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Abstract—Hash based nearest neighbor search has become
attractive in many applications. However, the quantization in
hashing usually degenerates the discriminative power when
using Hamming distance ranking. Besides, for large-scale vi-
sual search, existing hashing methods cannot directly support
the efficient search over the data with multiple sources, and
while the literature has shown that adaptively incorporating
complementary information from diverse sources or views
can significantly boost the search performance. To address
the problems, this paper proposes a novel and generic
approach to building multiple hash tables with multiple views
and generating fine-grained ranking results at bitwise and
tablewise levels. For each hash table, a query-adaptive bitwise
weighting is introduced to alleviate the quantization loss by
simultaneously exploiting the quality of hash functions and
their complement for nearest neighbor search. From the
tablewise aspect, multiple hash tables are built for different
data views as a joint index, over which a query-specific rank
fusion is proposed to rerank all results from the bitwise
ranking by diffusing in a graph. Comprehensive experiments
on image search over three well-known benchmarks show
that the proposed method achieves up to 17.11% and 20.28%
performance gains on single and multiple table search over
state-of-the-art methods.

Index Terms—locality-sensitive hashing, hash code ranking,
multiple views, multiple hash tables, nearest neighbor search,
query adaptive ranking

I. INTRODUCTION

Hash based nearest neighbor search has attracted great
attentions in many areas, such as large-scale visual search
[1]–[7], object detection [8], classification [9], [10], rec-
ommendation [11], etc. Locality-Sensitive Hashing (LSH)
serves as a wide paradigm of hash methods that maps the
similar data into similar codes [12]. As the most well-
known method, random projection based hashing method
projects and quantizes high-dimensional data to the binary
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hash code, with compressed storage and fast query speed
by computing the Hamming distance [13].

Even with the sound theoretical guarantee, the random
strategy usually requires a large number of hash functions
to achieve desired discriminative power. Motivated by the
concept of locality sensitivity, many following work devote
to pursuing more compact hash codes in unsupervised
[14]–[19] and supervised manner [20]–[22] using different
techniques including nonlinear hash functions [23]–[26],
multiple features [3], [27]–[29], multiple bits [15], [30],
[31], bit selection [32], [33], multiple tables [28], [34], [35],
discrete optimization [36], deep learning [37], structured
quantization [38], [39], projection bank [40], online sketch
[41], etc.

The hashing techniques, integrating the property of the
subspace methods [42], [43] and the efficient bit manipula-
tions, can help achieve compressed storage and fast compu-
tation in large-scale nearest neighbor search. However, there
exist more than one buckets that share the same Hamming
distance to the query, and subsequently samples falling
in these buckets will be ranked equally according to the
Hamming distance. Therefore, the quantization in hashing
loses the exact ranking information among the samples, and
thus degenerates the discriminative power of the Hamming
distance measurement. To improve the ranking accuracy
using Hamming distance, it is necessary to enable fine-
grained ranking by alleviating the quantization loss.

As in many traditional applications like the classification
[44] and the retrieval [45], in hashing a weighting scheme
can serve as one of the most powerful and successful
techniques, which assesses the quality of each hash bit
to improve the discriminative power of the hash code.
[46] proposed a query-adaptive Hamming distance ranking
method using the learned bitwise weights for a diverse
set of predefined semantic concept classes. [47] and [48]
respectively studied a query-sensitive hash code ranking al-
gorithms (QsRank and WhRank) based on the data-adaptive
and query-sensitive bitwise weights without compressing
query points to discrete hash codes. Despite of the progress
with the promising performance, there are still certain
limitations when using these methods. For instance, these
methods are usually designed for projection based hashing
algorithms rather than cluster based ones like K-means
hashing [49]. Moreover, methods like WhRank heavily
rely on the assumption of data distribution (eg., Laplace
distribution for spectral hashing [14]), which is not always
true in practice.
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Another promising solution to enabling fine-grained
ranking is incorporating information from multiple views.
For example, in many applications, especially the large-
scale search, prior studies have proved that adaptively
incorporating complementary information from diverse
sources or views for the same object (e.g., images can
be described by different visual features like SIFT and
GIST) can help boost the performance [3], [6], [35],
[50]–[53]. Though there are a few research on multiple
feature hashing [3], [6], [28] which learn discriminative
hash functions and improve the search performance by
adaptively leveraging multiple cues, but till now there
is rare work regarding the unified solution to building
multiple hash tables from complementary source views
with fine-grained ranking. In practice, indexing using hash
tables will be more computationally feasible, due to the
fast search in a constant time using table lookup [8],
[34], [35], and can significantly enhance the discriminative
power of the hash codes in practice [28], [34].

