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Separation Surfaces in the Spectral TV Domain for
Texture Decomposition

Dikla Horesh and Guy Gilboa,Member, IEEE

Abstract—In this paper we introduce a novel notion of separa-
tion surfaces for image decomposition. A surface is embedded in
the spectral total-variation (TV) three dimensional domain and
encodes a spatially-varying separation scale. The method allows
good separation of textures with gradually varying pattern-size,
pattern-contrast or illumination. The recently proposed total
variation spectral framework is used to decompose the image
into a continuum of textural scales. A desired texture, within a
scale range, is found by fitting a surface to the local maximal
responses in the spectral domain. A band above and below the
surface, referred to as the Texture Stratum, defines for each
pixel the adaptive scale-range of the texture. Based on the
decomposition an application is proposed which can attenuate
or enhance textures in the image in a very natural and visually
convincing manner.

Index Terms—Total variation, spectral TV, image decompo-
sition, image enhancement, nonlinear eigenfunction analysis,
spatially varying texture.

I. I NTRODUCTION

DECOMPOSING an image into meaningful components
is an important and challenging inverse problem in

image processing. The general concept of structure-texture
decomposition is that an image can be regarded as composed
of a structural part, corresponding to the main large objects
in the image, and a textural part, containing fine details,
usually with some periodicity and oscillatory nature. Image
decomposition is a preprocessing stage, which can be essential
for many image processing and computer vision tasks such
as segmentation [10], content based image retrieval [32] ,
feature extraction and classification [14] and restorationand
analysis of ancient documents [12]. We first briefly recall the
main approaches related to image decomposition (focusing on
variational methods).

A. Structure-texture and Multiscale Decomposition

u+v Model. An imagef can be decomposed asf = u+v,
where u represents image cartoon or geometric (piecewise-
smooth) component andv represents the oscillatory or textured
component off . This motivated [25] to suggest theTV −G
variational model where the minimization yieldsu with a low
total-variation energy andv with a low integral norm, referred
to as aG-norm, which favors oscillatory signals. Suggestions
to implement Meyer’s model were given in [3], [36]. Many
extensions and variations to the model with alternative norms
adapted for textures were proposed, such as [5], [15], [24],
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[28], [29]. The use of nonconvex regularizers was recently
proposed in [2]. Employing sparse representation methods for
decomposition was first suggested in [33]. Two simplistic ways
of revealing the textural parts in images are still used for
some computer vision tasks. The most basic one is linear -
using a smoothing kernel, such as a Gaussian, and subtracting
the smoothed image from the input image. Naturally edges
and textures are mixed. A somewhat more reliable method is
to apply edge-preserving denoising, such as bilateral filtering
[35], and subtract the result from the input image.
u+v+w Model. In [4] a model decomposing an image into

structureu, texturev, and noisew was proposed using dual
norms (negative Sobolev and Besov norms) for the texture and
noise parts. An analysis of the three-part decomposition can
be seen in [20] and a recent approach using non-linear PDE’s
for structure-texture-edge decomposition is described in[26].

Multiscale Model. It was realized quite early on that
several textures of different scales can appear in an image and
should be decomposed separately. Multiscale decomposition
using severalTV − L2 (ROF [30]) decompositions, was first
suggested in [34]. Some features interpreted as “texture” in a
given scale can be interpreted as “structure” at a finer scale. As
conventional ROF was used the separation was not optimal,
mixing some structure in the texture. Gilles [19] combined
Meyer’s decomposition model [25] with a Littlewood-Paley
filter, to extract a certain class of textures in an image. While
this works well for synthetic images, it is not ideal for some
real world images. Zhang et al. [37] proposed a new frame-
work called Rolling Guidance filter. This technique consists
of an iterated improved variant of the bilateral filter whichis
controlled by a larger support linear smoothing kernel. High
quality results were shown in [37]. We will compare our work
also to this state-of-the-art technique and show its limitations,
especially when there are gradual changes in pattern size or
contrast.

