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Convex Sparse Spectral Clustering: Single-view to Multi-view

Canyi Lu, Student Member, IEEE, Shuicheng Yan, Senior Member, IEEE, and Zhouchen Lin, Senior Member, IEEE

Spectral Clustering (SC) is one of the most widely used
methods for data clustering. It first finds a low-dimensonal
embedding U of data by computing the eigenvectors of the
normalized Laplacian matrix, and then performs k-means on
UT to get the final clustering result. In this work, we observe
that, in the ideal case, UU" should be block diagonal and thus
sparse. Therefore we propose the Sparse Spectral Clustering
(SSC) method which extends SC with sparse regularization on
UU. To address the computational issue of the nonconvex SSC
model, we propose a novel convex relaxation of SSC based on
the convex hull of the fixed rank projection matrices. Then the
convex SSC model can be efficiently solved by the Alternating
Direction Method of Multipliers (ADMM). Furthermore, we
propose the Pairwise Sparse Spectral Clustering (PSSC) which
extends SSC to boost the clustering performance by using the
multi-view information of data. Experimental comparisons with
several baselines on real-world datasets testify to the efficacy of
our proposed methods.

I. INTRODUCTION

Clustering algorithms are useful tools to explore data struc-
tures and have been employed in many disciplines. The
objective of clustering is to partition a data set into groups
(or clusters) such that the data points in the same cluster are
more similar than those in other clusters. Many clustering
algorithms have been developed with different motivations.
Spectral Clustering (SC) [1] is one of the most widely used
clustering methods with several variants being proposed [2],
[31, [4], [5].- They have been applied for image segmentation
[6], motion segmentation [7], co-clustering problems of words
and documents [8], and genes and conditions [9]. This paper
aims to improve the basic SC algorithm by utilizing a sparse
regularizer.

A. Related Work

A large body of work has been conducted on spectral clus-
tering with focus on different aspects and applications [10],

This work was supported by the Singapore National Research Foundation
under its International Research Centre, Singapore Funding Initiative and
administered by the IDM Programme Office. The work of Z. Lin was
supported in part by the National Basic Research Program of China (973
Program) under Grant 2015CB352502, in part by the National Natural Science
Foundation (NSF) of China under Grant 61272341 and Grant 61231002, and
in part by the Microsoft Research Asia Collaborative Research Program.

C. Lu and S. Yan are with the Department of Electrical and Com-
puter Engineering, National University of Singapore, Singapore (e-mail:
canyilu@gmail.com; eleyans@nus.edu.sg).

Z. Lin is with the Key Laboratory of Machine Perception (Ministry of
Education), School of Electronics Engineering and Computer Science, Peking
University, Beijing 100871, China, and also with the Cooperative Medianet
Innovation Center, Shanghai Jiaotong University, Shanghai 200240, China (e-
mail: zlin@pku.edu.cn).

[11], [12], [13]. Generally, existing approaches to improving
spectral clustering performance can be categorized into two
paradigms: (1) how to construct robust affinity matrix (or
graphs) so as to improve the clustering performance by using
the standard spectral algorithms [14], [15], [16], [17]; (2) how
to improve the clustering result when the way of generating
a data affinity matrix is fixed [18], [19], [20]. This paper is
related to the second paradigm.

Before going on, we introduce our notation conventions
first. We use boldface capital (e.g. A), boldface lowercase
(e.g. a) and lowercase (e.g. a) symbols to represent matrices,
vectors and scalars, respectively. In particular, 1 denotes the
vector of all ones and I denotes the identity matrix. We use
Tr(A) to denote the trace of A and (A, B) to denote the inner
product of A and B. The set of symmetric matrices with size
n x n is denoted as S”. For A, Be S", A<BorB > A
means that B — A is positive semi-definite, or B — A > 0.
For a,b € R™, a < b or b > a means that each element
of b — a is nonnegative. We use ||Alo, ||Al|; and ||A]| to
denote the /p-norm (number of nonzero elements of A), £1-
norm (}_,; a;;|) and Frobenius norm of A, respectively.

Assume we are given the data matrix X = [Xy,--- , X] =
[x1,- -+ ,%,] € RX" where X; € R¥™ denotes the data
matrix belonging to group ¢, d is the dimension, n is the
number of data points and k is the number of clusters. SC
[2] partitions these n points into k clusters as follows:

1. Compute the affinity matrix W € R"*™ where each
element w;; measures the similarity between x; and x;;
2. Compute the normalized Laplacian matrix L = I —
D WDz, where D is a diagonal matrix with each
diagonal element d;; = >, wij;
3. Compute U € R"** by solving
min (UUT,L) st. UTU=1I; (1)
UecRnxk
4. Form U e R"** by normalizing each row of U to have
unit Euclidean length;
5. Treat each row of U as a point in R, and cluster them
into k groups by k-means.
The rows of U can be regarded as the low-dimensional
embedding of X. The columns of a solution U to (1) are
the first k eigenvectors of L corresponding to the smallest
k eigenvalues. Generally, there are three critical steps which
affect the performance of spectral clustering: (1) the con-
struction of the affinity matrix which measures the degree
of similarity between data points; (2) the way to construct
the Laplacian matrix L or normalization; (3) the way to find
the low-dimensional embedding U of X based on L. For



the first step, the purpose of the construction of the affinity
matrix is to model the neighborhood relationship between data
points. There are several popular ways to construct the affinity
matrix, such as the k-nearest neighbor graph and the fully
connected graph. There are also many work focused on the
second step. For example, Ratio-cut and Normalized-cut, aim
at different normalizations on the Laplacian matrix L when
given W [10], [6]. It was proved in [12] that the key difference
between Ratio-cut and Normalized-cut is the error measure
used to find the closest doubly stochastic approximation of the
affinity matrix during the normalization step. Zass et al. [21]
proposed to find the optimal doubly stochastic matrix under
the Frobenius norm. But it neglected the positive semidefinite
constraint during the normalization step which makes the
approximation to the affinity matrix less accurate. The work
[19] further addressed this issue and proposed an efficient
solver. Different from most of previous work which focused
on the first two steps, this work focuses on the third step which
aims to find the low-dimensional embedding U of X in a new
way.

