A regressor R; is
anchored to each atom d; in D;, and the neighborhood /NV; in
equation (8) is selected from a k-NN subset of Dj:

N, = kNN(d;, D). 9)

The SR problem can be addressed by finding the NN atom
d; of every input patch feature yx, and applying the associated
R; to it. In the specific case of a neighborhood size k = d,
only one general regressor is obtained whose neighborhood
comprises all the atoms of the dictionary and consequently
does not require a NN search. This case is referred in the
original paper as Global Regression (GR).

Other advances within this family of algorithms include
the Naive Bayes SR Forest [18], that uses an ensemble of
bimodal trees in order to benefit from antipodal invariance.
It is also highly competitive in speed thanks to the naive
Bayes selection procedure which applies a single regressor
per patch, differently from other forest approaches, e.g. SR
Forest of Schulter et al. [19], that apply as many regressors per
patch as the number of trees in the ensemble. Another recent
follow-up of ANR is the Multiple Linear Mappings (MLM)
SR of Zhang et al. [20], which trains each regressor with a
set of orthonormal basis representative of the correspondent
subspace (i.e. a subdictionary) and later performs a post-
processing stage based on non-local means regularization.

III. PROPOSED ALGORITHM

In this section we present our algorithm for fast and efficient
regression-based SR, divided in four subsections that describe
the main pillars of our contributions. We show an overview of
the complete algorithm in Figure 2.

A. Linear Regression Framework

As seen in Section II, selecting non-linear regression
schemes (e.g. KRR of [15]) results in prohibitive training
complexity, which is usually mitigated by reducing the training
sets under certain assumptions. In testing time, although non-
linear regression SR methods are reasonably fast, they still
compare modestly with fast state of the art methods such as
[13], [14], [21].

Linear Regression is the most simple regression scheme,
i.e. for each output variable it performs a linear weighted sum
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Fig. 2: Pipeline of our SR algorithm. Firstly, we extract feature vectors from the gradients of an image upscaled through IBP.
Secondly, we find the best-fitted regressor R through spherical hashing using normalized features and our proposed AIT. We
then apply the respective regressor to each feature vector and reconstruct the final image with overlapping patches.

of the input variables. This is an oversimplification of the
upscaling problem if we only consider one linear regressor.
Instead, several linear regressors are anchored to different
points of the manifold, obtaining a finer piecewise linear
regression model. In such strategies, data have to be split in
training time and during testing time the proper regressor has
to be selected.

For the SR problem, the regression is applied to the input
features and aims to recover certain components of the patch,
e.g. missing high frequency. We model the linear regression
framework in a general way as:

x =%+ R;yr, s.t. R; = argmin 06(R;, yr), (10)

R;e{Ry}

where T is a coarse first approximation of the HR patch x, §(-)
is a metric evaluating the dissimilarity from the input features
to the ith regressor cluster or anchor point and {Ry} is an
ensemble of trained regressors.

The choice of how to obtain = affects the content to be
learnt, since the regression output aims to recover x — 2. We
further discuss the importance of this in Section III-B together
with the feature space selection for the transformation of yp.

B. Feature Space and coarse approximation

SR algorithms are usually performed in a feature space other
than that of the raw luminance pixel values. In the literature, a
common rule for this feature transformation is to enforce mid
and high frequencies of LR patches, under the observation that
similarity between LR and HR patch structures is somehow
improved and therefore the prediction is easier. As for the
HR feature space (i.e. the output feature space), the same
principle of enforcing high frequencies also applies, in this
case under the assumption that the high frequency bands are
conditionally independent of the lower frequency bands, and
thus suppressing low-frequency bands from the HR feature
space collapses the training data for all possible low-frequency
values into one value [5]. Differently from the input LR
feature space, in the HR feature space we need to be able
to reverse the features into pixel-based values for the final
image reconstruction.

Several features have been proposed: The early work of
Freeman et al. [5] already used a simple high-pass filter which
consisted in the subtraction of a low-pass filter. In the same

direction, [12] and [9] used concatenated first- and second-
order gradients, as an inexpensive solution to the same high-
pass filter approximation. This type of feature was further
refined by Zeyde et al. [10] by introducing PCA compression
in order to reduce the feature dimensionality and memory
usage.

It is important to remark that most feature transformations
are computed from a first coarse approximation, i.e. the
upscaled image X. We observed that the effect of this first
approximation has been unnoticed in the literature, in which
using bicubic interpolation or the patch-mean value is a com-
mon practice, both in LR and HR feature space. In this paper
we propose a new feature transform which takes advantage of
a better coarse approximation to obtain the LR input features,
which we denote with yr.

The main idea is to obtain an image approximation X better
than that obtained with bicubic interpolation but which is still
within certain low-complexity boundaries. We present a fea-
ture transform based on a simplified Iterative Back Projection
(IBP) algorithm of [2], together with unidimensional 1-st and
2-nd order gradients. We refer to this novel feature transform
as Gradient IBP (GIBP).

