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Abstract—Many computer vision problems can be posed as
learning a low-dimensional subspace from high dimensional
data. The low rank matrix factorization (LRMF) represents a
commonly utilized subspace learning strategy. Most of the current
LRMF techniques are constructed on the optimization problems
using L1-norm and L2-norm losses, which mainly deal with
Laplacian and Gaussian noises, respectively. To make LRMF
capable of adapting more complex noise, this paper proposes a
new LRMF model by assuming noise as Mixture of Exponential
Power (MoEP) distributions and proposes a penalized MoEP
(PMoEP) model by combining the penalized likelihood method
with MoEP distributions. Such setting facilitates the learned
LRMF model capable of automatically fitting the real noise
through MoEP distributions. Each component in this mixture
is adapted from a series of preliminary super- or sub-Gaussian
candidates. Moreover, by facilitating the local continuity of noise
components, we embed Markov random field into the PMoEP
model and further propose the advanced PMoEP-MRF model.
An Expectation Maximization (EM) algorithm and a variational
EM (VEM) algorithm are also designed to infer the parameters
involved in the proposed PMoEP and the PMoEP-MRF model,
respectively. The superseniority of our methods is demonstrated
by extensive experiments on synthetic data, face modeling,
hyperspectral image restoration and background subtraction.

Index Terms—Low-rank matrix factorization, mixture of expo-
nential power distributions, Expectation Maximization algorithm,
face modeling, hyperspectral image restoration, background
subtraction.

I. INTRODUCTION

Many computer vision, machine learning, data mining
and statistical problems can be formulated as the problem
of extracting the intrinsic low dimensional subspace from
input high-dimensional data. The extracted subspace tends
to deliver the refined latent knowledge underlying data and
thus has a wide range of applications including structure
from motion [37], face recognition [42], collaborative filter-
ing [18], information retrieval [11], social networks [8], object
recognition [38], layer extraction [16] and plane-based pose
estimation [36].

Low rank matrix factorization (LRMF) is one of the most
commonly utilized techniques for subspace learning. Given a
data matrix Y ∈ Rm×n with entries yijs, the LRMF problem
can be mathematically formulated as

min
U,V
||W � (Y −UVT )||, (1)
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Fig. 1. From left to right: Original hyperspectral image (HSI), reconstructed
image, two extracted noise images with their histograms by the proposed
methods. (Top: EP0.2 noise image and histogram. Bottom: EP1.8 noise
image and histogram).

where W is the indicator matrix with wij = 0 if yij is missing
and 1 otherwise, and U ∈ Rm×r and V ∈ Rn×r are low-
rank matrices (r < min(m,n)). The operator � denotes the
Hadamard product (the component-wise multiplication) and
|| · || corresponds to a certain noise measure.

Under the assumption of Gaussian noise, it is natural to
utilize the L2-norm (Frobenius norm) as the noise measure,
which has been extensively studied in LRMF literatures [1],
[5], [28], [30], [31], [35], [41], [44]. However, it has been
recognized in many real applications that these methods con-
structed on L2 norm are sensitive to outliers and non-Gaussian
noise. In order to introduce robustness, the L1-norm based
models [12], [15], [17], [19], [34], [46] have attracted much
attention recently. However, the L1-norm is only optimal for
Laplace-like noise and still very limited for handling various
types of noise encountered in real problems. Taking the hyper-
spectral image (HSI) as an example, it has been investigated
in [43] that there are mainly two kinds of noise embedded in
such type of data, i.e., sparse noise (stripe and deadline) and
Gaussian-like noise, as depicted in Fig. 1. The stripe noise is
produced by the non-uniform sensor response which conducts
the deviation of gray values of the original image continuously
towards one direction. This noise always very sparsely located
on edges and in texture areas of an image. The deadline noise,
which is induced by some damaged sensor, results in zero or
very small pixel values of entire columns of images along
some HSI bands. The Gaussian-like noise is induced by some
random disturbation during the transmission process of hyper-
spectral signals. It is easy to see that such kind of complex
noise cannot be well fit by either Laplace or Gaussian, which
means that neither L1-norm nor L2-norm LRMF models are
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proper for this type of data.
Very recently, some novel models were presented to expand

the availability of LRMF under more complex noise. The key
idea is assuming that the noise follows a more complicated
mixture of Gaussians (MoG) [25], which is expected to better
fit real noise, since the MoG constructs a universal approx-
imator to any continuous density function in theory [24].
However, this method still cannot finely adapt real data noise.
On one hand, MoG can approximate a complex distribution,
e.g. Laplace, only under the assumption that the number of
components goes to infinity, while in applications only a finite
number of components can be specified. On the other hand,
it also lacks a theoretically sound manner to properly select
the number of Gaussian mixture components based on the
practical noise extent mixed in data. Thus, it is crucial to
construct a better strategy with more adaptive distribution
modeling capability on data noises beyond MoG.

In this paper, we propose a new LRMF method with a more
general noise model to address the aforementioned issues.
Specifically, we encode the noise as a mixture distribution of
a series of sub- and super-Gaussians (i.e., general exponential
power (EP) distribution), and formulate LRMF as a penalized
MLE model, called PMoEP model [6]. Moreover, by facil-
itating the local continuity of noise components, we embed
Markov random field into the PMoEP model and propose
the PMoEP-MRF model. Then we design an Expectation
Maximization (EM) algorithm and a variational EM (VEM)
algorithm to estimate the parameters involved in the pro-
posed PMoEP model and PMoEP-MRF model, respectively,
and prove their convergence. The two new methods are not
only capable of adaptively fitting complex real noise by EP
noise components with proper parameters, but also able to
automatically learn the proper number of noise components
from data, and thus can better recover the true low-rank matrix
from corrupted data as verified by extensive experiments.

The rest of the paper is organized as follows. In Section
II, the related work regarding LRMF is discussed. In Section
III, we first present the PMoEP model and the corresponding
EM algorithm, and then conduct the convergence analysis
of the proposed algorithm. The PMoEP-MRF model and
the corresponding variational EM algorithm are proposed in
Section IV. In Section V, extensive experiments are conducted
to substantiate the superiority of the proposed models over
previous methods. Finally, conclusions are drawn in Section
VI. Throughout the paper, we denote scalars, vectors, and
matrices as the non-bold letters, bold lower case letters, and
bold upper case letters, respectively.

II. RELATED WORK

The L2 norm LRMF with missing data has been studied
for decades. Gabriel and Zamir [13] proposed a weighted SVD
method as the early attempt for this task. They used alternated
minimization to find the principal subspace underlying the
data. Srebro and Jaakkola [35] proposed the Weighted Low-
rank Approximation (WLRA) algorithm to enhance efficiency
of LRMF calculation. Buchanan and Fitzgibbon [5] further
proposed a regularized model that adds a regularization term

and then adopts the damped newton algorithm to estimate the
subspaces. However, it cannot handle large-scale problems
due to the infeasibility of computing the Hessian matrix
over a large number of variables. Okatani and Deguchi [30]
showed that a Wiberg marginalization strategy on U and V
can provide a better and robust initialization and proposed
the Wiberg algorithm that updates U via least squares while
updates V by a Gauss-Newton step in each iteration. Later, the
Wiberg algorithm was extended to a damped version to achieve
better convergence by Okatani et al. [31]. Aguiar et al. [1]
deduced a globally optimal solution to L2-LRMF with missing
data under the assumption that the missing data has a special
Young diagram structure. Zhao and Zhang [44] formulated
the L2- norm LRMF as a constrained model to improve its
stability in real applications. Wen et al. [41] adopted the
alternating strategy to solve the L2-norm LRMF problem.
Mitra et al. [28] proposed an augmented Lagrangian method
to solve the L2-norm LRMF problem for higher accuracy.
However, all of these methods minimize the L2-norm or its
variations and is only optimal for Gaussian-like noise.