As will be detailed discussed in Section II, we observe that
UUT is block diagonal when W (or L) is block diagonal
in the ideal case. However, such a structure of UU is not
explicitly used in previous work. Note that a block diagonal
matrix is also sparse. Motivated by this observation, we
propose the Sparse Spectral Clustering (SSC) method to find
a better U with the sparse regularization on UU'. This
makes SSC own a better interpretation of the affinity matrix
[UUT| than SC. However, the original formulation of SSC
is nonconvex and thus is challenging to solve. We propose a
convex relaxation of SSC based on a convex hull, called the
Fantope [22], which provides a tight relaxation of jointly fixed
rank and orthogonality constraint on the positive semidefinite
cone. Then we propose to solve the convex SSC problem by
Alternating Direction Method of Multipliers (ADMM) [23]
which guarantees to find the optimal solution.

Furthermore, we extend our SSC for data clustering by using
the multi-view information. It is observed that the real-world
data usually have multiple representations or views. These
views provide complementary information to each other. For
example, given an image, one can represent it by different
kinds of features, e.g., colors, textures and bag-of-word. They
describe the image in different ways or views. Using the
multi-view information generally boost the performance on
the learning task.

Assume that we are given data which have m views. Let
W, and L; denote the affinity matrix and the normalized
Laplacian matrix of the data in the i-th view. The recent work
[24] proposed the Pairwise Spectral Clustering (PSC) which
computes U;’s by solving

min <UZU;|—, L2> —+ % Z ||U1UZT _ UjUjT”Q
U} 1<i,j<m
i#j

st. U,'U, =1, U, eR™* i=1,.-- ,m, )

where o > 0 is a trade-off parameter. The second term of
the above objective encourages the pairwise similarities of

examples under the new representation to be similar across all
the views. So the objective of PSC trades off the SC objectives
and the spectral embedding disagreement term. A main issue
of PSC is that problem (2) is nonconvex and the optimal
solution is not computable. The work [24] used an alternating
optimization method to solve (2), i.e., updating each U; by
fixing all the other variables. However, such a method has no
convergence guarantee when m > 2. The nonconvexity of (2)
may limit the application of PSC. There are some works which
improve the efficiency of PSC, e.g., the work [25] relaxes the
constraint (2) and solves all U;’s simultaneously.

Similar to SSC, we propose the Pairwise Sparse Spectral
Clustering (PSSC) method which further encourages each
U, U/ to be sparse. It is originally nonconvex, and we propose
a convex formulation of PSSC with a Fantope constraint.
Finally ADMM is applied to compute the globally optimal
solution to the convex PSSC problem.

B. Contributions

We summarize our contributions of this work as follows:

1. We propose a convex Sparse Spectral Clustering (SSC)
model which encourages UU T to be sparse. This improves
the interpretation of SC since [UU | can be regarded as a
new affinity matrix which is expected to be block diagonal
in the ideal case.

2. We propose the Pairwise Sparse Spectral Clustering (PSSC)
method which seeks to improve the clustering performance
by leveraging the multi-view information. Note that our
PSSC is convex and thus its optimal solutions is com-
putable. This addresses the computational issue in PSC
whose objective is nonconvex.

3. We present an efficient ADMM algorithm to solve the
convex SSC and PSSC problems.

The remainder of this paper is organized as follows. Section
Il and I present our SSC and PSSC models, respectively.
Section IV provides the optimization details for the PSSC
problem. The experiments are reported in Section V, and
Section VI concludes this work.

II. SPARSE SPECTRAL CLUSTERING

This section presents the Sparse Spectral Clustering (SSC)
algorithm for single-view data clustering. Assume that we are
given the affinity matrix W and normalized Laplacian matrix
L as in SC. Let us consider the solution U to (1). It has an
interesting connection with the indicator matrix C € Rmxk,
whose row entries indicate to which group the points belong.
That is, if x; belongs to the group [, ¢;; = 1 and ¢;; = 0 for
all j # . Consider the ideal case that the affinity matrix W
is block diagonal, i.e., w;; = 0 if x; and x; are in different
clusters. Then we have

U = CR,



where R € R**F can be any orthogonal matrix [2]. In this
case,

1,1} 0 0
T ...
0 0 1,1

is block diagonal. So uuT implies the true membership of
the data clusters and it is naturally sparse. The sparse property
also holds for UUT. However, in real-world applications, the
formed affinity matrix W is usually not block diagonal, and
thus UU T may not be block diagonal for the solution U to
(1) (actually UUT is usually not sparse in the real appli-
cations). It can be seen that the quality of UUT implicates
the discriminability of the affinity matrix W. Or |[UUT| can
be regarded as a new affinity matrix implied by W, which
is is ideally block diagonal. The sparse subspace clustering
method [7] approximated such a block diagonal structure by
sparse coding. It was also verified in practice that the sparse
regularizer is effective even W is not exactly block diagonal.
This motivates our SSC model which encourages UU T to be
sparse in SC:

min (UUT,L) 4+ B|UU" (o, st. UTU=1, (3)

