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Abstract

Positron emission tomography (PET) images are widely used in many clinical applications such as 

tumor detection and brain disorder diagnosis. To obtain PET images of diagnostic quality, a 

sufficient amount of radioactive tracer has to be injected into a living body, which will inevitably 
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increase the risk of radiation exposure. On the other hand, if the tracer dose is considerably 

reduced, the quality of the resulting images would be significantly degraded. It is of great interest 

to estimate a standard-dose PET (S-PET) image from a low-dose one in order to reduce the risk of 

radiation exposure and preserve image quality. This may be achieved through mapping both 

standard-dose and low-dose PET data into a common space and then performing patch based 

sparse representation. However, a one-size-fits-all common space built from all training patches is 

unlikely to be optimal for each target S-PET patch, which limits the estimation accuracy. In this 

paper, we propose a data-driven multi-level Canonical Correlation Analysis (mCCA) scheme to 

solve this problem. Specifically, a subset of training data that is most useful in estimating a target 

S-PET patch is identified in each level, and then used in the next level to update common space 

and improve estimation. Additionally, we also use multi-modal magnetic resonance images to help 

improve the estimation with complementary information. Validations on phantom and real human 

brain datasets show that our method effectively estimates S-PET images and well preserves critical 

clinical quantification measures, such as standard uptake value.

Keywords

PET estimation; multi-level CCA; sparse representation; locality-constrained linear coding; multi-
modal MRI

I. Introduction

POSITRON emission tomography (PET) is a functional imaging technique that is often used 

to reveal metabolic information for detecting tumors, searching for metastases and 

diagnosing certain brain diseases [1, 2]. By detecting pairs of gamma rays emitted from the 

radioactive tracer injected into a living body, the PET scanner generates an image, based on 

the map of radioactivity of the tracer at each voxel location.

To obtain PET images of diagnostic quality, a standard-dose tracer is often used. However, 

this raises the risk of radioactive exposure, which can be potentially detrimental to one’s 

health. Recently, researchers have tried to lower the dose during PET scanning, e.g., using 

half of the standard dose [3]. Although it is desirable to reduce the dose during the imaging 

process, reducing the dose will inevitably degrade the overall quality of the PET image. As 

shown in Fig. 1(a) and (b), the low-dose PET (L-PET) image and the standard-dose (SPET) 

image differ significantly in image quality, though both images are of the same subject. Our 

method aims to estimate the S-PET image in a data-driven manner to produce a result (Fig. 

1(c)) that is very close to the original S-PET image. Also, since the modern PET scanner is 

often combined with other imaging modalities (e.g., magnetic resonance imaging (MRI)) to 

provide both metabolic and anatomical details [4], such information could be leveraged for 

better estimation of S-PET images.

Since PET images often have poor signal-to-noise ratio (SNR) due to the high level of noise 

and low spatial resolution, there are a lot of works that have been proposed to improve the 

PET image quality during the reconstruction or the post-reconstruction process. For 

example, during the reconstruction process, anatomical information from MRI prior [5–7] 

has been utilized. In [8], a nonlocal regularizer is developed, which can selectively consider 
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the anatomical information only when it is reliable, and this information can come from 

MRI or CT. In the post-reconstruction process, CT [9, 10] or MRI [11] information can be 

incorporated. In [12], both CT and MRI are combined in the post-reconstruction process. 

These methods can suppress noise and improve image quality. Some works have specifically 

focused on reducing the noise in PET images, including the use of the singular value 

thresholding concept and Stein’s unbiased risk estimate [13], the use of spatiotem-poral 

patches in a non-local means framework [14], the joint use of wavelet and curvelet 

transforms [15], and simultaneous delineation and denoising [16].

The aforementioned methods are mainly developed to improve the PET image quality 

during the reconstruction or the post-reconstruction process. On the contrary, in this work, 

we study the possibility of generating S-PET alike image with diagnostic quality from L-

PET image and MRI image, and investigate how well the image quantification can be 

preserved in the estimated S-PET images. Our method is essentially a learning-based 

mapping approach to infer unknown data from known data in different modalities, in 

contrast to conventional image enhancement methods.

For practical nuclear medicine, it is desirable to reduce the dose of radioactive tracer. 

However, lowering radiation dose changes the underlying biological or metabolic process. 

Therefore, the low-dose and standard-dose PET images can be different in terms of activity. 

This actually brings the motivation of our method, in which we aim to estimate standard-

dose alike PET images from L-PET images, which cannot be achieved by simple post-

processing operations such as denoising. To our best knowledge, very few methods attempt 

to directly estimate the S-PET image from an LPET image, for example, using regression 

forest [17, 18]. Specifically, in [17] and [18], a regression forest can be trained to estimate a 

voxel value in an S-PET image, with L-PET voxel values in the neighborhood as input to the 

RF. The quality of the estimated S-PET images can be further improved by incremental 

refinement. In the CT imaging domain, to obtain a CT image of diagnostic quality with a 

lesser dose, Fang et al. [19] proposed a low-dose CT perfusion deconvolution method using 

tensor total-variation regularization.

Recently there have been rapid development in sparse representation (SR) and dictionary 

learning for medical images [20]. For example, estimating S-PET image from L-PET image 

can be achieved in patch-based SR by learning a pair of coupled dictionaries from L-PET 

and S-PET training patches. It is assumed that both L-PET and S-PET patches lie in the low 

dimensional manifolds with similar geometry. To estimate a target S-PET patch, its 

corresponding L-PET patch is first sparsely represented by the L-PET dictionary, which 

includes a set of training L-PET patches. The resulting reconstruction coefficients are then 

directly applied to the S-PET dictionary for estimation of S-PET image, where the S-PET 

dictionary is composed of a set of S-PET patches, each corresponding to an L-PET patch in 

the L-PET dictionary.