To make subspace learning method less sensitive to out-
liers, some robust loss functions have been investigated. For
example, De la Torre and Black [10] adopted the Geman-
McClure function and then used the iterative reweighted
least square (IRLS) method to solve the induced optimization
problem. In the last decade, the L1-norm has become the most
popular robust loss function along this research line. Ke and
Kanade [17] initially replaced the L2-norm with the L1-norm
for LRMF, and then solved the optimization by alternated
convex programming (ACP) method. Kwak [19] later proposed
to maximize the L1-norm of the projection of data points onto
the unknown principal directions instead of minimizing the
residue. Eriksson and Hengel [12] experimentally showed that
the ACP approach does not converge to the desired point with
high probability, and thus introduced the L1-Wiberg approach
to address this issue. Zheng et al. [46] added more constraints
to the factors U and V for L1-norm LRMF, and solved the
optimization by ALM, which improved the performance in
structure from motion application. Within the probabilistic
framework, Wang et al. [39] proposed probabilistic robust
matrix factorization (PRMF) that modeled the noise as a
Laplace distribution, which has been later extended to fully
Bayesian settings by Wang and Yeung [40]. However, these
methods optimize the L1-norm and thus are only optimal for
Laplace-like noise.

Beyond Gaussian or Laplace, other types of noise assump-
tions have also been attempted recently to make the model
adaptable to more complex noise scenarios. Lakshminarayanan
et al. [20] assumed that the noise is drawn from a student-t
distribution. Babacan et al. [2] proposed a Bayesian meth-
ods for low-rank matrix estimation modeling the noise as a
combination of sparse and Gaussian. To handle more complex
noise, Meng and De la Torre [25] modeled the noise as a
MoG distribution for LRMF, and later was extended to the
Bayesian framework by Chen et al. [7] and to RPCA by Zhao
et al. [45]. Although better than traditional methods, these
methods are still very limited in dealing with complex noise
in real scenarios.
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III. LRMF WITH MOEP NOISE

In this section, we first present the new LRMF model with
MoEP noise, called PMoEP model, and then design an EM
algorithm to solve it. Finally, we give the convergence analysis
of the proposed EM algorithm and the implementation issues.

A. PMoEP model

In LRMF, from a generative perspective, each element
yij(i = 1, 2, . . . ,m, j = 1, 2, . . . , n) of the data matrix Y
can be modeled as

yij = uiv
T
j + eij , (2)

where ui and vi represent the ith row vectors of U and V,
respectively, and eij is the noise embedded in yij . Instead of
assuming that the noise obeys Gaussian [35], Laplace [17] or
MoG [25] distributions as previous methods, we assume that
the noise eij follows more flexible mixture of Exponential
Power (EP) distributions:

P(eij) =

K∑
k=1

πkfpk(eij ; 0, ηk), (3)

where πk is the mixing proportion with πk ≥ 0 and∑K
k=1 πk = 1, K is the number of the mixture components

and fpk(eij ; 0, ηk) denotes the kth EP distribution with param-
eter ηk and pk(pk > 0). Let p = [p1, p2, . . . , pK ], in which
each pk can be variously specified. As defined in [27], the
density function of the EP distribution (p > 0) with zero mean
is

fp(e; 0, η) =
pη

1
p

2Γ( 1
p )

exp{−η|e|p}, (4)

where η is the precision parameter, p is the shape parameter
and Γ(·) is the Gamma function. By changing the shape
parameter p, the EP distribution describes both leptokurtic
(0 < p < 2) and platykurtic (p > 2) distributions. In particular,
we obtain the Laplace distribution with p = 1, the Gaussian
distribution with p = 2 and the Uniform distribution with
p → ∞ (see Fig. 2). Therefore, all previous cases including
L2, L1, MoG and any combinations of them are just special
cases of MoEP. By setting η = 1/(pσp), the EP distribution
(4) can be equivalently written as EPp(e; 0, pσp).

In our model, we assume that each noise eij is equipped
with an indicator variable zij = [zij1, zij2, . . . , zijK ]T , where
zijk ∈ {0, 1} and

∑K
k=1 zijk = 1. zijk = 1 implies

that the noise eij is drawn from the kth EP distribution.
zij obeys a multinomial distribution zij ∼ M(π), where
π = [π1, π2, . . . , πK ]T . Then we have:

P(eij |zij) =

K∏
k=1

fpk(eij ; 0, ηk)zijk , (5)

P(zij ;π) =

K∏
k=1

π
zijk
k . (6)

Denoting E = (eij)m×n, Z = (zij)m×n and Θ =
{π,η,U,V} with η = [η1, η2, . . . , ηK ]T , the complete likeli-
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Fig. 2. The probability density function of EP distributions.

hood function can then be written as

P(E,Z; Θ) =
∏
i,j∈Ω

K∏
k=1

[πkfpk(eij ; 0, ηk)]zijk , (7)

where Ω is the index set of the non-missing entries in Y. Then
the log-likelihood function is

l(Θ) = logP(E; Θ) = log
∑
Z

P(E,Z; Θ), (8)

and the complete log-likelihood function is

lC(Θ) = logP(E,Z; Θ)

=
∑
i,j∈Ω

K∑
k=1

zijk[log πk + log fpk(eij ; 0, ηk)]. (9)

As aforementioned in introduction, determining the number
of components K is an important problem for the mixture
model. Thus, various model selection techniques can be readily
employed to resolve this issue. Most conventional methods
are based on the likelihood function and some information
theoretic criteria, such as AIC and BIC. However, Leroux [21]
showed that these criteria may overestimate the true number
of components. On the other hand, Bayesian approaches [32],
[47] have also been used to find a suitable number of compo-
nents of the finite mixture model. But the computation burden
and statistical properties of the Bayesian method limit its use to
a certain extent. Here we adopt a recently proposed method by
Huang et al. [14] for this aim of selecting EP mixture number,
and construct the following penalized MoEP (PMoEP) model:

max
Θ

{
lCP (Θ) = lC(Θ)− P (π;λ)

}
, (10)

where

P (π;λ) = nλ

K∑
k=1

Dk log
ε+ πk
ε

, (11)

with ε being a very small positive number, λ being a tuning
parameter (λ > 0), and Dk being the number of free param-
eters for the kth component. In the proposed PMoEP model,
Dk equals 2 (for πk and ηk).
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B. EM algorithm for PMoEP model

In this subsection, we propose an EM algorithm to solve
the proposed PMoEP model (10). The EM algorithm is
an iterative procedure and thus we assume that Θ(t) =
{{π(t)}, {η(t)},U(t),V(t)} is the estimation at the tth iter-
ation. In the following, we will introduce the two steps of the
proposed EM algorithm.