UER‘”X}C

where 8 > 0 trades off the objective of SC and the sparsity of
UUT. For the affinity matrix W, it is reasonable to assume
that the intra-cluster connections are relatively strong while
the inter-cluster connections are relatively weak. In this case,
the elements of UU T corresponding to the weak inter-cluster
connections tends to be zeros, while the ones corresponding
to the strong intra-cluster connections will be kept. So it is
expected that that the clustering performance of SC can be
improved by SSC by using the sparse regularization. Note
that the way of using sparse regularization to approximate
a block diagonal matrix is also used in [7], [11]. However,
the key difference is that their methods aim to find a sparse
affinity matrix while our SSC aims to find the low-dimensional
embedding U when the affinity matrix is given.

Problem (3) is nonconvex and challenging to solve. We
propose to convert (3) into a convex formulation by relaxing
its feasible domain into a convex set. First, it is known that the
{1-norm is the convex envelope of ¢y-norm within the ¢;-ball.
So we replace the £y-norm as the ¢;-norm on UU . Second,
for the nonconvex constraint consisting of all the fixed rank
projection matrices, i.e., {UU'T|UTU = I}, we replace it
with its convex hull.

Theorem 1. [26], [27] Let S; = {UUT|U e Rk UTU =
I} and So = {P € S"*"|0 < P <X I, Tr(P) = k}. Then S5
is the convex hull of S1 and Si is exactly the set of extreme
points of So.

The convex body S is also called the Fantope [22]. Theo-
rem 1 is interesting and important in this work. Now, we give
a simple proof which is helpful for understanding this result.
It is easy to see that any convex combination of elements of
S1 lies in Ss. Also, using the spectral decomposition of P,

which has eigenvalues lying between O and 1 that sum to k,
it is clear that any element of So with rank greater than k
is not an extreme point. So the only candidates for extreme
points are those with rank k, i.e., the elements of S5. But it
is not possible that some rank k& elements are extreme points
and others are not, since the definition of Sy does not in any
way distinguish between different rank %k elements. Since a
compact convex set must have extreme points, and is in fact
the convex hull of its extreme points. The proof is completed.

By using Theorem 1, we now give a convex formulation
of the nonconvex problem (3). We replace UUT in (3) as P,
and relax the (feasible) problem domain to a convex set based
on the relationship between S; and S, presented above; this
leads to a convex formulation of SSC defined as follows

PSQRJP,M +B|IP[1, st. 0P <1 Tr(P)=k. (4)
It is interesting to see that (4) is equivalent to (1) without the
sparsity term, or 3 = 0. In this case, P = UU" is optimal to
(4) when U is optimal to (1) (see page 310 in [22]). If 5 > 0,
the optimal solution to (4) is not guaranteed to be an extreme
point of S5. So problem (4) is a convex relaxtion of (3).

The optimal solution to (4) can be efficiently computed
by the standard Alternating Direction Method of Multipliers
(ADMM) [23]. Since (4) is a special case of (6) shown later,
we only give the optimization details for (6) in Section IV.

After solving (4) with the solution P, the solution U to
(3) can be approximated by using the first k eigenvectors
corresponding to the largest k eigenvalues of P. Finally, we
can obtain the clustering results as SC based on the rows of
U. See Algorithm 1 for the whole procedure of SSC.

It is worth mentioning that the work [28] proposes a sparse
PCA program, which has a similar formulation of our (4).
However, it is very different from our work. First, the task
and physical meaning of sparse PCA is very different from
our work which focuses on data clustering. For example, given
the affinity matrix W, UU " can be interpreted as the refined
affinity matrix in SC and SSC. This is quite different from
sparse PCA which aims to find sparse principal components.
Second, the ¢1-norm in (4) of our SSC is a convex relaxation
of fp-norm in (3). Both the ¢;-norm and {p-norm encourage
the refined affinity matrix to be sparse. However, the ¢;-norm
in (1) of [28] is used as a convex relaxation of /3 g-norm which
towards row sparsity. So though the relaxed formulations, our
model (4) and model (1) in (Vu et al. 2013), look similar, their
original or non-relaxed formulations are very different. This
also reflects the key different purposes of sparse PCA and our
SSC.

III. MULTI-VIEW EXTENSION: PAIRWISE SPARSE
SPECTRAL CLUSTERING

SC and our SSC can only use the single view information
for data clustering. In this section, we present the Pairwise
Sparse Spectral Clustering (PSSC) method which boosts the
clustering performance by using the multi-view information.
Assume that we are given data which have m views and L;,
i = 1,---,m, are the corresponding normalized Laplacian
matrices. Our PSSC model extends PSC in (2) by further



Algorithm 1 Sparse Spectral Clustering (SSC)

Input: data matrix X € R*" number of clusters k.

1. Compute the affinity matrix W.

2. Compute the normalized Laplacian matrix L as in SC.

3. Compute P by solving (4).

4. Form U with its columns being the first k eigenvectors
corresponding to the largest k eigenvalues of P.

5. Form U € R"*¥ by normalizing each row of U to have
unit Euclidean length.

6. Treat each row of U as a point in R¥, cluster them into k
groups by k-means.

encouraging each U;U; to be sparse. The PSSC model is
as follows:

min (U U], L) + B[00/ |lo)
U} —
(0%
+5 >oouuT -uu, TP, (5)
1<i,j<m
i#j

st. U;TU, =1, U, e RF i =1,...