Usually, the patches in the two dictionaries have different distributions (i.e., neighborhood 

geometry) due to changes in imaging condition. Hence, it is inappropriate to directly apply 

the learned coefficients from the L-PET dictionary to the S-PET dictionary for estimation. A 

solution to this problem is to map those patches into a common space before applying sparse 
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coefficients for minimizing their distribution discrepancy. Common space, or sometimes 

referred to as coherent space, is a feature space where the coherence between the topological 

structures of data from different modalities (i.e., L-PET and S-PET patches in our case) is 

established. In this common space, the L-PET and S-PET features share a common 

topological structure, and thus an S-PET patch can be estimated more accurately by 

exploiting the geometric structure of the L-PET patches. One popular technique to learn 

such common space is Canonical Correlation Analysis (CCA) [21], which has been widely 

applied in various tasks, such as disease classification [22, 23], population studies [24], 

image registration [25], and medical data fusion [26]. CCA can be used to learn global 

mapping with the original coupled L-PET and S-PET dictionaries and then map both kinds 

of data into their common space. However, global common space mapping does not 

necessarily unify neighborhood structures in the coupled dictionaries that are involved in 

reconstructing a specific L-PET patch. Hence, it is sub-optimal to estimate its corresponding 

S-PET patch using the same reconstruction coefficients.

To accurately learn the common space for S-PET estimation, we propose a multi-level CCA 

(mCCA) framework. Fig. 2 illustrates a two-level scheme. In the first level (top part of Fig. 

2), after mapping both L-PET and S-PET data into their common space, a test L-PET patch 

can be reconstructed by the L-PET dictionary. Rather than immediately estimating the target 

S-PET patch in this level, a subset of the L-PET dictionary atoms (patches with non-zero 

coefficients) that are most useful for reconstructing the test L-PET patch are selected and 

passed on together to the next level with the corresponding S-PET dictionary subset (lower 

part of Fig. 2). With this data-driven dictionary refinement, the subsequent common space 

learning and estimation will be improved in the next level. We observe that repeating this 

process leads to a better final estimation. In addition to the L-PET based estimation, we also 

leverage multi-modal MRI (i.e., T1-weighted and diffusion tensor imaging (DTI)) to 

generate an MRI based estimation in a similar way, which can be used to improve the simple 

L-PET based estimation in a fusion process. This is depicted in Fig. 3. As can be seen, given 

a test L-PET patch, the training patches are adaptively selected and then used to learn 

multiple levels of CCA-based common space, with the goal of better representing this test L-

PET patch in each level. Similarly, estimation can be made from a test MRI patch (bottom 

part) by selecting one MRI modality that has the highest correlation with the test L-PET 

patch. Finally, a fusion strategy generates the final estimated S-PET patch, and all the 

estimated S-PET patches are aggregated to form the output S-PET image.

We note that in a recent work [27], qualitative visual inspections were performed by 

physicians on whole-body PET images, and no significant difference between PET images 

with different doses was found. However, it was observed that the standard uptake values 

(SUVs) have changed when using different doses. In our work, we test our method on both 

brain phantom data with abnormality (i.e., lesion) and real brain data. Different from [27], 

we provide quantitative evaluations in terms of both image quality and clinical quantification 

measures. The results suggest that our estimated standard-dose alike PET images are more 

similar to the ground-truth standard-dose images, while the low-dose PET images are 

significantly deviated from standard-dose PET images in various measures.
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Compared to [17, 18], in which the PET estimation is formulated as a regression problem, 

our approach tackles it as a sparse representation problem. The sparse representation is 

computed in an iteratively-refined common space for L-PET and S-PET images. Because the 

intra-data relationships in the L-PET and S-PET data spaces are different, a direct coding 

and estimation step in the original image space would not be optimal. In our approach, the 

estimation uses the sparse coefficients learned in the common space, which has shown to be 

more effective through experiments using both image quality and clinical quantification 

measures. Compared to the results in [18], with the same data and experimental settings, 

superior performance is achieved by our method. Furthermore, only T1-weighted MRI was 

used in [18], while in our method, multi-modal MRI can be adaptively selected and utilized 

for improved estimation as compared to using only T1.

In summary, the contributions of this work are two-fold:

1. An mCCA based data-driven scheme is developed to estimate an S-PET image 

from an L-PET counterpart, such that its quality is iteratively refined;

2. Our framework combines both L-PET and multi-modal MRI for better 

estimation. To the best of our knowledge, this is the first work that estimates an 

S-PET image by fusing the information from its low-dose counterpart and multi-

modal MR images.

The effectiveness of our proposed method was evaluated on a real human brain image 

dataset. Extensive experiments were conducted using both image quality metrics and clinical 

quantification measures. The results demonstrate that the estimated S-PET images well 

preserve critical measurements such as standard uptake value (SUV) and show the improved 

image quality in terms of quantitative measures such as peak signal-to-noise ratio (PSNR), 

as compared to the L-PET images and also the estimations by those baseline methods.