In the E step, we compute the conditional expectation of
zijk given eij by the Bayes’ rule:

γ
(t+1)
ijk =

π
(t)
k fpk(yij − u

(t)
i (v

(t)
j )T )|0, η(t)

k )∑K
l=1 π

(t)
l fpl(yij − u

(t)
i (v

(t)
j )T )|0, η(t)

l ))
. (12)

Then, it is easy to construct the so-called Q function:

Q(Θ,Θ(t))=
∑

i,j∈Ω,k

γ
(t+1)
ijk [log fpk(yij−uiv

T
j ; ηk)+log πk]

− nλ
K∑
k=1

Dk log
ε+ πk
ε

.

In the M-step, we update Θ by maximizing the Q function.
For π and η, it is easy to obtain the update equations by taking
the first derivative of Q with respect to them respectively, and
finding the zero points through:

π
(t+1)
k =max

{
0,

1

1−λD̂

[∑
i,j∈Ω γ

(t+1)
ijk

|Ω|
−λDk

]}
, (13)

η
(t+1)
k =

Nk

pk
∑
i,j∈Ω γ

(t+1)
ijk |yij−u

(t)
i (v

(t)
j )T |pk

, (14)

where D̂ =
∑K
k=1Dk = 2K, Nk =

∑
i,j∈Ω γ

(t+1)
ijk and |Ω|

is the number of non-missing elements. To update U,V, we
need to maximize the following function:

−
∑
i,j∈Ω

K∑
k=1

γ
(t+1)
ijk η

(t+1)
k |yij − u

(t)
i (v

(t)
j )T |pk , (15)

which is equivalent to solving1

min
U,V

K∑
k=1

||W(k) � (Y −UVT )||pkpk , (16)

where the element w(k)ij of W(k) ∈ Rm×n(k = 1, . . . ,K)
is

w(k)ij =

{
(η

(t+1)
k γ

(t+1)
ijk )

1
pk , i, j ∈ Ω

0, i, j /∈ Ω
.

To solve (16), we resort to augmented Lagrange multipliers
(ALM) method. By introducing auxiliary variable L = UVT ,
(16) can be equivalently rewritten as

min
U,V

K∑
k=1

||W(k) � (Y − L)||pkpk , s.t L = UVT . (17)

The augmented Lagrangian function can be written as:

1The p-norm of a matrix is defined as ||X||p = (
∑

i,j |xij |p)
1
p .

L(U,V,L,Y, ρ) =

K∑
k=1

||W(k) � (Y−L)||pkpk

+ 〈Λ,L−UVT 〉+
ρ

2
||L−UVT ||2F ,

(18)

where Λ ∈ Rm×n is the Lagrange multiplier and ρ is a
positive scalar. Then the optimization (17) can be solved by
alternatively updating all involved variables and multipliers as
follows

(
U(s+1),V(s+1)

)
=arg min

U,V
L(U,V,L(s),Λ(s), ρ(s)),

L(s+1) =arg min
L

L(U(s+1),V(s+1),L,Λ(s), ρ(s)),

Λ(s+1) =Λ(s) + ρ(s)(L(s+1)−U(s+1)(V(s+1))T ),

ρ(s+1) =αρ(s),

(19)

where α is a preset constant which is slightly larger than
1, guaranteeing the gradually increasing value for ρ in each
iteration. Now we discuss how to solve the subproblems
involved in the above procedure.

(1) Update U,V. The following subproblem needs to be
solved:

min
U,V
||L(s) +

1

ρ(s)
Λ(s) −UVT ||2F , (20)

which can be accurately and efficiently solved by the SVD
method.

(2) Update L. We need to solve the following problem:

min
L

K∑
k=1

||W(k)�(Y−L)||pkpk +〈Λ(s),L〉

+
ρ(s)

2
||L−U(s+1)(V(s+1))T ||2F .

(21)

This problem seems to be more difficult due to its non-
convexity and non-smoothness. However, we can divide it into
mn independent scalar optimization problems as follows:

min
lij

∑
k

ηkγijk|yij − lij |pk +
ρ(s)

2
l2ij

+ ((Λ
(s)
ij )− ρ(s)uiv

T
j )lij , (i, j) ∈ Ω

min
lij

ρ(s)

2
l2ij + ((Λ(s))ij − ρ(s)uiv

T
j )lij . (i, j) /∈ Ω

(22)

Letting sij = yij − lij , (22) is equivalent to min
sij

1
2 (tij − sij)2 + 1

ρ(s)

∑
l ηlγijl|sij |pl , (i, j) ∈ Ω

min
sij

1
2 (tij − sij)2, (i, j) /∈ Ω

(23)

where tij = −uiv
T
j +yij+ 1

ρ(s)
(Λ

(s)
ij ). Then, for each (i, j) ∈

Ω, (23) is equivalent to the following subproblem:

min
sij

1

2
(tij − sij)2 +

1

ρ

K∑
l=1

ηlγijl|sij |pl . (24)

This problem requires to optimize a scalar variable, and we
take its first derivative with respect to sij and then adopt
the well-known Newton method to easily approach a local
minimum of it. The procedure of updating L by ALM method
can then be listed in Algorithm 1.
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Algorithm 1 ALM method for solving (16).

Input: The initialization of L(0), Λ(0) and s = 0.
Output: U and V.

1: while not converged do
2: Updating U(s+1) and V(s+1) via Eq. (20);
3: Updating L(s+1) via Eqs. (23) and (24).
4: Updating Λ(s+1) via Eq. (19).
5: Updating α(s+1) via Eq. (19).
6: end while

Remark: If fk is specified as the density of a Gaussian
distribution, the PMoEP model degenerates to the penalized
MoG (PMoG) model. The optimization process of the PMoG
model is almost the same as the PMoEP except the minimiza-
tion form of (16). In this case, the optimization problem (18)
has the following form

min
U,V
||W̃ � (Y −UVT )||22, (25)

and then any off-the-shelf weighted L2 norm LRMF method
can be adopted to solve it. It should be noted that the
PMoG method so conducted is different from the previous
MoG method [25] due to its augmented automatic mixture-
component-number learning capability.

The proposed EM algorithm for PMoEP model can now be
summarized in Algorithm 2.

Algorithm 2 EM Algorithm for PMoEP LRMF.
Input: Data Y; The algorithm parameters: rank r and λ.
Output: Parameter Θ, the number of mixture components

Kfinal and posterior probability γ = (γijk)m×n×Kfinal
.

Initialization: Θ(t) = {π(t),η(t),U(t),V(t)}, the number of
initial mixture components Kstart, preset candidates p =
[p1, . . . , pKstart

], tolerance ε and t = 0.
1: while not converged do
2: Updating γ(t) via Eq. (12);
3: Updating π(t) via Eq. (13), and removing the compo-

nent with π(t)
k = 0;

4: Updating η(t) via Eq. (14);
5: Updating U(t),V(t) via Algorithm 1.
6: t = t+ 1;
7: end while

C. Convergence Analysis of EM algorithm

In this subsection, we show the convergence property of the
proposed EM algorithm for PMoEP model.

Theorem 3.1: Let lCP (Θ) = l(Θ)− P (π;λ), where l(Θ) is
defined in (8). If we assume that {Θ(t)} is the sequence gen-
erated by Algorithm 2 and the sequence of likelihood values
{lCP (Θ(t))} is bounded above, then there exits a constant l?

such that
lim
t→∞

lCP (Θ(t)) = l?, (26)

where

Θ(t) =arg max
Θ

{
Ω(Θ|Θ(t−1))+P (π(t−1);λ)−P (π;λ)

}
,

(27)

and

Ω(Θ|Θ(t−1))=
∑
Z

P(Z|E; Θ(t−1)) log
P(E,Z; Θ)

P(E,Z; Θ(t−1))
.