Continuous Model. The spectral TV decomposition, ex-
plained in details below, can be seen as a generalization to
the continuum of multiscale decomposition, with infinitesimal
scale precision which can be related to the eigenvalue of the
nonlinear eigenvalue problem induced by the regularizer (see
details hereafter). In this case the input image is an integral
over all scales. In practice the scale (time) step is finite and a
summation of quantized scales is performed.

B. Contribution and paper outline

In this paper we present two essential contributions. A new
approach of scale-separation is introduced which is based on

http://arxiv.org/abs/1511.04687v1
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(a) Separation surface and stra-
tum visualization

(b) Natural rock strata

Figure 1: Geological analogy of the texture encoded as a
stratum in the spectral TV domain.

the TV transform [18]. Using a geological analogy, the texture
is encoded by a stratum, with a surface as center-line, in the
3D spectral TV domain, see visualization in Fig. 1. It is well
adapted to the image and can cope with gradually changing
textures with respect to many parameters such as size, contrast
and illumination. Having defined a general desired scale-range,
the method is automatic. A second contribution is a texture
processing approach which can enhance or attenuate textures
in an easy manner with very vivid and natural looking results.

The outline of the paper is as follows: in Section II we
describe the convex nonlinear eigenvalue problem and the
spectral TV approach. Section III presents multiscale decom-
position and orientation analysis based on spectral TV. This
part was first presented in a conference [21]. We then proceed
to the main contribution of the paper, Section IV, where
a surface-based decomposition is introduced. In Section V
a texture processing application is proposed, illustratedby
natural color image examples.

II. PRELIMINARIES

In this section we summarize the essential theory concerning
non-linear eigenfunctions induced by convex functionals,the
spectral TV framework and Gabor filters (used as scale-
orientation descriptors).

A. Nonlinear Eigenfunctions

Classical linear eigenfunction analysis has shown to pro-
vide many state-of-the-art algorithms in signal processing,
computer vision and machine-learning. Some examples are
segmentation [31], clustering [27], subspace clustering [23]
and dimensionality reduction [6]. Eigenfunctions of an op-
erator can be viewed as the operator’s inherent atoms with
an intrinsic scale represented by the respective eigenvalue.
Recent studies [7], [18] indicate that a generalized theorycan
be developed for the convex nonlinear case.

Nonlinear eigenfunctions induced by a convex functional
emerge by the followingnonlinear eigenvalue problem:

λu ∈ ∂J(u), (1)

where J(u) is a convex functional and∂J(u) is its subd-
ifferential. A function u admitting Eq. (1) is referred to as
an eigenfunction with a corresponding eigenvalueλ. We can
briefly study the linear case, to get some intuition.

A Linear Example:Let us examine the functional

J(u) =
1

2

∫

Ω

|∇u(x)|2dx,

where∇ is the gradient. The convex functional induces an
operator through its subgradient. Here the subgradient (inthis
case single valued) isp(u) = −∆u (∆ denotes the Laplacian).
The corresponding eigenvalue problem is

−∆u = λu.

In the one-dimensional case, with appropriate boundary con-
ditions, functions of the formu = sin(ωx) are eigenfunctions
with corresponding eigenvaluesλ = ω2.

Thus Fourier frequencies naturally emerge as solving an
eigenvalue problem related to a quadratic smoothing convex
functional.

In [17], [18] an image decomposition and filtering frame-
work was suggested. It presents a notion of generalized
nonlinear eigenfunctions which are used to define forward and
inverse TV transforms. This can be used to decompose the
image into well defined scales and allows a new variety of
filtering methods.