Below we first describe the proposed method in detail in Section II. Then, we show 

extensive experimental results, evaluated with different metrics, on both phantom brain 

dataset and real human brain dataset in Section III. Finally, we conclude the paper in Section 

IV.

II. Methodology

Suppose we have a group of N training image pairs, with each composed of an L-PET image 

and an S-PET image. Given a target L-PET image, we seek to estimate its S-PET 

counterpart using the training set in a patch-wise manner. Specifically, we first break down 

each pair of the training images into a number of patches at corresponding voxels, thus 

leading to sets of L-PET and associated S-PET training patches. Given a target S-PET patch 

to be estimated, the training patches within the corresponding neighborhood are extracted 

and preselected. After learning and refining a common space in multiple levels, an estimate 

of the target SPET patch from its L-PET counterpart is obtained by patch based SR with the 

selected training patches. By replacing L-PET with multi-modal MRI and repeating the 

above process, we can obtain the estimates of the target S-PET patch from multiple 

modalities. We then fuse those estimates together to obtain the final estimate. Below we 

elaborate mCCA for L-PET and multi-modal MR based estimation in detail. We use bold 
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lowercase letters (e.g., w) to denote vectors and bold uppercase letters (e.g., W) for matrices. 

Before diving into details, we first briefly review CCA.

A. Canonical Correlation Analysis (CCA)

First introduced in [21], CCA is a multivariate statistical analysis tool. CCA aims at 

projecting two sets of multivariate data into a common space such that the correlation 

between the projected data is maximized.

In our problem, given two data matrices X = {Xi ∈ ℝd, i = 1, 2, …, K} and Y = {Yi ∈ ℝd, i 
= 1, 2, …, K} containing K pairs of data from two modalities, the goal of CCA is to find 

pairs of column projection vectors wX ∈ ℝd and wY ∈ ℝd such that the correlation between 

wX
T X and wY

TY is maximized. Specifically, the objective function to be maximized is

arg max
wL, wS

wX
⊤CXYwY

wX
⊤CXXwX wY

⊤CYYwY

, (1)

where the data covariance matrices are computed by CXX = E[XX⊤], CYY = E[YY⊤], and 

CXY = E[XY⊤], in which E[·] calculates the expectation. Eq. (1) can be reformulated as a 

constrained optimization problem as follows: maximize

maximize  wX
T CXYwY

subject to  wX
TCXXwX = 1, (2)

wY
TCYYwY = 1 .

Eq. (2) can be solved through the following generalized eigenvalue problem

0 CXY

CYX 0
wX

wY
= λ

CXX 0
0 CYY

wX

wY
. (3)

wX is an eigenvector of CXX
−1 CXYCYY

−1CYX, and wY is an eigenvector of CYY
−1CYXCXX

−1 CXY. The 

projection matrices and WX and WY are obtained by stacking wX and wY as column 

vectors, corresponding to different eigenvalues of the above generalized eigenvalue problem.
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B. Patch Preselection and Common Space Learning

Let yL,p be a column vector representing a vectorized target L-PET patch of size m × m × m 
extracted at voxel p. To estimate its S-PET counterpart, we first construct an L-PET 

dictionary by extracting patches across the N training L-PET images within a neighborhood 

of size t × t × t centered at p. Repeating this process for each of the N training S-PET 

images, we harvest an S-PET dictionary coupled with L-PET dictionary, and there are a total 

of t3 × N patches (atoms) in each dictionary.

As the size of the dictionary is proportional to t and N, out of all t3 × N patches, we preselect 

a subset of K L-PET patches that are the most similar to yL,p, for computational efficiency in 

the subsequent learning process. The similarity between patches yi and yj are defined using 

structural similarity (SSIM) [28]

SSIM(yi, y j) =
2μiμ j

μi
2 + μ j

2 ×
2σiσ j

σi
2 + σ j

2 , (4)

where μ and σ are the patch mean and standard deviation, respectively. This preselection 

strategy has been adopted with success in medical image analysis [29]. Note that for this 

patch selection, we are computing a metric of structural similarity between patches based on 

the observed statistics of the voxel intensities in each patch. This method defines similarity 

on the basis of the observed first- and second-order statistics within each patch and does not 

make any particular assumption about the noise structure of the images, either Gaussian or 

not. Other similarity metrics could also be applied here if suitable for PET images.

Let DL = {dLi ∈ ℝd, i = 1, 2, …, K} be the L-PET dictionary after preselection and DS = 

{dSi ∈ ℝd, i = 1, 2, …, K} be the corresponding S-PET dictionary, where d = m3, dLi and 

dSi are a pair of L-PET patch and its corresponding S-PET patch. To improve the correlation 

between DL and DS, we use CCA to learn mappings wL, wS ∈ ℝd, such that after mapping 

the correlation coefficient between DL and DS is maximized. The mappings are obtained 

substituting X with DL and Y with DS in Eq. (3). The projection matrices WL and WS are 

composed of wL and wS corresponding to different eigenvalues. In this step, a subset of the 

training L-PET patches that are most similar to the given L-PET patch is selected. Also, a 

CCA mapping is performed to transform the L-PET dictionary and S-PET dictionary into a 

common space where they have a maximized correlation.