(28)
The proof is listed in Appendix A.

D. Implementation Issues

In the proposed PMoEP algorithm, there are three involved
preset parameters, Kstart, p and λ. Throughout all our ex-
periments, we just simply set Kstart as a not large number
as 4 − 10 based on a coarse empirical estimate on the noise
complexity inside data. Once Kstart is initialized, the length
of vector p = [p1, p2, . . . , pKstart

] in PMoEP is determined. In
all our experiments, the elements in p are selected ranging over
the interval between 0.1 and 2. For the setting of parameter λ
, we first provide a series of candidates λ and then adopt the
modified BIC to select a good λ among these candidates based
on the modified BIC criterion. This criterion has been proven
to be able to yield consistent component number estimation
of the finite Gaussian mixture model [14]. Specifically, the
modified BIC criterion is defined as

BIC(λ)=
∑
i,j∈Ω

log {
K̂∑
k=1

π̂kfk(eij ; η̂k)}− 1

2
(

K̂∑
k=1

Dk) log |Ω|.

(29)
Then we can select the proper λ̂ by

λ̂ = arg max
λ

BIC(λ), (30)

where |Ω| is the number of non-missing elements, K̂ is the
estimate of the number of components, π̂k is the estimate
of parameter πk, and η̂k is the estimate of parameter ηk for
maximizing (10) for a given λ.

IV. PMOEP WITH MARKOV RANDOM FIELD

In this section, we first propose an advanced PMoEP-MRF
model. Then, we introduce a variational EM (VEM) algorithm
to solve it. Finally, we also show the convergence analysis for
the proposed algorithm.

A. PMoEP-MRF Model

In some practical applications, we often have certain noise
prior knowledge. By introducing the prior into modeling, noise
can be more appropriately modeled and thus the performance
of the model is expected to be further improved. In video
data, we can utilize the spatial and temporal smoothness
prior. Specifically, for a certain pixel in one video frame, the
pixels located near it both spatially and temporally tend to
have similar distribution to it. Therefore, by facilitating the
local continuity of noise components, we can embed Markov
Random Field (MRF) into the PMoEP model. Note that the
random variable zij determines the cluster label of noise eij in
PMoEP model, and the aforementioned spatial and temporal
relationships among adjacent pixels imply that they incline to
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possess similar zij values. Therefore, we integrate into the
distribution of zij with such prior smoothness knowledge as:

zij ∼M(zij ;π)
∏

(p,q)∈N (i,j)

ψ(zij , zpq), (31)

where

ψ(zij , zpq) =
1

C

∏
k

exp [τ(2zijk−1)(2zpqk−1)] , (32)

where τ is a positive scalar parameter (we set τ = 10 in
experiments), C is a normalization constant of ψ(zij , zpq) and
N (i, j) is the neighborhood of the (i, j) entry. Specifically,
when zijk and zpqk achieve the same value (0 or 1), ψ(zij , zpq)
will have higher value, and thus this term readily encode the
expected prior information. After defining the new distribution
of zij , the distribution of Z can be written as

P(Z;π) =
1

C

∏
i,j∈Ω,k

π
zijk
k∏

i,j∈Ω,k

∏
(p,q)∈N (i,j)

exp [τ(2zijk−1)(2zpqk−1)] .
(33)

Then, the complete likelihood function can be written as

P(E,Z; Θ) = P(E|Z;η)P(Z;π)

=
1

C

∏
i,j∈Ω,k

[πkfpk(yij−uiv
T
j ; 0, ηk)]zijk∏

i,j∈Ω,k

∏
(p,q)∈N (i,j)

exp[τ(2zijk−1)(2zpqk−1)] ,

(34)

and the complete log-likelihood function is

lC(Θ)=logP(E,Z; Θ)

=
∑

i,j∈Ω,k

zijk[log πk+log fpk(yij−uiv
T
j ; 0, ηk)]

+τ
∑

i,j∈Ω,k

∑
(p,q)∈N (i,j)

(2zijk−1)(2zpqk−1)+const.

(35)

In the next section, we will introduce a variational EM
algorithm to solve this PMoEP-MRF model in detail.

B. Variational EM algorithm for PMoEP-MRF model
Since EM requires the computation of conditional dis-

tribution P(Z|E) which is not tractable. In such PMoEP-
MRF model, we resort to the variational method that aims
at optimizing a lower bound of logL(E), denoted by

J (RE) = logL(E)−KL[RE(Z),P(Z|E)], (36)

where KL denotes the Kullback−Leibler divergence, P(Z|E)
is the true conditional distribution of the indicator variables
Z given E, and RE(Z) is an approximation of the condi-
tional distribution. J (RE) equals to logL(E) if and only if
RE(Z) = P(Z|E).

As shown above, we are not able to calculate P(Z|E), so we
will look for the best (in terms of KL divergence) RE(Z) in
a certain class of distributions. Specifically, we constrain the
variational distribution RE(Z) to have the following form:

RE(Z) =
∏
i,j

R(zij ;γij), (37)

where R(zij ;γij) =
∏
ij

∏
k γ

zijk
ijk ,

∑
k γijk = 1, and γ is the

variational parameter. Then, the lower bound J (RE) to be
maximized can be written as

J (RE) = ERE(Z){logP(E,Z)} − ERE(Z){RE(Z)},

=
∑

i,j∈Ω,k

[log πk + log fpk(eij ; 0, ηk)]

+ τ
∑

i,j∈Ω,k

∑
(p,q)∈N (i,j)

(2γijk − 1)(2γpqk − 1)

−
∑

i,j∈Ω,k

γijk log γijk + const.

(38)

We can easily adopt alternative search strategy for the maxi-
mization problem on J (RE) by alternatively solving the sub-
problems: (i) with respect to RE and (ii) with respect to
parameters U,V,π,η. The following Proposition 4.1 and 4.2
provide the solutions of optimization problem (i) and (ii),
respectively.

Proposition 4.1: (Variational E-step) Given parameters
Θ = {U,V,π,η}, the optimal variational parameters γ̂ij =
arg max

γ
J (RE) satisfy the following fixed point relation:

γijk ∝ πkfpk(eij ; 0, ηk) exp{τ
∑

(p,q)∈N (i,j)

γpqk}. (39)

PROOF. Based on (38), we maximize J (RE) with respect
to γijs, subject to

∑
k γijk = 1, for all i, j, i.e. to maximize

J (RE) +
∑
ij [λij(

∑
k γijk− 1)] where λij is the Lagrangian

multiplier. The derivative with respect to γijk is

log πk+log fpk(eij ; 0, ηk)+τ
∑

(p,q)∈N (i,j)

γpqk−log γijk−1+λij .

This derivative is null iff γijk satisfy the relation given in the
proposition, and exp(−1+λij) is the the normalizing constant.
�

Proposition 4.2: (Variational M-step) Given the variational
parameters γijs, the values of parameters U,V,π,η that
maximize J (RE) can be calculated in the same way as the
M step in the EM algorithm of PMoEP model.

The proposed variational EM algorithm for PMoEP-MRF
model can then be summarized in Algorithm 3.

Algorithm 3 VEM Algorithm for the PMoEP-MRF Model.
Input: Data Y, rank r, τ and λ.
Output: Parameter Θ, mixture components number Kfinal

and γ = (γijk)m×n×Kfinal
.

