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Effective decompression of JPEG document images
The-Anh Pham, Mathieu Delalandre

Abstract—This work concentrates on developing an effective
approach for decompressing JPEG document images. Our main
goal is targeted to time-critical applications, especially to those
situated on mobile network infrastructures. To this aim, the
proposed approach is designed to work either in the trans-
form domain or image spatial plane. Specifically, the image
blocks are first classified into smooth blocks (e.g., background,
uniform regions) and non-smooth blocks (e.g., text, graphics,
line-drawings). Next, the smooth blocks are fully decoded in
the transform domain by minimizing the total block boundary
variation, which is very efficient to compute. For decoding non-
smooth blocks, a novel text model is presented that accounts
for the specifics of document content. Additionally, an efficient
optimization algorithm is introduced to reconstruct the non-
smooth blocks. The proposed approach has been validated by
extensive experiments, demonstrating a significant improvement
of visual quality, assuming that document images have been
encoded at very low bit-rates and thus are subject to severe
distortion.

Index Terms—Document decompression, JPEG decoding, total
variation, soft classification.

I. INTRODUCTION

Currently, due to the quickly expanding variety of portable
digital imaging devices (e.g., cameras, smartphones, electronic
camera-pen systems), the acquisition of document images has
become much more convenient, thus leading to the huge
expansion of document data. In this expeditious evolution,
the real challenges in document image analysis (DIA) have
shifted toward effective pervasive computing, storage, sharing
and browsing of mass digitized documents. A promising and
efficient approach is to exploit the benefits of very low bit rate
compression technologies. Lossless compression algorithms
allow the encoded images to be correctly reconstructed, but
the gain of the compression ratio is not sufficiently high.
In contrast, lossy compression algorithms provide very low
bit rates at the cost of losing a certain degree of image
quality. In addition, the level of image quality reduction can
be easily controlled by pre-determined parameters. For these
reasons, the multimedia data, in their current form, are mostly
compressed using a lossy compression scheme.

With the rapid increase of 3G-/4G-based markets, handheld
devices and infrastructures, both the pervasive computation
of document images and exploitation of related applications
are becoming crucial needs for mobile users. Customers want
to access and retrieve good quality images while expecting
a low bandwidth consumption. Additional needs include fast
response time and memory-efficient usage. These constraints
imply that document images must be encoded and decoded
in a very efficient manner. Several efforts have been carried
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out for lossless and near lossless compression methods that are
devoted to document images such as MRC [1], DjVu [2], Digi-
Paper [3], and TSMAP/RDOS [4]. Although these attempts
were shown to outperform the state-of-the-art compression
techniques on a particular class of document images, they
require new standards for image representation. This constraint
is not always applicable for many applications, especially for
those on mobile markets. Mobile users, in practice, prefer to
keep the existing standards, such as JPEG [5], for the images
being accessed.

This work concentrates on improving the visual quality of
document images compressed by the JPEG standard. At low
bit-rate coding, JPEG encoded images are subject to heavy
distortion of both blocking and ringing artifacts. These artifacts
can make the visual perception of document images impaired
or even invisible. Although a large number of methods have
been proposed to address coding artifacts, they suffer from
the major issue of expensive computational cost. This aspect
prevents them from being applicable for time-critical applica-
tions, especially for those developed on low bandwidth and
restricted resource platforms. In addition, most of the existing
work is devoted to natural images [6]–[14]. There has been
little effort to address the same problem for document content
[15]–[17]. Inspired by all of these facts, we attempt to bring an
effective approach for decoding the JPEG document images.
The proposed approach has been developed to produce a
substantial improvement of visual quality while incurring a
low computational cost. In doing so, we have restricted our
approach to the scenarios that document images have been
compressed in very high compression rates and hence they
are exposed to heavy disturbance of coding artifacts.

The rest of this paper has been organized in the following
structure. Section II reviews the most recent research for post-
processing JPEG artifacts. Section III provides a global de-
scription of the proposed approach, including three main com-
ponents: block classification, smooth block decompression,
and text block decompression. Next, the block classification
process is detailed in Section IV, while the decompression of
smooth blocks and text blocks are described in Section V and
VI, respectively. Experimental results are presented in Section
VII. Finally, we conclude the paper and give several lines of
future extensions in Section VIII.

II. RELATED WORK

Figure 1 provides a classification of different approaches for
JPEG artifact post-processing. Generally speaking, there are
two main strategies for dealing with JPEG artifacts, namely,
iterative and non-iterative approaches. The former approach
is featured by an iterative optimization process in which an
objective function is incorporated based on some prior model
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of the signal or original image. The latter approach is typically
composed of two steps: artifact detection and post-processing.
Both of the approaches can be processed in the spatial image
domain and/or Discrete Cosine Transform (DCT) domain. In
what follows, we shall discuss the most representative methods
for each approach. We shall also provide deeper analysis,
throughout this paper, for the methods that are closely related
to our approach.
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Fig. 1. Classification of different approaches for JPEG artifact processing.

Iterative methods: Typical iterative methods for artifact
post-processing include maximum a posteriori estimation
(MAP) [7], [17]–[19], projection onto convex sets (POCS) [6],
[8], [9], total variation (TV) regularization [10], [20], [21], and
sparse representation based on a learned dictionary (SRLD)
[11], [13], [14]. Table I shows the main characterizations of
each method, and the details are presented hereafter.

TABLE I
CHARACTERIZATION OF ITERATIVE METHODS

Approach Original signal model Domain
MAP Gibbs [7], [17], [18], BS-PM [19] DCT & Spatial
POCS Neighboring constraint sets [6], [8], [9] DCT & Spatial
TV Gradient magnitude sum [10], [20], [21] DCT & Spatial
SRLD Learned dictionaries [11], [13], [14] DCT & Spatial

The MAP-based approach has been well-developed for
image denoising and JPEG artifact treatment. It solves the
inverse problem of finding the image X that corresponds
to the maximum a posteriori probability P (X|Y ) given
an observed image Y . For transform image coding, building
the prior distribution P (X) is a critical task to effectively
denoise the corrupted images. To this aim, Gaussian Markov
random field (MRF), non-Gaussian MRF, and Gibbs models
have been extensively exploited in the literature [7], [17], [18].
A recent model based on block similarity prior model (BS-PM)
[19] has been introduced to characterize more efficiently the
local structure of image content. Once the prior models have
been established, image reconstruction is performed through
an iterative algorithm that consists of two steps: updating the
latent variables and sanity checking based on the quantization
coding constraint. The former is typically done in the image
spatial plane, whereas the latter must be processed in the
transform domain. In this way, computational complexity
becomes a major problem.

Traditionally, POCS-based theory [6], [8], [9] has been
employed for post-processing image coding artifacts. In its
essence, a POCS-based method defines a set of constraints,
each of which is described by a closed convex set. The
artifact-free image is then estimated as the intersection of these
convex sets. The very first constraint is formed from the image
transform coding (i.e., quantization constraint). Depending on
applications, other constraints can be established to describe
the smoothness of the original image. Such constraints, as de-
fined in [8], [9], for instance, account for the close correlation
between two adjacent pixels in either the horizontal or vertical
direction. Because a sufficiently large number of constraints
must be created to characterize the original image, one of
the defects of the POCS-based method involves a variety
of parameters used to define these constraints. In addition,
these methods are evidently subject to being computationally
intensive.

Total variation (TV) regularization methods have also been
widely used to address compression artifacts [10], [20], [21].
The rationale behind the TV approach is realized based on
the fact that the total variation of a noisy signal is generally
higher than that of the original signal. Consequently, image
denoising is handled by minimizing a proper TV function.
The work in [20], for instance, suggested that a weighted
TV function should be computed by using the L1-norm. The
authors in [10] proposed using the L2-norm to build up a
continuous TV model. The main deficiency, however, with
such TV functions is termed as the staircasing effect [22].
Total generalized variation (TGV) has been introduced in [21]
to alleviate this defect to some extent. After the TV functions
have been determined, a variety of well-established methods
in the convex programming field can be applied to solve the
minimization problem.