C. S-PET Estimation by mCCA

In our multi-level scheme, we learn CCA mapping for each level and reconstruct the target 

L-PET patch yL,p in the common space at all times. Specifically, let DL
1 and DS

1 be the L-PET 

and S-PET dictionaries in the first level, and WL
1 and WS

1 be the learned mappings. The 

reconstruction coefficients α1 for yL,p in this level are determined by
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arg min
α1

‖WL
1⊤(yL, p − DL

1α1)‖2
2

+ λ‖δ ⊙ α1‖2
2, (5)

s . t . 1⊤α1 = 1,

where ⊙ is element-wise multiplication. The computation of δ is defined as

δ = exp(
dist(WL

1⊤yL, p, WL
1⊤DL

1)
σ ), (6)

such that each element in δ is computed from the Euclidean distance between projected 

patch WL
1⊤yL, p and each projected dictionary atom in WL

1⊤DL
1. σ is a parameter to adjust the 

weight decay based on the locality. For example, the elements in DL
1, which are far away 

from yL,p, will have larger penalty, resulting in smaller reconstruction coefficients in α1. On 

the other hand, the neighbors of yL,p in DL
1 will be less penalized, thus allowing higher 

weights for reconstruction. Eq. (5) is referred to as locality-constrained linear coding (LLC), 

which has an analytical solution [30], given by

α1 = (C + λdiag(δ))1, (7)

α1 = α1/1⊤α1,

where C = (DL − 1ŷ⊤)(DL − 1ŷ⊤)⊤and ŷ = WL
1⊤yL, p. It has been shown that the locality 

constraint can be more effective than sparsity [31]. Instead of using α1 to estimate the S-

PET patch as output in this level, the dictionary atoms in DL
1 with significant coefficients 

(e.g., larger than a predefined threshold) in α1 are selected to build a refined L-PET 

dictionary. The refined L-PET dictionary and corresponding S-PET dictionary are used for 

both common space learning and reconstruction in the next level.

In the lth level where l ≥ 2, the reconstruction coefficients αl are calculated by

arg min
αl

‖WL
l ⊤(yL, p − DL

l αl)‖2
2

+ λ‖δ ⊙ αl‖2
2 + γ‖WS

l ⊤(yS, p
l − yS, p

l − 1)‖2
2
, s . t . 1⊤αl = 1, (8)
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where WL
l  and WS

l  are the CCA mapping for DL
l  and DS

l  at the current lth level, 

yS, p
l − 1 = Ds

l − 1αl − 1 is the estimated S-PET patch from the previous (l − 1)th level and 

yS, p
l = Ds

lαl is the estimation in the lth level. The third term of Eq. (8) enforces that the 

estimation in the lth level does not significantly deviate from the estimation in the (l − 1)th 

level, ensuring a gradual and smooth refinement in each level.

By repeating the process above, the dictionary atoms that are most important in 

reconstructing a target L-PET patch are selected. Therefore, the mapping and reconstruction 

in the subsequent level can be more effective towards the goal of estimating a particular 

target S-PET patch. In the final level, we obtain the L-PET based estimation, denoted by 

ŷS,p.

D. MRI based Estimation and Fusion

As MRI can reveal anatomical details, we would like to take this advantage for S-PET 

estimation. For a given L-PET patch yL,p, we select one MR modality from T1 and DTI (i.e., 

fractional anisotropy (FA) and mean diffusivity (MD)) images such that the correlation (i.e., 

cosine similarity in our case) between the selected MRI patch yM,p and yL,p is the highest, 

though other advanced methods, such as combining all MR modalities, can be used. To 

compute the correlation, the patches are first normalized to have a zero mean and unit 

variance, as it helps to eliminate the influence of different intensity scales across different 

image modalities. The MRI based estimation y̬S,p is computed similarly to the L-PET based 

estimation, ŷS,p, by using the dictionary pair from the MR images of selected modality and 

the S-PET images in the training set. The final fused estimation is obtained by

yS, p = ω1ŷS, p + ω2yS, p . (9)

The fusion weights ω1 and ω2 are learned adaptively for each target S-PET patch by 

minimizing the following function

arg min
ω1, ω2

‖WL
⊤yL, p − WS

⊤yS, p‖2
2 + ‖PM

⊤ yM, p − PS
⊤yS, p‖2

2,

s . t . yS, p = ω1ŷS, p + ω2yS, p,

ω1 + ω2 = 1, ω1 ≥ 0, ω2 ≥ 0, (10)

where WL and WS are the mapping in the final level for the L-PET based estimation, while 

PM and PS are the mapping in the final level for MRI based estimation. This objective 

function ensures that in their corresponding common spaces, the final output is close to both 
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the input L-PET patch and the input MRI patch. Note that the L-PET based estimation and 

the MRI based estimation can both be obtained with different number of levels for common 

space learning. The optimal values for ω1 and ω2 can be efficiently computed using a 

recently proposed active-set algorithm [32].

III. Experiments

For the proof of concept, we first evaluate our method on a simulated phantom brain dataset 

with 20 subjects. Then, a real brain dataset from 11 subjects are introduced and evaluated in 

detail. The description for the datasets and the experimental results are presented in the 

following.

On both phantom and real brain datasets, a leave-one-out cross-validation (LOOCV) strategy 

was employed, i.e., each time one subject is used as the target subject and the rest are used 

for training. The patch size is set to 5 × 5 × 5 and the neighborhood size for dictionary patch 

extraction is 15 × 15 × 15. The patches are extracted with a stride of one voxel and the 

overlapping regions are averaged to generate the final estimation. During preselection, K = 

1200 patches are selected. The regularization parameter λ in Eq. (5) and Eq. (8) is set to 

0.01 and γ in Eq. (8) was set to 0.1. We use two-level CCA for both L-PET and MRI based 

estimation in the experiments, as we observe that the use of more levels does not bring 

significant improvement while increasing the computational time. In the first level, the 

dictionary atoms with coefficients larger than 0.001 in α1 were selected for learning both the 

common space mapping and the reconstruction coefficients α2 in the second level.