B. Spectral TV

In [18] a non-conventional way of defining a transform
through a partial-differential-equation (PDE) is suggested,
based on the total-variation (TV) functional:

J(u) =

∫

Ω

|Du|, (2)

whereDu denotes the distributional gradient ofu. The corre-
sponding gradient descent of the functional, known as total-
variation flow [1], is formally written as:

∂u
∂t

= div
(

Du
|Du|

)

, in (0,∞)× Ω
∂u
∂n

= 0, on (0,∞)× ∂Ω
u(0;x) = f(x), in x ∈ Ω,

(3)

whereΩ is the image domain (a bounded set inIRN with
Lipschitz continuous boundary∂Ω). The TV transform is
defined by:

φ(t;x) = utt(t;x)t, (4)

whereutt is the second time derivative of the solutionu(t;x)
of (3). The inverse transform is:

f(x) =

∫ ∞

0

φ(t;x)dt + f̄ , (5)

where f̄ = 1
Ω

∫

Ω
f(x)dx is the mean value of the initial

condition. Filtering is performed using a transfer function
H(t) ∈ IR:

fH(x) :=

∫ ∞

0

φ(t;x)H(t)dt + f̄ . (6)

The spectrumSf(t) of the input signalf(x) corresponds to
theL1 amplitude of each scale:

Sf (t) = ‖φ(t;x)‖L1 =

∫

Ω

|φ(t;x)|dx. (7)
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Figure 2: Zebra image (top left), TV spectrum of the image
with separated textures marked in different colors (top right),
and spectral decomposition of the zebra image to textures,
displaying integration over time (middle) and certainφ’s
(bottom).

Two significant results were shown in [18] for this trans-
form:

• Eigenfunctions as Atoms:Let f(x) be a function which
admits the nonlinear eigenvalue problem (1), (f = u), for
the TV functional. Then the transform yields a measure
(single impulse), multiplied byf(x), at timet = 1/λ and
is zero for all othert: φ(t;x) = δ(t − 1/λ)f(x), where
δ(·) is the Dirac delta function.

• Relations to TV-flow: The TV flow solutionu(t) is given
by:

u(t) =

∫ ∞

0

Ht(τ)φ(τ ;x)dτ + f̄ ; (8)

Ht(τ) =

{

0, 0 ≤ τ < t
τ−t
τ

, t ≤ τ < ∞
.

The first result relates to nonlinear spectral theory, which
has attracted increasing interest lately, see e.g. [7], [16] and
[8] in the segmentation and learning context.

The second result shows that the framework is a generaliza-
tion of standard TV filters and that many other filters related
to the functional can be designed.

An example of different spectral components and of spectral
image filtering can be seen in Fig. 2. A zebra image is
shown with its spectrum in different colors to demonstrate
the integration intervals of theφ’s, using (6) withH = 1 in
the desired interval and 0 otherwise, appearing respectively
in the filtered images. The contrast is enhanced for better
visualization.

Figure 3: Concentric circles image (left), orientation mapof
8 Gabor filters response (middle) and orientation map of 30
Gabor filters response (right).

C. Gabor Filters

A Gabor filter bank is a set of regularly spaced filters
that roughly mimic the behavior of the human visual system
(HVS) for texture detection. According to this model, the
HVS perceives the image through a set of filtered images,
so that each image contains some unique visual information
over a narrow range of orientation channel. In that manner,
Gabor filtering has been shown to be a good fitting to this
model, providing optimal localization of image details in a
joint spatial and frequency domain [13], [22]. The Gabor
wavelet definition is

g(x, y) =
1

2πσxσy

exp[−
1

2
(
x̃2

σx
2
+

ỹ2

σy
2
) + 2πjWx̃] (9)

x̃ = x cos(
µπ

M
) + y sin(

µπ

M
), ỹ = −x sin(

µπ

M
) + y cos(

µπ

M
)

(10)
µ controls the orientation of the filters, with M being the total
number of different orientations andW scales the center of
the filter in the frequency domain.