Starting with an initial guess X(©) of the HR image, IBP
simulates the imaging process to obtain a LR image Y (©
corresponding to the observed input image Y. The difference
image E(© =1 (Y — V() is computed and used to improve
the initial guess by back-projecting each error value onto the
corresponding field in X(©, namely X1 = X(©) 4 £(0)_ Thjs
process is repeated iteratively:

00 = X0 4 37 pu=y

j=1

(11

In the original work of Irani and Peleg [2], the imaging
process was modeled through a convolution with a given
point spread function and a back-projection kernel. In our
low-complexity approach, we model both functions with the
simple and effective bicubic downscaling and upscaling kernel.
With as few as n = 2 iterations the coarse approximation
improves greatly when compared to bicubic. We filter this
upscaled image X with 1-st and 2-nd order unidimensional
gradient filters (two vertical and two horizontal). At this point
overlapping patches are extracted from each of the gradient
images, and all the 4 gradient patches corresponding to the
same patch position are concatenated together in a feature
vector yr. Note that dimensionality of this feature is four
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Fig. 3: A normalized degree 3 polynomial manifold illustrating the proposed approach compared to the one in [13]. (a)
Bidimensional manifold samples. (b) The manifold (blue) and the sparse representation obtained with K-SVD algorithm
(green) of 8 atoms. (c) Linear regressors (red) trained with the neighborhoods (K = 1) obtained within the sparse dictionary, as
in [13]. (d) Linear regressors (red) obtained using our proposed approach: The neighborhoods are obtained within the samples

from the manifold (k¥ = 10).

times the patch size. If this eventually becomes a memory
problem, a PCA compression can be applied with barely no
information loss [10].

Section IV-A assess the performance of our proposed feature
transform. As for the HR feature space, we consistently
use IBP, without the non-reversible gradient step and PCA
compression. During training, we form our HR features simply
by the subtraction of the the first coarse approximation to the
ground-truth patch z — #(®), so that our regression stage is
specialized in correcting the errors that IBP is introducing.
During testing, this HR feature transform requires substituting
# by #®) in Equation 10.

C. Clustering and training

As we have previously seen, recent regression-based SR
use linear regressors because they can be easily computed in
closed form and applied as a matrix multiplication. However,
the mapping W is highly complex and non-linear [22]. To
model the non-linearity nature of the mapping, an ensemble
of regressors {Rj} is trained, representing a locally linear
parametrization of W, under the assumption that both mani-
folds M and N have a similar local geometry. We analyze
the effect on the distribution of those regressors in the man-
ifold (i.e. the anchor points) and the importance of properly
choosing the N, in equation (8), concluding on a new training
approach.

In the work of Timofte et al. [13], an overcomplete sparse
representation is obtained from the initial LR training patches
using K-SVD [17]. The atoms in this new reduced dictionary
D; are used both as anchor points to the manifold and
datapoints for the regression training. In their GR, a unique
regressor R¢ is trained with all elements of the dictionary,
therefore accepting higher regression errors due to the single
linearization of the manifold. In order to achieve a more
accurate regression they also propose the Anchored Neighbor-
hood Regression (ANR). In ANR they use several regressors
anchored to each sparse dictionary atom. They build for each
of those atoms a neighborhood of k-NN composed by other
atoms within the same sparse dictionary D;, and finally train
a ridge regressor with the corresponding neighborhood.

Performing a sparse decomposition of a high number of
patches efficiently compresses data in a much smaller dictio-
nary, yielding atoms which are representative of the whole
training dataset, i.e. the whole manifold. For this reason they
are suitable to be used as anchor points, but also sub-optimal
for the neighborhood embedding. They are sub-optimal since
the necessary local condition for the linearity assumption is
likely to be violated. The atoms of a sparse dictionary are a
set of centroids that represent the whole training set and, as
a consequence, they are not likely to be similar among them.
Important variations within sparse atoms are to be expected,
therefore being unappropriated for locally linear embedding.

Following this observation, in [14] we proposed a different
approach when training linear regressors for SR: Using sparse
representations as anchor points to the manifold, but forming
the neighborhoods with raw manifold samples (e.g. features,
patches). By doing so, we find closer nearest neighbors and,
therefore, fulfill better the local condition. Additionally, a
higher number of local independent measurements is available
(e.g. mean distance for 1000 neighbors in the raw-patch
approach is comparable to a 40 atom neighborhood in the
sparse approach) and we can control the number of k-NN
selected, i.e. it is not upper-bounded by the dictionary size.
We show a low-dimensional example of our proposed training
scheme in Figure 3. Building dense and compact clusters
through this methodology is a key contribution as it boosts
performance at no complexity cost. Parallel in time, Timofte
et al. presented a similar idea in their A+ algorithm [23].

In the present work we further optimize the training stage by
reviewing the nearest neighbor search strategy, which follows
on Section III-D, where we propose the usage of different
metrics that allow even better locality conditions.

D. Search strategy: Antipodally Invariant Spherical Hashing

In this section we study the most appropriate metrics for
evaluating the similarity between features and anchor points,
presenting some insight about their behavior with antipodal
points and the importance of properly dealing with them. We
also present a novel search strategy that speeds up the regres-
sor selection and introduce a modification of the Spherical
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Hashing algorithm [24] in order to benefit from antipodal
invariance.