) 7m

)

where 3 > 0 trades off the objective of PSC and the sparse
regularizers on U; U, ’s. For the simplicity, we use a common
« for all pairwise co-regularizers and a common /3 for the
sparse regularizers on all views. Problem (5) is nonconvex
and is challenging to solve. Similar to the convex formulation
of SSC in (4), we relax (5) to a convex formulation as follows

min Y ((PiLy) +8Pll) +5 > [Pi— Py
Pi}i 1<i,j<m
i#£]j

(6)
s.t. 0 <X P; < I, TI'(Pi) =kP; e Rnxn’ i=1,---,m.

Now the above problem is convex and the optimal solution can
be computed efficiently. After solving (6) with P;’s, we com-
pute each U; by using the first k£ eigenvectors corresponding
to the largest k eigenvalues of P,. Then U,’s can be combined
(e.g., via column-wise concatenation) before running k-means
[24].

Note that the work [24] also proposed a centroid based co-
regularized SC model for multi-view data clustering. It can be
also extended with sparse regularizers as our PSSC. However,
since it was not always shown to be superior to PSC, we do
not consider its extension in this work.

IV. OPTIMIZATION BY ADMM

This section gives the optimization details for the proposed
SSC in (4) and PSSC in (6). Note that the SSC problem (4)
is only a special case of PSSC problem (6) by taking m = 1
and a = 0. So we only give the optimization details of (6) by
the standard ADMM.

The objective of (6) is non-separable. We first reformulate
it as an equivalent formulation with separable objective by

introducing some auxiliary variables

. i o
min » ((PoLi) + BIPill) +5 D> Qi —Pyl?
{P:,Qi} —1 2 1<ia<
i= <i,j<m
i#]
SL 0= Q< LTH(Q) = k. @

Pi:Qia PiGRnxn, Z:L ,m.

The partial augmented Lagrangian function of (7) is
L(P;,Q;,Y;) = Z ((Ps, Li) + B[Pill, + (Ys, P — Qi)

=1
> Qi Pyl

1<i,j<m
i#]

Nm 2 O
Lad P, - Q; hd
52 IPi- Qi+

where Y;’s are the dual variables and 1 > 0. By regarding
{P;,;i=1,---,m} and {Q;,7 = 1,--- ,m} as two blocks.
Now we show how to update these two blocks alternately.

1. Fix others and minimize £ w.rt. {P;,i = 1,--- ,m}.
Note that £ is separable for all P;’s. So each P; can be
updated independently by solving

min (P, L; + Y:) + 8 |[Pill, + 5 1Py — Qi
[0
t3 Z 1Q; — Pyl

1<j<m
J#i
Or equivalently
: p
min ———— [Py,
i alm—1)+pu
a Y Qi pQi—Li - Y|
1 1gg¥§m
— P, - —& 8
+ 2 alm—1)+p ®

Solving the above problem requires computing the proximal
mapping of the ¢;-norm, i.e.,

. 1
mine||X||; + 5 [|X - BJ?,
X 2

which can be obtained by performing

T — ¢, x> e,
S(x) =<z +e, T < —¢g,
0, otherwise.

on each element of X.

2. Fix others and minimize £ w.rt. {Q;,i = 1,--- ,m}.
Note that £ is separable for all Q;’s. So each Q; can be
updated independently by solving

. M 2 @ 2
min (-Y;, Q;) + 5 [|Pi — Qil|” + 5 Z 1Q: — Pyl
Qi 2 2 -
1<j<m
JFi
st0=Q; <L Tr(Q,) = k.



Algorithm 2 Solve Problem (6) by ADMM
Imput: L;, i =1,--- ,m, o, 5, k.
Initialize: P;, Q;, Y;,i1=1,---
Output: P}, i=1,--- ,m.

while not converged do

,m, p > 1, p, fimax.

1. For each 4, fix others and update P; by solving (8).
2. For each ¢, fix others and update Q; by solving (9).
3. For each ¢, update Y;’s by (12).

4. Update p by p = min(pg, fimax)-

end while

Or equivalently

a Yy P;+pP,+Y, ?

1<j<m
min 1 Q; — i
Qi 2 am—1)+u )

s.t. 0 = Qz = I, TI'(Q,L) =k.

Solving (9) requires computing a proximal projection onto the
convex set {Q;|0 X Q; = I, Tr(Q;) = k}. It is equivalent to
solving a simple quadratic programming.

Theorem 2. Given any square matrix A € R"™ ", let
B = (A+AT")/2 and B = UDiag(A\)U" be the spectral
decomposition of the symmetric matrix B. Then the solution
to the following problem

1
inn §IIQ —A|? 5. 0=<Q=1I Tr(Q) =k, (10)

is Q* = UDiag(p*)U', where p* is the solution to
1
miniﬂpf)\”z, 5.0<p<1, p'1=F (11)
p

The proof of Theorem 2 can be found in the Appendix. It
can be seen that solving (9) reduces to solving (11). Problem
(11) is called the capped simplex projection problem which
has been efficiently solved in [29].