Initialization: Θ(0) = {π(0),η(0),U(0),V(0)}, the initial
mixture components number Kstart, preset candidates
p = [p1, . . . , pKstart ], tolerance ε and t = 0.

1: while not converged do
2: Updating γ(t) via the fixed-point Eq. (39);
3: Updating π(t) via Eq. (13), and removing the compo-

nent with π(t)
k = 0;

4: Updating η(t) via Eq. (14);
5: Updating U(t),V(t) via Algorithm 1;
6: t = t+ 1.
7: end while
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TABLE I
THE PARAMETER SELECTION FOR PMOG AND PMOEP.

Parameter Selection
PMoG PMoEP

Gaussian Kfinal = 1,
λselect = 0.01

Kfinal = 1, pselect = 2,
λselect = 0.15

Exponential Power Kfinal = 3,
λselect = 0.001

Kfinal = 1, pselect = 0.2,
λselect = 0.3

Laplace Kfinal = 3,
λselect = 0.001

Kfinal = 1, pselect = 1,
λselect = 0.1

Sparse Kfinal = 2,
λselect = 0.005

Kfinal = 2, pselect = [2, 2]
, λselect = 0.005

Mixuture 1 Kfinal = 2,
λselect = 0.01

Kfinal = 2, pselect = [1.5, 2],
λselect = 0.005

Mixuture 2 Kfinal = 1,
λselect = 0.001

Kfinal = 2, pselect = [0.5, 2],
λselect = 0.005

C. Convergence Analysis of Variational EM algorithm

In this subsection, we show the convergence property of the
proposed EM algorithm for PMoEP model.

Theorem 4.3: Given λ, Algorithm 3 generates a sequence
{{γ(t)

ij },Θ(t)}}∞t=1 which increases J (RE) such that

J (RE; {γ(t+1)
ij },Θ(t+1)}) ≥ J (RE; {γ(t)

ij },Θ
(t)}). (40)

PROOF. This is a direct consequence of Propositions 4.1
and 4.2, which both guarantee that J (RE) monotonically
increases in iteration. �

It is easy to see that J (RE; {γ(t)
ij },Θ(t)}) is upper

bounded, and thus the convergence of Algorithm 3 can be
guaranteed.

V. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed PMoEP
method, its special case PMoG and the PMoEP-MRF method,
we conducted a series of experiments on both synthetic
and real data. Five state-of-the-art LRMF methods were
considered for comparison, including Mixture of Gaussion
method (MoG [25]), Laplace noise methods (CWM [26],
RegL1ALM [46]) and Gaussian noise methods (Damped
Wiberg (DW) [31] and SVD). All experiments were imple-
mented in Matlab R2014a on a PC with 3.60GHz CPU and
12GB RAM.

A. Synthetic simulations

Several synthetic experiments with different noise settings
were designed to compare the performance of the proposed
methods and other competing methods. We first randomly
generated 30 low rank matrices with size 40× 20 and rank 4.
Each of these matrices was generated by the multiplication of
two low-rank matrices Ugt ∈ R40×4 and Vgt ∈ R20×4, and
Ygt = UgtV

T
gt is the ground truth matrix. Then, we randomly

specified 20% elements of Ygt as missing entries. Next, we
added different types of noise to the non-missing entries
as follows: (1) Gaussian noise: N (0, 0.04). (2) Exponential
power noise:2 EP0.2(0, 0.2pp), p = 0.2. (3) Laplace noise:
L(0, 0.2). (4) Sparse noise: 12.5% of the non-missing entries

2The method of drawing samples from a general exponential power
distribution is introduced in Appendix B.

were corrupted with uniformly distributed noise on [-20,20].
(5) Mixture noise 1: 25% of the entries were corrupted with
uniformly distributed noise on [-5,5], 25% were contaminated
with Gaussian noise N (0, 0.04) and the remaining 50% are
corrupted with Gaussian noise N (0, 0.01). (6) Mixture noise
2: 37.5% of the entries were corrupted with EP (0, 0.1pp), p =
0.5, 50% were contaminated with Laplace noise L(0, 0.3)
and the remaining 50% were corrupted with Gaussian noise
N (0, 0.01). Then we get the noisy matrix Yno. Six measures
were utilized for performance assessment:

C1= ||W�(Yno−ŨṼT )||1, C2= ||W�(Yno−ŨṼT )||2,
C3 = ||Ygt − ŨṼT ||1, C4 = ||Ygt − ŨṼT ||2,
C5 = subspace(Ugt, Ũ), C6 = subspace(Vgt, Ṽ),

where Ũ, Ṽ are the outputs of the corresponding competing
method, and subspace(U1,U2) denotes the angle between
subspaces spanned by the columns of U1 and U2. Note that
C1 and C2 are the optimization objective function for L1

and L2 norm LRMF problems, while the latter four measures
(C3 − C6) are more faithful to evaluate whether a method
recovers the correct subspaces.

TABLE II
PERFORMANCE EVALUATION ON SYNTHETIC DATA. THE BEST RESULTS IN

TERMS OF EACH CRITERION ARE HIGHLIGHTED IN BOLD.

PMoEP PMoG MoG DW CWM RegL1ALM

Gaussian Noise
C1 40.97 41.00 41.00 41.00 39.23 36.60
C2 4.16 4.16 4.16 4.16 5.67 5.27
C3 3.27 3.27 3.27 3.27 6.01 4.94
C4 3.90e+1 3.91e+1 3.91e+1 3.91e+1 5.09e+1 5.09e+1
C5 4.22e-2 4.22e-2 4.22e-2 4.22e-2 5.71e-2 5.33e-2
C6 3.01e-2 3.01e-2 3.01e-2 3.01e-2 4.55e-2 3.79e-2

Exponential Power Noise
C1 3.60e+2 3.42e+2 3.23e+2 4.30e+2 3.21e+2 3.65e+2
C2 1.30e+3 1.04e+3 1.18e+3 6.27e+2 1.17e+3 8.51e+2
C3 1.72e+2 4.49e+4 2.17e+3 5.06e+3 1.73e+2 7.77e+4
C4 2.32e+2 4.67e+2 2.60e+2 6.29e+2 2.40e+2 9.68e+2
C5 3.31e-1 5.67e-1 4.11e-1 9.19e-1 3.39e-1 1.16
C6 2.19e-1 4.97e-1 2.31e-1 8.94e-1 2.61e-1 1.11

Laplacian Noise
C1 7.63e+1 7.29e+1 7.13e+1 7.76e+1 7.24e+1 6.80e+1
C2 1.72e+1 2.57e+1 2.44e+1 1.68e+1 2.16e+1 2.10e+1
C3 1.27e+1 2.02e+1 1.84e+1 1.31e+1 1.69e+1 1.42e+1
C4 7.54e+1 9.37e+1 8.99e+1 7.69e+1 8.33e+1 7.85e+1
C5 9.17e-2 1.15e-1 1.07e-1 9.22e-2 1.07e-1 9.80e-2
C6 6.30e-2 8.25e-2 7.84e-2 6.49e-2 8.24e-2 6.56e-2