A. Phantom Brain Dataset

1) Data Description—The phantom brain dataset is constructed from 20 anatomical 

normal brain models [33, 34]. Within each model, a 3-D “fuzzy” tissue membership volume 

is available for each tissue class, including background, cerebrospinal fluid, gray matter, 

white matter, fat, muscle, muscle/skin, skull, blood vessels, connective region around fat, 

dura matter and bone marrow. To examine the estimation quality especially in abnormal 

regions, we randomly place a lesion for each brain in the middle temporal gyrus. Fig. 4 

shows examples of an L-PET image and the corresponding SPET image. Besides simulated 

PET images, each model has a T1-weighted MRI.

For the proof of concept, we want to answer the following questions:

• Are the estimated S-PET alike images better than the original L-PET images?

• Is performing the estimation in common space better than in the original image 

space?

• Is multi-level CCA mapping more effective than a single-level CCA mapping?

• Is MRI useful as additional estimation source?

• Can comparable results be achieved by a denoising filter?

These questions are answered by evaluations using both image quality and clinical measures, 

as defined in the following.
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2) Image Quality Evaluation—For quantitative evaluation, we first compute Peak 

Signal-to-Noise Ratio (PSNR) between an estimated S-PET image and the ground-truth S-

PET image. PSNR is defined as

PSNR = 10log10( DR2

MSE), (11)

where DR denotes the dynamic range of the image, and the mean square error (MSE) 

between the estimation y and the ground-truth s with an image of size n × o × p is given by

MSE = 1
nop ∑

i = 1

n
∑
j = 1

o
∑

k = 1

p
(|y(i, j, k) − s(i, j, k)|2) . (12)

A larger value of PSNR indicates more similarities between the estimated S-PET image and 

the ground-truth S-PET images. Fig. 5 shows the average PSNR scores for the 20 subjects. 

Baseline comparisons include sparse representation in the original image space (SR), CCA, 

and multi-level CCA using L-PET as the only estimation source, while both multilevel CCA 

and multi-modal MRI are used in our method.

The results show that the estimation in the common space learned by CCA is more accurate 

than the estimation in the original image space. In addition, using more levels of common 

space learning leads to better results, which are further improved by leveraging MRI data. To 

validate the statistical significance of our method, we perform pairedsample t-test to 

compare the baseline methods against ours. As indicated in Fig. 5, p < 0.01 is observed for 

all the baseline methods under comparison. This provides further evidence about the 

advantage of our method, i.e., mCCA (L+M).

Furthermore, the Signal-to-Noise Ratio (SNR) is computed on the estimated images. SNR is 

defined as

SNR = 20log10
mROI
σROI

, (13)

where mROI and σROI are the mean and standard deviation in the region of interest (ROI). In 

this case, the ROI is the lesion region. The average SNR values are shown in Fig. 6. Higher 

value of SNR indicates better quality. Compared to the other baseline methods, the highest 

SNR is achieved by the proposed method with statistical significance of p < 0. 05. The 

superior performance in SNR measure is congruent with the observation of the comparison 

of PSNR values.

3) Clinical Measure Evaluation—Besides image quality measure, it is also important 

that the ROI in an estimated S-PET image is well preserved in terms of clinical 

quantification, as compared to the ground-truth S-PET images. To examine this aspect, we 
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evaluate two measures in the lesion region as the ROI. The first measure is Contrast-to-

Noise Ratio (CNR), which is important in clinical applications to detect the potentially low 

remnant activity after therapy [14]. CNR is computed between ROI and the background 

(cerebellum in this paper). We use the definition of CNR in [35], i.e.,

CNR =
(mROI − mBG)/mBG

σROI
2 + σBG

2 , (14)

where mROI and mBG are the mean intensities, σROI and σBG are the standard deviations of 

the ROI and the background, respectively.

As the goal is to estimate S-PET images that are similar to the ground-truth S-PET images, 

we report the CNR difference between the estimated S-PET images and the ground-truth 

SPET images. Smaller difference indicates less deviation from the ground-truth. Fig. 7 

shows the average CNR difference. We can see that the CNR difference is significant in the 

original L-PET images as well as the estimated S-PET images by patch-based SR. This 

difference is reduced by estimating the S-PET image in the common space learned by CCA, 

and the proposed mCCA scheme further bridges this difference. The small p-values, i.e., p < 

0.05, demonstrate the statistical importance of the CNR results obtained by our method.

Apart from CNR, SUV calculated from the PET images is also critical for diagnostic 

evaluation and treatment planning [36]. The use of SUV can remove variability among 

patients, which is caused by the differences in body size and the amount of injected tracer 

dose. Particularly, the changes in SUV are important in clinical applications. For example, 

the SUV changes can be used to classify patients into different PET based treatment 

response categories, so such response classification can guide subsequent treatment 

decisions [37]. The SUV can be calculated on a per voxel basis, in which the value for a 

voxel at location (i,j,k) is defined by

SUV = c(i, j, k)
(a/w) , (15)

where c(i,j,k) is the radioactivity concentration in that voxel (in kBq/ml) and w is the body 

weight of the subject (in g). a is the decay-corrected amount of injected dose (in kBq). As 

suggested in [13], smaller changes in SUV are highly desirable, meaning that the estimation 

does not significantly change the quantitative markers of the PET image. Thus, we report the 

SUV difference in the lesion region in both L-PET images and the estimated S-PET images, 

in order to examine how the SUV in these images deviates from the SUV in the ground-truth 

S-PET images.