III. M ULTISCALE DECOMPOSITIONUSING SPECTRAL TV

In this section we show how one can use spectral TV for
multiscale decomposition and multiscale orientation analysis.
This part was first presented by the authors in a conference
[21]. In this work we extended the common structure and tex-
ture decomposition to multi-scale texture separation in order
to get all textures, the coarse and fine-scaled. The orientation
of the different texture layers was separately characterized
using the Gabor filters bank, generating the scale-orientation
descriptor. Precise orientation mapping can be useful for
analysis and inner texture actions and synthesis of image with
complex textures content.

A. A Necessary Condition for Perfect Separability

In [9] an orthogonality relation betweenφ, Eq. (4), andu
is established:

〈u(t), φ(t)〉 = 0, ∀t ∈ (0,∞), (11)

where〈·, ·〉 denotes theL2 inner product over the domainΩ.
Using the above relation and the one given in (8) a necessary
condition for perfect separability of eigenfunctions can be
shown:

Proposition 1. Let f1(x), f2(x) admit the eigenvalue problem
(1), withJ the TV functional(2), andλ1, λ2 the corresponding
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Figure 4: Separating 1D orthogonal signals.

eigenvalues (λ1 > λ2). Then for f = f1 + f2 a necessary
condition to have

φ(t) = δ(t−
1

λ1
)f1(x) + δ(t−

1

λ2
)f2(x), (12)

is
〈f1, f2〉 = 0.

Proof. Let us assume Eq. (12) holds and〈f2(x), f1(x)〉 6= 0.
We expressu(t1) using (8), with t1 := 1

λ1

(note that
Ht1(t1) = 0):

u(t1) =

∫ ∞

t1

Ht1(τ)φ(τ ;x)dτ = Ht1(t2)f2(x).

From Eq. (11) we have

〈u(t1), φ(t1)〉 = 0,

and therefore

Ht1(t2)δ(t = 0)〈f2(x), f1(x)〉 = 0,

which contradicts our assumption.

Note that in the case of perfect separability, Eq. (12),
simple spectral filtering (6) withH(t) = 1 for t < tc and
0 otherwise, wheretc ∈ (1/λ1, 1/λ2), can perfectly separate
f1 and f2. Examples demonstrating the signals’ separability
in 1D are shown in Figs. 4-5. Separation of the larger scale
signal is performed using (6) withH(t) a step signal ({0, 1}
values) as superimposed in red on the combined spectrum
plot (bottom of Figures 4-5 (b)). In Fig. 4 two well-separated
orthogonal signals are shown, their spectrum, Eq. (7), has one
peak for each signal, and the combined spectrumS(A+B)(t)
is the sumSA(t) + SB(t). Decomposition using spectral
TV yields a perfect separation. We can see also the optimal
possible result of standard TV regularization for comparison.
Note that the standard TV does not yield perfect separation
and the decomposition mixes both signals. In Fig. 5, two
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Figure 5: Separating 1D oscillating uncorrelated signals

orthogonal oscillating signals are combined. Their combined
spectrum slightly changes, compared to the original isolated
signals, as a result of the overlap. However they can still
be perfectly separated using spectral TV, while the standard
TV has significant artifacts and the signals are not well
separated. We use the projection algorithm of Chambolle [11]
to implement the TV-flow time steps [18]. For more details,
see http://guygilboa.eew.technion.ac.il/code/.

B. Image Decomposition

Decomposition using spectral TV was applied to textured
images. The decomposition can be done to as many different
layers as required, limited numerically only by the chosen
time step (the theoretical formulation is continuous in time).
An example of such image decomposition can be seen in
Fig. 6. A game board image is shown with its spectrum in
different colors to demonstrate the separation points of the
decomposition (or integration intervals of theφ’s, using (6)
with H = 1 in the desired interval and 0 otherwise) appearing
respectively in Fig. 7: the wood pattern , the game board
lines and the structure with the round game pieces. In this
example, the separation points of the decomposition were
manually chosen. However, in [5] it was done automatically
for structure-texture decomposition using correlation between
the texture and the residual structure in each level. In the
next section of this work we explore the automatic texture
separation.