Sparse Noise
C1 8.12e+2 8.12e+2 8.12e+2 1.17e+3 8.20e+2 8.73e+2
C2 1.08e+4 1.08e+4 1.08e+4 5.12e+3 1.06e+4 5.95e+3
C3 2.37e-12 2.37e-12 7.94e-12 3.09e+4 9.75e+1 1.59e+6
C4 2.54e-5 2.55e-5 3.48e-5 2.12e+3 6.03e+1 4.89e+3
C5 3.87e-8 3.87e-8 6.63e-8 1.48 2.83e-1 1.47
C6 2.28e-8 2.29e-8 4.44e-8 1.39 6.25e-2 1.54

Mixture Noise1
C1 4.49e+2 4.55e+2 5.25e+2 5.25e+2 4.33e+2 4.35e+2
C2 1.36e+3 1.25e+3 8.49e+2 8.51e+2 1.12e+3 1.16e+3
C3 1.53e+2 6.52e+4 8.98e+2 8.93e+2 3.01e+2 1.56e+4
C4 1.66e+2 4.38e+2 6.02e+2 6.00e+2 2.87e+2 5.15e+2
C5 3.28e-1 5.79e-1 6.47e-1 6.60e-1 4.30e-1 7.88e-1
C6 1.18e-1 3.78e-1 5.01e-1 5.01e-1 2.93e-1 6.84e-1

Mixture Noise2
C1 9.01e+1 8.93e+1 8.76e+1 9.60e+1 8.83e+1 8.32e+1
C2 3.37e+1 4.04e+1 3.99e+1 2.72e+1 3.53e+1 3.42e+1
C3 1.72e+01 2.62e+1 2.49e+1 2.13e+1 2.40e+1 1.87e+1
C4 8.57e+01 1.04e+2 1.01e+2 9.71e+1 9.77e+1 8.87e+1
C5 1.02e-01 1.23e-1 1.24e-1 1.09e-1 1.21e-1 1.07e-1
C6 6.39e-02 8.41e-2 8.14e-2 7.02e-2 8.96e-2 6.62e-2

We set the rank of all the competing methods to 4 and adopt
the random initialization strategy for all the methods. For each
method, we first run with 20 random initializations and then
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Fig. 3. Visual comparison of the ground truth (denote by True) noise
probability density functions and those estimated (denote by Est) by the
PMoEP method in the synthetic experiments. The embedded sub-figures depict
the zoom-in of the indicated portions.

 Original face    PMoEP        PMoG           MoG      RegL1ALM      DW            CWM           SVD   

Fig. 4. From left to right: original face images, reconstructed faces by PMoEP,
PMoG, MoG, RegL1ALM, DW, CWM and SVD.

select the best result with respect to the corresponding objec-
tive value of the method. The performance of each method was
evaluated as the average results over the 30 random matrices
in terms of the six measures, and the results are summarized
in Table II. We also report the final selections of the mixture
number Kfinal and the corresponding parameter λselect for
PMoG and PMoEP in Table I.

From Table II, we can observe that L2-norm methods
DW, MoG, PMoG and our proposed PMoEP methods achieve
the best performance than others in Gaussian noise case. In
Laplace noise case, our PMoEP method performs best and
L1 method RegL1ALM achieves similar results. When the
noise is Exponential Power, PMoEP evidently outperforms
other competing methods in term of criteria C3−C6. In sparse
noise case, PMoEP and PMoG perfom the best and MoG
achieves comparable good results with PMoEP. Moreover,
when the noise gets more complex, PMoEP achieves the
best performance, which attributes to the high flexibility of
PMoEP to model unknown complex noise. These results then
substantiate that our proposed PMoEP method can estimate
a better subspace from the noisy data than other competing
methods.

The promising performance of PMoEP method in these
cases can be easily explained by Fig. 3, which compares the
ground truth noise distributions and the estimated ones by the

     (a) Original HSI

        (b) PMoEP         (c) PMoG            (d) MoG

     (e) RegL1ALM       (f)  CWM           (g) SVD

Fig. 5. Restoration results of band 103 in Urban data set: (a) original bands.
(b)-(g) reconstructed bands by PMoEP, PMoG, MoG, RegL1ALM, CWM and
SVD.

PMoEP method. It can be easily observed that the estimated
noise distributions well match the true ones, which naturally
conducts its good reconstruction capability to the true low-rank
matrix.

B. Face modeling

This experiment aims to test the effectiveness of PMoG and
PMoEP methods in face modeling application. We choose the
first and the second subset of the Extended Yale B database3,
and each subset consists of 64 faces of one person with size
192×168 and then generate two data matrices, each of which
is with size 32256× 64. Typical images are shown in the first
column of Fig. 4.

We set the rank as 4 [3] and adopt two initialization strate-
gies, namely random and SVD for all competing methods.
Then we report the best result among the results in terms of
the object value of the corresponding model utilized by each
method. Some reconstructed faces of different methods are
visually compared in Fig. 4.

From Fig. 4, it is easy to observe that, the proposed PMoEP
and PMoG methods, as well as the other competing ones, can
remove the cast shadows and saturations in faces. However,
our PMoEP and PMoG methods perform better than other ones
on faces containing a large dark region. Such face images
contain both significant cast shadow and saturation noises,
which correspond to the highly dark and bright areas in
face, and camera noise [29], which is much amplified in the
dark areas. Compared with other competing methods, PMoEP
method is capable of better extracting such complex noise
configurations, and thus leads to its better face reconstruction
performance.

C. Hyperspectral Image Restoration

In this section, we evaluate the performance of our proposed
PMoEP method on hyperspectral image restoration problem.
Two real hyperspectral image (HSI) data sets4 were used.

The first dataset is Urban HSI data. This dataset contains
210 bands, each of which is 307 × 307, and some bands are
seriously polluted by atmosphere and water and corrupted by

3http://vision.ucsd.edu/ leekc/ExtYaleDatabase/ExtYaleB.html
4http://www.tec.army.mil/hypercube.
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      (a) Original HSI

         (b) PMoEP             (c) PMoG           (d) MoG

     (e) RegL1ALM           (f)  CWM               (g) SVD

Fig. 6. Restoration results of band 206 in Urban data set: (a) original bands.
(b)-(g) reconstructed bands by PMoEP, PMoG, MoG, RegL1ALM, CWM and
SVD.

      (a) Original HSI

         (b) PMoEP           (c) PMoG           (d) MoG

     (e) RegL1ALM         (f)  CWM           (g) SVD

Fig. 7. Restoration results of band 207 in Urban data set: (a) original bands.
(b)-(g) reconstructed bands by PMoEP, PMoG, MoG, RegL1ALM, CWM and
SVD.

   (a) Original HSI

        (b) PMoEP           (c) PMoG           (d) MoG

       (e) RegL1ALM          (f)  CWM             (g) SVD

Fig. 8. Restoration results of band 107 in Urban data set: (a) original bands.
(b)-(g) reconstructed bands by PMoEP, PMoG, MoG, RegL1ALM, CWM and
SVD.

     (a) Original HSI

          (b) PMoEP           (c) PMoG            (d) MoG

    (e) RegL1ALM        (f)  CWM           (g) SVD

         (d) MoG
Fig. 9. Restoration results of band 152 in Terrain data set: (a) original bands.
(b)-(g) reconstructed bands by PMoEP, PMoG, MoG, RegL1ALM, CWM and
SVD.

      (a) Original HSI

         (b) PMoEP            (c) PMoG           (d) MoG

      (e) RegL1ALM          (f)  CWM           (g) SVD

  (a) Original HSI

        (b) PMoEP          (c) PMoG         (d) MoG

     (f)  CWM       (g) SVD
Fig. 10. Restoration results of band 206 in Terrain data set: (a) original
bands. (b)-(g) reconstructed bands by PMoEP, PMoG, MoG, RegL1ALM,
CWM and SVD.