Fig. 8 shows the SUV difference in the same ROI by different methods. Compared to the 

baseline methods, the SUV difference by the proposed method is the smallest. This shows 

that the estimated S-PET images by our method can better preserve the SUV, indicating an 

improved clinical usability as compared to the L-PET images or the outputs by the baseline 
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methods. This improvement is statistically important as suggested by the small p-values in 

comparison with other baseline methods.

Since image denoising can also improve the image quality, we compare our method with the 

following state-of-the-art denoising methods: 1) BM3D [38], which is a denoising method 

based on an enhanced sparse representation in transform-domain, and it has also shown 

favorable performance in PET sinogram denoising [39]; 2) Optimized Blockwise Nonlocal 

Means (OBNM) [40], which is originally developed for 3D MR images and can also be 

applied to PET images. The denoising directly operates on the L-PET input. The comparison 

results, in terms of different measures, are listed in Table I. Note that, for fair comparison, 

only L-PET is used as the estimation source in our method in this comparison.

We observe from the results in Table I that our estimated S-PET images are notably better 

than the denoised L-PET images. In other words, a simple denoising process cannot produce 

S-PET alike images that are close to the groundtruth S-PET images, and the clinical 

quantification cannot be well preserved. To verify the statistical significance, we also 

perform t-test to compare the results by the two denoising methods against the proposed 

method, and in all different measures, a small p-value, i.e., p < 0.01, is observed.

The evaluations on the phantom brain dataset with abnormal structures (i.e., lesion), using 

both image quality and clinical quantification measures, with comparisons to baseline 

methods, suggest that: 1) the estimated S-PET images are more similar to the ground-truth 

S-PET images, compared to the L-PET images and outputs by other baseline methods, 2) 

estimation in common space is more effective than that in the original image space, 3) multi-

level CCA common space learning leads to improved results, 4) MRI can help further 

improve the estimation accuracy, and 5) performing simple denoising is not adequate to 

produce S-PET alike images that are close to the ground-truth S-PET images.

B. Real Brain Dataset

1) Data Description—We further evaluate the performance of our method on a real brain 

dataset. This dataset consists of PET and MR brain images from 11 subjects (6 females and 

5 males). Based on clinical examination, all subjects were encouraged to have PET scans. 

Table II summarizes their demographic information. Among these subjects, subject 9-11 

were diagnosed with Mild Cognitive Impairment (MCI). All scans were acquired on a 

Siemens Biograph mMR MR-PET system. This study was approved by the University of 

North Carolina at Chapel Hill Institutional Review Board.

The standard-dose and low-dose correspond to standard activity administered (averaging 203 

MBq and effective dose of 3.86 mSv) and low activity administered (approximately 51 MBq 

and effective dose of 0.97 mSv), respectively. In general, the effective dose can be regarded 

as proportional to the administered activity [41]. In our case, the standard-dose activity level 

is at the low end of the recommended range (185 to 740 MBq) by the Society of Nuclear 

Medicine and Molecular Imaging (SNMMI) [41]. During PET scanning, the standard-dose 

scan was performed for a full 12 minutes within 60 minutes of injection of 18F-FDG 

radioactive tracer, based on standard protocols. A second PET scan was acquired 

immediately after the first scan in list-mode for 12 minutes. The second scan was then 
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broken up into four separate 3-minute sets, each of which is considered as a low-dose scan. 

As a result, the activity level in the 3-minute scan is significantly lower than the 

recommended range.

In other words, the L-PET images are completely separate from the S-PET images in the 

acquisition process in this setting. On the contrary, if only the first scan was obtained and the 

low-dose scans were acquired by breaking the first scan into four sets, the L-PET images 

and the S-PET images would actually come from the same set of data, despite of the dose 

difference. It is worthwhile to note that reducing acquisition time at standard-dose is 

considered as a surrogate for standard acquisition time at a reduced dose. Regarding 

reconstruction, all PET scans were reconstructed using standard methods from the vendor. 

Attenuation correction using the Dixon sequence and corrections for scatters were applied to 

PET images. The reconstruction was performed iteratively using the OS-EM algorithm [42] 

with three iterations, 21 subsets, and post-reconstruction filtered with a 3D Gaussian with 

sigma of 2 mm. Each PET image has a voxel size of 2.09 × 2.09 × 2.03mm3.

Besides PET images, structural MR images were acquired with a 1 × 1 × 1mm3 resolution, 

and diffusion images were also acquired with a resolution of 2 × 2 × 2mm3. Then we 

compute FA and MD images from the diffusion images. For each subject, the MR images 

were linearly aligned to the corresponding PET image, and then all of the images were 

aligned to the first subject using FLIRT [43]. Non-brain tissues were then removed from the 

aligned images using a skull stripping method [44]. In summary, each subject has an L-PET 

image, an S-PET image, and three MR images (T1-weighted MRI, FA and MD). Fig. 9 

shows examples of PET and MR images from one subject.