Recent development of JPEG artifact processing has shifted
towards dictionary-based sparse representation [11], [13], [14].
The authors in [11] first introduced a denoising model based
on sparse and redundant representation. The underlying spirit
is to build up a dictionary consisting of the atoms that are
used to sparsely represent the images. This dictionary can
be constructed in an offline process using a set of noise-free
training image patches [11], [13] or in an online phase using
the input image itself [11], [14]. In the latter case, image
restoration is combined with dictionary learning in one unified
process. In doing so, K-singular value decomposition (K-
SVD) algorithm [23] and orthogonal matching pursuit (OMP)
algorithm [24] are often applied for both dictionary learning
and image denoising. While these methods have been shown to
produce a substantial improvement of visual quality, the main
problem involves the expensive computational cost, making
them inapplicable for time-critical applications.

TABLE II
CHARACTERIZATION OF NON-ITERATIVE METHODS

Reference Artifact detection/localization Domain
[25] Edge location and edge’s proximity DCT
[26] 2-D step function DCT
[27] 2-D step function, edge filtering DCT
[16] Background detection DCT & Spatial
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Non-iterative methods: Generally, a non-iterative method
treats the JPEG artifacts in two steps: detection of possible ar-
tifact locations and artifact cleaning/post-processing. Because
ringing artifacts commonly occur around sharp transitions
such as edges and contours, a number of methods have been
presented to extract edge information. The obtained edge
information (i.e., location and orientation) is then used to guide
the cleaning process. Table II characterizes the key properties
of each method.

In [25], edge map is first extracted in the DCT domain,
provided the assumption that each block contains a simple
straight edge line. Then, the ringing cleaning process is per-
formed in proximity to the edges using several heuristic criteria
(i.e., sharp edge block, edge height, edge fitting quality). The
authors in [26] constructed a model of blocking artifact in the
DCT domain as a 2-D step function. The rationale of using
such a step function is reliant on the fact that the blocking
artifact causes the abrupt discontinuities at the boundaries of
the blocks. Hence, an intermediate block, formed from the
common boundary of two adjacent blocks, is derived in the
DCT domain and is then used to estimate the parameters of the
step function. The estimated parameters served as an indication
of blocking distortion. If the blocking measure is sufficiently
high, blocking treatment is performed by replacing the cor-
responding step function with a linear one. A similar work
was also presented in [27] while incorporating an additional
process to filter out the real edges from blocking edges.

Document-dedicated methods: All the work discussed so
far is specifically designed to address natural images; there
has been little effort devoted to post-processing artifacts for
JPEG compressed document images [15]–[17]. In [17], the
image blocks are first classified into three types: background,
text/graphics and picture blocks. Next, a specific model is
constructed for each type of block while taking into account
the characteristics of the considered blocks. Specifically, the
Gaussian Markov random field (GMRF) model was employed
to characterize the background blocks, and a document im-
age model was introduced for representing the text/graphics
blocks. Block decoding is then performed accordingly to each
type of block. Excellent results were reported in the ex-
periments; however, no discussion concerning computational
complexity was provided. In [15], a biased reconstruction of
JPEG documents is driven by computing the centroid of each
code block provided a prior distribution model of the trans-
form coefficients. To this aim, two models (i.e., Laplace and
Gaussian distribution) are exploited to estimate the centroids
of the code blocks. Experimental results showed slightly better
results when compared with the conventional JPEG decoder.
A report in [17] further shows that this approach is even worse
than the JPEG algorithm for all of the studied datasets.

In [16], a non-iterative and simple computation method
was proposed to specifically address the ringing artifact. It
is based on the observation that the ringing artifact is more
dominated in background regions than in text regions. First,
foreground/background segmentation is performed by using an
automatic thresholding technique [28] in conjunction with a
simple morphological operator. Next, all of the noisy pixels in
the background regions are adjusted by the same value, which

is estimated as the most frequent gray level of the background.
However, ringing reduction is processed only for background
regions, not for the text pixels or in proximity to the text’s
edges. Hence, visual quality improvement is not satisfactory,
although the proposed method is very time-efficient.

Concluding remarks: To conclude this section, we wish to
highlight that, despite increasing attempts devoted to dealing
with compression artifacts, questions have been raised about
the computational complexity of the existing work. Addition-
ally, most research efforts for artifact reduction have been
targeted to natural images. To the best knowledge of the
authors, little attention has been paid to reduce these artifact
for document content [15]–[17]. The most noticeable work
[17] provides a significant improvement of visual quality,
but it is too costly. On the other hand, simple computation
methods, such as [15], [16], do not give sufficiently decent
results. All of these facts have convinced us to seek for a
competitive approach to produce substantially better decoding
image quality while also requiring a very low computational
cost. In the following section, we describe such an approach.

III. OVERVIEW OF THE PROPOSED APPROACH

The proposed approach is briefly described in Figure 2 and
is composed of three main components: (C1) block classi-
fication, (C2) smooth block reconstruction in the transform
domain and (C3) non-smooth block decoding in the spatial
image plane. First, the 8 × 8 DCT blocks are classified into
either smooth blocks (e.g., background, uniform areas) or non-
smooth blocks (e.g., text, graphics, line-drawings, pictures).
Next, reconstruction of smooth blocks is performed solely in
the DCT domain based on two sub-processes: fast extracting
total block boundary variation (TBBV) and minimizing the
TBBV-based objective function. For non-smooth blocks, the
decoding process is carried out only in the spatial domain.
It consists of the construction of a text document model that
accounts for the specific characteristics of document content,
followed by an optimization process for decoding the text
blocks.
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DCT data 

Total block boundary 

variation (TBBV)  

TBBV minimization 

Smooth blocks 

Non-smooth blocks 

Decoded blocks 

IDCT 

Optimization 

Block 

classification 
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Fig. 2. Overview of the proposed approach.

Before going into the details of all of these steps, we shall
review some basic manipulations used in the JPEG codec.
Given an image f that has a size of M ×N , let Bx and By

be the number of non-overlapping 8× 8 blocks in the vertical
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and horizontal directions, respectively (i.e., Bx = dM8 e and
By = dN8 e). For the sake of presentation, we denote a block
located at the kth row and lth column by (k, l) with k =
0, 1, . . . , Bx − 1 and l = 0, 1, . . . , By − 1. We also denote
fk,l(x, y) and F k,l(m,n) as the intensity values and DCT
coefficients of the block (k, l), respectively.

The JPEG algorithm divides an input image into non-
overlapping 8 × 8 blocks, each of which is then individually
compressed under a pipeline of the following steps: DCT
transform, quantization and entropy coding. The first step
computes the DCT coefficients of each image block as follows:

F k,l(m,n) =
e(m)e(n)

4

7∑
x=0

7∑
y=0

fk,l(x, y)C
(2x+1)m
16 C

(2y+1)n
16

(1)
where m,n ∈ {0, 1, . . . , 7}, and the two functions Ca

b and
e(m) are represented in the following expressions:

Ca
b = cos(

aπ

b
) (2)

e(m) =

{
1√
2

if m = 0

1 otherwise
(3)

The DCT is a linear and invertible transform so that the
inverse DCT (IDCT) is given as follows:

fk,l(x, y) =
1

4

7∑
m=0

7∑
n=0

e(m)e(n)F k,l(m,n)C
(2x+1)m
16 C

(2y+1)n
16

(4)
The quantization step divides the DCT coefficients by using

a quantization matrix Q(m,n) and then rounds the results
to the nearest integers. Formally, the quantized coefficients,
F k,l
q (m,n), of the block (k, l) are derived by (5):

F k,l
q (m,n) = round

(
F k,l(m,n)

Q(m,n)

)
(5)

To decompress the image, the IDCT (4) is applied to
the dequantized DCT coefficients, F k,l

d (m,n), of each image
block. Here, the dequantized coefficients are reconstructed in
the following form:

F k,l
d (m,n) = F k,l

q (m,n)Q(m,n) (6)

At low bit-rate compression, because most of the quantized
coefficients are close to zero, the dequantized coefficients
cannot be fully reconstructed. As a result, undesired artifacts
are added to the decoded images. In the following sections,
we present an effective approach for reducing these artifacts.
The presentation of the proposed approach is organized in
the following logical order: block classification, smooth block
reconstruction and non-smooth block decompression.