To the end, in this paper we simultaneously study both
techniques and propose a query-adaptive hash code fusion
based ranking method over multiple tables with multiple
views. For each hash table learned from each view, we
exploit the similarities between the query and database
samples, and learn a set of query-adaptive bitwise weights
that characterize both the discriminative power of each hash
function and their complement for nearest neighbor search.
Assigning different weights to individual hash bit will
distinguish the results sharing the same hamming distance,
and obtain a more fine-grained and accurate ranking order.
Compared to existing methods, our method is more general
for different types of hashing algorithms, without strict
assumptions on the data distribution. Meanwhile, it can
faithfully enhance the overall discriminative power of the
weighted Hamming distance.

As to multi-view multiple tables, a straightforward, yet
efficient solution is to respectively build hash tables from
each source view and then combine them as the joint
table index. Such solution can directly support any type
of source and existing hashing algorithms, and be easily
accomplished for general applications. To further adaptively
fuse search results from multiple sources in an desired or-
der, many studies have been proposed in the literature [50],
[51], [54]–[56]. These powerful rank fusion techniques
faithfully boost the search performance, but in practice usu-
ally are not computationally feasible for hash table search,
because they heavily depend on the fine-grained ranking.
For instance, [51] and [50] accessed the data similarities
relying on the raw features and exact neighbor structures
respectively, which can neither be loaded in the memory nor
be dynamically updated for dynamic dataset. To adaptively
fuse the query-specific ordered results without operating on
the raw features, an anchor representation for candidates
in each source view is introduced to characterize their
neighbor structure by a neighbor graph according to their
weighted Hamming distances, and then all the candidates
are reranked by randomly walking on the merged multiple
graphs.
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Fig. 1. Demonstration of the proposed query-adaptive bitwise weighting.

To our best knowledge, this is the first work that
comprehensively studies the large-scale search based on
hash table indexing with multiple sources. Compared to
existing methods, our method is more generic for different
types of hashing algorithms and data sources, without strict
assumptions on the data distribution and memory con-
sumption. Meanwhile, it can faithfully enhance the overall
ranking performance for nearest neighbor search from the
aspects of fine-grained code ranking and multiple feature
fusion. Note that the whole paper extends upon a previous
conference publication [57] which is mainly concentrated
on hash code ranking in a single hash table generated from
one view. In this paper, we conduct additional exploration
on fine-grained ranking technique over multiple tables
with multiple features, and provide amplified experimental
results. The remaining sections are organized as follows:
The query-adaptive bitwise weighing approach is present in
Section II. Section III elaborates on the graph-based fusion
of multiple table ranking. In Section IV we evaluate the
proposed method with state-of-the-art methods over several
large datasets. Finally, we conclude in Section V.

II. QUERY-ADAPTIVE HASH CODE RANKING

In this section, we will first focus on the fine-grained
ranking in each hash table, and propose the query-adaptive
ranking method (named QRank) using weighted hamming
distance. It utilizes the similarity relationship between the
query point and its neighbors in the database to measure
the overall discriminative power of the hash code, simulta-
neously considering both the quality of hash functions and
their correlations.

A. Query-Adaptive Weight

Given a set of N training samples {xi ∈
RD, i = 1, . . . , N} and a set of B hash functions
H(·) = {h1(·), . . . , hB(·)}, each training sample xi
is encoded into hash bit yik = hk(xi) ∈ {−1, 1} by
the k-th hash function. With the hash functions and
corresponding weights w, the weighted Hamming distance
between any two points xi and xj are usually defined as
dh(xi,xj) =

∑B
k=1 wk(yik ⊗ yjk).

To improve the ranking precision of the weighted dis-
tance dh, a data-dependent and query-adaptive wk should
be learnt to characterize the overall quality of the k-th
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hash function in H . Intuitively, for a query point q, a hash
function well preserving q’s nearest neighbors NN(q) (eg.,
h3 and h4 in Figure 1) should play a more important role in
the weighted Hamming distance, and thus a larger weight
should be assigned to it.