3. Update the dual variables by

The whole procedure of ADMM for solving (6) can be
found in Algorithm 2. Note that problem (6) is convex. The
obtained solution by ADMM for convex problem is guaranteed
to be optimal with the convergence rate O(1/K) [30], where
K is the number of iterations. The computational complexity
of Algorithm 2 is O(K'mn3), where m is the number of
views and n is the number of data samples. In the real
applications, m < n. In the experiments, we find that K is
around 100 ~ 200. Compared with O(n?) by the traditional
SC, the computational complexity of Algorithm 2 is K times
higher. So the advantage in the computational cost of SC over
the Algorithm 2 is obvious only when n is relatively small.
Though developing the scalable SSC algorithm is not the main
concern of this work, it will be an interesting future work.
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Fig. 1: Examples of the datasets: (a) Hopkins 155; (b) Extend-
ed Yale B (c) Caltech-101; (d) UCI Digit.

V. EXPERIMENTS

In this section, we conduct extensive experiments on several
real-world datasets to demonstrate the effectiveness of our
proposed SSC and PSSC for both single view and multiview
data clustering. The experiments are divided into two parts.
The first part is to demonstrate the superiority of SSC over
SC for single-view data clustering, while the second part is to
show the effectiveness of PSSC for multi-view data clustering.
We also report the running time of the compared methods
on several datasets and exam the sensitiveness of parameter
choices in our methods.

A. Single-view Experiments

To show the effectiveness of our sparse regularizer, we first
test SSC on the single-view clustering problems, including
motion segmentation on the Hopkins 155 dataset' and face
clustering on the Extended Yale B dataset [31]. To apply SC
and SSC, one first needs to construct the affinity matrix. We
compute the affinity matrix by sparse subspace clustering [7],
[32] and low-rank representation [33] (denoted as ¢;-graph
and LRR-graph respectively in Table I and Table II) which are
two state-of-the-art methods. The codes of ¢;-graph and LRR-
graph with their default settings from the authors’ homepages
are used.

Thttp://www.vision.jhu.edu/data/hopkins 155/



TABLE I: Segmentation errors (%) on the Hopkins 155
dataset. For SSC in this table, we set 3 = 107°.

TABLE II: Clustering errors (%) on the Extended Yale B
dataset.

Affinity matrix {1 -graph LRR-graph Affinity matrix {1 -graph LRR-graph
Method SC | SSC SC | SSC Method e SSC \ e SSC \
, Mean 1.83 | 1.81 || 1.33 | 1.36 (B=10"% (B=10"%)
2 Motions .
Median 0.00 0.00 0.00 0.00 5 Subjects
3 Motions Meén 440 | 435 || 251 | 1.65 Mean 6.28 6.56 25.16 21.27
Median 0.56 | 0.56 || 0.00 | 0.89 STD 5.41 5.90 14.26 11.88
All Mean 241 | 239 || 1.60 | 1.42 8 subjects
Median 0.00 | 0.00 ]| 0.00 | 0.00 Mean 8.81 4.99 35.96 28.85
STD 5.99 3.96 5.56 9.81
The Hopkins 155 dataset consists of 155 video sequences, 10 Subjects
where 120 of the videos have two motions and 35 of the Mean 10.06 4.62 3542 31.26
videos have three motions. On average, in the dataset, each STD 4.96 2.57 0.99 4.01

sequence of 2 motions has N = 266 feature trajectories and
F' = 30 frames, while each sequence of 3 motions has N =
398 feature trajectories and F' = 29 frames. Some example
frames of this dataset can be found in Figure 1 (a). For each
sequence, there are 39~550 data points drawn from two or
three motions (a motion corresponds to a subspace). Each
sequence is a sole data set and so there are 156 subspace
segmentation problems in total. For each sequence, we use
PCA to reduce the dimension (see [7] for the details) and
then apply SC and SSC on the constructed affinity matrix by
{1-graph and LRR-graph. The mean and median of the error
rates are reported in Table I.

The Extended Yale B dataset consists of 2,414 face images
of 38 subjects. Each subject has 64 faces. Some example face
images can be found in Figure 1 (b). We resize the images
into 32 x 32 pixels and treat each 1,024-dimensional vectorized
image as a data point. We construct three subsets which consist
of all the images of the randomly selected 5, 8 and 10 subjects
of this dataset. For each trial, we follow the settings in [7]
to construct the affinity matrix by ¢;-graph and LRR-graph
and apply SC and SSC to achieve the clustering results. The
experiments are repeated 20 times and the mean and standard
deviation of the clustering error rates are reported in Table II.

From Table I and II, we have the following observations:

« For motion segmentation on the Hopkins 155 dataset, the
clustering errors of SC and SSC are all small, and the
improvement of SSC over SC is relatively limited. Note
that the data in Hopkins 155 has small noises and the
PCA projection preprocessing further reduces the noises
[71, [33]. The affinity matrices learned by both ¢;-graph
and LRR are very discriminative. Thus, SC performs very
well on this dataset (the segmentation errors on most
of the sequences are zero). SSC further improves the
performance of SC, but the improvement on the mean
of all 155 sequences is relatively limited.

« For face clustering on the Extended Yale B dataset, the
clustering errors of SC and SSC are relatively larger than
the results in the Hopkins 155 dataset. The main reason
is that this dataset is heavily corrupted due to the large
variation of the illumination. Note that the raw pixels
of the images are used without preprocessing. Thus, SC
does not perform very well on this dataset, and SSC

significantly outperforms SC in most cases. This verifies
the effectiveness of our proposed sparse regularizer on
UUT. Note that the best results of SSC are achieved
when 3 = 10~* for the ¢;-graph and 3 = 10~ for the
LRR-graph. A possible reason is that the ¢;-graph tends
to be more sparse than the LRR-graph, and thus it will be
more necessary to enforce the sparsity on the LRR-graph
in our SSC.