SR algorithms require performing comparisons between
vectors in order to guide the algorithm in its decisions, e.g.
features, anchor points, dictionary atoms. The comparison is
performed following a given metric function é(a, b)a,b € R™
which typically has been designed to quantify the similarity
or dissimilarity of the two compared vectors. It is recurrent in
literature the usage of Euclidean distance for this purpose.
We show that for the characteristics of the features used
in our proposed algorithm (which are also shared in other
SR algorithms [10], [13], [23], [14]), Euclidean distance is
suboptimal as it fails to manage antipodal points (i.e. two
points on the surface of a sphere are antipodal if they are
diametrically opposite).

We find further insight of the ambiguous variations that our
defined metric should ignore when looking at scalar matrix
multiplication in linear regression, i.e. for a given scalar A
our linear regression reads Az = R(Ay). The regressor R
and the associated linear operations are not modified by this
scaling operation, as it is present at both sides of the equality.
Normalizing feature vectors when comparing them is some-
times necessary as many dictionary optimization algorithms
(as it is the case of K-SVD) enforce normalization to avoid
a 0 solution. Even when it is not necessary, normalization is
a good practice as it collapses training examples with simi-
lar structures but different scalar norms. During testing, the
normalized features are used to find the best-suited regressor,
while the non-normalized features are necessary for the final
matrix multiplication.

However, vector normalization does not handle the cases
where ) is negative, as the norms are strictly positive and can
not compensate for A € R™. This is the case of antipodal
points (i.e. there is a sign change).

Training and assigning different regressors for two antipo-
dal points does not increase the performance by a better
specialization, as the sign change is in both sides of the
equality and the regressor and the associated linear operations
are identical for two antipodal points (i.e. z = R(y) and
—x = R(—y)). Each regressor is associated with an anchor
point, which describes a certain mode in the structure of
patches, regardless of this structure being a positive or negative
change (e.g. positive or negative change in the gradient), which
is described by the sign of the normalized vector. The metric
utilized for selecting the best regressor should therefore be
able to associate two antipodal points to the same anchor
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point, thus having antipodal invariance. In the same way, when
building the neighborhoods during training, this observation
also applies.

We define an antipodal invariant metric as:

d(a, b) = d(—a, b) = d(a, —b) = §(—a, —b). (12)

We propose the usage of the Absolute Value of the Cosine
Similarity (AVCS) as a better alternative to compare feature
vectors to anchor points. This metric 6} (a, b) = |a - b| is an-
tipodally invariant (respects Equation (12) ), and furthermore,
requires less operations than a common Euclidean distance
calculation. During training, we can use it as there are no time
constrains. Refer to Section IV to assess the improvement of
using antipodally invariant metrics both for training and for
testing.

In testing time, the best-fitted regressor has to be selected
from within the ensemble of trained regressor. Although state-
of-the art regression-based SR has already pushed forward
the speed with regard to other dictionary-based SR [10], [9],
finding the right regressor for each patch takes a considerable
quota of the processing time. In the work of [13], most of the
encoding time (i.e. time left after subtracting shared processing
time, including bicubic interpolations, patch extractions, etc.)
is spent in this task (i.e. ~ 96% of the time).

In order to reduce the search complexity, binary splits (e.g.
trees or hashing functions) are trained forming a hierarchical
structure composed by several split nodes. These split nodes
divide the space in such a way that the children leaves improve
their information gain. We face several challenges when adapt-
ing binary search structures to our algorithm: The outcome
of our training stage is a set of anchor points associated
with their respective regressors. This dictionary is obtained
independently and ahead from the search structure, does not
have any hierarchical structure and the neighborhoods, which
can be interpreted as clusters, share elements among them.
Furthermore, antipodal invariance is an important aspect on the
search strategy as discussed previously. This search structure
has to be built, therefore, adapted to this scenario.

We choose hashing techniques over tree-based methods for
two main reasons: Hashing schemes provide low memory
usage (the number of splitting functions in hashing-based
structures is O(log,(n)) while in tree-based structures is O(n),
where n represents the number of clusters) and are highly
parallelizable.

Binary hashing techniques aim to embed high-dimensional
points in binary codes, providing a compact representation of
high-dimensional data. Among their vast range of applications,
they can be used for efficient similarity search, including
approximate nearest neighbor retrieval, since hashing codes
preserve relative distances. There has recently been active
research in data-dependent hashing functions opposed to hash-
ing methods such as [25] which are data-independent. Data-
dependent methods intend to better fit the hashing function
to the data distribution [26], [27] through an off-line training
stage.

Among the data-dependent state-of-the-arts methods, we
select the Spherical Hashing algorithm of Heo et al. [24],
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(@ (b)

Fig. 5: Antipodally Invariant Transform. (a) A and C are
antipodal points (C = —A) and B and D are close to be
antipodes (D ~ —B). Although they are very similar features,
Euclidean distance fails to find the proper nearest neighbor, as
it can not handle the characteristics of antipodal points. (b)
In our proposed Antipodally Invariant Transformation (AIT),
we forbid a given half-space of the manifold (in this case
the negative y axis, i.e. yr - €, < 0) and we project the
features laying on it to its correspondent antipodal point.
After transformation, Euclidean distance can properly deal
with antipodal points.