2) Image Quality Evaluation—For comparison, the bench-mark methods include SR, 

coupled dictionary learning (CDL) [20], regression forest (RF) [18]. Fig. 10 shows the 

PSNR results. We note that by using L-PET as the only estimation source, the proposed 

method achieves the highest PSNR scores. With additional MRI data, further improvement 

is obtained with a PSNR of 23.9 by our method. In addition, the small p-values from the t-
test verify the statistical significance of our method.

To more thoroughly examine the performance of our method, for each subject, eight ROIs 

were segmented based on the T1-weighted MR image, and the estimation performance 

within each ROI is evaluated separately. Specifically, on each hemisphere of the brain (i.e., 

left or right), four ROIs, including frontal lobe, parietal lobe, occipital lobe, and temporal 

lobe, were separated. We use Automated Anatomical Labeling (AAL) template [45] and 

merge related regions to cover these ROIs. Table III shows the SNR results for each ROI. 

Higher value of SNR indicates better quality. Compared to other methods, the highest SNR 

is achieved by the proposed multilevel CCA with all estimation sources. This observation is 

unanimous for all ROIs. The t-test also yields p-values lower than 0.05 when comparing our 

method with the others.

3) Clinical Measure Evaluation—We further evaluate the proposed method in terms of 

clinical usability. Specifically, CNR is first calculated in each of the eight ROIs, and the 

cerebellum is used as the background region. The CNR difference, which measures how 
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close the CNR in our estimated S-PET images deviates from that in the ground-truth, is 

reported in Table V.

Compared to the other methods, the CNR difference by the proposed method is the smallest 

for different ROIs. Also, the superior performance is further corroborated by the p-values 

which are all smaller than 0.05. This shows that the estimated S-PET images by our method 

are most similar to the groundtruth S-PET images, indicating an improved clinical usability 

as compared to the L-PET images or the outputs by the other methods.

Furthermore, since three subjects in this dataset (Subject 9–11) are diagnosed with MCI, it is 

particularly important that the estimated S-PET images by our method can well preserve the 

SUV in the hippocampal regions. Therefore, we calculate the SUV difference on these 

regions for the MCI subjects. The results are listed in Table V. As observed, the SUV is well 

maintained by our method with minimum deviation from the true SUV in the ground-truth 

S-PET images. This suggest that not only our method can well preserve the measures in the 

normal brain parts, but also in abnormal regions the clinical quantification is well retained.

For qualitative results, some samples of the estimated S-PET images by our method are 

shown in Fig. 11. For comparison, the corresponding L-PET images and the ground-truth S-

PET images are also provided. As observed, the estimated S-PET images are very close to 

the ground-truth. Compared to the L-PET images, better visual quality is observed in both 

the ground-truth S-PET images and the estimated S-PET images. The estimated images are 

smoother than the ground-truth due to the averaging of patches in the final construction of 

the output images. This process also helps reduce noise level as evidenced by the improved 

SNR in Table III. In summary, both quantitative and visual results suggest that the S-PET 

images can be well estimated by our method, in terms of image quality and clinical 

quantification measures that are critical in diagnosis.

C. Computational Cost

We implemented our algorithm in Matlab on a PC with Intel 2.4GHz CPU and 8GB 

memory. The main computation is on the LLC part as in Eq. (5), with the complexity of 

O(K2), where K is the dictionary size. Regarding the computational cost, it takes about 120 

seconds to estimate one slice of a 3D PET image in our data. Since our approach is data-

driven, meaning that at each voxel location, training patches have to be selected and 

mappings have to be learned. Therefore, computation is not quite efficient in our current 

implementation. However, further speedup of our method is possible. For example, the 

estimation of each slice can be performed independently, thus a parallel computing scheme 

for each slice can significantly improve the efficiency.

D. Discussion

The evaluation performed here compares S-PET to L-PET in the context of using the same 

PET-MR scanner for the same acquisition time. This approach makes the comparison fair 

and leaves other variables out of the analysis. Nevertheless, other approaches to improve 

PET image quality under low-dose conditions also exist, including increasing the scan time 

or taking advantage of other features, such as time-of-flight, although it is currently not 
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available on the Biograph mMR. It is recommended that future studies will consider these 

other methods along with our technique in determining the best approach for a specific 

clinical or research protocol.

The proposed method can be generalized to other PET targets, applications, and scanning 

protocols; but, in order to maintain a controlled experiment, we did the evaluation in the 

context of FDG brain PET with a specific dose reduction on the same scanner controlled for 

the same scan time. Thus, the conclusions regarding performance should be limited at this 

time to these specific conditions. Future studies will consider how performance changes 

under different dose-reduction ratios, with different PET tracers, and in different anatomical 

targets.

Regarding the radiation, although a single PET scan has low radiation, multiple scans may 

accumulate the radiation. Based on the report from Biological Effects of Ionizing Radiation 

(BEIR VII)1, the increased risk of incidence of cancer is 10.8% per Sv. In other words, one 

brain PET scan increases the risk of lifetime cancer by 0.04%. The International 

Commission on Radiation Protection considers the increased risk of death by cancer to be 

about 4% per Sv, meaning that one brain PET scan increases the risk of death from cancer 

by 0.015%. Although these numbers are small, but the risks are accumulated for patients 

who undergo multiple PET scans as part of their treatment plan. In addition, pediatric 

patients have increased risks. Therefore, the long-term focus of this work is to reduce the 

total dose for the non-standard population with increased risk from PET radiation.

