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Abstract

With the increased focus on visual attention (VA) in the last decade, a large number of computational

visual saliency methods have been developed over the past few years. These models are traditionally

evaluated by using performance evaluation metrics that quantify the match between predicted saliency

and fixation data obtained from eye-tracking experiments on human observers. Though a considerable

number of such metrics have been proposed in the literature, there are notable problems in them. In

this work, we discuss shortcomings in existing metrics through illustrative examples and propose a new

metric that uses local weights based on fixation density which overcomes these flaws. To compare the

performance of our proposed metric at assessing the quality of saliency prediction with other existing

metrics, we construct a ground-truth subjective database in which saliency maps obtained from 17

different VA models are evaluated by 16 human observers on a 5-point categorical scale in terms of

their visual resemblance with corresponding ground-truth fixation density maps obtained from eye-

tracking data. The metrics are evaluated by correlating metric scores with the human subjective ratings.

The correlation results show that the proposed evaluation metric outperforms all other popular existing

metrics. Additionally, the constructed database and corresponding subjective ratings provide an insight

into which of the existing metrics and future metrics are better at estimating the quality of saliency

prediction and can be used as a benchmark.
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I. INTRODUCTION

Visual attention (VA) is the broad area of research that aims to explain the mechanisms by

which the human visual system (HVS) filters the vast amount of visual information captured

by the retina. VA has applications in a large number of diverse areas like object recognition,

image segmentation, compression, selective reduced-power visual processing, to name a few.

As a result, there has been a lot of focus recently on developing computational VA models.

The VA mechanism is considered to be a combination of instantaneous pre-attentive, bottom-up

processes that depend on low-level cues, and much slower, top-down, cognitive processes that

depend on high-level precepts. Most of the existing models are based on bottom-up concepts and

output what is known as a saliency map that gives the visual importance of each pixel location.

Given the large number of VA models to choose from, it is necessary to evaluate these models.

VA models are traditionally evaluated by comparing the saliency maps with eye-tracking data

that is obtained from human observers. Several performance metrics that objectively quantify the

match between the predicted saliency map and eye-tracking data have been introduced over the

past decade for evaluating VA models (see [1] for a detailed review). A number of studies like

those by Toet [2], Borji et al. [3], and Judd et al. [4] have evaluated state-of-the-art VA models

using a subset of these metrics. However, none of these studies have evaluated the effectiveness

of existing metrics in assessing the quality of VA models and ignore certain notable flaws in

them. The motivation for the proposed metric is to provide a more accurate assessment of the

quality of visual saliency prediction than existing metrics, which can aid in a better comparative

evaluation of VA models. The proposed metric can also act as an improved measure of cost

for training VA models that use machine learning. Yet another application for the proposed

metric is faithful objective comparison of eye-tracking equipments. Given the importance of

accurate evaluation of VA models, there have been a few papers in recent years that discuss

metrics. LeMeur and Baccino [5] gave an overview of existing performance metrics in literature

and discussed their strengths and weaknesses. Riche et al. [6] provided a taxonomy for existing

metrics and also studied the correlation between the metrics. They showed that each metric alone

is not sufficient to evaluate a VA model and suggested the use of a combination of metrics to

get a better estimate of performance. Recently, Gide et al. [7] discussed known flaws in existing

metrics through examples and proposed a metric, sNSS, that resolves the center-bias problem

in the Normalized Scanpath Saliency (NSS) metric [8] through shuffling. However, none of
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TABLE I: Evaluated Metrics.

Metric Name Category Ground-truth

AUCBorji [3] Location-based Fixation Points

AUCJudd [4] Location-based Fixation Points

sAUC [3] Location-based Fixation Points

WFβ [10] Location-based Fixation Density Map

NSS [3] Value-based Fixation Points

sNSS [7] Value-based Fixation Points

CC [3] Distribution-based Fixation Density Map

SIM [4] Distribution-based Fixation Density Map

EMD [4] Distribution-based Fixation Density Map

MAE [11] Distribution-based Fixation Density Map

these works provide a common benchmark to compare the performance metrics.

The key contribution of this paper is to propose a novel metric that assigns locally adaptive

weights to fixation points based on local fixation density and thus gives more importance to the

visually relevant fixations in the ground-truth eye-tracking data. We also address the problem of

a lack of a benchmark for evaluating existing and future performance metrics by constructing a

subjective database in which ratings on a 5-point categorical scale by human observers are used

to rate saliency maps of several VA models based on their visual resemblance to ground-truth

saliency maps. The average ratings or mean opinion scores (MOS) are then correlated with the

performance metric scores to evaluate the metrics.