which is able to define closed regions in R™ with as few
as one splitting function. This hashing framework is useful
to model the inverse search scheme and enables to benefit
from substantial speed-ups by reducing the NN search into
applying a precomputed function, which conveniently scales
with parallel implementations, as shown in Figure 4.
Spherical hashing differs from previous approaches by set-
ting hyperspheres to define hashing functions on behalf of
the previously used hyperplanes. A given hashing function
H(yr) = (h1(yr),...,he(yr)) maps points from R™ to
a base 2 N¢, ie. {0,1}°. Every hashing function h(yr)
indicates whether the point yp is inside kth hypersphere,
modeled for this purpose as a pivot p, € R™ and a distance
threshold (i.e. radius of the hypersphere) ¢, € RT as:

0 when d(pk,yr) >tk

, 13
1 whend(pk,yr) <ty (13)

hi(yr) = {

where 0(pg, yr) denotes a distance metric between two points
in R™ (Euclidean distance in the work of Heo et al.[24]).
The advantages of using hyperspheres instead of hyperplanes
is the ability to define closed tighter sub-spaces in R™ as
intersection of hyperspheres. An iterative optimization training
process is proposed in [24] to obtain the set {py, ¢}, aiming a
balanced partitioning of the training data and independence be-
tween hashing functions. We perform this mentioned iterative
hashing-function optimization in a set of input patch features
from training images, so that H(yp) adapts to the natural
image distribution in the feature space.

Our proposed spherical hashing search scheme becomes
symmetrical as we can see in Figure 6, i.e. both image and
anchor points have to be labeled with binary codes. This
can be intuitively understood as creating NN subspace groups
(we refer them as bins), which we label with a regressor by

applying the same hashing functions to the anchor points.
Relating a hash code with a regressor can be done during
training time.

The search returns k-NN for each anchor point, thus not
ensuring that all the input image patches have a related
regressor (i.e. whenever the patch is not within the k-NN of
any of the anchor points). Two solutions are proposed: (a) use a
general regressor for the patches which are not in the k-NN of
any anchor point, as proposed by [13] or (b) use the regressor
of the closest labeled hash code calculated with the spherical
Hamming distance, defined by [24] as dsy(a,b) :%,
where @ is the XOR bit operation and A is the AND bit
operation. Note that although not being guaranteed, it rarely
happens that a patch is not within any of the k-NN regressors
(e.g. for the selected parameter of 6 hyperspheres it never
occurs). Since we have not observed significant differences in
performance, we select (a) as the lowest complexity solution.

In a similar way, an inverse search might also assign two or
more regressors to a single patch. It is common in the literature
to do a re-ranking strategy to deal with this issue [28].

Antipodally Invariant SpH. During the opening of this
section we discussed the goodness of properly dealing with
the antipodes. However, as many other binary splits, the func-
tioning of spherical hashing is unable to recognize antipodal
vectors and put them together in a bin. This happens by cause
of its thresholding mechanism, which is based on a direction-
less Euclidean distance from the center of a hypersphere to the
feature point. As seen previously, antipodal patches should use
the same regressor as the same linear operations are applied for
both of them, with the unique difference of the input features’
sign.

In order to benefit from the speed-ups of binary splits
designed to use Euclidean distance, we propose a novel trans-
formation which enables the benefits of antipodal invariance
in the Euclidean space.

As described by the Borsuk-Ulam theorem [29], any con-
tinuous function from an m dimensional unit sphere S™ to an
Euclidean m-space R™ maps two antipodal points into a single
point. The goal of our transformation is similar: to design a
function which maps two antipodal points into a single point.
However, in the situation addressed in this paper there is a
mismatch between the sphere space and the Euclidean space,
as we deal with a function mapping from S™! to R™.

Our idea builds on designing a continuous hyperplane that
crosses S™ ! passing through the origin of coordinates, thus
mapping two points into a single one. In order to do that,
we enforce a forbidden space region, corresponding to the
negative half-space of the gth dimension, i.e. the features must
be yp - eq € RT, where e4 is the gth standard basis in the
Euclidean m space.

In our proposed Antipodally Invariant Transformation
(AIT), all the features lying outside that space are projected
to their antipodes:
ifyr-eq < 0. (14)

YFarr = —YF,

A low-dimensional illustrative example is shown in Fig-
ure 5. The dimension g should have balanced positive and
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Fig. 6: Spherical hashing adapted to the regressor search for SR. Certain hashing functions are optimized on feature patch
statistics creating a set of hyperspheres intersections that are directly labeled with a hash code. In training time, regressors fill
this intersections (i.e. bins) and in testing time the hashing function is applied to each patch, which will directly map it to a

regressor.

negative values so that the transformation is effective. For
our training feature vectors (around 500K examples), all the
dimensions were highly and similarly balanced, so we decided
to select the dimension with less variation (PCA analysis).

If rather than transforming the points we just want to use an
antipodally invariant metric which can operate in the Euclidean
space, Equation (14) is applied in both vectors during the
Euclidean distance calculation:

(5AIT(pk7yF) = \/Z(pkAITayFAIT)27 (15)

and then used in the distance metric d(py,yr) of Equation
(13). Thanks to this we obtain an Antipodally Invariant Spher-
ical Hashing (AISpH) which is optimal for the SR regression
problem and can be used for any other problem which shares
the same feature characteristics.