IV. BLOCK CLASSIFICATION

Block classification is processed in the DCT domain based
on AC energy due to its simple computation and effective
performance. In fact, AC energy is often used in the litera-
ture to differentiate background blocks from text and picture
blocks [15], [17], [29]. In the current work, the DCT blocks
are classified into two types: smooth blocks (i.e., areas of

high correlated information) and non-smooth blocks (i.e., text
blocks, graphics, pictures). Artifact post-processing is carried
out separately for each type of block. We employ a simple
and efficient criterion based on AC energy to perform block
classification. In its essence, the AC energy of a DCT block is
simply computed as the sum of the squares of AC coefficients
of that block. For a smooth block, most of the AC coefficients
are zero or close to zero. Therefore, the corresponding AC
energy should be pretty low. In contrast, a non-smooth block
often has high AC energy. Consequently, block classification
is done by simply thresholding the AC energy by using a
pre-determined threshold parameter Tseg (see the experiment
section). Because the ringing artifact causes severe disturbance
in document readability, it is advised to not miss the true text
blocks. Therefore, the parameter Tseg is preferably set to a
relative low value as to cover the true text blocks.

V. SMOOTH BLOCK DECODING IN DCT DOMAIN

We propose to exploit the total variation (TV) regularization
model to reconstruct the smooth blocks. Traditional TV-based
methods need to process in both spatial and compression
domains [10], [11], [20], [21], [30]. In other words, DCT and
inverse DCT are iteratively applied many times during the
regularization process and thus computational load becomes a
major issue. Differentiating from these methods, we propose
to use the total block boundary variation (TBBV) model to
reconstruct the smooth blocks. Specifically, the TBBV model
is directly processed in the DCT domain and built to account
for distortion at the boundaries of the blocks. In addition, the
iterative regularization process is fully performed in the DCT
domain, avoiding the need of switching back to the spatial
image plane. As a result, it is unnecessary to apply the costly
inverse DCT, making the whole reconstruction process very
efficient.

In what follows, we first provide a formal definition of
total block boundary variation. Next, we present a means to
efficiently compute TBBV in the DCT domain for the full
image level. Computation of TBBV for the smooth blocks is
then simply derived. Finally, we employ Newton’s method to
perform TBBV regularization in the DCT domain.

A. Definition of total block boundary variation

To enjoy the benefits of efficient computation, we propose to
analyze the block variation directly in the DCT domain at the
super-pixel level. Specifically, each block (k, l) is partitioned
into 16 subregions, each of which is regarded as a super-pixel
corresponding to a local window that has a size of 2×2. Each
super-pixel (u, v) is assigned with an average intensity value
Sk,l
uv (u, v ∈ {0, 1, 2, 3}) that is computed as follows:

Sk,l
uv =

1

4

1∑
i=0

1∑
j=0

fk,l(2u+ i, 2v + j) (7)

Only the super-pixels located at the common boundary of
two adjacent blocks are considered to compute the block
variation as illustrated in Figure 3.
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Fig. 3. Computing block boundary variation at 2× 2 super-pixel level.

Formally, the total block boundary variation, TBBV (f), of
the image f is defined as follows:

TBBV (f) =

Bx−2∑
k=0

By−2∑
l=0

(GH(fk,l)2 +GV (f
k,l)2) (8)

where

GH(fk,l) =

3∑
i=0

(Sk,l+1
i0 − Sk,l

i3 )

GV (f
k,l) =

3∑
i=0

(Sk+1,l
0i − Sk,l

3i )

The two components, GH(fk,l) and GV (f
k,l), are called

the horizontal and vertical block boundary variation of the
block (k, l), respectively.

B. Fast computation of total block boundary variation

In this subsection, we investigate a means for the fast
computation of TBBV (f) in the DCT domain. The following
materials are targeted to computing GH(fk,l), although the
same process can be applied to compute GV (f

k,l).
By substituting (4) into (7) and rearranging the terms in a

similar manner to that given in [31], we obtain the following
expression:

Sk,l
uv =

7∑
m=0

7∑
n=0

F k,l(m,n)wuv(m,n) (9)

where wuv(m,n) is derived as follows:

wuv(m,n) =
1

4
e(m)e(n)Cm

16C
(2u+1)m
8 Cn

16C
(2v+1)n
8

To compute GH(fk,l), we define the sub-terms Di with
i ∈ {0, 1, 2, 3} given in (10):

Di = Sk,l+1
i0 − Sk,l

i3 (10)

Specifically, D0 is computed hereafter and Di can be
derived accordingly:

D0 = Sk,l+1
00 − Sk,l

03

=

7∑
m=0

7∑
n=0

(F k,l+1(m,n)w00(m,n)− F k,l(m,n)w03(m,n))

=

7∑
m=0

7∑
n=0

T (m,n)(F k,l+1(m,n)Cn
8 − F k,l(m,n)C7n

8 )

where
T (m,n) =

e(m)e(n)Cn
16C

m
16C

m
8

4

Note that C7n
8 = (−1)nCn

8 ; hence, we obtain:

D0 =

7∑
m=0

7∑
n=0

e(m)e(n)Cn
16C

m
16

4
Cm

8 C
n
8R(m,n) (11)

with R(m,n) = F k,l+1(m,n)−(−1)nF k,l(m,n). In the same
manner, the Di terms (1 ≤ i ≤ 3) are derived by (12):

Di =

7∑
m=0

7∑
n=0

e(m)e(n)Cn
16C

m
16

4
C

(2i+1)m
8 Cn

8R(m,n)

(12)

Denote zk(m,n) = 1
4e(m)e(n)Cn

16C
m
16C

km
8 Cn

8 with k ∈
{1, 3, 5, 7}, it is straightforward to derive the following prop-
erties from zk(m,n):
•

z7(m,n)
z1(m,n) =

z5(m,n)
z3(m,n) = (−1)m

• km = z3(m,n)
z1(m,n) =

C3m
8

Cm
8

(see Table III)
• zk(m,n) = 0 for either m = 4 or n = 4

TABLE III
PRECOMPUTATION OF km

m 0 1 2 3 5 6 7

km 1
C3

8

C1
8

−1 −C1
8

C3
8

C1
8

C3
8

−1 −C3
8

C1
8

Finally, the horizontal block boundary variation, GH(fk,l),
is computed by summing up Di in (12) as follows:

GH(fk,l) =

3∑
i=0

7∑
m=0

7∑
n=0

z2i+1(m,n)R(m,n)

=

7∑
m=0

7∑
n=0

R(m,n)

3∑
i=0

z2i+1(m,n)

=

7∑
m=0

7∑
n=0

R(m,n)Z(m,n) (13)

where

Z(m,n) =

3∑
i=0

z2i+1(m,n)

= z1(m,n)(1 + km + km(−1)m + (−1)m)

= z1(m,n)(1 + (−1)m)(1 + km)

It is worthwhile showing that Z(m,n) = 0 for either m ∈
{1, 3, 5, 7, 2, 4, 6} (see km in Table III) or n = 4. As a result,
GH(fk,l) is simplified to (14):

GH(fk,l) = 4

7∑
n=0
n6=4

R(0, n)z1(0, n)

= 4

7∑
n=0
n6=4

z1(0, n)(F
k,l+1(0, n)− (−1)nF k,l(0, n))

(14)
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Similarly, the vertical block boundary variation, GV (f
k,l),

of the block (k, l) can be derived by (15):

GV (f
k,l) = 4

7∑
m=0
m 6=4

z1(m, 0)(F
k+1,l(m, 0)−(−1)mF k,l(m, 0))

(15)
The computational complexity of (14) in terms of the

number of multiplication (M) and addition (A) is simply 7M
+ 13A. Consequently, computation of both GH(fk,l) and
GV (f

k,l) can be done using 14M + 26A, which is extremely
efficient compared with applying full IDCT (i.e., 4096M +
4096A) or even fast IDCT (i.e., 94M + 454A), as reported
in [32]. As we have already mentioned earlier, the process of
TBBV regularization is applied to the smooth blocks only.
Therefore, we derive an appropriate form, TBBVS(f), to
compute the total block boundary variation for the smooth
blocks as follows:

TBBVS(f) =
∑

(k,l)∈BS

(GH(fk,l)2 +GV (f
k,l)2) (16)

where BS denotes the set of all smooth blocks that are
obtained from the block classification stage (Section IV).