This paper is organized as follows. In Section II we highlight the known problems in existing

popular metrics [9] through illustrative examples. We then propose a new metric that uses locally

adaptive weights for fixation points in Section III. The details of the subjective study are presented

in Section IV, and the correlation results for the existing and proposed metrics are presented in

Section V. Finally, we conclude the paper in Section VI and also provide directions for future

research.

II. EXISTING METRICS AND THEIR SHORTCOMINGS

Existing metrics can be classified into the following three major categories: value-based,

location-based, and distribution-based, depending on the type of similarity measure used to

compare the predicted saliency map to the eye-tracking data [6]. The value-based metrics focus

on the predicted saliency map values at fixation points, the location-based metrics focus on how
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well the salient regions in the predicted saliency maps match with the locations of the fixation

points, and the distribution-based metrics focus on the differences in the statistical distributions

of the predicted saliency maps and fixation points. In addition to these categories, metrics can

also be classified based on the type of ground-truth used. Some metrics use only the fixation

locations from the eye-tracking data whereas others use a ground-truth saliency map (GSM)

which is obtained by convolving a 2D Gaussian with the fixations and normalizing the resulting

map. Several recent studies have used different types metrics to benchmark VA models. Toet [2]

evaluated several VA models by using the Spearman’s correlation coefficient. More recently, Borji

et al. [3] used the AUCBorji, CC and NSS measures and Judd et al. [4] used the AUCJudd,

Similarity and EMD metrics to evaluate several VA models. The MIT saliency benchmark

project [9] is an up-to-date online benchmarking resource that lists the performance of all the

recent state-of-the-art VA models using seven popular evaluation metrics that are a combination

of those used in [3] and [4]. The metrics used by the MIT Saliency Benchmark [9] along with

recently proposed metrics WFβ [10] and sNSS [7] in addition to a baseline metric MAE [11]

are listed in Table I along with the categories they belong to, as well as the type of ground-truth

used.

The first notable and well-analyzed problem with existing metrics is the problem of center-

bias [1], [7], [5]. This problem arises due to an inherent tendency of images and photographs

to contain objects of interest in central regions as compared to peripheral regions. Most metrics

that do not factor the center-bias in their formulation tend to incorrectly reward models that

independent of content assign higher importance to central regions and lower importance to

peripheral regions. One way of tackling this issue is through “shuffling” in which ground-truth

fixations for all other images in the dataset are randomly sampled and high saliency predictions

at such locations are penalized. Consequently, models that blindly reward central regions are

penalized to a greater extent by the shuffling process, and receive a much lower score than more

discriminative models [1]. An illustration of the effect of center-bias on shuffled and non-shuffled

metrics is shown in Figure 1. As shown in Figure 1, the non-shuffled metrics like AUCBorji,

AUCJudd, CC, EMD, SIM , and NSS tend to give higher scores to models that assign higher

saliency to central regions as compared to the boundaries . As a result, these incorrectly result in

higher performance scores for a centered Gaussian blob (Figure 1(c)) as compared to a saliency

map from a VA model (Figure 1(d)). On the other hand, the shuffled metrics assign a better

score to the AIM [12] saliency map over the centered Gaussian map.
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(a) Original Image (b) Ground Truth (c) Centered Gaussian (d) AIM [12]

Non-shuffled Metrics (c) (d)

AUCBorji [3] 0.8195 0.7509

AUCJudd [13] 0.8264 0.7760

CC [13] 0.4522 0.4359

SIM [13] 0.3415 0.3398

EMD [13] 3.2479 3.5294

NSS [8] 1.2347 1.3745

Shuffled metrics (c) (d)

sAUC [3] 0.5979 0.6689

sNSS [7] 0.4853 0.8911

Proposed sWNSS 0.2144 0.9104

Fig. 1: Center bias problem in existing metrics that is rectified by the shuffled metrics. For EMD,

a lower score indicates better performance; for the other metrics, a higher score indicates better

performance.