B. Multi-view Experiments

This subsection conducts several experiments to demon-

strate the effectiveness of PSSC for multi-view data clustering.

1) Datasets

We report experimental results on five real-world datasets

which are widely used for the multi-view data clustering [24],
[34]. The statistics of these datasets are summarized in Table
IV. We give a brief description of each dataset as follows.

o Caltech-101 dataset [35] contains 8,677 images of ob-
jects belonging to 101 categories. Some example images
can be found in Figure 1 (c). This dataset is challenging
for clustering. We use a subset which has 75 samples
with 5 underlying clusters. We choose the “pixel fea-
tures”, “Pyramid Histogram Of Gradients”, and “Sparse
Localized Features” as our three views to represent each
image.

o 3-sources dataset’ was collected from three well known
online news sources: BBC, Reuters and Guardian. It
consists of 416 distinct news manually categorized into
six classes. Among them, 169 are reported in all three
sources with each source serving as one independent view
of a story. The word frequency is the feature used to
describe stories for all the three views.

o Reuters dataset [36] contains feature characteristics of
documents originally written in five different languages
and their translations, over a common set of 6 categories.
We use documents in English as the first view and
their translations to other four languages as another four
views. We randomly sample 600 documents from this

Zhttp://mlg.ucd.ie/datasets/3sources.html



TABLE 1V: Statistics of the real-world multi-view datasets

dataset samples ‘ views ‘ clusters
Caltech 101 75 3 5
3-sources 169 3 6
Reuters 600 5 6
WebKB 1051 2 2
UCI Digit 2000 3 10

collection in a balanced manner, with each of the 6
clusters containing 100 documents.

o WebKB dataset® consists of webpages collected from
four universities: Texas, Cornell, Washington and Wis-
consin, and each webpage can be described by the content
view and the link view.

« UCI Digit dataset* consists of handwritten numerals (‘0’—
‘9%) extracted from a collection of Dutch utility maps.
Some example images can be found in Figure 1 (d).
This dataset consists of 2,000 samples with 200 in each
category, and it is represented in terms of six features.
We choose the 76 Fourier coefficients of the character
shapes, 216 profile correlations and 64 Karhunen-Love
coefficients as three views to represent each image.

2) Compared Methods and Settings

The following methods will be used for comparison. The
first three ones are single view methods while the others are
multi-view methods.

e SC [2]: Perform the traditional SC on the most in-
formative view, i.e., the view that achieves the best
performance.

¢ SSC: Perform our SSC on the most informative view.

o LD-SSC [19]: Perform LD-SSC on the most informative
view.

« Feature Concatenation: Concatenate the features of
each view, and then run SC using the normalized Lapla-
cian matrix derived from the joint view representation of
the data.

« Kernel Addition: Combine different kernels by adding
them, and then run SC on the corresponding normalized
Laplacian matrix.

+ Robust Multi-View Spectral Clustering (RMSC) [34]:
A recent multi-view clustering work based on the low-
rank and sparse decomposition.

o« PSC [24]: Extend SC to use multi-view information.

o PSSC: Our extension of PSC with sparse regularization.

For the performance evaluation, we use five metrics to
measure the clustering performances: precision, recall, F-
score, normalized mutual information (NMI) and adjusted rand
index(Adj-RI) [37] as that in [34]. For these measures, the
higher values indicate better clustering performances.

Note that all the compared methods shown above call k-
means at the final step to get the clustering results. The
clustering results by k-means with different initializations may

3http://www.cs.cmu.edu/afs/cs/project/theo-20/www/data/
“http://archive.ics.uci.edu/ml/datasets/Multiple+Features

be different. So we run k-means 20 times and report the means
and standard deviations of the performance measures.

In all experiments, we use the Gaussian kernel to compute
the affinity similarities. The standard deviation of the kernel is
taken equal to the median of the pair-wise Euclidean distances
between the data points.

In this work, we assume that the number of clusters k is
known. So SC, LD-SSC, Feature Concatenation and Kernel
Addition have no parameter. For o in PSC, we vary it from
0.01 to 0.05 and the best result is reported. RMLS has a
parameter and we use the default setting in [34]. For our SSC
and PSSC, we tune the parameters and report the best results.
For 3 in SSC (4), we choose it from {1073,10~%,1075}. For
« and 3 in PSSC (6), we choose o from {10~%, 1072} and 8
from {1073,1074,107°}.

3) Results

The clustering results on five real-world datasets are shown
in Table IIl. For each dataset, the results by SC, LD-SSC
and SSC are the best performances which use the single view
information of data. The other four methods all use the multi-
view information of data. The best results are shown in bold.
Note that for the Caltech-101 dataset, we do not report the
result of Feature Concatenation since only the affinity matrices
of all views are known. For the WebKB dataset, the standard
deviations in parentheses are not O but very small. We only
keep the first three digits after the decimal point.