C. Efficient reconstruction of smooth blocks in DCT domain

The decompression of smooth blocks is driven by mini-
mizing a proper objective function that is developed based on
TBBVS(f) while being subject to the quantization constraint
of transform-based coding. Specifically, the quantization con-
straint is established as follows:

F k,l
q (m,n)− 1

2
≤ F k,l(m,n)

Q(m,n)
≤ F k,l

q (m,n) +
1

2
(17)

Reconstruction of the smooth blocks from the quantized
coefficients is shifted to the problem of finding the optimal
solution F̂ , which minimizes the following objective function:

F̂ = arg min
F∈U

fobj(F ) (18)

where

fobj(F ) =
∑

(k,l)∈BS

(GH(fk,l)2 +GV (f
k,l)2)+

λ
∑

(k,l)∈BS

∑
(m,n)∈E

(F k,l(m,n)− F k,l
d (m,n))2

Here, the set U contains all possible F satisfying the
constraint in (17) and λ is the Lagrange constant driving the
restoration process. The set E contains 13 DCT coefficients
that are involved in computing GH(fk,l) and GV (f

k,l) for
each block (k, l). Formally, E = {(u, 0)} ∪ {(0, v)} where
u ∈ {0, 1, 2, 3, 5, 6, 7} and v ∈ {1, 2, 3, 5, 6, 7}. This means
that it is unnecessary to post-process all of the DCT coeffi-
cients. Instead, only the DCT coefficients of the topmost row
and leftmost column of each smooth block are considered.

It is worth pointing out that the objective function (18)
and the constraint set U are both convex. Furthermore, the
objective function is twice-differentiable. This fact drives the
selection of Newton’s method to solve the problem in (18). In

its essence, Newton’s method is an iterative process of finding
the stationary point of the objective function fobj(F ) while
taking into consideration the quantization constraint. Specifi-
cally, the solution is updated at each iteration as follows:

F (t+1) = PU

[
F (t) −

f ′obj(F
(t))

f ′′obj(F
(t))

]
(19)

where:
• F (0) is initialized by concatenating the dequantized DCT

coefficients from all the smooth blocks.
• F (t) is the solution at the iteration t.
• f ′obj(F

(t)) and f ′′obj(F
(t)) are the first order and second

order derivatives of fobj at F (t), respectively.
• PU [X] is a clipping operator to project X into the set
U . Basically, the clipping operator of a scalar real-valued
x projected into the interval U = [u1, u2] is defined as
follows:

PU [x] =


x if u1 ≤ x ≤ u2
u2 if x > u2

u1 if x < u1

(20)

Because of the very fast convergence of Newton’s method,
decent performance can be obtained after a few iterations. In
our experiments, the number of iterations is set to two, unless
otherwise stated.

To this time, we obtain the reconstructed DCT coefficients
that are taking part in the computation of TBBVS(f), while
the remaining DCT data is left unchanged. Next, inverse DCT
transform is applied to represent the image in the spatial
domain. For non-smooth blocks, a dedicated post-processing
algorithm is introduced which takes into consideration the
specificities of document content. This algorithm is presented
in the next section.

VI. NON-SMOOTH BLOCK DECODING IN SPATIAL DOMAIN

One of the key properties of document content is realized by
the unbalanced distribution of non-smooth blocks and smooth
blocks. Generally, the non-smooth blocks are much less dom-
inated than the smooth blocks. Therefore, the non-smooth
blocks can be efficiently handled in the spatial domain. In this
work, we consider the non-smooth blocks as those comprising
texts and graphics/line-drawing objects. For simplification, we
refer to them as text blocks. In what follows, we first introduce
a dedicated model for representing the text blocks. Then, an
effective optimization algorithm is presented to reconstruct
the text blocks by combining Bayes’ framework and log-
likelihood analysis. All of these process are detailed in the
following subsections.

A. Constructing text document model

Let Xb be a text block and µi,j ∈ R be the intensity value
observed at the point (i, j) in the block Xb. For the sake of
presentation, it is assumed that µi,j ∈ [0, 1]. Furthermore, let
µF and µB be the foreground and background intensities of
Xb, respectively, where µF < µB and µF , µB ∈ [0, 1]. In
general, the values µF and µB can be determined in advance
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by employing a foreground/background separation process
of the image decoded by the conventional JPEG algorithm.
For instance, Otsu’s method and the k-means algorithm were
employed in [16], [17] for such a purpose.

To optimize the decoding process of text blocks, we for-
mulate the reconstruction problem as a soft decision making
problem. Specifically, we define two hypotheses H0 and H1

for each text block as follows:
• H0: The pixel (i, j) is a foreground point.
• H1: The pixel (i, j) is a background point.
From the classification point of view, µi,j can be treated as

the evidence score observed at the pixel (i, j). Generally, the
closer to µF (resp. µB), the higher the likelihood that the pixel
(i, j) is a foreground pixel (resp. background pixel). However,
the final decision must be made while taking into account
other context information extracted from neighboring areas. A
simple context rule, for instance, can be extracted as follows:
if two pixels (i, j − 1) and (i, j + 1) are background pixels,
then it is likely that the pixel (i, j) is also a background pixel.
To exploit such context information in a systematic fashion,
it is needed to define an appropriate cost function in order to
associate specific punishment with each decision being made.
Specifically, each decision (i.e., H0 or H1) made for each pixel
(i, j) is associated with a specific error cost that is determined
based on the certainty or confidence of the system about that
decision. The higher is the confidence, the lower is the error
cost and vice versa. The problem now can be stated as follows:
finding the decisions for all pixels of input image so as to
minimize the total error cost. To solve this problem, we shall
first employ a cost function, Clog(µ), introduced in [33] and
then propose a novel algorithm to minimize the cost function.

Cost function for soft decision making: Given a text
block Xb whose intensities are denoted by µi,j , the error cost
function, Clog(µ), of making decisions for all pixels of Xb is
defined as follows:

Clog(µ) =
∑
(i,j)

1∑
k=0

p(Hk|µi,j)C
′
log(Hk, yi,j) (21)

where p(Hk|µi,j) is the posterior probability at the pixel (i, j),
yi,j is the confidence score estimated at (i, j), and C ′log(h, y) is
the cost of making a decision h ∈ {H0, H1} with a confidence
score y ∈ R, which is defined by (22):

C ′log(h, y) =

{
log(1 + exp{−y − logit(p(H0)}) if h = H0

log(1 + exp{y + logit(p(H0)}) if h = H1

(22)
where the logit function is the inverse of the logistic function,
which maps a probabilistic value p ∈ (0, 1) to a real value
y ∈ (−∞,+∞):

y = logit(p) = log

(
p

1− p

)
The confidence score yi,j at the point (i, j) is estimated in

terms of the log-likelihood ratio (LLR):

yi,j = LLR(µi,j) = log

(
p(µi,j |H0)

p(µi,j |H1)

)
(23)

Equivalently, yi,j can be represented in the following form
by using Bayes’ rule:

yij + logit(p(H0)) = logit(p(H0|µi,j))

= log

(
p(H0|µi,j)

1− p(H0|µi,j)

)
(24)

Combining (21) and (24), we can define an individual cost,
Eprob(i, j), for every point (i, j):

Eprob(i, j) =

1∑
k=0

p(Hk|µi,j) log(1 +
p(H1−k|µi,j)

p(Hk|µi,j)
)

= −
1∑

k=0

p(Hk|µi,j) log(p(Hk|µi,j)) (25)

Denoting the two-element set {p(H0|µi,j), p(H1|µi,j)} as
the probability distribution of the point (i, j), the individual
cost Eprob(i, j) can be interpreted as the Shannon entropy
of the point (i, j) in terms of posterior probability [33].
Consequently, the total error cost Clog(µ) is the sum of
probability entropy computed for every pixel (i, j) and can
be represented in the following form:

Clog(µ) =
∑
i,j

Eprob(i, j) (26)

The error cost expressed in (26) can also be interpreted as the
entropy of the entire image f in terms of posterior probability.

The rationale of constructing the cost C ′log(h, y) is inter-
preted as follows. From (23), it can be seen that y goes to
positive infinity as long as the hypothesis H0 is true. Similarly,
y goes to negative infinity if the hypothesis H1 is true. Ideally,
it is expected that h = H0 corresponds to y ∈ [0,+∞) and
h = H1 corresponds to y ∈ (−∞, 0). Therefore, if a decision
is made with a strong confidence (i.e., |y| = ∞), the cost
C ′log(h, y) for that decision is zero. Otherwise, if the system is
not confident about its decision (i.e., |y| <∞), then a specific
cost is given by (22).