However, the AUC metrics including the sAUC suffer from another notable flaw known as

the interpolation flaw (described in detail in [10]). As seen in Figure 2, AUCBorji, AUCJudd

and sAUC are less sensitive to false-positives. As a result, a “fuzzy” ground-truth saliency

map created by increasing the background activity in the neighborhood of a true-positive peak

incorrectly gets higher or almost similar scores than the actual ground-truth saliency when using

the AUC-based metrics. The other metrics NSS [8], CC [3], EMD [9] and SIM [9] do not

exhibit the interpolation flaw but do suffer from the center-bias problem as seen in Figure 1. Of

these metrics, only NSS is a viable candidate to be shuffled to tackle the center-bias issue as

suggested in [7]. This metric termed Shuffled NSS or sNSS for short is given by

sNSS = NSS(p)−NSS(r) (1)

where p and r denote, respectively, the ground-truth fixation points for the image and the

randomly sampled non-fixation points from the set of fixation points for other images in the
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Fig. 2: AUC Interpolation flaw. Top Row: (Left to Right) Ground-truth saliency map with ground-

truth fixations and corresponding ROC curves for AUCBorji, AUCJudd and sAUC. Bottom Row:

(Left to Right) Fuzzier version of the ground-truth saliency map with ground-truth fixations and

corresponding ROC curves for AUCBorji, AUCJudd and sAUC.

dataset and

NSS(x) =
1

N

∑
x∈X

S(x)− µs
σs

. (2)

In (2), µs and σs are, respectively, the mean and standard deviation of the predicted saliency

map S and N is the number of points in the set X . The random sampling for the non-fixation

points r is repeated a number of times, typically 100, and the final result is the average of scores

obtained for each of these trials. The sNSS metric improves on the sAUC scores by correctly

assigning a better score to the saliency map in Figure 3(d) as compared to the one in Figure 3(c).

It also improves upon NSS by giving the centered Gaussian map in Figure 3(e) a low score.

For the sAUC, the locations used for determining false-positives are sampled from the

distribution of fixations for all other images. Because of the center-bias inherent in most eye-

tracking datasets, these locations tend to be in the central portion of the image. As a result, if

false-positives crop up in regions away from the center, sAUC is not able to penalize them. In

contrast, because of the zero-mean unit-standard deviation normalization in sNSS, blurrier maps

are penalized as a result of which sNSS is able to correctly assign a lower score to fuzzy maps

such as map (c) in Figure 3. However, a drawback of the NSS and sNSS metrics is that in
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(a)Image (b)Ground-truth

(c) (d) (e)

(c) (d) (e)

AUCBorji [3] 0.9104 0.9167 0.7955

AUCJudd [13] 0.9164 0.9250 0.8030

sAUC [3] 0.8212 0.8113 0.4667

NSS [8] 1.9630 2.2586 1.0794

Proposed WNSS 2.7984 3.1348 0.9889

sNSS [7] 1.3573 1.5864 -0.1247

Proposed sWNSS 2.1901 2.5390 -0.0273

Fig. 3: The two saliency maps (c) and (d) have nearly identical sAUC, AUCBorji and AUCJudd

scores, however it is clear that (d) is a much “better” saliency map. NSS, sNSS and the

proposed WNSS and sWNSS metrics do not have this problem as they assign a significantly

higher score to (d) than (c). A centered Gaussian blob (e) will perform well using NSS and

the proposed WNSS metrics, however using the sNSS and the proposed shuffled sWNSS the

same Gaussian blob receives a low score as expected.

their computation all fixations are given equal weights and fixation density is ignored. Figure 4

illustrates this drawback through two created saliency maps. Though map (d) is much better than

map (e) in Figure 4, it gets lower NSS and sNSS scores than map (e). This happens because in

the NSS formulation, when the normalized saliency values are averaged, each fixation location

contributes equally to the average.
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(a) Original Image (b) Fixation Map (c) Ground-Truth Saliency (d) Saliency Map 1 (e) Saliency Map 2

Metric (d) (e)

NSS [8] 2.4245 2.4605

sNSS [7] 1.4715 1.8223

Proposed WNSS 3.1503 2.5531

Proposed sWNSS 2.2327 1.9541

Fig. 4: Problem with NSS and sNSS: The NSS and sNSS metrics give equal weight to every

fixation point and ignore density. As a result, they incorrectly give higher scores to Saliency

Map 2 (e) as compared to Saliency Map 1 (d). The proposed WNSS and its shuffled variant

sWNSS weight the fixations based on their local density and assign a higher score to map (d)

as expected.