In Figure 7 we show the advantages of using our proposed
AIT. In Figure 7(a), we confirm that neighborhoods created
with AIT features and Euclidean distance metric have lower
average distances than without transformation, hence obtaining
a better local condition and having a higher number of samples
available for a given maximum distance. In Figure 7(b), we
asses the resilience to antipodal variance of AIT: The average
angular distances obtained with AIT neighborhoods (Equation
15) are approaching those created with a pure antipodally
invariant metric (i.e. AVCS). This is further validated by the
results shown in Table II, where AIT and AVCS obtain similar
PSNR performance.

IV. CONFIGURATION

In this section we assess and prove the optimal performance
of the contributions of the paper separately. We use as baseline
configuration our proposed algorithm, with 1 hypersphere and
AIT, trained with the 91 training images from [8], using
a single scale (about 500k training samples) and a sparse
dictionary of 1024 atoms whenever is not specified otherwise.
The size of the neighborhoods is set to 3000 samples and we
weight the regularization term with A = 0.12. We select a
patch size of 3 x 3 and extract full overlapping patches in the

[ [ Set5 [ Set14 |
PSNR time PSNR time
bic. gradients | 32.55 | 0.216 | 23.27 | 0.407
GIBP 32.65 | 0222 | 3233 | 0419

TABLE I: Average performance in terms of PSNR (dB) and
time (s) for bicubic gradients features and our GIBP features,
run on Setl4 and Set5 on a X2 magnification factor.

LR reference image (i.e. the number of patches extracted in
the upper scales is the same as in the LR reference scale, thus
the patch size and overlap ratio are proportionally adapted).

A. Feature Space

We compare the performance of our proposed GIBP features
with the features proposed by Zeyde et al. which are based on
the gradients of the bicubic interpolation. We compress both
features with PCA in order to reduce the dimensionality, so
that not only the features are more compact, but specially the
regressors. In Table I we show how by using our proposed
features we consistently improve in quality (i.e. from 0.06dB
to 0.10dB) with respect the previously used features. We also
asses that, as expected, the computation time of the whole SR
algorithm increases as GIBP requires the computation of more
bicubic interpolations (three interpolation against a single one).
Nevertheless the increase in running time has low incidence
with respect the whole SR pipeline (i.e. about 3% of the total
SR time).

B. Search strategy

In order to confirm the superiority of antipodally invariant
metrics, we test Euclidean distance against AVCS and our
proposed AIT+Euclidean distance. We only want to evalu-
ate the incidence of the different metrics, excluding from
the experimental setup the effect of the approximate search
introduced with the AISpH (as this comparison is explicitly
shown in the Results section). We perform experiments with
the three different metrics used for both training and testing
separately. The results clearly show the advantage of using
an absolute invariant metric, as using them improves greatly
the PSNR (4-0.18 dB). We also prove the invariance of our
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Fig. 7: Average distance of the neighborhoods to their anchor points for increasing neighborhood sizes. (a) shows the Euclidean
distance of neighborhoods created before and after AIT of the features and (b) shows angular distance (i.e. the distance derived
from cosine similarity) for the neighborhoods obtained with different metrics: Euclidean distance, AIT Euclidean distance and
AVCS. In (a) we show how thanks to our AIT the clusters are tighter in the Euclidean space. In (b) we assess how we improve
the invariance to antipodality with respect to Euclidean distance, being very close to the curve obtained with a pure antipodally

invariant metric (i.e. AVCS).

Testing
Cosine | Euclidean AIT
Training Cosine 32.33 32.21 32.33
Euclidean | 32.27 32.15 32.26

TABLE II: Performance of different metrics for training and
testing run on Setl4 and X2 magnification factor.

AIT as the quality obtained with it is equivalent to the one of
AVCS. We also observe that both training and testing improve
the performance separately when handling properly antipodes
(which is +0.12dB for the testing, and at least +0.06dB for
the training).

C. Dictionary and spheres ratio

In our presented algorithm the size of the sparse dictionary
is not necessarily associated with the number of hyperspheres
used during testing time. Our hashing scheme defines several
hash codes or buckets, and the regressors are labeled with
them during training time. In the case of having more than
one regressor per bucket, a reranking strategy is followed and
thus the best-suited regressor is obtained from the bucket’s
candidates. The ratio between the number of sparse atoms
and the number of buckets (2° where s is the number of
hyperspheres) gives an average number of regressors per hash
code. In this section we show that our algorithm scales well
in terms of quality when increasing the size of the sparse
dictionary, and therefore, is worth increasing its size and
adapting the number of hyperspheres to obtain the desired
quality and speed trade-off. In Figure 9 we show how our
algorithm scales better by increasing the dictionary size than
A+, which improvement is always smaller and tends to saturate
earlier. We obtain maximum quality by setting our dictionary
size to 8192 elements and, afterwards, fixing a number of
hyperspheres which gives us the desired speed. We aim to
obtain the same speed as the original work of [14] where
they used 1024 atoms and 6 hyperspheres. We obtain a very

similar time figure (while obtaining substantially improved
PSNR quality) with 7 spheres and 8192 atoms. Note also
that with this particular configuration the difference between
exhaustive search and approximate search is almost non-
existent, specially for upscaling factor x4. We would like to
remark that a comparison point to point in Figure 9 assess
the speed-up thanks to our parallel implementation, since
both algorithms are using exhaustive search and the algorithm
complexity is therefore the same. The figure also shows that
our methods is consistently obtaining better PSNR values
(about 0.2dB higher) for different dictionary sizes, and that
even with 1024 we perform better than A+ with 8192 atoms.