Formally, for a high-quality hash function hk, if p ∈
NN(q), then the higher its similarity s(p,q) to q, the larger
the probability that hk(q) = hk(p). Therefore, based on the
neighbor preservation of each hash function, we define its
weight using the spectral embedding loss [14], [33]:

wk = −1

2

∑
p∈NN(q)

s(q,p)‖hk(q)− hk(p)‖2

=
∑

p∈NN(q)

s(q,p)hk(q)hk(p) + const.
(1)

where we constrain
∑

p∈NN(q) s(q,p) = 1. Note that in
the above definition the similarity can be adaptively tailored
for different scenarios.

To make the weight positive and sensitive to the ca-
pability of neighbor preservation, in practice we use the
following form with γ > 0:

wk = exp

γ ∑
p∈NN(q)

s(q,p)hk(q)hk(p)

 . (2)

In the above definition, one important question is how
to efficiently find the query’s nearest neighbors NN(q)
at the online query stage. It is infeasible to find the
exact ones among the whole database [58]. One way to
speedup the computation is choosing Nl � N landmarks
to represent the database using various techniques like K-
means, where the approximated nearest neighbors can be
quickly discovered by linear scan. We adopt the simple way
by randomly sampling Nl points as the landmarks at the
offline training stage.

B. Weight Calibration

As Figure 1 demonstrates that hash function h3 and h4
shows satisfying capability of neighbor preservation for
query q, but the large correlation between them indicates
undesired redundancy between them. Instead, though func-
tion h2 performs worse than h3 and h4, but it serves as a
complement to h4, with which they together can well pre-
serve all neighbor relations of q. This observation motivates
us to further calibrate the query-adaptive weights, taking the
correlations among all hash functions into consideration.

Given any pair of hash functions hi and hj from H , if
they behave similarly on a certain set of data points (i.e., the
hash bits encoded by them are quite similar), then we can
regard that the two hash functions are strongly correlated. In
practice, to improve the overall discriminative power of the
hash codes, uncorrelated (or independent) and high-quality
hash functions should be given higher priority.

Since computing higher-order independence among hash
functions is quite expensive, we approximately evaluate the
independence based on the pair-wise correlations between

them. Specifically, we introduce the mutual independence
between hash functions based on the mutual information
MI(yi, yj)) between the bit variables yi and yj generated
by hash function hi and hj :

aij = exp [−λMI(yi,yj)] , (3)

where λ > 0 and aij = aji, forming a symmetrical
independence matrix A = (aij).

Then we calibrate the query-adaptive weights wk by
reweighing it using a positive variable πk. Namely, the new
bitwise query-adaptive weight is given by

w∗k = wkπk, (4)

which should overall maximize both the neighbor preser-
vation and the independence between hash functions. We
formulate it as the following quadratic programming prob-
lem:

max
π

∑
ij

w∗iw
∗
jaij

s.t. 1Tπ = 1, π � 0.

(5)

The above problem can be efficiently solved by a number
of powerful techniques like replicator dynamics [33].

C. Data-Dependent Similarity

As aforementioned, the similarity between the query and
database samples plays an important role in pursuing query-
adaptive weights in Section II-A. Since in practice data
points are usually distributed on certain manifold, the stan-
dard Euclidean metric cannot strictly capture their global
similarities. To obtain similarity measurement adaptive to
different datasets, we adopt the anchor graph to represent
any sample x by z(x) based on their local neighbor
relations to anchors points U = {uk ∈ Rd}Nl

k=1, which
can be generated efficiently by clustering or sampling [15]:

[z(x)]j =

{ K(x,uj)∑
u
j′∈NN(x) K(x,uj′ )

, if uj ∈ NN(x)

0, otherwise
(6)

where NN(x) denotes x’s nearest anchors in U according
to the predefined kernel function K(x,uj) (e.g., Gaussian
kernel). The highly sparse z(x) serves as a nonlinear
and discriminative feature representation, and can be used
to efficiently approximate the data-dependent similarities
between samples. Specifically, for query q and any point
p, their similarity can be computed by

s(p,q) = exp(−‖z(p)− z(q)‖2/σ2), (7)

where σ is usually set to the largest distance between z(p)
and z(q).

III. MULTI-VIEW GRAPH-BASED RANK FUSION

Now we turn to the fine-grained ranking over multiple
hash tables with multiple view information. In this section,
we will present a query specific rank fusion method that
adaptively combines the ranking results of multiple tables.
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Fig. 2. Demonstration of the proposed table-wise rank fusion.