C. Scale-Orientation Descriptor

After decomposing the image we generate the scale-
orientation descriptor (SOD) for each texture level by fully
mapping its orientation, creating a multi-valued orientation
descriptor for each pixel. This was achieved using the Gabor
filter bank. The Gabor filter response was calculated in 30
orientations (M = 30, µ = 0, 1, ..., 30), spanning 180◦ and

http://guygilboa.eew.technion.ac.il/code/
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Figure 6: Game board image (left) and TV spectrum of the
image with separated textures marked in different colors (right)

Figure 7: SOD of Game board image (Fig. 6). Our multi
scale decomposition of the image (top) and the corresponding
orientation maps (bottom). (The contrast is enhanced for better
visualization.)

4 spatial frequencies for finer and coarser scales. In Fig. 3
presented a concentric circles image (left) and the colored
orientation map of 8 (middle) and 30 (right) Gabor filters
response. In each scale, the orientation giving the maximum
response was selected, and the maximum of the 4 scales was
taken to describe the orientation of each pixel.

An example of such scale-orientation descriptor can be seen
in Fig. 7. In this figure, decomposition of the game board
image (Fig. 6) to three scales is shown, together with the
corresponding orientation mapping images. We can observe
the great separation of the different layers as seen in the
colored orientation figures as processed from the Gabor filters
response. The orientation in each pixel is taken from the Gabor
scale which gave the strongest response, usually corresponding
to the texture coarseness. The result of Gilles decomposition
[19] for this image are on Fig. 8, as can be seen, the textures
nicely appear there in different scales but the different textures
are not separated.

IV. SEPARATION SURFACE

We now present the novel notion of the separation surface.
The texture decomposition so far was done assuming that
our texture is homogeneous and can be separated at a certain
configuration which fits the whole image. However, that is not
the situation in many natural images, in which, due to changing
texture, lighting conditions, or perspective, the desiredtexture
can not be decomposed in the same configuration for the
entire image. For that purpose we introduce the separation
surface. It is a decomposition configuration, changing in a
continuous manner in the image according to the texture.
We first characterize the different textures in the image to

Figure 8: Compared method [19] decomposition result for
game board image to 3 scales (top) and Gabor orientation
visualization (bottom)

find the spectral time band of the desired texture. We then
determine the exact spectral layer (φ) for each pixel in a global
manner to ensure smoothness of the extracted texture, under
the assumption of texture being smooth and continuous. We
define a band surrounding the surface to capture the entire
features of the desired texture. We call itstratum. In geology
and related fields, a stratum is a layer of sedimentary rock or
soil with internally consistent characteristics that distinguish
it from other layers. Similarly, in our case, the stratum defines
a certain texture, distinguished from other by its features. It
consists of the spectral layers forming the desired texturefor
each pixel. A figure simulating the separation surface can be
seen in Fig. 1, as well as an image of natural rock stratum.

A. Analytic Example

We begin by examining an analytic example to understand
the surface fitting process. It is well established that disks are
elementary structures for the TV functional. They satisfy the
eigenvalue problem (1) which implies their shape stays the
same during a TV gradient descent evolution (TV-flow [1]).
Moreover, the eigenvalue of a disc of radiusr and heighth is
inverse proportional to those measures [1], [25]:

λ ∝
1

hr
, (13)

where in the spectral TV domain we have the discs appear at
scalet = 1

λ
∝ hr. We would like to analyse the image in Fig.

9, containing synthetic discs in varying size and contrast.In
order to do so, we will recall two properties of spectral TV
[18]:
Contrast change.

f(x) → af(x), φ(t, x) → φ(t/a, x), S(t) → S(t/a).

Spatial scaling (2D).

f(x) → f(ax), φ(t, x) → aφ(at, ax), S(t) → a−1S(at).

For example, for an image which is half the size of the original
image, we have a = 2.