IV. Conclusions

A multi-level CCA scheme has been proposed for estimating S-PET images from L-PET 

and multi-modal MR images. On both phantom and real brain datasets, extensive evaluations 

using both image quality and clinical measures have demonstrated the effectiveness of the 

proposed method. Notably, in the estimated S-PET images, the desired quantification 

measures such as SUV were faithfully preserved as compared to the ground-truth S-PET 

images. As compared to other rival methods, our approach achieved superior performance.

In this work, we have demonstrated that high quality SPET alike images can be estimated 

offline in a learning based framework from low-dose PET and MR images. This potentially 

meets an important clinical demand to significantly reduce the radioactive tracer injection 

during PET scanning. In the future, more effective estimation and fusion techniques will be 

studied to improve the estimation quality.

We have drawn our conclusions based on quantitative measures on two datasets. In future, 

we plan to enroll more subjects in our dataset to more rigorously evaluate the proposed 

method. To further validate the effectiveness of our method in clinical tasks, larger scale 

experiments and evaluations by physicians should be conducted, which is our ongoing work.

1http://www.nap.edu/catalog/11340/health-risks-from-exposure-to-lowlevels-of-ionizing-radiation
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Fig. 1. 
(a) Low-dose PET image of a subject. (b) Standard-dose PET image of the same subject. (c) 

Estimated standard-dose PET image by our method.
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Fig. 2. 
Illustration of the multi-level CCA scheme (with two levels shown as example). Filled 

patterns denote L-PET patches and unfilled patterns denote S-PET patches. A pair of L-PET 

and S-PET patches are indicated by the same color. A coarse reconstruction in the first level 

(top) is used to select the refined subsets of dictionaries. At this stage, the dictionary atoms 

that contribute more in reconstructing the test patch are selected. The estimation in the 

second level (bottom) is more accurate thanks to the improved mapping and reconstruction 

using the refined dictionaries. Best viewed in color.
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Fig. 3. 
Our framework for estimating S-PET image from L-PET and MR images. The top part 

illustrates the proposed multi-level CCA-based estimation from L-PET patches, and the 

bottom part depicts the same strategy for estimation using MRI as input. In each level, for a 

particular test patch, a subset of dictionary atoms are adaptively selected and then the refined 

dictionaries in the original image space are provided to the next level for common space 

learning and reconstruction. In the final stage, a fusion strategy is adopted to generate the 

final estimated S-PET patch using both the MRI- and L-PET-based estimations. Best viewed 
in color.
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Fig. 4. 
Sample images from brain phantom data. Bounding boxes enclose the lesion regions.

An et al. Page 26

IEEE Trans Image Process. Author manuscript; available in PMC 2017 November 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Average PSNR scores on the phantom brain dataset. Error bars indicate standard deviation. 

L means using L-PET as the only estimation source, and L+M means using both L-PET and 

MRI for estimation. Higher score is better. † indicates p < 0.01 in the t-test as compared to 

our method.
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Fig. 6. 
Average SNR scores on the phantom brain dataset. The ROI for computing SNR is the lesion 

region. Error bars indicate standard deviation. L means using L-PET as the only estimation 

source, and L+M means using both L-PET and MRI for estimation. Higher score is better. † 

indicates p < 0.01 in the t-test as compared to our method, and * means p < 0.05.
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Fig. 7. 
Average CNR difference on the phantom brain dataset. The ROI for computing CNR is the 

lesion region. L means using L-PET as the only estimation source, and L+M means using 

both L-PET and MRI for estimation. Error bars indicate standard deviation. Lower score is 

better. † indicates p < 0.01 in the t-test as compared to our method, and * means p < 0.05.
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Fig. 8. 
Average SUV difference on the phantom brain dataset. The ROI for computing SUV is the 

lesion region. L means using L-PET as the only estimation source, and L+M means using 

both L-PET and MRI for estimation. Error bars indicate standard deviation. Lower score is 

better. † indicates p < 0.01 in the t-test as compared to our method.
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Fig. 9. 
Sample PET and MR images of one subject from real brain data.
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Fig. 10. 
Average PSNR on the real brain dataset. L means using L-PET as the only estimation 

source, and L+M means using both L-PET and MRI for estimation. Error bars indicate 

standard deviation. Number below each method name is the max deviation. † indicates p < 

0.01 in the t-test as compared to our method, and * means p < 0.05.
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Fig. 11. 
Visual comparisons of L-PET images (top), ground-truth S-PET images (middle), and the 

estimated S-PET images by our method (bottom).
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An et al. Page 34

TABLE I

Comparison with different denoising methods. For PSNR and SNR, higher score is better. For CNR and SUV 

difference, lower score is better.

Method PSNR SNR CNR diff. SUV diff.

mCCA 26.61 ± 1.31 13.75 ± 0.91 0.33 ± 0.18 0.27 ± 0.03

BM3D [38] 24.21 ± 1.94† 13.17 ± 0.97† 0.72 ± 0.48† 0.39 ± 0.10†

OBNM [40] 24.49 ± 1.86† 13.22 ± 0.96† 0.45 ± 0.20† 0.37 ± 0.07†

†
indicates p < 0.01 in the t-test as compared to our method.
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An et al. Page 35

TABLE II

Demographic information of the subjects in the experiments

Subject ID Age Gender (F, M) Weight (Kg)

1 26 F 50.3

2 30 M 137.9

3 33 M 103.0

4 25 F 85.7

5 18 F 59.9

6 19 M 72.6

7 36 M 102.1

8 28 F 83.9

9 65 M 68.0

10 86 F 68.9

11 86 M 74.8
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