The weighted Hamming distance enables fine-grained rank-
ing of each hash table, which improves the discriminative
power of hash codes from the views of hash function quality
and their correlations. To adaptively organize results from
different tables in an desired order without any supervision
or user feedbacks, we represent them as an edge-weighted
graph, where the comparable similarities across different
tables can be approximated efficiently online based on
the neighborhood captured by anchors in the weighted
Hamming space. Finally, with the consistent similarity mea-
surement, the common candidates and their neighbors from
different tables will be promoted with higher probabilities
to be ranked top using a localized PageRank algorithm over
the fused graph. Figure 2 demonstrates the proposed rank
fusion method based on probability diffusion on the merged
graph.

A. Graph Construction

For the query q, multiple candidate sets will be re-
trieved in hash tables built from M different sources.
We represent the candidate set corresponding to the m-
th source/table, including the query, as an edge-weighted
graph G(m) = (V(m),E(m),Ω(m)). The vertices V(m)

in the graph correspond to each element in the candidate
set, while the edge connections E(m) indicate the neighbor
relations, whose weights Ω

(m)
ij are defined by the similarity

S
(m)
ij between the candidates xi and xj . The graph is quite

powerful to characterize the local neighbor structures of the
candidates along a manifold.

In practice, similar candidates usually own a large portion
of common neighbors. Therefore, it is critical to capture the
local neighbor structure centered at each candidate point
in the similarity measurement. In traditional methods the
similarity measurement usually depends on the raw features
or neighbor structures process beforehand, e.g., using the
Euclidean distance between raw features [51] or Jaccard
index (common neighbors) in the neighborhood [50]. Both
solutions are infeasible for large-scale datasets, due to the
explosive memory consumption and expensive updating.

To avoid this bottleneck in the online graph construction,
we estimate the neighbor relations by employing the anchor
approximation in the weighted Hamming space. A small
set of K anchors are selected as the prototypes to together

Algorithm 1 Query-specific Rank Fusion over Hash Tables
with Multiple Sources (QsRF)

// offline stage, building hash tables
Require: data {xi, i = 1, . . . , N} of multiple sources,

hashing algorithm F
for m-th source do

generate anchors U (m);
generate functions H = {h1(·), . . . , hB(·)} using F ;
encode each source of xi to yik = hk(xi);
compute independence aij and build hash table Tm;

end for
// online stage, searching hash tables

Require: query q, hash tables {Tm}Mm=1, independence
aij ;
for m-th table Tm do

compute the query-specific bitwise weights w∗k;
retrieve the top ranked data V(m) according to dH ;
approximate neighbor similarity Ω(m) using anchors;

build graph G(m) = (V(m),E(m),Ω(m));
end for
fuse graph G(m) as graph G = (V,E,Ω);
compute rank score r∗ and reorder all candidates in V.

locate each data point in the specific space. Therefore, each
point can be characterized by its nearest anchors, and thus
their neighbor relations can be determined by checking
whether sharing similar nearest anchors.

Formally, for candidate set V(m) of m-th source, the
K (K � N ) anchor points U (m) = {u(m)

k ∈ RDm}Kk=1

are selected from the database to characterize the inherent
neighbor structures. Thus, any data point xi can be rep-
resented by its nearest anchors in a vector form, whose
elements are denoted by the truncated similarities Z

(m)
ij

with respect to the m-th source:

Z
(m)
ij =


exp
(
−dH(x

(m)
i ,u

(m)
j )/σH

)
∑

j′∈〈i〉(m) exp
(
−dH(x

(m)
i ,x

(m)

j′ )/σH

) , if j ∈ 〈i〉(m)

0, otherwise
(8)

where 〈i〉(m) ⊂ [1 : K] denotes the indices of s (s �
K) nearest anchors of point xi in U (m) according to the
weighted Hamming distance, and σH is set to the maximum
Hamming distance.