III. PROPOSED METRIC

Figure 5 illustrates that fixations that are closely clustered together lie on actual objects in

the scene and are most important for identifying salient regions as compared to others that

are scattered around and lie on background areas. However, sNSS and NSS both do not

discriminate between relevant fixations that belong to a dense cluster and represent objects,

from fixations that are sparse and usually fall on background regions and could be considered

as outliers. One way to remedy this is to assign weights to each fixation point based on its

importance. If W (p) is the weight assigned to the fixation point p ∈ P , where P is the set of all

fixation points, the proposed metric termed as weighted NSS or WNSS for short is defined as

WNSS =
1∑

p∈P
W (p)

∑
p∈P

W (p)(S(p)− µs)
σs

(3)

where µs and σs are the mean and standard deviation, respectively, of the predicted saliency map

S, and P denotes the set of ground-truth fixation points for the image. To obtain appropriate

weights for each fixation, we use the fact that fixations that are in higher density clusters are more

important and should be weighted higher than those in low density clusters. For this purpose,

we use the density-based spatial clustering of applications with noise (DBSCAN) algorithm [14]

for clustering the fixations based on their density to obtain fixation clusters. We then assign
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(a) Original Fixations (b) Clustered Fixations using DBSCAN

Fig. 5: (a) Importance of fixation density for identifying relevant fixations. The more important

fixations are those that are clustered tightly together as they lie on the actual salient regions. The

sparsely clustered fixations tend to lie on less salient background regions. (b) Fixation weights

assigned based on the number of fixations in each cluster. Different symbols and colors represent

different clusters with weights for each cluster shown.

every fixation in a particular cluster a weight equal to the number of fixations in that cluster.

Mathematically, if P is the set of all fixation points, and if C = {c1, c2, ..., cN} is the set of

clusters obtained after applying the DBSCAN algorithm, such that C is a partition of set P ,

then the weights are given by

W (p) = |ci|,∀p ∈ ci (4)

where |.| represents the l0 norm corresponding to set cardinality (or the number of elements in the

set). The DBSCAN algorithm has two parameters, the minimum distance ε within which points

are considered as belonging to the same cluster and the minimum number of points required to

form a dense cluster minPts. We choose the ε parameter such that it is equal to the diameter

of a circle that is subtended by one degree of visual angle for the eye-tracking setup for the

Toronto dataset [12], [15]. The minPts parameter is chosen to be 3 so that isolated clusters

with 2 or less points are rejected. For rejected clusters, the weights are considered to be zero (as

they represent clusters with zero points) and saliency values at such outlier fixations are ignored

during the score computation. An illustration of the weighting scheme is shown in Figure 5(a)

where the different clusters of fixation points are shown using different colors, and the weight
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for each cluster is shown. On comparison with the original fixations seen in Figure 5(b) one can

see that most of the outlier fixations on the carpet that are distant from the objects of interest

are rejected and hence do not influence the score.

A shuffled version of the proposed metric that does not exhibit center-bias can be obtained in

a manner similar to the sNSS metric (1) as follows:

sWNSS = WNSS(p)−NSS(r) (5)

where equal weights are assumed for the random set of fixation points r. Equal weights are

chosen for the random set of fixation points because, unlike the “good” fixation points, random

fixations that are chosen from the set of fixations for other images cannot be weighted by a

density based criteria and are treated equally in order to capture the centered distribution of

fixations for the database to nullify center bias. As shown in Figures 3 and 4, the proposed

WNSS and sWNSS metrics give a higher score to the better map. The proposed sWNSS

metric is also able to correctly assign the lowest score to the centered Gaussian blob (e) in

Figure 3.

IV. SUBJECTIVE EVALUATION OF VA MODELS

Even though a large number of metrics have been proposed in the literature for evaluating

VA models, currently, there is no ground-truth subjective database that validates these metrics.

To address this need and evaluate the performance of our proposed metric, a Visual Attention

Quality (VAQ) database is constructed as part of this work. The constructed database consists of

saliency maps that are obtained from state-of-the-art VA models and their corresponding ground-

truth saliency maps. A ground-truth saliency map is obtained by first aggregating the fixation

locations obtained by eye-tracking for all subjects to get a fixation map. The obtained fixation

map is then convolved with a 2D Gaussian kernel with a standard deviation σ proportional to

one degree of visual angle followed by normalization [5]. Thus, a ground-truth saliency map

represents the likelihood that a pixel will be attended to by a human observer. As a result, ground-

truth saliency maps are more suitable for at-a-glance visual comparisons as opposed to fixation

points [12]. Subjective ratings are obtained by asking human subjects to rate the similarity of

the predicted saliency map to the corresponding ground-truth saliency map on a 5-point scale

(5-Excellent, 4-Good, 3-Fair, 2-Poor, and 1-Bad). The two aspects the subjects are asked to focus

on are the how well the locations of the highest intensity values in the ground-truth match those
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Fig. 6: Training samples from each category shown to subjects before taking the main test.

in the predicted saliency map and the amount of false-positive activity, i.e. high activity in the

predicted saliency map that falls on regions of low activity in the ground-truth. The subjects

are given a training session and are shown examples of each rating type from excellent to bad.