The effect of the contrast change in our example is that
the darker the discs (lower contrast), their scale is lower.The
effect of the scale change is that the smaller the discs, their



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. X, SEPTEMBER 2016 6

(a) Input image (b) Max Phi Value (c) Max. Time

Figure 9: Input image of discs varying in size and contrast (a),
the maximalφ value (b) and the evolution time (c)

scale is lower. In this example one can see how the scale and
the maximalφ value gradually changes with size and contrast.
Following this analytic example we can understand the spectral
TV behaviour of different images and textures.

B. Algorithm

We present a separation surface algorithm using the TV
spectral framework. The idea is that natural textures are not
homogeneously distributed in scale and space, instead they
continuously vary in the image. Under that assumption we
suggest a decomposition configuration, changing in a con-
tinuous manner in the image according to the texture. The
spectral framework allows a straightforward way to achieve
such complex decomposition. The general approach can be
described as follows:

1) Compute the spectral componentsφ(t) and the spectrum
S(t).

2) Manually or automatically, analyze the spectrum and
choose the spectral componentsφ(t), t1 ≤ t ≤ t2,
among which the desired texture stretches.

3) Create a salient time mapT (x): for each pixelx, take
t which maximizesφ(t, x) within the ranget ∈ [t1, t2].

4) Filter T (x) to enable good surface fitting.
5) Fit a surface using regression to the corresponding

filtered time mapping.
6) Calculate the bands below and above the surface to get

the integration times of the desired texture in each pixel.
7) Reconstruct the desired texture layer by integrating over

the texture stratum, using:

fH(x) =

∫ ∞

0

H(t;x)φ(t;x)dt, (14)

H(t;x) =

{

1 (t;x) ∈ stratum
0 else

Notes
• We take the maximumφ among the selected spectral

components under the assumption that in the scale range
of the desired texture, it is dominant and therefore its
response on those spectral components is high, and at
most times, higher than the other patterns in those scales.

• Filtering of the maximalφ can include omitting values
on image boundaries, taking onlyφ values at limited
percentiles (we used percentile range of 85-95) etc..

• The band width is set according to the scale of the surface
at each image location. The band is wider at higher
spectral scales, due to smear effect with time (Fig. 11(c)).

Figure 10 illustrates the proposed algorithm of the separation
surface. Zebra image was taken, to extract the stripes texture.
It can be vividly seen that for coarse stripes texture, latertimes
are taken, and larger separation band accordingly. The output
is the two separated image layers, of the zebra stripes and the
image residual. One can see that all the stripes are extracted,
coarse and fine, with high and low contrast, while successfully
preserving the edges in the residual image.

C. First Order Surface Examples

Favourably, we work with first order surfaces, since it allows
us to better regulate the data and dismiss outliers, and due to
its robustness. Later we show that it can be generalized to
surfaces of higher order. Let us examine a synthetic example.
A texture was taken of the Brodatz texture database, and was
added a pattern of circles horizontally varying in contrast, Fig.
11. In this example, we can see in the separation band image
that the base texture and the circles are not separated in scale,
and the fitted separation plane and the band taken, manage to
capture the entire circles features while including just a bit of
the base texture, and only on the left of the image, where the
contrast of the circles is low and their spectral scale is similar
to that of the base texture. Our separation result is very good
and highly resembles the original textures. Comparisons toTV-
G and to RGF are shown where in both cases the separation is
not good and residual of the textures vividly remains in both
the layers. Another example is shown on Fig. 12 of street tiles,
one can see the pattern is homogeneous in nature but in the
image it is linearly changing due to perspective point of view.
We decomposed that image using the spectral TV filtering,
and took the maxφ time mapping. We can see it captures the
linear change in the vertical direction of the image. The upper
side is far from the photographer, thus details are small andthe
evolution time is short. The bottom of the image is close, thus
details are coarser and the resulting evolution time is longer.
Taking the stratum accordingly, we capture the entire texture
in one image and the structure in another image, with sharp
edges, and no tiles remainder. We compared this result to the
state-of-the-art RGF result [37] which suggest a multi-scale
decomposition scales, we show here the 2nd and 3rd scales.
In both of them, there can be seen a difference between the
lower and upper sides of the image. In the 2nd scale there
are many tiles edges, mostly on the lower side of the image,
and in the 3rd scale, the structure edges are already smeared,
especially at the upper side of the image.