Laplace function to model the likelihoods: From the cost
function introduced previously Eq. (21), we have employed
Bayes’ rule to estimate the posterior probabilities p(Hk|µi,j)
and adopted a statistic distribution (Laplace) to model the
likelihoods p(µi,j |H0) and p(µi,j |H1). To be more specific,
the posterior probabilities p(Hk|µi,j) with k ∈ {0, 1} are
computed based on Bayes’ rule, as follows:

p(Hk|µi,j) =
p(µi,j |Hk)p(Hk)

p(µi,j)
(27)

where p(Hk) is the prior probability of the corresponding hy-
pothesis, p(µi,j |Hk) is the probability of finding the evidence
score µi,j given the hypothesis Hk, and p(µi,j) is the prior
probability of µi,j .

The likelihoods p(µi,j |H0) and p(µi,j |H1) can be modeled
based on the fact that p(µi,j |H0) (resp. p(µi,j |H1)) is the
density of µi,j under the condition of the hypothesis H0 (resp.
H1). In addition, as document content is mainly composed of
foreground and background information, it is expected that
p(µi,j |H0) peaks at µi,j = µF and converges to zero for the
values that are further away from µF . Similarly, p(µi,j |H1)
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peaks at µi,j = µB and converges to zero elsewhere. We
experimentally modeled these distributions by using Gaussian
and Laplace functions, and it was found that better results
are achieved with the Laplace model. In addition, the Laplace
model provides the benefits of efficient computation in the
subsequent process of our text block reconstruction algorithm.
Hence, we have adopted the Laplace model to characterize the
two likelihoods of (28) and (29):

p(µi,j |H0) = exp{−k1|µi,j − µF |} (28)

p(µi,j |H1) = exp{−k2|µi,j − µB |} (29)

where k1 and k2 are the parameters controlling the marginal
spreads of the corresponding densities. Figure 4 shows the
marginal densities of p(µi,j |H0) and p(µi,j |H1) with respect
to k1 = k2 = 12, µF = 0.3 and µB = 0.8.
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p(µ)

p(µ|H1)

Fig. 4. The marginal densities of p(µi,j |H0), p(µi,j |H1) and p(µi,j).

The marginal density of p(µi,j) is then derived from
p(µi,j |H0) and p(µi,j |H1) by (30):

p(µi,j) = p(µi,j |H0)p(H0) + p(µi,j |H1)p(H1)

= exp{−k1|µi,j − µF |}p(H0) + exp{−k2|µi,j − µB |}p(H1)
(30)

Here, the prior probabilities p(H0) and p(H1) are chosen
to model the unbalanced distribution of the foreground and
background in document content. Generally speaking, the
background pixels make up a large part of a document’s
content. Figure 4 shows the marginal density of p(µi,j), in
which p(H0) = 0.25 and p(H1) = 0.75. As seen, p(µi,j)
is modeled as a bimodal function, representing the fact that
most of the pixels of a text block Xb are distributed at two
predominant intensities µF and µB . However, the background
pixels occur much more frequently than the foreground pixels.
The bimodal function was also employed in [17] to construct
a text model, but it assumes that the distribution of foreground
and background is balanced and that every pixel value must
fall inside the range between the foreground and background.

Once the prior probabilities and likelihoods are determined,
the posterior probabilities are simply estimated by using
(27). Figure 5 shows the marginal densities of the posterior
probabilities p(H0|µi,j) and p(H1|µi,j) with respect to the
parameter setting aforementioned.
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Fig. 5. The marginal densities of p(H0|µi,j) and p(H1|µi,j).

B. Effective text block reconstruction

To reconstruct the text blocks, we seek for the optimal
values µ̂i,j such that the total error cost Clog(µ̂) is minimized
subject to the constraint that the final solution µ̂i,j must be
driven from the currently observed data µi,j . In doing so, we
propose a post-processing algorithm whose process is evolved
based on the two main phases. The first phase makes a better
estimate of the posterior probabilities by using the currently
observed evidence scores while accounting for the close inter-
action among the pixels in a small neighborhood. The second
phase updates the log-likelihood ratios and evidence scores
by using the newly obtained posterior probabilities. The whole
process is then repeated a number of iterations until the desired
convergence is obtained. In what follows, it is assumed that the
initial intensity values µi,j are computed by using the image
decoded by the JPEG scheme. At each iteration t = 1, 2, . . . ,
the post-processing algorithm performs the following main
tasks:

• Step 1: Initializating the parameters:
– Use Otsu’s method [28] to automatically find the two

dominant intensities µF and µB of the considered
image block.

– Initialize the prior probabilities p(H0) and p(H1)
based on the histograms of the foreground and back-
ground values.

– Initialize the posterior probabilities p(t)(Hk|µi,j) by
using Equation (27) with k ∈ {0, 1}.

• Step 2: Estimate the new posterior probabilities
p(t+1)(Hk|µi,j) for each pixel (i, j). In practice, due to
the close interaction of the point (i, j) with other points
in a small neighborhood, the categorical property (i.e.,
foreground or background) of the location (i, j) is highly
correlated to that of its neighbors. Hence, the posterior
probabilities must be estimated while taking into account
the information observed from the neighbors of (i, j).
Let Ri,j be the set consisting of K neighbors of the
point (i, j), the posterior probabilities p(t+1)(Hk|µi,j) are
estimated as a fusing score as follows:

p(t+1)(Hk|µi,j) = αp(t)(Hk|µRi,j
)+(1−α)p(t)(Hk|µi,j)

(31)
with the context probabilities p(t)(Hk|µRi,j ) defined by:

p(t)(Hk|µRi,j
) =

S
(t)
k,Ri,j

S
(t)
k,Ri,j

+ S
(t)
1−k,Ri,j

(32)
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where

S
(t)
k,Ri,j

= p(Hk)
∏

(u,v)∈Ri,j

p(t)(µu,v|Hk).

In our implementation, we consider a 4-point neighbor-
hood system, i.e., K = 4 and Ri,j = {(i, j − 1), (i, j +
1), (i − 1, j), (i + 1, j)}. The fusing weight α = 0.5 is
used by default.

• Step 3: Update the confidence score yi,j by using Bayes’
rule:

yi,j ← logit(p(t+1)(H0|µi,j))− logit(p(H0)) (33)

• Step 4: Update µi,j using the newly derived yi,j . By
taking the inverse logistic transform of (23) in accordance
with (28) and (29), we have:

yi,j = k2|µi,j − µB | − k1|µi,j − µF | (34)

Generally, solving (34) may lead to more than one
solution and the one that is closest to the original value
is selected.

• Step 5: Update the new error cost:

C
(t+1)
log (µ) =

∑
(i,j)

1∑
k=0

p(t+1)(Hk|µi,j)C
′
log(Hk, yi,j)

• Step 6: Increment t by one and repeat the above steps
for a number of iterations or until the desired converge
is reached.

To tolerate the smoothness among the neighboring blocks,
the Otsu’s method (i.e., Step 1) is applied to a local window
that is positioned at the block center and has a size of
12 × 12. In addition, if a text block is in proximity to some
smooth blocks, a non-local strategy can be applied to correctly
compute the background value µB of that text block. The value
µB can be, for example, chosen as the median intensity value
among those of the neighboring smooth blocks.

C. Convergence analysis

In this section, we provide a brief discussion of the con-
vergence of the proposed text block decoding algorithm. The
underlying point here is to show that the total error cost
Clog(µ), as reformulated by (26) in terms of probability
entropy, is getting dropped as the algorithm evolves.

Recall that, at each iteration of the algorithm, the posterior
probabilities are averaged from the current one and the ones
in a small neighborhood. As such, the total variation of the
posterior probabilities are alleviated and become more and
more smoothed after each iteration. In other words, the cor-
relation between each pixel and its neighbors is incremented
from the posterior probability’s point of view. This process not
only makes the pixels more correlated but also diminishes the
randomness of information: the more the algorithm evolves,
the less random the information is. As a result, the total
probability entropy of the image is decreased from time to
time and the algorithm would converge to a fixed point after
a number of iterations.

Although the convergence is achieved after a finite number
of iterations, it was found that satisfactory results can be

obtained just in the very first iteration. Consequently, the
proposed algorithm runs into a non-iterative fashion. This
finding is extremely desired for our target of supporting real
time applications on 3G/4G mobile platforms. As shown in
the experiment section, the proposed approach gives promising
decoding results at a low cost of computational complexity.