Figure 6 shows samples of the training images (one for each category) shown to the subjects.

As seen in Figure 6, in the “Excellent” category the high saliency regions align very well with

those in the ground-truth map and have minimal false-positive activity. The misalignment of

high saliency regions and amount of false-positive activity increases for the “Good” and “Fair”

categories. For the “Poor” to “Bad” categories the highest saliency regions in the ground truth

and the predicted saliency maps are totally misaligned and the false positive activity increases

from high to very-high, respectively.

The images shown in the training as well as main sessions were taken from the popular

Toronto eye-tracking database [12]. The images in that database have all the same size, which

makes the computation of the shuffled metrics easier. The images used in the training session

were different from those in the main test. To ensure variety in the images shown in the main

test, the ground truth maps for all the images were analyzed based on their standard deviation

as it is a good measure of the spread of salient regions in an image. Figure 7 shows a histogram
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Fig. 7: Histogram of standard deviations for all normalized ground-truth saliency maps in the

Toronto dataset [12].

Fig. 8: GUI used for obtaining subjective ratings.

of the standard deviations of the ground-truth saliency maps of the images. Based on the 4

noticeable peaks in the histogram, we cluster the images in the dataset based on their standard

deviations by using kmeans. Then, the 3 images with standard deviation nearest to the cluster

centroids are chosen for each cluster. This gives us the 12 images that are used in the main test.

The GUI used for the subjective testing and the colormap used is shown in Figure 8. Figure 9

shows the images that are chosen and Figure 10 shows their ground-truth saliency maps. We

then compute the predicted saliency maps for each of these 12 images using the following 17
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Fig. 9: The 12 chosen images from the Toronto [12] dataset used in the main subjective test.

Fig. 10: The ground-truth saliency maps for the 12 chosen images from the Toronto [12] dataset

used in the main subjective test.

state-of-the-art VA models: GAFFE [16], ITTI [17], GBVS [18], AIM [12], HouNIPS [19],

GR [20], SDSR [21], SUN [22], Torralba [23], FES [24], SigSal [25], SpectRes [26], AWS [27],

BMS [28], Context [29], CovSal [30], and RandomCS [31]. We also evaluate the “center” model

which is an image independent model that consists of a centered Gaussian blob. In addition, the

original ground truth saliency maps are also added to the list of images shown. We expect the

“center” model to get lower scores in most cases and the original ground truth saliency maps
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Fig. 11: Distribution of MOS scores.

to get the highest score. The total pairs of ground-truth saliency and test saliency maps shown

are 228. These are presented to each subject in a randomized order. Both the ground-truth and

predicted saliency maps are shown with the ‘jet’ colormap that indicates high intensity values in

red and low intensity values in blue to make it easy for the subjects to assess the maps. The maps

were shown to 16 subjects with age ranging between 22 to 33, who were checked for both color

blindness as well as visual acuity. Out of the 16 participants, 1 subject was working in the area

of visual attention, 7 subjects were working in the area of computer vision but not specifically

in the area of visual attention, and 8 subjects were working in areas completely unrelated to

computer vision. Out of the 16 subects, 6 were female and 10 were male. The ratings for each

predicted saliency map shown were averaged over 16 subjects to get a mean opinion score.

These mean opinion scores (MOS) were then correlated with the scores obtained from popular

VA performance metrics in addition to the proposed WNSS and sWNSS metrics. Figure 11

shows the distribution of the MOS scores obtained for the predicted saliency maps given by VA

models. It illustrates that in only about 16% of the cases, models received a subjective rating of

good or excellent. It also shows that the saliency maps shown cover the entire range of ratings

from Excellent to Poor. The VAQ database will be provided online to download for free for the

research community to benchmark metrics developed in the future.

Figure 12 shows the ranking of all models in terms of the mean subjective rating obtained

for each VA model over all subjects for the VAQ database and shows which VA models are

preferred by the human observers for the images in the VAQ database.
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Fig. 12: MOS taken over all predicted saliency maps for each VA model and arranged in

descending order.