  (a) Original HSI

         (b) PMoEP           (c) PMoG             (d) MoG

  (e) RegL1ALM       (f)  CWM          (g) SVD

Fig. 11. Restoration results of band 139 in Terrain data set: (a) original
bands. (b)-(g) reconstructed bands by PMoEP, PMoG, MoG, RegL1ALM,
CWM and SVD.

noises with complex structures, as shown in Fig. 1. We reshape
each band as a vector, and stack all the vectors into a matrix,
resulting in the final data matrix with size 94249× 210. The
second one is the Terrain dataset. The original images are of
size 500×307×210. We use all the bands in our experiments
and thus generate a 153500 × 210 data matrix. Therefore,
we get two data matrices used to test our methods. All the
competing methods were implemented, except DW method
which encounters the ‘out of memory’ problem.

The reconstructed hyperspectral images of bands 103, 206,
207 and 107 in Urban dataset and bands 152, 206 and 139 in
Terrain dataset are shown in Fig. 5−8 and Fig. 9−11, respec-
tively. For easy observation, an area of interest is amplified in
the restored images obtained by all the competing methods.
It can be easily seen from the figures that for some bands
containing evident stripes and deadlines, the image restored by
the proposed PMoEP method is clean and smooth, while the
results obtained by the other competing ones contain evident
stripe area. In addition, as is demonstrated in Fig. 8 and Fig.
11, the PMoEP method can effectively recover the seriously
polluted bands, while the other methods failed on them. These
results show that our proposed PMoEP method can not only
remove complicated noises embedded in HSI, but also can



10

0 100 200 300
0

1

2

3

4

5

6

7
x 104

Column number

M
ea

n
 D

N 0 100 200 300
0

1

2

3

4

5

6

7
x 104

Column number

M
ea

n
 D

N

0 100 200 300
0

1

2

3

4

5

6

7
x 104

Column number

M
ea

n
 D

N

0 100 200 300
0

1

2

3

4

5

6

7
x 104

Column number

M
ea

n
 D

N

0 100 200 300
0

1

2

3

4

5

6

7
x 104

Column number

M
ea

n
 D

N

0 100 200 300
0

1

2

3

4

5

6

7
x 104

Column number

M
ea

n
 D

N

          (a)

          (b)           (c)            (d)

           (e)            (f)            (g)
0 100 200 300

0

1

2

3

4

5

6

7
x 104

Column number

M
e

a
n

 D
N 0 100 200 300

0

1

2

3

4

5

6

7
x 104

Row number

M
ea

n
 D

N 0 100 200 300
0

1

2

3

4

5

6

7
x 104

Row number

M
ea

n
 D

N

0 100 200 300
0

1

2

3

4

5

6

7
x 104

Row number

M
ea

n
 D

N

0 100 200 300
0

1

2

3

4

5

6

7
x 104

Row number

M
ea

n
 D

N

0 100 200 300
0

1

2

3

4

5

6

7
x 104

Row number

M
ea

n
 D

N

0 100 200 300
0

1

2

3

4

5

6

7
x 104

Row number

M
ea

n
 D

N

4

          (a)

          (b)           (c)           (d)

          (e)           (f)           (g)
0 100 200 300

0

1

2

3

4

5

6

7
x 104

Row number

M
e

a
n

 D
N

Fig. 12. Vertical (left) and Horizontal (right) mean profiles of band 207 in the Urban data set: (a) original, (b) PMoEP, (c) PMoG, (d) MoG, (e) RegL1ALM,
(f) CWM, (g) SVD.
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Fig. 13. Vertical (left) and Horizontal (right) mean profiles of band 152 in the Terrain data set: (a) original, (b) PMoEP, (c) PMoG, (d) MoG, (e) RegL1ALM,
(f) CWM, (g) SVD.

        RegL1ALM                 CWM                        SVD                                         MoG                                                      PMoG                                                     PMoEP     Original HSI

Fig. 14. From top to bottom, band 204, 206, 207 of Urban, band 208 of Terrain. From left to right: original bands, and extracted noise by RegL1ALM,
CWM, SVD, MoG, PMoG and PMoEP. The noises with positive and negative values are depicted in yellow and blue, respectively. This figure should be
viewed in color and the details are better seen by zooming on a computer screen.

perform robust in the presence of extreme outlier cases like in
Fig. 8 and Fig. 11.

Then we give more quantitative comparison by showing the
vertical mean profiles and horizontal mean profiles of band
207 in Urban dataset and band 152 in Terrain dataset before
and after reconstruction in Fig. 12 and Fig. 13. The horizontal
axis of Fig. 12 represents the column (left) and row (right)
number, and the vertical axis represents the mean DN value
of each column (left) and row (right). It is easy to observe
that the curves in Fig. 12(a) and 13(a) (right) have drastic
fluctuations for the original image. This is deviated from the
prior knowledge that the adjacent bands should possess similar
shapes since they are captured under relatively similar sensor

settings. After the reconstruction, the fluctuations in vertical
direction have been reduced by most of the methods. While in
the horizontal direction (see Fig. 12 (right) and Fig. 13 (right)),
the PMoEP method provides evidently smoother curves, which
indicates that the stripes in the horizontal direction have been
removed more effectively by our method. The results are
consistent with the recovered HSIs in Fig. 7 and Fig. 9.

The better performance of PMoEP over other methods is
due to its more powerful ability in noise modeling. Specifi-
cally, as depicted in Fig. 14, PMoEP can more properly extract
noise information from the corrupted images with physical
meanings, such as sparse strips, sparse deadlines, and dense
Gaussian noise, while other competing methods fail to do so.



11

Original Ground Truth    CWM RegL1ALM    PMoEP     MoG      SVD PMoEP-MRF

Fig. 15. Foreground Detection results of different methods on sample frames.

D. Background Subtraction

In this section, we evaluate the performance of our proposed
methods on background subtraction problem. The background
subtraction from a video sequence captured by a static camera
can be modeled as a low-rank matrix analysis problem [42].
All the nine standard video sequences5 provided by Li
et.al [22] were adopted in our evaluation, including simple
and complex background. Ground truth foreground regions of
20 frames were provided for each sequence.

We compared our PMoEP and PMoEP-MRF methods with
the state-of-the-art LRMF methods: SVD, RegL1ALM, CWM
and MoG methods. To conduct the experiments, we first
ran each method on each video sequence to estimate the
background. Then we obtained the recovered foreground by
calculating the absolute values of the difference between
the original frame and the estimated background. For MoG,
PMoEP and PMoEP-MRF methods, we obtained the fore-
ground by selecting the noise component with largest variance.

For quantitative evaluation, we first introduce some evalua-
tion indices. We measure the recovery accuracy of the support
in the foreground by comparing the true support S with the
detected support S̃. We regard it as a classification problem
and thus can evaluate the results using precision and recall,
which are defined as:

precision =
TP

TP + FP
, recall =

TP

TP + FN
,

where TP , FP , TN and FN represent the numbers of true
positive, false positive, true negative and false negative, re-
spectively. For simplicity, we adopt F -measure that combines
precision and recall together:

F -measure = 2× precision× recall
precision+ recall

.