VII. EXPERIMENTAL RESULTS

A. Experimental settings

The proposed approach is evaluated against four other JPEG
artifact post-processing methods, including the classical JPEG
decoder [5], morphological post-processing JPEG document
decoder [16] (i.e., ”Mor” for short), total variation (TV)
method [10] and sparse representation using a learned dictio-
nary (i.e., ”Dic” for short) [14]. The former two methods, as
well as our system, are all implemented in the C++ platform,
and the latter two baseline methods are run in Matlab 2012a.
The TV and Dic methods are selected for experiments, as
they are considered as the state-of-the-art iterative decoding
schemes. The Mor method is dedicated to the artifact post-
processing of JPEG document content. It assumes that docu-
ment images have been segmented into a uniform background
and homogeneous foreground. Then, Otsu’s method is applied
to find the representative intensity value of the background
(i.e., the most frequent one). Next, the cleaning step proceeds
by assigning the representative intensity to all of the noisy
pixels in the background region. A last step of sanity checking
is performed in the DCT domain to prevent over-cleaning.

The public dataset Medical Archive Records (MAR) from
the U.S. National Library of Medicine1 is selected for our
performance evaluation. This dataset consists of 293 real
documents, scanned at 300dpi resolution, covering different
types of biomedical journals and thus could be helpful to
evaluate the performance of the methods on real scenarios. In
addition to these journal documents, we also include a specific
type of administrative documents collected by ITESOFT2

company. This dataset has been used in several works for
document image quality assessment [34]. Figure 6 shows
several thumbnails of these images.

Following the conventional evaluation protocol in the liter-
ature [10], [14], Peak Signal-to-Noise Ratio (PSNR) is used
as the evaluation criterion for assessing the goodness and
robustness of the methods. Formally, the PSNR of two images
I1 and I2 having the same size M ×N is computed by (35):

PSNR(I1, I2) = 10 log10

(
2552

MSE

)
(35)

where MSE is the mean squared error, which is computed as
follows:

MSE =
1

M ×N

M−1∑
m=0

N−1∑
n=0

(I1(m,n)− I2(m,n))2

Because the TV and Dic methods are too costly to run
on the full dataset (i.e., approximately 40 to 50 minutes for
decompressing each image), the PSNR is thus computed for

1http://marg.nlm.nih.gov/
2http://www.itesoft.com/
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a small subset consisting of 10 images randomly selected
from the full dataset. All of our experiments are conducted
on the following machine configuration: Windows 7 (64-bit),
Intel Core i7-4600U (2.1 GHz), 16Gb RAM. Finally, Table
IV reports the parameters used in the proposed approach. The
choice of these values shall be thoroughly analyzed at the end
of this section.

TABLE IV
PARAMETER SETTING IN THE PROPOSED APPROACH

Parameter Value Description
Tseg 15 Block classification threshold (Section IV)
λ 8 Lagrange constant for smooth block optimization
α 0.5 Defined in Equation (31)
k1 20 Defined in Equation (28)
k2 21 Defined in Equation (29)

B. Results and discussion

As the proposed decoding algorithm performs block decod-
ing based on the block classification results, we first provide
a few results and analysis of the block segmentation process.
In the literature [15], [17], image blocks are often classified
into three groups: background, picture, and text blocks. In
all these works, the AC-based energy is a common criterion
to differentiate the background blocks from the rest. While
the background and text blocks can be handled effectively
by designing specific decoding algorithms, the picture blocks
present little interest in document content and are often left
unchanged [17]. In the current work, we also restricted our
approach to work on smooth block (e.g., background) and non-
smooth blocks (e.g., text/graphics), that is often the case for
a wide range of document content, from text documents (e.g.,
books, papers) to administrative documents (bank cheques,
forms, receipts). Block classification thus enters in a traditional
binary classification problem with a precision/recall evaluation
protocol. In our context, it is preferred not to missing the
true text/graphics blocks (i.e., true positives) because these
blocks account for the foreground content that characterizes
the main information of a document. It does not matter if
some smooth blocks are mis-classified as text/graphics blocks
(i.e., false positives) except the rise of computational overhead.
Consequently, the parameter Tseg is favorably set to a relative
low value. In Figure 7, we provide some visual results of block
classification. Here, the smooth blocks are presented in white
value and the non-smooth blocks are in dark gray color. As
can be seen, the segmentation results look quite satisfactory
although the AC-based energy is a conceptually simple crite-
rion. The obtained smooth blocks mainly corresponds to the
background regions, whereas the non-smooth blocks explain
for the text elements and graphics content. As will be seen
latter in the parameter setting part, more detailed analysis on
the sensitivity of the parameter Tseg shall be discussed.

Next, we present the comparative results of all the studied
methods in terms of PSNR score. Figure 8(a) shows the PSNR
results of five methods for ten images randomly selected from
the dataset. Each image is encoded at five qualities (i.e.,
{2, 4, 6, 8, 10}) and then the overall bit-rates are averaged,

using uniform interval, for the ten images to create the
following data points of bit-rate: {0.154, 0.190, 0.226, 0.262,
0.298, 0.334, 0.370, 0.406, 0.442, 0.478}. The PSNR measures
are finally averaged via these data points. For detail of this
procedure, readers are referred to the Appendix accompanying
with this paper.

As seen, the proposed method significantly outperforms all
of the others at every bit-rate, especially when the bit-rate
is sufficiently high (i.e., > 0.25). On average, the proposed
method gives an improvement of 2.1 (dB) compared with
the conventional JPEG decoder. In contrast, the Dic and TV
schemes give slightly better results than the JPEG algorithm.
The TV method is even outperformed by the JPEG decoder
at low bit-rates (i.e., < 0.22). These results may indicate that
the two computational intensive methods are not well suited to
handle JPEG document artifacts, although they are considered
as the state-of-the-art decoding schemes for natural images.

The Mor method works reasonably well when considering
the fact that it is a non-iterative method that was specifically
developed to have the benefit of low computational cost. It
is worth highlighting that the MAR dataset is composed of
binary document images. Hence, the images have perfectly
uniform backgrounds and homogeneous foregrounds, which
is a key assumption for the Mor method. Furthermore, the
sanity check step of the Mor method is always kept active
to ensure that better decoding results are always obtained.
However, the quality improvement of the Mor method is still
less than half of that of our approach. This is because the Mor
algorithm performs artifact cleaning only on the background
pixels. Hence, the distortion appearing inside the text and
around the text’s edges is not treated. The outstanding results
of our approach evidently confirm the robustness and goodness
of the proposed text models for document content. The results
in Figure 8(a) also reveal that the ten selected images have
varying document content such that the PSNR at the bit-rate
of approximately 0.4 (bpp) is even lower than that at the bit-
rate of 0.3 (bpp).

Figure 8(b) additionally provides the PSNR measures of
our approach, the Mor method and the JPEG decoder for the
full MAR dataset. We observe the same behavior of the three
methods as before. The proposed approach is highly superior
to the JPEG decoder, with a quality improvement of up to
2.3 (dB) when the bit-rate is higher than 0.3 (bpp). At lower
bit-rates, the quality gain is smaller yet still remarkably high.
This observation is featured by the fact that, at low bit-rate
coding, much of the information is eliminated in addition to
the incorporation of spurious artifacts. The proposed approach
handles very well the spurious artifacts (i.e., true negatives)
but is less effective at reconstructing the original information
(i.e., true positives). This situation also happens to many
other coding artifact post-processing schemes. Figure 8(a)
experimentally accounts for this proposition, where the Dic
and TV methods do not significantly outperform the JPEG
algorithm for bit-rates < 0.25 (bpp).

Figure 9 visually shows the decoding results of the proposed
method in comparison with the JPEG algorithm. The top row
presents several original text images. The middle row shows
the results obtained by the JPEG decoder, and the bottom row
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(a) (b)

Fig. 6. Examples of images used in our experiments: (a) binary journal document, (b) gray-scale administrative document.
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Fig. 10. Illustration result for a grayscale and noisy image (quality = 9):
original image (top row), the result decoded by JPEG scheme for the clipped
parts (middle row), and the result of the proposed approach (bottom row).

plots the results of our decoder. Here, the original images
are encoded at the quality of 3. It can be seen that a severe
degree of ringing and blocking artifacts is added to the JPEG
decoding results, which really makes the visual perception
of documents become annoying. In contrast, these artifacts
are greatly removed in the results decoded by our scheme.

Most of the foreground and background values are correctly
reconstructed by the proposed approach. The obtained results
are very close to the original texts, even though the considered
compression rate is quite high.