From Table III, we have the following observations:

o In most cases, our PSSC achieves the best performance
or it is comparable to the best result. PSSC is more stable
than other multi-view methods which do not perform well
on some datasets, e.g., RMSC on the 3-sources dataset.
The improvement of PSSC over other methods partially
supports our sparse regularizations on U; U, ’s.

o Comparing the results of SC and SSC, it can be seen
that SSC always outperforms SC. Note that the optimal
solutions to SC in (1) (though nonconvex) and SSC in (4)
are computable. SSC is more general than SC due to the
additional sparse regularization on UU . Such a result
verifies the effectiveness of the sparse regularization on
UUT. Also it can be seen that PSSC outperforms PSC
similarly. To see the reason more intuitively, based on
the UCI Digit dataset, we plot the affinity matrix of the
first view, UUT by SC, P by SSC, 3", |U; U/ | by PSC
and ). |P;| by PSSC in Figure 2. The matrices (using
their absolute values if necessary) by the compared four
methods play a similar role, i.e., they can be regarded as
affinity matrices. It can be seen that the block diagonal
structures of our SSC and PSSC are more salient than
the non-sparse SC and PSC, and thus their performance
is expected to be better. However, notice that it does not
mean that the sparser solutions of SC and PSSC always
lead to better performance. The larger 5’s in (4) and (6)
lead to sparser solutions, but 5’s should not be too large
since the discriminant information mainly comes from the
first term of (4) and (6) and they should not be ignored.

« For the results on the first three datasets, the single view
methods, SC and SSC, perform even better than some
multi-view clustering methods, e.g., Feature Concatena-



TABLE III: Comparison results on five datasets. On each dataset, 20 test runs with different random initializations of k-means

are conducted and the average performance and the standard deviation (numbers in parentheses) are reported.

Dataset Method F-score Precision Recall NMI Adj-RI
SC 0.504 (0.032) | 0.481 (0.028) | 0.529 (0.036) | 0.503 (0.036) | 0.381 (0.039)
LD-SSC 0.533 (0.022) | 0.488 (0.032) | 0.549 (0.032) | 0.521 (0.028) | 0.412 (0.035)
Caltech-101 SSC 0.546 (0.027) | 0.505 (0.025) | 0.595 (0.029) | 0.578 (0.049) | 0.430 (0.034)
Kernel Addition | 0.463 (0.032) | 0.436 (0.047) | 0.497 (0.031) | 0.439 (0.040) | 0.327 (0.046)
RMSC 0.536 (0.007) | 0.521 (0.001) | 0.551 (0.014) | 0.519 (0.007) | 0.423 (0.007)
PSC 0.534 (0.029) | 0.513 (0.034) | 0.556 (0.027) | 0.524 (0.027) | 0.419 (0.038)
PSSC 0.558 (0.021) | 0.531 (0.020) | 0.588 (0.025) | 0.559 (0.025) | 0.448 (0.026)
SC 0.502 (0.030) | 0.535 (0.037) | 0.475 (0.047) | 0.473 (0.028) | 0.362 (0.035)
LD-SSC 0.521 (0.045) | 0.536 (0.027) | 0.502 (0.034) | 0.482 (0.025) | 0.393 (0.038)
SSC 0.538 (0.046) | 0.532 (0.021) | 0.548 (0.080) | 0.481 (0.023) | 0.400 (0.050)
3-sources Feature Concat. | 0.497 (0.041) | 0.547 (0.064) | 0.457 (0.031) | 0.520 (0.031) | 0.361 (0.057)
Kernel Addition | 0.473 (0.030) | 0.534 (0.026) | 0.425 (0.033) | 0.452 (0.017) | 0.337 (0.035)
RMSC 0.395 (0.024) | 0.468 (0.031) | 0.342 (0.021) | 0.374 (0.023) | 0.248 (0.031)
PSC 0.546 (0.052) | 0.604 (0.049) | 0.498(0.056) | 0.566 (0.028) | 0.426 (0.063)
PSSC 0.568 (0.037) | 0.616 (0.036) | 0.528 (0.043) | 0.551 (0.025) | 0.450 (0.044)
SC 0.371 (0.012) | 0.342 (0.008) | 0.405 (0.024) | 0.319 (0.013) | 0.233 (0.012)
LD-SSC 0.377 (0.019) | 0.348 (0.015) | 0.409 (0.030) | 0.331 (0.025) | 0.241 (0.017)
SsC 0.384 (0.017) | 0.354 (0.013) | 0.419 (0.034) | 0.342 (0.027) | 0.249 (0.018)
Reuters Feature Concat. | 0.369 (0.013) | 0.332 (0.014) | 0.416 (0.021) | 0.320 (0.018) | 0.227 (0.016)
Kernel Addition | 0.370 (0.016) | 0.338 (0.018) | 0.410 (0.022) | 0.309 (0.023) | 0.231 (0.021)
RMSC 0.373 (0.013) | 0.345 (0.014) | 0.407 (0.016) | 0.325 (0.016) | 0.237 (0.017)
PSC 0.372 (0.017) | 0.339 (0.016) | 0.414 (0.029) | 0.319 (0.032) | 0.233 (0.019)
PSSC 0.388 (0.009) | 0.345 (0.022) | 0.455 (0.027) | 0.331 (0.017) | 0.248 (0.017)
SC 0.889 (0.000) | 0.824 (0.000) | 0.965 (0.000) | 0.532 (0.000) | 0.618 (0.000)
LD-SSC 0.901 (0.000) | 0.840 (0.000) | 0.967 (0.000) | 0.579 (0.000) | 0.671 (0.000)
SSC 0.902 (0.000) | 0.846 (0.000) | 0.967 (0.000) | 0.582 (0.000) | 0.673 (0.000)
WebKB Feature Concat. | 0.947 (0.000) | 0.947 (0.000) | 0.947 (0.000) | 0.718 (0.000) | 0.845 (0.000)
Kernel Addition | 0.947 (0.000) | 0.947 (0.000) | 0.947 (0.000) | 0.718 (0.000) | 0.845 (0.000)
RMSC 0.956 (0.000) | 0.962 (0.000) | 0.951 (0.000) | 0.761 (0.000) | 0.873 (0.000)
PSC 0.948 (0.000) | 0.956 (0.000) | 0.940 (0.000) | 0.729 (0.000) | 0.850 (0.000)
PSSC 0.957 (0.000) | 0.965 (0.000) | 0.950 (0.000) | 0.769 (0.000) | 0.878 (0.000)
SC 0.640 (0.032) | 0.580 (0.047) | 0.716 (0.016) | 0.710 (0.019) | 0.596 (0.038)
LD-SSC 0.645 (0.031) | 0.591 (0.039) | 0.717 (0.018) | 0.715 (0.021) | 0.611 (0.035)
SsC 0.661 (0.028) | 0.617 (0.042) | 0.714 (0.016) | 0.721 (0.018) | 0.621 (0.033)
UCI Digit | Feature Concat. | 0.456 (0.015) | 0.443 (0.019) | 0.469 (0.013) | 0.560 (0.016) | 0.394 (0.018)
Kernel Addition | 0.746 (0.026) | 0.729 (0.040) | 0.764 (0.017) | 0.783 (0.013) | 0.717 (0.030)
RMSC 0.813 (0.043) | 0.780 (0.056) | 0.826 (0.029) | 0.834 (0.021) | 0.791 (0.048)
PSC 0.757 (0.056) | 0.732 (0.073) | 0.786 (0.039) | 0.796 (0.030) | 0.729 (0.064)
PSSC 0.826 (0.044) | 0.792 (0.069) | 0.864 (0.015) | 0.849 (0.022) | 0.805 (0.050)