The higher F-measure value means the better recovery ac-
curacy of the support. Additionally, the recovered support
S̃ is obtained by thresholding the recovered foreground E

5http://perception.i2r.a-star.edu.sg/bk model/bk index.html

with a threshold value that gives the maximal F-measure. For
all competing methods, we adopt two initialization strategies,
namely, random and SVD. Then we report the best result
among the two initializations. The results are summarized in
Table III.

TABLE III
PERFORMANCE EVALUATION ON VIDEO DATA. THE BEST AND SECOND
BEST RESULTS FOR EACH VIDEO DATASET ARE HIGHLIGHTED IN BOLD

AND IN ITALIC BOLD, RESPECTIVELY.

Video SVD RegL1ALM CWM MoG PMoEP PMoEP-MRF

F -measure
Campus 0.4716 0.5308 0.5301 0.4633 0.5065 0.5115
Lobby 0.7623 0.7679 0.7681 0.7724 0.7650 0.7444

ShoppingMall 0.6990 0.7138 0.7173 0.6387 0.7037 0.7015
Bootstrap 0.6234 0.6749 0.6533 0.4234 0.6404 0.6635

Hall 0.4104 0.4659 0.4624 0.4523 0.5372 0.5438
Curtain 0.5273 0.5342 0.5316 0.7869 0.7895 0.7888

Fountain 0.4989 0.5298 0.5262 0.5782 0.6843 0.7295
WaterSurface 0.3416 0.2840 0.2920 0.5979 0.8515 0.8651

Escalator 0.2675 0.2998 0.2972 0.2675 0.3255 0.3408
Average 0.5113 0.5334 0.5309 0.5534 0.6448 0.6543

From Table III, it can be easily seen that our proposed
PMoEP and PMoEP-MRF methods outperform other methods
in the sequences of Hall, Curtain, Fountain, WaterSurface
and Escalator, of which the background is with complex
shapes. For the sequences with simple background, including
Bootstrap, ShoppingMall, Campus and Lobby, the perfor-
mances of all the methods are almost the same. On average,
the PMoEP method achieves the second best performance.
Compared with the PMoEP method, the PMoEP-MRF method
slightly improves the average performance due to the modeling
of spatial and temporal smoothness prior knowledge under
foreground using Markov random field.

The better performance of PMoEP and PMoEP-MRF meth-
ods can be visually shown in Fig. 15. It can be easily seen
from the figure that the proposed PMoEP and PMoEP-MRF
can perform comparably well as other methods in simple
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foreground cases, while evidently better in much complicated
scenarios, e.g., videos with dynamic background.

VI. CONCLUSIONS

In this paper, we model the noise of the LRMF problem
as a Mixture of Exponential Power (MoEP) distributions and
proposes a penalized MoEP (PMoEP) model by combining
the penalized likelihood method with the MoEP distributions.
Moreover, by facilitating the local continuity of noise compo-
nents along both space and time of a video, we embed Markov
random field into PMoEP and then propose the PMoEP-
MRF model. Compared with the current LRMF methods,
our PMoEP method performs better in a wide variety of
synthetic and real complex noise scenarios including face
modeling, hyperspectral image restoration, and background
subtraction applications. Additionally, our methods are capable
of automatically learning the number of components from data,
and thus can be used to deal with more complex applications.
In the future, we’ll attempt to extend the noise modeling
methodology under PMoEP to more computer vision and
machine learning tasks, e.g., the high-order low rank tensor
factorization problems.
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APPENDIX A
PROOF OF THEOREM 1

PROOF. (i) First, we calculate that

lCP (Θ)− lCP (Θ(t)) = l(Θ)− l(Θ(t)) + P (π(t);λ)− P (π;λ)

= log
∑
Z

P(Z|E; Θ(t))
P(E|Z; Θ)P(Z; Θ)

P(Z|E; Θ(t))

− log P(E; Θ(t)) + P (π(t);λ)− P (π;λ)

≥
∑
Z

P(Z|E; Θ(t)) log
P(E|Z; Θ)P(Z; Θ)

P(Z|E; Θ(t))

− log P(E; Θ(t)) + P (π(t);λ)− P (π;λ)

=
∑
Z

P(Z|E; Θ(t)) log
P(E|Z; Θ)P(Z; Θ)

P(Z|E; Θ(t))P(E; Θ(t))

+ P (π(t);λ)− P (π;λ).

Let Ω(Θ|Θ(t)) =
∑

Z P(Z|E; Θ(t)) log
P(E|Z;Θ)P(Z;Θ)

P(Z|E;Θ(t))P(E;Θ(t))
, then

lCP (Θ) ≥ lCP (Θ(t)) + Ω(Θ|Θ(t)) + P (π(t);λ)− P (π;λ).

(ii) In the M step of Algorithm 1, it is obvious that

Θ(t+1) = arg max
Θ

{∑
Z

P(Z|E; Θ(t)) log P(E,Z; Θ)−P (π;λ)

}

= arg max
Θ

{∑
Z

P(Z|E; Θ(t))
log P(E,Z; Θ)

log P(E,Z; Θ(t))
−P (π;λ)

}
= arg max

Θ

{
Ω(Θ|Θ(t)) + P (π(t);λ)− P (π;λ)

}
.

Thus, we have

Ω(Θ(t+1)|Θ(t)) + P (π(t);λ)− P (π(t+1);λ)

≥ Ω(Θ(t)|Θ(t)) + P (π(t);λ)− P (π(t);λ) = 0
(41)

Then, we can easily derive that

lCP (Θ(t+1)) ≥ lCP (Θ(t)).

Based on (42), the sequence {lGP (Θ(t))}∞t=1 is nondecreasing
and bounded above. Therefore, there exits a constant l? such
that

lim
t→∞

lCP (Θ(t)) = l?.

�

APPENDIX B
EXPONENTIAL POWER DISTRIBUTION

A. Three different forms of Exponential Power Distribution

The Exponential Power Distribution (µ = 0) has the
following three equivalent forms:

fp(x; 0, σ) =
1

2σp
1
p Γ(1 + 1

p )
exp

{
−|x|

p

pσp

}
.

Let τ = (pσp)
1
p , then

fp(x; 0, τ) =
1

2τΓ(1 + 1
p )

exp
{
−|x
τ
|p
}
.

Let η = 1
τp , then

fp(x; 0, η) =
η

1
p

2Γ(1 + 1
p )

exp {−η|x|p} .

Noting that Γ(1 + 1
p ) = 1

pΓ( 1
p ), then we can represent the

above three forms in equivalent forms.

B. Draw Samples from Exponential Power Distribution

The second form of exponential power distribution is

fp(x; 0, τ) =
1

2τΓ(1 + 1
p )

exp
{
−|x
τ
|p
}
.

Sampling from the exponential power distribution contains two
cases: p ≥ 1 and 0 < p < 1.

1) case 1: p ≥ 1: We adopt the method proposed in [9],
[23], [27].

2) case 2: 0 < p < 1: When 0 < p < 1, the method
proposed in [33] is used. We sample the distribution in two
steps:

(w|p) ∼ 1 + p

2
Ga(2 +

1

p
, 1) +

1− p
2

Ga(1 +
1

p
, 1), (42)

(β|τ, w, p) ∼ 1

τw
1
p

{
1− | β

τw
1
p

|
}

+

, (43)

where w is a intermediate variable. (42) can be sampled
directly but (43) is difficult. Therefore, we adopt the slice
sampling strategy in [4].
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