V. RESULTS

In this section we show experimental results of our proposed
method and we compare its performance in terms of quality
and execution time to other state-of-the-art recent methods. All
the experiments were run on a Intel Xeon W3690 @ 3.47GHz
equipped with 12GB of RAM memory. The methods included
in our benchmark are: bicubic as a baseline, the K-SVD
method of Zeyde et al. [10] (denoted as sparse), the SR method
based on Deep Learning of Dong et al. [21], both their opening
work SRCNN [21] (referred as DL 9-1-5) and their most recent
publication [30] (referred as DL 9-5-5), the ANR method of
Timofte et al. [13] and its improved version A+ [23]. The
datasets and the whole experimental setup follows the one
used in [8], [9], [21], [14], with the addition of the kodak
dataset and the x2 magnification factor. All the codes were
obtained from their respective author’s website. In the case of
DL, the implementation they provide is slower than the used in
their publication, which makes time comparison problematic.
However, their reported times for DL 9-5-5 are slower than
those of AT in their benchmark [30]. All methods are trained
with the training dataset of [9], which contains image crops
with high frequencies with the exception of DL 9-5-5 that uses
ImageNet (in the order of hundred of thousand images). For
the neighborhood embedding, in both our AIS and A+ we use
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Fig. 8: Close-ups of the results for visual qualitative assessment of a x2 (three first rows) and x 3 (last four rows) magnification
factors from the datasets in the benchmark. Best-viewed zoomed in.
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Fig. 9: PSNR vs time values for dictionary sizes of 1024, 4096 and 8192 atoms (from left to right in the lines) for our proposed

method with exhaustive search and A+ .

TABLE III: Performance of x2, x3 and x4 magnification in terms of averaged PSNR (dB) and averaged execution time (s)

on datasets Set5, Setl4 and Kodak. Best results in bold.

Bicubic Sparse [10] ANR [13] DL 9-1-5 [21] DL 9-5-5 [30] A+ [23] AlS, s = 1 AlS, s =17

MF | PSNR | Time | PSNR | Time | PSNR | Time | PSNR | Time | PSNR | Time | PSNR | Time | PSNR | Time | PSNR | Time

2 [ 3366 | 0.002 | 3578 | 3.181 | 35.83 | 0.712 | 36.34 | 3.953 | 36.66 | 4.434 | 3655 | 0.761 | 36.87 | 1.167 | 36.80 | 0.105

Sets 3 | 3039 | 0.002 | 31.90 | 1474 | 31.92 | 0449 | 3239 | 3916 | 3275 | 4950 | 3259 | 0.467 | 32.79 | 0.583 | 32.75 | 0.080
4 | 2842 | 0002 | 2969 | 0916 | 29.69 | 0.348 | 30.09 | 4.031 | 30.48 | 10.284 | 30.29 | 0.346 | 30.46 | 0.382 | 3045 | 0.075

2 [ 3023 ] 0.002 | 31.81 | 6506 | 31.80 | 1.717 | 32.18 | 7.695 | 32.45 | 8204 | 3228 [ 1.739 | 32.48 [ 2223 | 32.44 | 0.205

Set14 3 | 2754 | 0.002 | 28.67 | 3.003 | 28.65 | 0.933 | 29.00 | 7.646 | 29.29 | 8.098 | 29.13 | 0.963 | 29.26 | 1.075 | 29.23 | 0.153
4 | 2600 | 0.002 | 2688 | 1.862 | 26.85 | 0.696 | 27.20 | 7.944 | 27.50 | 8305 | 27.32 | 0.714 | 27.45 | 0.716 | 27.42 | 0.155

2 [ 30.85 [ 0.003 [ 32.19 | 11.286 | 32.24 | 2.938 | 32.63 | 13.121 | 32.81 | 14367 | 3271 | 3.161 | 32.89 | 3.943 | 32.84 | 0.339

Kodak | 3 | 2843 | 0.003 | 2922 | 5250 | 2921 | 1.615 | 29.43 | 12.805 | 29.65 | 15.026 | 29.57 | 1.678 | 29.68 | 1.771 | 29.65 | 0.246
4 | 2723 | 0003 | 27.83 | 3.228 | 27.80 | 1.199 | 27.94 | 13.315 | 28.17 | 14.069 | 28.10 | 1.226 | 28.17 | 1.186 | 28.15 | 0.245

TABLE IV: Performance of X2, x3 and x4 magnification in terms of averaged IFC and averaged SSIM on datasets Set5,

Set14 and Kodak. Best results in bold.