tion and Kernel Addition. It is expected that the multi-
view clustering performance is better than the single view,
when the views of data are discriminative and diverse.
But note that this may not be guaranteed in practice. More
importantly, the way for using the multi-view information
of data is crucial.

o Despite the effectiveness, SSC and PSSC have higher
computational cost. Figure 3 plots the running times of

SC, SSC, RMSC, PSC and PSSC on four datasets’. It can
be seen that SC is more efficient than SSC. Though PSC
is faster than PSSC, it is superiority is not that significant
as SC over SSC, since PSC requires several iterations to
achieve a local solution. Also, the new parameter (5 in
our SSC and PSSC may leads to additional effort for
parameter tuning. As shown in Figure 4, we found that

5The running times of Feature Concat. and Kernel Addition are not plotted
since they are very similar to SC. The running time on Caltech-101 dataset

is not

reported since it is small.



(a) affinity matrix W (b) UU" by SC

(c) P by SSC

(@ 2, |U; U] | by PSC

W

(€) 3, |P:| by PSSC

Fig. 2: Plots of (a) the affinity matrix which uses the first view information of the UCI Digit dataset, (b) UU" where U is obtained by
SCin (1), (c) P by SSCin (4), (d) >_, |U1-UiT\ by PSC in (2) and (e) >, |P:| by PSSC in (6).
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Fig. 3: Running times (in seconds) of some compared methods on four datasets.
078 % conditions can it be expected to do well? Second, problem
o7 84 (4) is a convex relaxation of (3). How tight the relaxation is?
82 Under what conditions can we recover the solution of (3) by
5 089 s solving (4)? We may see the answers to these questions in the
z Z future.
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Fig. 4: Plots of NMI v.s. 8 in SSC and PSSC (o = 0.01) on the
UCI Digit dataset.

SSC and PSSC perform well and stably when 3 < 1073,

VI. CONCLUSIONS AND FUTURE WORK

This paper proposed the Sparse Spectral Clustering (SS-
C) model which extended the traditional spectral clustering
method with a sparse regularization. The original formulation
of SSC is nonconvex and we presented a tight relaxation based
on the convex hull of fixed rank projection matrices. We also
proposed the convex Pairwise Sparse Spectral Clustering (PSS-
C) model which further improved SSC by exploiting multi-
view information of data. Extensive experiments conducted
on several real-world datasets demonstrated the effectiveness
of our methods.

There remain some problems for future exploration. First,
though SSC in (4) looks reasonable, we are lack of proof that
it will actually compute a reasonable clustering. Under what

APPENDIX

Proof of Theorem 2. Note that QQ is symmetric. This implies
that [|Q — A||* = [|Q — AT||*. Thus

1
21Q = A2 =
Sle-a|

= D AT sela)

1 1
SIQ-AP+=Q-AT|?
Jle-AlP+lQ-AT]

1
= 51Q-B|’ +c(A),

where ¢(A) depends only on A. Hence (10) is equivalent to

m(;i)n%HQ —B|? st.0=2Q =1, Tr(Q) = k. (13)

Both Q and B are symmetric. Let p; > p2 > -+ > p, and
A1 > Ay > -+ > A, be the ordered eigenvalues of Q and
B, respectively. By using the fact Tr((Q"B) < 37", p;A; in
[38], we have
IQ-B|z = Tr(Q'Q)—2Tr(Q'B)+Ti(B'B)

p;—2Tr(Q'B) + > A
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It is easy to verify that the above equality holds when Q
admits the spectral decomposition Q = UDiag(p)U'. On
the other hand, the constraints 0 < Q < I and Tr(Q) = k
are equivalent to 0 < p < 1 and p'1 = F, respectively. Thus

Q*

= UDiag(p*)U" is optimal to (13) with p* being optimal

to (11). The proof is completed. ]
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