Figure 10 demonstrates the decoding results for a grayscale
and noisy image for visual inspection. The original image is
depicted in the top row, and the decompression results for
the two clipped portions are shown in the middle and bottom
rows with respect to the results of the JPEG decoder and
our proposed approach. The coding quality is set to 9 in
this experiment. It is easily seen that the text decoded by
the JPEG algorithm is heavily distorted by blocking artifacts
for all of the regions inside each character. In addition, the
ringing artifacts appear around the edges of the text and
of the asterisk symbol. When compared with the decoding
result of our approach, both ringing and blocking artifacts
are nicely treated. The intensity values inside the characters
and the asterisk are homogeneously dominated, making them
insensitive to blocking artifacts. The spurious details around
the text’s edges are also smoothed out so that they are
homogeneous with the background. It is worth mentioning that
the proposed approach does not incur the blurring effect for
the decoded results. It still produces sharp transitions between
the text and background.

We also provided additional results in Figures 11-12 to
highlight the robustness of the proposed method when dealing
with heavy distortion of blocking and ringing artifacts. In
Figures 11(a) and 12(a), blockiness is clearly visible in the
results of the JPEG algorithm, making the image inadmissible
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(a) (b)

Fig. 7. Block classification results for the images in Figure 6 (a,b) with quality= 9: white for smooth blocks and dark gray for non-smooth blocks.

for visual perception. Here, the artificial blocks are appearing
densely around the smooth regions as well as the text regions,
globally creating an annoying chessboard view. In contrary,
the results of the proposed method, as presented in Figures
11(b) and 12(b), show that these unpleasant effects have been
greatly removed, while adequately preserving finer details of
the characters. Although there are still some subtle remaining
trails of blockiness (e.g., small bar lines in the top-right
of Figure 12(b)), the visual quality of the image has been
substantially improved.

The proposed approach works effectively not only for text
images but also for graphical content. Figure 13 experimen-
tally justifies this point. The original image is plotted in
Figure 13(a). After compressing the image at the quality of
9, part of the decoding result is enlarged in Figure 13(b),
which corresponds to the JPEG decoder, and (c), which
corresponds to the proposed approach. Again, blocking and
ringing artifacts are clearly visible in the JPEG decoding result.
In contrast, the proposed approach successfully separates the
(dark) bar lines from the background. The bar lines are
uniformly reconstructed while maintaining finer details at the
contour locations. Hence, the artifacts are mostly invisible in
the decoding result.

Lastly, we experimentally investigate the impact of de-
coding a mixed picture and text document. Figure 14 gives
an exemplified image where the characters are embedded in
the background picture. As for block segmentation, most of
the image blocks in this image are classified as text blocks,
although they can be actually considered as picture blocks or

(a) (b)

Fig. 12. Deblocking result (quality = 9): (a) JPEG decoder, (b) the proposed
approach.

smooth blocks. The decoding result of the proposed method
is presented in Figure 14(b) where we can observe that the
image details tend to be more sharpening. The ringing artifact
occurring in proximity to the characters is eliminated, while
the blockiness is lessened in the picture region. However, the
finer details appearing on the face and the texture cloth of the
lady are not completely reconstructed. This shows the limita-
tion of the proposed method when working on texture regions
or multi-model image content. In that case, specific deringing
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Fig. 8. The PSNR results of all the studied methods: (a) the results for 10 randomly selected images, (b) the results for the full dataset.
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Fig. 9. Illustration results for several clipped binary text images: original text (top row), the results of the JPEG decoder (middle row) and the results of the
proposed approach (bottom row).

methods for natural images (e.g., total variation regularization,
sparse representation) would be more appropriate to handle
such issues.

C. Running time analysis

This section provides an evaluation of decoding time for
four methods, including the TV method, the proposed method,
the Mor method and the baseline JPEG scheme. Specifically,
the processing time is computed under the assumption that
each method takes as an input the quantized DCT coefficients
of the compressed image. Hence, the JPEG’s decoding time
concerns the computational cost of the inverse DCT transform
only. This serves as a baseline benchmark for the other meth-
ods. All of the methods are run on a CPU machine without
parallel implementation. Because the TV and Mor methods are
implemented in Matlab, it is difficult to compare directly these
methods with the others. Fortunately, the C++ version of the
TV method is available in the original paper, accompanied
with the processing time. Hence, we have reproduced the

decompression time of the TV method reported in the original
paper [10].

TABLE V
A REPORT ON DECOMPRESSION TIME (MS)

Image size TV method Our method Mor method JPEG
512× 512 588 20 12 4

1600× 1200 4459 130 71 10
4272× 2848 28257 690 424 20

Table V gives a comparative result of the processing time
of the studied methods for three different image sizes. As
expected, the Mor decoder works very efficiently because
it was developed as a non-iterative and simple computation
method. The proposed approach is more computationally
intensive than the Mor method, but it still has a very low
computational cost. For instance, the decoding time of the
proposed method for a quite large grayscale image (e.g.,
4272 × 2848) is 690 milliseconds (ms) when compared with
424 (ms) of the Mor method. This obtained result is very
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(a)

(b)

Fig. 11. Robustness of the proposed method for dealing with both blocking and riniging artifacts (quality = 9): (a) JPEG decoder, (b) the proposed approach.

(a) (b)

Fig. 14. Result of decoding a mixed text and picture image (quality = 9): (a) JPEG decoder, (b) the proposed approach.

promising for the proposed approach when considering the
fact that our PSNR improvement is two times higher than
that of the Mor method (see Figure 8(b)). The TV decoder is
undoubtedly the most computationally expensive method due
to its iterative process of switching back and forth between
the compression and spatial domains. Its processing time,
for instance, is approximately 28.2 (seconds) for decoding a
4272× 2848 image.

D. Impact of parameter setting

We are now studying the robustness of the proposed ap-
proach according to different configurations of parameter
setting. The studied parameters are reported in Table IV,
including Tseg , λ, α, k1 and k2.

The first parameter, Tseg , served as the thresholding value
to classify an image block into either smooth block or non-
smooth block. To justify the sensitivity of this parameter, we
have varied Tseg in a wide range of [10, 100] while the other
parameters are left unchanged. Consequently, it was found that

the obtained results are very stable, i.e., the maximum variation
of PSNR is 0.0001 (dB). In addition, we also study the impact
of Tseg when varying the quantization step size (i.e., the
quality parameter). To this aim, the proposed algorithm is
applied to the full MAR dataset at two very different qualities
q ∈ {3, 30} and with Tseg ∈ {0.01Em, 0.1Em, 0.5Em}
where Em is the maximum AC energy of each image. The
results presented in Table VI show that at very low quality
compression (e.g., q = 3), the variation of PSNR scores for
the two lower settings of Tseg is negligible (e.g., 0.034 (db)).
However, at higher value Tseg = 0.5Em, PSNR score is
remarkably reduced by 1.079 (db) because many text blocks
are mis-classified as smooth blocks and hence not processed
for deringing. Table VI also reveals that the impact of Tseg
seems to be quite subtle when considering small quantization
step size (i.e., q = 30). These results again verify our
proposition that it is advised to choose a low value for Tseg
in order to ensure a stable performance of the system. In that
case, the system operates at low precision and strong recall
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Fig. 15. Evaluation of parameter impact of the proposed approach: (a) parameter λ, (b) parameter α, and (c) parameters (k1, k2). The dash lines correspond
to the default setting which is detailed in Table IV.
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Fig. 13. Example results for graphical image (quality = 9): (a) original
image, (b) magnified version of JPEG decoding result for the clipped part,
(c) decoding result for the clipped part by the proposed approach.

for text blocks with little impact on PSNR results.

TABLE VI
AVERAGE PSNR SCORES FOR DIFFERENT SETTINGS OF Tseg AND q

Tseg = 0.01Em Tseg = 0.1Em Tseg = 0.5Em

q = 3 22.838 22.804 21.725
q = 30 28.662 28.644 28.623

Next, we discuss about the effect of setting the parameter
λ. The choice of the parameter λ is a more challenging task
for the TV-based methods. Generally, setting λ to a higher
value would result in a fewer number of iterations and vice
versa. This is because of the fast convergence of Newton’s
method, which is reliant on how close the optimal solution
is to the observed data. Hence, we have studied the impact
of λ by computing the average PSNR for the full dataset for
each λ ∈ {2, 4, 8, 10, 12}. The maximum number of iterations
is set to six. As shown in Figure 15(a), the maximum PSNR
variation is 0.063 (dB) with respect to λ = 2 and at the bit-
rate of approximately 0.26 (bbp). This small variation shows
the robustness of the proposed algorithm to λ.