D. Generalization to Surfaces

We now show the general approach of separation surface or
stratum extraction. We use this general approach when desired
texture is more complex and does not linearly change in the
image space. In this case we will perform the exact same
actions to find the separation plane, but instead of fitting a
plane to the texture filtered max. time data, we fit a surface.
We present here a simple method for surface fitting, using
local linear regression, in Fig 13. In this example, we added4
disks to an image of concentric circles with changing radius.
We can see in the separation band image that the disks and
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Figure 10: Algorithm flow of the separation surface

the fine scales circles are at the same spectral scale, however,
their spatial location in the image is different, and so, using a
separation surface, the two textures are perfectly separated.
We can see a comparison to separation at a specific time
(scale) for the whole image, as was done in our previous
work [21]. In this case, while not all the disks features are
captured in layer 2, the circles features are already contained
in that layer, meaning that separating at any certain scale can
not bring to a perfect separation. More comparisons are to
TV-G and to the state of the art RGF [37], which both fail
getting good separating result. Another example can be seen
in the algorithm description (Fig. 10), where in the zebra
image, the stripes were very nicely separated from its structure.
The separation surface can be optimally found in different
manners, according to the texture’s features. One of them is
to use the Gabor filters in order to find a separation surface
for textures with definite texture orientation. Another option
is to use the Gaussian Mixture Model in order to differentiate
textures with different distribution in space and time, andadapt
the separation surface to it.

V. A PPLICATIONS

A. Texture Manipulation

Following an efficient texture separation, we can manipulate
the different image layers in order to create sub-images,
with enhanced texture or reduced texture. For example, in
Fig 14 we separate the faces only, maintaining the sharp
stones’ borders, and then, manipulate their level in the output
image to get enhanced or depressed facial features. In Fig.
15 another texture manipulation example is shown, where
the wood texture in the game board image is depressed and
enhanced to a desired level. In the zebra image in Fig. 16 the
stripes were extracted as depicted in Fig. 10, then by using a
mask of the zebra itself, the stripes were enhanced and then
inverted, so that the brown and white colors were replaced.
Note that because of the stratum definition, including mostly

the stripes, the other zebra features, such as nose and eyes
maintained their color.

B. Texture Donation

Another application is texture donation, in which a degraded
image is enhanced and its fine texture is recovered by matching
a prior out of a set, using our scale-orientation descriptor,
to get a perfect patch match and visually good recovery of
the image. In Fig. 17 we can see a hair example, on the left
image a degraded hair sample is shown, in the middle is the
matching hair texture donor, selected out of many hair priors.
Its mirror image was taken for a texture match. On the right,
the recovered hair image, composed of the degraded texture
patch and decomposed fine scale texture of the donor patch.
We can see the recovered patch inside the original hair image
to see how natural it looks.

VI. CONCLUSION

A novel concept of separation surface was introduced,
depicting a stratum of a desired texture, not necessarily homo-
geneous in space and scale. The surface was found using re-
gression of the maximal responses in the spectral TV domain.
The surface can be fitted using methods other than maximal
response, such as the Gabor filters for orientated textures,or
the Gaussian mixture model for a mixture of textures with
different distribution in space and scale. Image decomposition
using a separation surface can be very beneficial in cases
where the texture varies within the image, while preserving
its characteristic. It can separate mixed textures in a highly
accurate manner, compared to state-of-the-art methods. An
application of texture manipulation was presented, in which
the selected textures in the image can be attenuated, enhanced
or even inverted, in a naturally looking formation. In a future
work, we plan to examine additional methods to automatically
form the surface. We would also like to broaden the use of
multiscale decomposition to other applications.
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Figure 11: Separation plane of a synthetic example
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