The symmetric similarity S(m) between candidates in
V(m) can be defined by the inner product between their
anchor representations in the m-th feature space:

S
(m)
ij =

1

λ
(m)
i

Z
(m)
i· Z

(m)T
j· +

1

λ
(m)
j

Z
(m)
j· Z

(m)T
i· (9)

with λ
(m)
i =

∑
j Z

(m)
i· Z

(m)T
j· . Since Z(m) ∈ RN×K

is highly sparse with s nonzero elements in each row
summing to 1, the approximated similarity S(m) will be
also quite sparse, where only those data sharing same
nearest anchors will be regarded as neighbors with non-
zero similarities.
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B. Rank Fusion

After obtaining multiple graphs G(m) =
(V(m),E(m),Ω(m)) from different hash tables
corresponding to each type of source, we fuse them
together as one graph G = (V,E,Ω), where the vertices
correspond to all candidates without repeats. Subsequently,
for each pair of candidates if there is an edge between
them in any G(m), there will be a connection between
them in G, and its weight will be the superposition of all
weights in G(m). This will guarantee that the common
candidates and their neighbors from different hash tables
show high homogeneity, and thus have priorities to be
ranked top. Note that the anchor-based representation
not only captures the local neighbor structure along the
manifold, but also makes the similarity comparable across
different rank lists after normalization. Therefore, without
any prior, we regard multiple retrieval results equally and
simply sum up their edge weights. Formally,

V =
⋃
m V(m),

E =
⋃
m E(m),

Ωi,j =
∑
m Ω

(m)
i,j =

∑
m S

(m)
ij .

(10)

For multiple table search with different sources, the
strong connected candidates in G show great and consistent
visual similarities in different views, which implies an
inherent neighbor relations between them, forming a dense
subgraph. To discover the most relevant candidates for the
query, this motivates us to perform connectivity analysis on
the graph, where the desired ones will have high probability
to be visited from the query.

One popular and powerful technique is random walk,
interpreted as a diffusion process [50] and succeeding in
the Google PageRank system. Specifically, the walk in G
will sometimes (with a small probability 1 − α, where
empirically α > 0.8) jump to a potentially random result
with a fixed distribution r, or transit in a random walk
way according to the vertex connection matrix P = Ω.
For query-specific ranking, distribution r for query q will
be empirically set to a large probability (e.g., 0.99), while
others being uniform, satisfying rT1 = 1. Formally the
visiting probability r of each vertex after one-step random
walk from the t-th step will be updated as follows:

r(t+1) = (1− α)π + αPT r(t). (11)

With a number of random walks, the visiting probability
r of each candidate will converge to an equilibrium state,
where a higher probability reflects a higher relevance to the
query.

Using the above updating strategy, the equilibrium dis-
tribution can be obtained in a close form, i.e., r∗ = (1 −
α)(I− αPT )−1π. Note that such solution requires matrix
inverse, which will bring expensive computation when a
large number of candidates participate in the rank fusion.
To speedup this process, usually the iterative updating in
(11) is preferred in practice. Algorithm 1 list the detailed
procedures at both offline and online stages.

C. Online Query

At the offline stage, for each view we build a hash
table using certain hashing algorithms. Both Nl sampled
landmarks and K anchors can be obtained efficiently,
and the landmarks can be represented using anchors in
O(NlK). At the online stage, for each table the query
in the corresponding feature representation is transformed
into anchor representation and used to compute the query’s
similarities to the landmarks in O(Nl), and then the query-
adaptive weights can be obtained by quadratic program-
ming (5) in polynomial time, and the results are fast ranked
according to the weighted hamming distances. With the
ranked result sets from different tables, multiple graph
can be built over all the candidates which are empirically
limited to the top Nk � N (e.g., 1,000 in our experiments)
ones in practice. Subsequently, the graph construction based
on the anchor representation will cost O(MNkK +N2

kK)
time, which is much less than the database size N . Finally,
the reranking process fusing multiple ranking lists can be
completed in a very few random walk iterations of O(N2

k )
complexity. On the whole, the proposed rank fusion method
can support fast online search in a sublinear time with
respect to the database size.

IV. EXPERIMENTS

In this section, we comprehensively evaluate the ef-
fectiveness of our proposed method consisting of query-
adaptive hash code ranking (QRank) and query specific
rank fusion (QsRF) method, over several real-world image
datasets.

A. Data Sets

To evaluate the proposed methods, we conduct extensive
experiments on the real-world image datasets as follows:

MNIST includes 70K 784 dimensional images, each of
which is associated with a digit label from ‘0’ to ‘9’. Each
example is a 28×28 image and is represented by a 784
dimensional vector.

CIFAR-10 contains 60K 32 × 32 color images of 10
classes and 6K images in each class. For each image, we
extract 300-D bag-of-words (BoW) quantized from dense
SIFT features and 384-D GIST feature.

TRECVID [59] is a large-scale image dataset built from
the TRECVID 2011 Semantic Indexing annotation set with
126 fully labeled concepts, from which we select 25 most-
frequent concepts. For each image, we extract 512-D GIST
feature and 1000-D spatial pyramid bag-of-words feature.