V. METRICS PERFORMANCE EVALUATION RESULTS

This section discusses the correlation results between the subjective ratings and the metric

scores. To evaluate how good a performance metric is, we compare the scores given by each

metric to each of the considered models with the average scores given by the subjects to the same

models. To correlate the scores we use the widely used correlation measures of Spearman Rank

Order Correlation Coeffficient (SROCC), Kendall Rank Correlation Coefficient (KROCC) and

Pearson Linear Correlation Coefficient (PLCC). The SROCC and KROCC are rank correlation

coefficients, and enable us to compare the ranking given to the VA models by a VA metric with

the ranking given by the MOS scores. The PLCC is a linear correlation coefficient that measures

how linear the relationship between the metric scores and MOS score is. The metric scores are

normalized by the metric score obtained for the ground-truth saliency map that serves as an

upper-bound on most metrics before performing the correlation. For the EMD metric for which

a lower score is better and the best possible score is zero this normalization was not performed,
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TABLE II: Correlation results using the VAQ database.

Non-Shuffled Metrics SROCC KROCC PLCC

AUCBorji [3] 0.5617 0.3952 0.5493

AUCJudd [13] 0.5883 0.4222 0.5846

WFβ [10] 0.3126 0.2113 0.2958

NSS [8] 0.7563 0.5810 0.8297

EMD [13] 0.4470 0.3168 0.5683

CC [13] 0.7461 0.5726 0.8216

SIM [13] 0.5891 0.4246 0.6739

MAE [11] 0.5063 0.3599 0.4803

Proposed WNSS 0.7858 0.6178 0.8687

Shuffled Metrics SROCC KROCC PLCC

sAUC [3] 0.5455 0.3871 0.5631

sNSS [7] 0.6526 0.4843 0.7533

Proposed sWNSS 0.7624 0.5891 0.8553

and subjective scores were inverted by subtracting the scores from the maximum subject score

of 5 to obtain positive correlation scores. For the WFβ measure [10], which requires the ground-

truth to be a binary mask, we threshold the ground-truth saliency map by its standard deviation

as suggested in [32]. For the MAE metric, instead of using a binary ground-truth map as in [11],

we use a real-valued ground-truth saliency map since, by definition, the MAE can be computed

for two real-valued maps. Table II shows the result of the correlations for the VAQ database

for all the existing metrics listed in Table I and our proposed metric (the shuffled sWNSS and

non-shuffled WNSS versions). The results for shuffled and non-shuffled metrics are reported

separately because there is no explicit way to remove the center bias effect from the ground-

truth saliency maps in the subjective study. As a result, human ratings will tend to be better for

the saliency maps that boost central regions over peripheral regions. This leads to non-shuffled

metrics like NSS and WNSS which tend to reward maps with more central than peripheral

activity correlating better with human scores compared to their shuffled versions sNSS and

sWNSS. Figure 13 shows the scatter plots corresponding to the existing and proposed metrics.

From the existing metrics used in the MIT saliency benchmark [9], the NSS [8] and CC [3]

metrics perform significantly better than the other metrics with the NSS performing the best

among them. The AUCBorji [3] and its derivative sAUC [3] metric that suffer from the most

number of flaws perform the worst among the MIT benchmark metrics. The WFβ [10] metric
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also performs poorly. The proposed WNSS metric gives the best correlation in the non-shuffled

metrics and correspondingly the proposed sWNSS metric gives the best performance among

the shuffled metrics.

VI. CONCLUSION

This paper proposes a locally weighted fixation-density based performance metric for assessing

the quality of saliency predictions for VA models. A subjective ground-truth Visual Attention

Quality (VAQ) database is created to evaluate the performance of the proposed metric and

other existing metrics. Results of the evaluation show that the proposed metrics (WNSS and

its shuffled version sWNSS) outperform the widely used sAUC, AUCBorji and AUCJudd

measures as well as other popular metrics used in the MIT Benchmark [9] in terms of their

agreement with the subjective ratings. The subjective database is made available online to the

research community as a performance metric evaluation benchmark on which future metrics can

be tested.
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Fig. 13: Scatter plots for all metrics with correlation scores displayed for the VAQ database.

Most of the existing metrics along with the widely used AUC based metrics like sAUC [3],

AUCBorji [3] and AUCJudd [13] do not show high correlation with subjective scores. Among

the non-shuffled metrics, existing metrics CC [3] and NSS [3] exhibit better correlation scores

with subjective scores and the proposed metric WNSS performs the best. Amongst the existing

shuffled metrics, the recently proposed sNSS [7] metric performs well with the proposed

sWNSS performing the best.
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