The last three parameters α, k1 and k2 are used in the text
decoding process. We vary the parameter α in the range of

[0.3, 0.7] with the incremental step of 0.1 and the following
combinations are set to the parameters (k1, k2): (10, 11), (15,
14), (20, 21), (25, 24). Figure 15(b) illustrates the impact
of the parameter α in which we can observe that setting
α = 0.3 will result in the maximum PSNR variation of 0.33
(dB). Consequently, decent compromise of α would be in the
range of [0.4, 0.6] where the highest variation is approximately
0.11 (dB). Concerning the parameters k1 and k2, Figure 15(c)
clearly shows that the proposed algorithm is quite robust to
different settings of these two parameters, with the maximum
variation of 0.075 (dB).

E. Comparison with advanced codecs

All the baseline methods presented afore-mentioned fall into
the same class of post-processing DCT data in which they
are designed to work only in the decoder’s side without any
information about the original signal. We are now going to
verify how efficient are these methods when compared with
novel coding technologies which are expected to be potential
successors of JPEG standard. Among many advanced codecs
(e.g., WebP3, Mozjpeg4, JPEG-XR5), High Efficiency Video
Coding (HEVC) [35] is a very promising technology for video
compression. HEVC has been designed to exploit effectively
the spatial redundancy for both inter mode (i.e., between
successive frames) and intra mode (i.e., within a single frame).
Due to its excellent coding quality, HEVC has been adapted
to still picture coding by using its intra mode. This is exactly
what the emerging codec BPG (Better Portable Graphics)6

does. A recent study of Mozilla7 showed that HEVC (intra
mode) or BPG is the best performer among many state-of-
the-art codecs in use today.

In this part, we are comparing the performance of the
proposed method over the BPG codec. The evaluation protocol
must be driven in an objective way to highlight the difference
in characteristics (e.g., post-processing versus pre-processing)
of each method. To be more specific, the proposed method is

3https://developers.google.com/speed/webp/?csw=1
4https://github.com/mozilla/mozjpeg
5http://jpeg.org/jpegxr/index.html
6http://bellard.org/bpg/
7http://people.mozilla.org/∼josh/
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a post-processing technique which is applied at the decoder’s
side and thus does not have any information in advance
about the original image. In contrast, BPG falls into a pre-
processing scheme and hence has complete prior knowledge
about the clean signal, enabling it to perform both rate-
distortion optimization at the encoder’s side as well as post-
processing at the decoder’s side.

To address this difference, we propose a three-scenery
evaluation protocol as detailed in Figure 16. In the first case,
BPG is applied to original images and hence is different from
our method in the input. For the two latter cases, we pass
the same input to BPG and our method. This means, BPG
takes as input the DCT data in JPEG files, encodes them with
the best quality, and performs decompression to get back the
results. This scheme is referred to as BPG-JPEG. Our method
is applied, as usual, to the DCT data for post-processing the
JPEG files.
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Fig. 16. Evaluation workflow for BPG and the proposed approach.

Figure 17 shows the PSNR scores of four methods, includ-
ing BPG, BPG-JPEG, JPEG and the proposed method when
applied to text documents of the MAR dataset. As seen, BPG
gives very interesting results, while BPG-JPEG’s performance
is very close to that of the JPEG decoder. On average, BPG
produces an improvement of up to 5.9 (db) and 4.2 (db) over
the JPEG and the proposed method, respectively. However,
the superiority of BPG comes mainly from the pre-processing
phase (i.e., at the encoder’s side) by its intensive rate-distortion
optimization process and thus is subject to intensively com-
putational cost (see Table VII)8. For instance, it takes BPG
3430 (ms) and 1190 (ms) for encoding and decoding a 300dpi
binary document image (e.g., 2544×3296), respectively. When
compared with JPEG9, the processing times are 60 (ms) for
compression and 110 (ms) for decompression. In other words,
BPG makes a deceleration factor of around 57x and 11x
over JPEG for compression and decompression, respectively.
Although the proposed method takes a slight more overhead
of computation for decompression, it is still very efficient
compared with BPG. Figure 17 also verifies that BPG-JPEG
gives almost no benefit when working on the decoder’s side
of JPEG data. This implies that a huge amount of JPEG files

8The fast algorithm of BPG is used, known as x265, version 0.9.6.
9JPEG’s source code is available at: http://libjpeg.sourceforge.net/

being in use widely today would not be benefited by using
BPG. Lastly, some parts of HEVC codec used in BPG are
patented. Therefore, to replace the current JPEG standard, it
is needed to wait for the complete standardization of BPG
or HEVC (intra mode). In the meanwhile, JPEG standard and
well-optimized JPEG schemes shall continue to be used widely
as argued by a recent study conducted by Mozilla10.
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Fig. 17. PSNR results of BPG, BPG-JPEG, JPEG and the proposed method.

TABLE VII
PROCESSING TIME (MS) OF BPG, JPEG AND OUR METHOD

Task BPG JPEG Our method
Compression 3430 60 60

Decompression 1190 110 430

VIII. CONCLUSIONS

In this paper, we have presented a novel approach for
optimally decompressing the JPEG document images. First,
the DCT blocks are classified into either smooth blocks or
non-smooth blocks. Specific decoding algorithms are then
developed for each type of block. For smooth blocks, we
first introduce a fast technique to compute the total block
boundary variation (TBBV) in the DCT domain. This efficient
TBBV measure is used as an objective function to recover
the smooth blocks. Reconstruction of non-smooth blocks is
performed by incorporating a novel text model that accounts
for the characteristics of the document content. The proposed
approach has been validated through extensive experiments in
comparison with other methods. Experimental results showed
that the proposed approach gives a substantial improvement
of visual quality while incurring a relative low computational
cost.

Although the proposed approach gives quite interesting re-
sults, there is still room for further improvements. In this work,
it is assumed that the picture blocks are not handled. Therefore,

10https://blog.mozilla.org/research/2014/03/05/introducing-the-mozjpeg-
project/
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exploiting well-established approaches dedicated to natural im-
ages (e.g., sparse representation, total variation regularization)
for dealing with these blocks would be a potential direction.
Additionally, fast implementation of the proposed algorithm
with the inclusion of parallelized and vectorized computing
will be investigated. Furthermore, extension of this work to
color images should be considered as well. At last, the pro-
posed text model assumes a bimodal function for the intensity
distribution of each image block. Although this assumption is
reasonable for a wide range of document content, it may not
fit with multi-modal distribution (e.g., gradient texts, texture
content). Therefore, novel post-processing methods to deal
with coding artifacts for such specific document content would
be a challenging and attractive problem for researchers.

APPENDIX
COMPUTING AVERAGED BIT-RATE AND PSNR

Given a set of N input images, namely I1, I2, . . . , Ik,
. . . , IN , we compress each image Ik at 5 different encoding
qualities (i.e., q ∈ {2, 4, 6, 8, 10}). Let Ck,q be the image
obtained by compressing Ik using the quality q, the bit-rate and
PSNR score computed from the original image Ik and its com-
pressed version Ck,q are denoted by BRk,q and PSNRk,q ,
respectively. From all the pairs (BRk,q, PSNRk,q) obtained
previously, we create a histogram of PSNR scores as follows:

• Initializating the minimum bit-rate (minBR), the uni-
form interval of bit-rate (stepBR), the number of bit-rate
points (numBR), the occurrences of bit-rate (count[])
and the histogram of PSNR (hist[]):

minBR← 0.154

stepBR← 0.036

numBR← 9

hist[i]← 0

count[i]← 0

where i = 0, 1, 2, . . . , 9.
• For each pair (BRk,q, PSNRk,q) with k = 1, 2, . . . , N

and q ∈ {2, 4, 6, 8, 10}, we update hist and count as
follows:

index← round((BRk,q −minBR)/stepBR)
hist[index]← hist[index] + PSNRk,q

count[index]← count[index] + 1

• Finally, compute the uniformly spaced data points of bit-
rate and the averaged PSNR scores:

dataPoints[i]← minBR+ i ∗ stepBR
hist[i]← hist[i]/count[i]

where i = 0, 1, 2, . . . , 9.
• For display purpose, make a plot of hist[i] over
dataPoints[i].
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