1) Protocols: In the literature, there are very few studies
regarding the Hamming distance ranking besides WhRank
[48] and QsRank [47]. Since WhRank outperformed Qs-
Rank [47] significantly as reported in [48], we only focus
the comparison between our method and WhRank [48]
over a variety of baseline hashing algorithms including
projection based and cluster based ones, which cover most
types of the state-of-the-art hashing research including
linear/nonlinear hashing and random/optimized hashing.
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Fig. 3. Performances comparison of different hash code ranking methods on MNIST.
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projection paradigm to generate hash bits, while SPH and
KMH exploit the cluster structure in the data. Meanwhile,
LSH, PCAH and ITQ are linear methods, and SH, KLSH,
SPH and KMH are nonlinear ones.

The common search method named Hamming distance
ranking will be adopted in the evaluation, which ranks
all points in the database according to their (weighted)
Hamming distances from the query. We adopt the popular
performance metric including precision and recall in our
experiments. All results are averaged over 10 independent

runs to suppress the randomness. For each run, we random-
ly sample 5,000 images as the training data, 3,000 as query
images, and 300 as the anchors for both query-adaptive
weighting and the similarity approximation in each view.
The true nearest neighbors are defined as the images sharing
at least one common tag.

In our experiments, we first investigate the performance
of the proposed query-adaptive hash code ranking using a
single feature type in one hash table. On MNIST we employ
the grayscale pixel intensities of each image as the feature,

Fig. 3. Performances comparison of different hash code ranking methods on MNIST.
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projection paradigm to generate hash bits, while SPH and
KMH exploit the cluster structure in the data. Meanwhile,
LSH, PCAH and ITQ are linear methods, and SH, KLSH,
SPH and KMH are nonlinear ones.

The common search method named Hamming distance
ranking will be adopted in the evaluation, which ranks
all points in the database according to their (weighted)
Hamming distances from the query. We adopt the popular
performance metric including precision and recall in our
experiments. All results are averaged over 10 independent

runs to suppress the randomness. For each run, we random-
ly sample 5,000 images as the training data, 3,000 as query
images, and 300 as the anchors for both query-adaptive
weighting and the similarity approximation in each view.
The true nearest neighbors are defined as the images sharing
at least one common tag.

In our experiments, we first investigate the performance
of the proposed query-adaptive hash code ranking using a
single feature type in one hash table. On MNIST we employ
the grayscale pixel intensities of each image as the feature,

Fig. 4. Performances comparison of different hash code ranking methods on CIFAR-10.
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projection paradigm to generate hash bits, while SPH and
KMH exploit the cluster structure in the data. Meanwhile,
LSH, PCAH and ITQ are linear methods, and SH, KLSH,
SPH and KMH are nonlinear ones.

The common search method named Hamming distance
ranking will be adopted in the evaluation, which ranks
all points in the database according to their (weighted)
Hamming distances from the query. We adopt the popular
performance metric including precision and recall in our
experiments. All results are averaged over 10 independent

runs to suppress the randomness. For each run, we random-
ly sample 5,000 images as the training data, 3,000 as query
images, and 300 as the anchors for both query-adaptive
weighting and the similarity approximation in each view.
The true nearest neighbors are defined as the images sharing
at least one common tag.

In our experiments, we first investigate the performance
of the proposed query-adaptive hash code ranking using a
single feature type in one hash table. On MNIST we employ
the grayscale pixel intensities of each image as the feature,

Fig. 5. Performances comparison of different hash code ranking methods on TRECVID.

Specifically, In our experiments each hash table is con-
structed using hash functions generated by basic hashing
algorithms. State-of-the-art hashing algorithms, including
Locality Sensitive Hashing (LSH) [13], Spectral Hashing
(SH) [14], Kernelized LSH (KLSH) [23], PCA-based Hash-
ing (PCAH), Iterative Quantization (ITQ) [16], Spherical
Hashing (SPH) [60], and K-means Hashing (KMH) [49],
are involved in generating hash functions. Among these
methods, LSH, SH, KLSH, PCAH and ITQ adopted the

projection paradigm to generate hash bits, while SPH and
KMH exploit the cluster structure in the data. Meanwhile,
LSH, PCAH and ITQ are linear methods, and SH, KLSH,
SPH and KMH are nonlinear ones.