Bicubic Sparse [10] ANR [13] SRCNN[21] SRCNN [30] A+ [23] AlS, s =1 AlS, s =7

MF | IFC | SSIM | IFC | SSIM | IFC | SSIM | IFC | SSIM | IFC | SSIM | IFC | SSIM | IFC | SSIM | IFC | SSIM

2 [ 6.083 [ 09299 | 7.856 | 0.9493 | 8.090 | 0.9499 | 7.524 | 0.9521 [ 8.036 | 0.9542 | 8.477 | 0.9544 | 8.683 | 0.9560 | 8.628 | 0.9557

Set5 3 | 3.579 | 0.8682 | 4.483 | 0.8968 | 4.606 | 0.8968 | 4.313 | 0.9033 | 4.658 | 0.9090 | 4.929 | 0.9088 | 5.060 | 0.9121 | 5.022 | 0.9111
4 12329 | 0.8104 | 2.935 | 0.8428 | 3.005 | 0.8419 | 2.844 | 0.8530 | 2.991 | 0.8628 | 3.249 | 0.8603 | 3.348 | 0.8655 | 3.319 | 0.8643

2 [6.105 | 08687 | 7.663 | 0.8988 | 7.846 [ 0.9004 | 7.237 | 0.9039 | 7.785 [ 0.9067 | 8.140 | 0.9056 | 8.292 | 0.9081 | 8.261 | 0.9076

Set14 3 | 3473 | 0.7736 | 4218 | 0.8075 | 4.317 | 0.8093 | 4.026 | 0.8145 | 4338 | 0.8215 | 4.535 | 0.8188 | 4.643 | 0.8227 | 4.609 | 0.8218
4 | 2237 ] 07019 | 2725 | 0.7342 | 2.792 | 0.7353 | 2.614 | 0.7413 | 2.751 | 0.7513 | 2.961 | 0.7491 | 3.034 | 0.7537 | 3.009 | 0.7526

2 [ 5711 ] 0.8694 [ 7.025 [ 0.8993 | 7.187 [ 0.9013 | 6.746 | 0.9050 | 7.150 | 0.9073 | 7.381 | 0.9075 | 7.493 | 0.9102 | 7.471 [ 0.9096

Kodak | 3 | 3.214 | 0.7781 | 3.827 | 0.8064 | 3.906 | 0.8083 | 3.656 | 0.8116 | 3.895 | 0.8177 | 4.053 | 0.8174 | 4.132 | 0.8208 | 4.109 | 0.8198
4 | 2026 | 0.7186 | 2.431 | 0.7430 | 2.472 | 0.7438 | 2.330 | 0.7454 | 2.430 | 0.7540 | 2.593 | 0.7539 | 2.650 | 0.7572 | 2.632 | 0.7563

pyramid of multiple scales to obtain more training samples
(12 scales). We upscale images by the magnification factors
x2, x3 and x4 with the authors’ recommended configurations
and measure PSNR, time, Structural Similarity (SSIM) [31]
and Information Fidelity Criterion (IFC) [32], which has the
highest correlation with perceptual scores for SR evaluation
[33].

Our proposed AIS has a parallel implementation, and runs
in the same CPU platform used for all methods. We use a
LR patch size of 3 x 3 with LR full overlapping. We use a
K-SVD sparse dictionary of 8192 elements and the chosen
neighborhood size of 4250 k-NN, regularized with A = 0.12.
A+ uses a dictionary of 1024 atoms and a neighborhood size of
2048 atoms, as setting it to 4250 degraded their quality results.

See Section IV-C for further discussion about the sparse
dictionary size and the number of hyperspheres selected both
in AIS and how it relates to A+. We present two configurations
of our algorithm: 1 hypersphere (i.e. exhaustive search) which
sets an upper quality limit and 7 hyperspheres which is our
optimal configuration in terms of quality vs speed trade-off.
By showing both configurations we evaluate the effect of the
approximate search both in quality drop and in time speed-up,
showing at the same time the full potential of the antipodal
search and GIBP features.

We show objective evaluation of all methods in Table III
(PSNR) and Table IV (IFC and SSIM). First of all, the PSNR
obtained with our AIS is consistently around 0.2dB higher
than A+, which is the most related compared method. The
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TABLE V: Performance of x2, x3 and x4 magnification in terms of PSNR (dB) and execution time (s) on the Set5 dataset.

Best results in bold.

Set5 Bicubic Sparse [10] ANR [13] SRCNN [21] [ SRCNN [30] A+ [23] AIS, s =1 AlS;s =7
images | MF | PSNR | Time | PSNR | Time | PSNR | Time | PSNR | Time | PSNR | Time | PSNR | Time | PSNR | Time | PSNR | Time
baby 2 [ 37.1 [0.003] 382 [7537 [ 384 [ 1571 [ 385 [ 8563 [ 385 [ 8860 [ 385 [ 1.617 [ 38.6 | 2.644 [ 386 | 0.234
bird 2 | 368 | 0002 | 399 |2251| 400 | 0457 | 40.6 | 2943 | 409 | 3462 | 411 | 0549 | 417 | 0.887 | 416 | 0.079
butterfly | 2 | 274 | 0002 | 306 | 1793 | 305 | 0447 | 322 | 2555 | 32.8 | 3088 | 320 | 0476 | 327 | 0678 | 325 | 0.065
head 2 | 349 | 0002 | 356 | 2170 | 357 | 0546 | 356 | 2831 | 357 | 3437 | 358 | 0576 | 358 | 0.831 | 358 | 0.073
woman | 2 | 321 | 0002 | 345 | 2151 | 345 | 0540 | 349 | 2870 | 354 | 3321 | 353 | 0588 | 356 | 0795 | 355 | 0.072