The common search method named Hamming distance
ranking will be adopted in the evaluation, which ranks
all points in the database according to their (weighted)
Hamming distances from the query. We adopt the popular
performance metric including precision and recall in our
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TABLE I
MAP (%) OF DIFFERENT PARTS OF QRANK ON MNIST

LSH SH PCAH ITQ
Baseline 35.53 25.91 19.87 44.14
QRank− 40.71 31.39 22.07 46.87
QRank 44.77 37.02 32.32 49.15

experiments. All results are averaged over 10 independent
runs to suppress the randomness. For each run, we ran-
domly sample 5,000 images as the training data, 3,000
as query images, and 300 as the anchors for both query-
adaptive weighting and the similarity approximation in each
view. The true nearest neighbors are defined as the images
sharing at least one common tag.

In our experiments, we first investigate the performance
of the proposed query-adaptive hash code ranking using a
single feature type in one hash table. On MNIST we employ
the grayscale pixel intensities of each image as the feature,
and on CIFAR-10 and TRECVID we use GIST descriptors
for evaluation. As to the rank fusion over multiple hash
tables with multiple sources, for simplicity and similar to
prior multiple feature work [3], [27], we adopt two types
of visual features for each set (see the dataset description
above) to verify the efficiency of our proposed method.
Namely, without loss of generality, we evaluate our method
on image search over CIFAR-10 (60K) and TRECVID
(260K), and each source corresponds to one type of visual
features.

B. Evaluation on query-adaptive hash code ranking

Figure 3 shows the precision and recall curves respec-
tively using 48 and 96 bits on MINST. We can easily
find out that both hash bit weighting methods (WhRank
and QRank) achieved better performances than the baseline
hashing algorithms. The observation indicates that the
hash code ranking based on weighted Hamming distance
hopefully serves as a promising solution to boosting the per-
formance of hash-based retrieval. In all cases, our proposed
QRank consistently achieves the superior performances to
WhRank over different hashing algorithms. Figure 6(a)
and (d) depict the overall performance evaluation using
mean average precision (MAP) with 48 and 96 hash bits,
where we get a similar observation that QRank outperforms
WhRank significantly, e.g., compared to WhRank, QRank
obtains 17.11%, 11.36%, 14.06% and 11.39% performance
gains respectively over LSH, ITQ, SH and KLSH.

Besides MNIST, Figure 4 and 5 present the recall and
precision curves on CIFAR-10 and TRECVID using 48
and 96 bits. By comparing the performance of QRank with
that of WhRank and baseline hashing algorithms, we get
a similar conclusion as on MNIST that both QRank and
WhRank can enhance the discriminative power of hash
functions by weighting them elegantly, and meanwhile in
all cases QRank clearly outperforms WhRank owing to
its comprehensive capability of distinguishing high-quality
functions. Similar conclusion can be obtained from the
MAP performance comparison as the overall evaluation in

Figure 6 (b), (c), (e) and (f) with respect to different number
of hash bit per table.

It is worth noting that since WhRank depends on the
distribution of the projected samples, it cannot be directly
applied to hashing algorithms like SPH and KMH. Instead,
the proposed method derives the bitwise weight only
relying on the data-dependent similarity. Therefore, it can
not only capture the neighbor relations of the query, but
also possess universality suiting for all hashing algorithms.
Figure 3 - 6 show that QRank obtains significant perfor-
mance gains over SPH and KMH in all cases.

We investigate the effect of different parts of QRank
in Table I by comparing the performance of QRank with
or without the weight calibration (named QRank−). The
results are reported over LSH, SH, PCAH and ITQ respec-
tively using 96 bits on MNIST. It is obvious that QRank−

only using query-adaptive weights without considering the
redundance among hash functions is able to boost the
hashing performance, but QRank appended with the weight
calibration can further bring significant (up to 46.44%)
performance gains. This indicates that both the individual
quality of each hash function and their complementarity are
critical for fine-grained neighbor ranking. Finally, we also
compare the time cost of different query adaptive ranking
strategies. Though our QRank spends a little more time than
WhRank on learning query-adaptive weight, on the whole
this part is relatively small and the online query is quite
efficient in practice (see Table III).