[[average | 2 [ 33.66 [ 0.002 [ 35.78 [ 3.181 | 35.83 [ 0.712 [ 36.34 [ 3.953 [ 36.66 | 4.434 [ 36.55 | 0.761 | 36.87 [ 1.167 [ 36.80 [ 0.105 |
baby 3 [ 339 [0003 [ 35.1 [3471[ 351 [ 1.061 [ 350 [8226[ 352 [ 9.077 | 352 [ 1101 | 353 [ 1.240 [ 353 [ 0.174
bird 3| 326 | 0002 | 346 | 1.084 | 346 | 0329 | 349 | 2931 | 355 | 4067 | 355 | 0338 | 359 | 0404 | 358 | 0.065
butterfly | 3 | 240 | 0002 | 259 | 0854 | 259 | 0246 | 27.6 | 2.626 | 280 | 3.622 | 272 | 0256 | 27.6 | 0383 | 275 | 0.050
head 3| 329 | 0002 | 336 | 0973 | 336 | 0305| 335 | 2896 | 337 | 4060 | 338 | 0321 | 339 | 0444 | 338 | 0.057
woman | 3 | 286 | 0.002 | 304 | 0987 | 303 | 0305 | 309 |2902 | 314 | 3926 | 312 | 0319 | 314 | 0445 | 313 | 0.057

[[average | 3 [ 30.39 [ 0.002 [ 31.90 | 1.474 [ 31.92 [ 0.449 [ 3239 [ 3916 [ 32.75 [ 4950 [ 3259 [ 0.467 | 32.79 [ 0583 | 32.75 | 0.080 |
baby 4 [ 318 [0003] 331 [2213] 330 [ 0844 ] 330 [ 8531 ] 331 | 9550 [ 333 [ 0826 | 334 [ 0824 [ 333 [ 0.162
bird 4 | 302 | 0002 | 317 | 0650 | 318 | 0251 | 320 | 3065 | 325 | 10200 | 325 | 0.245 | 328 | 0.282 | 328 | 0.054
butterfly | 4 | 221 | 0002 | 236 | 0499 | 235 | 0194 | 251 | 2693 | 255 | 9465 | 244 |0.196 | 247 | 0253 | 247 | 0.051
head 4 | 316 | 0002 | 322 | 0614 | 323 | 0226 | 322 |2925| 324 | 10875 | 325 | 0235 | 326 | 0262 | 326 | 0.055
woman | 4 | 265 | 0002 | 279 | 0604 | 278 | 0227 | 282 | 2939 | 289 | 11133 | 286 | 0229 | 288 | 0.290 | 28.8 | 0.053

[[average | 4 [ 2842 [0.002 [ 29.69 [ 0.916 | 29.69 [ 0.348 [ 30.09 [ 4.031 [ 3048 [ 10.284 [ 30.29 [ 0.346 [ 30.46 [ 0382 [ 3045 [ 0.075 |

speed-up with respect A+ ranges from x4.6 to 9.3, and it
increases for other methods, e.g. DL 9-1-5 and 9-5-5. We are
competitive in terms of PSNR when compared with DL 9-
5-5, and we are substantially faster. We are consistently the
best-performers both in SSIM and IFC for all datasets and
magnification factors, confirming the good performance of our
method.

Secondly, the algorithmic speed up of our AISpH (i.e.
comparison between s = 1 and s = 7) ranges from x4.8 to
11 depending on the upscaling factors. The drop in quality is
very reduced and ranges from 0.01 to 0.07dB. With s =7 we
clearly outperform all the state-of-the-art methods in running
time (with the exception of bicubic) while being highly com-
petitive in quality (PSNR, IFC, SSIM). In Figure 8 we show
close-ups for visual inspection. This subjective evaluation is in
consonance with the objective results, as images present less
ringing artifacts and sharper edges.

VI. CONCLUSIONS

In this paper we extend our previous work on SR based on
densely trained regressors and spherical hashing search [14].
In our initial work, we achieve high quality performance and
vast speed-ups compared to the original work of [13] and other
contemporary methods. In this paper, we further analyze the
features used and the metrics involved during the regression
process. The contributions of the paper are threefold: (1) We
detect and study the importance of antipodal invariance in our
search space, proposing the use of the absolute value of the
cosine similarity for exhaustive search whenever time is not a
constrain (i.e. during training), (2) we propose a novel trans-
form which boosts the antipodal invariance in the Euclidean
space, which we embed in the Spherical Hashing algorithm
of Heo et al. [24], thus obtaining an Antipodally Invariant
Spherical Hashing, and (3) we present a feature transform that
performs better thanks to a better coarse approximation of the
upscaled gradients obtained by IBP. The regressors obtained
with an antipodally invariant metric show a neat gain in PSNR

over those obtained with Euclidean distance and, furthermore,
AISH is optimally adapted to the search as the loss in quality
compared to an exhaustive search is minimal. Finally, in our
experimental results we compare our algorithm with recent
state-of-the-art methods, proposing two main configurations
of our algorithm which result in (a) exhaustive search or
(b) approximate search. Our approximate search configuration
widely ranks top in terms of execution time, while showing
highly competitive quality results, e.g. improving up to 0.25dB
in terms of PSNR when compared to A+ and up to x9 faster.
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