C. Evaluation on query specific rank fusion

In this part, we further evaluate our query specific rank
fusion method over several hashing algorithms. Note that
our method serves as a generic solution to build multiple
tables using various sources, which is compatible with most
types of hashing algorithms. To illustrate the efficiency of
the proposed method (QsRF), we will compare it on several
datasets with several baseline methods: the basic hashing
algorithms that build a single table using information
from one source based on the standard Hamming distance
(F1/F2), query-specific ranking method over each hashing
algorithm without rank fusion (F1/F2-Qs), multiple feature
hashing algorithm (MFH) [27], and the very recent rank
fusion method (HRF) that reranks candidates based on
the minimal Hamming distances, which shows promising
performance in multiple table search [33], [35].

In our experiments, a specific number of hash functions
are first generated using different hashing algorithms. Then
all methods except MFH build hash tables using these
functions in different manners. MFH will learn its hash
functions and then build tables by simultaneously consid-
ering information from multiple sources.

Table II shows the averaged precision (AP) with respect
to different cutting points (@5 and @10) respectively on
CIFAR-10 and TRECVID. We can easily find out that in
most cases, query specific ranking (F1/F2-Qs) achieved
better performances than the baseline hashing algorithms
(F1/F2). The observation indicates that the hash code
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Fig. 6. Average precision comparison on MNIST, CIFAR-10, and TRECVID.

can obtain more significant performance improvement than
other learning based hashing algorithms that own better
discriminative power, which indicates that the proposed
method can largely compensate the quantization loss of the
basic hashing algorithms.

Besides averaged precision, recall is also an important
performance metric for nearest neighbor search. Figure 7
presents the recall rate of top 10 results using different
methods on both datasets. By observing the performance
of methods with query specific scheme, we get a sim-
ilar conclusion that the fine-grained weighted Hamming
distance can enhance the discriminative power of hash
functions. Meanwhile, QsRF can further adaptively capture
and fuse the local neighbor structures in different views,
and subsequently outperforms other ranking methods in
all cases, with much more true relevant images returned
after rank fusion. Even though the semantic complexity is
quite different on CIFAR-10 and TRECVID, our method
can consistently capture the intrinsic relations and obtain
the best performance in most cases.

It is worth noting that our rank fusion framework is
generic for any type of binary hashing algorithms including
the linear (LSH, PCAH, ITQ, etc.), nonlinear (KLSH, SPH,
etc.), random (LSH, KLSH, etc.) and optimized (PCAH,

ITQ, SPH, etc.) hashing. Therefore, it can be easily applied
to state-of-the-art hashing research to support effective hash
table search using multiple sources, achieving significant
performance gains without too much efforts.

Finally, we investigate the efficiency of different methods
in Table III. For multiple hash tables, the search process
can be completed in parallel, which will be close to that
of the single table search. Due to online computation
of the query adaptive bit weights, query-specific ranking
will cost a little more than standard Hamming distance
ranking. For QsRF, since the candidate graph is quite
sparse, the convergence of the equilibrium state distribution
is computationally efficient (O(|E|) time complexity), es-
pecially when adopting parallel computing and fast iterative
updating. Therefore, QsRF only spends slightly more time
than baseline methods. In practice, since usually only tens
of hash tables are employed, it is very beneficial that QsRF
can get significant performance gains, and meanwhile still
guarantee fast online search.

V. CONCLUSIONS

As described in this paper, we proposed a novel method
for fine-grained ranking over multiple hash tables incor-
porating information from multiple views. At the bitwise

Fig. 6. Average precision comparison on MNIST, CIFAR-10, and TRECVID.

ranking based on weighted Hamming distance hopefully
serves as a promising solution to boost the performance of
hash table search. Furthermore, in all cases our proposed
QsRF consistently achieves the superior performances to
all baselines over different hashing algorithms, e.g., on
TRECVID, it obtains 20.28%, 9.80% and 8.62% AP@5
performance gains over the best competitors when using
LSH, KLSH and SPH. This is because that our graph
based rank fusion can faithfully exploit the complemen-
tarity between different features and thus discover more
true semantic neighbors. Besides, note that on LSH we
can obtain more significant performance improvement than
other learning based hashing algorithms that own better
discriminative power, which indicates that the proposed
method can largely compensate the quantization loss of the
basic hashing algorithms.

Besides averaged precision, recall is also an important
performance metric for nearest neighbor search. Figure 7
presents the recall rate of top 10 results using different
methods on both datasets. By observing the performance
of methods with query specific scheme, we get a sim-
ilar conclusion that the fine-grained weighted Hamming
distance can enhance the discriminative power of hash

functions. Meanwhile, QsRF can further adaptively capture
and fuse the local neighbor structures in different views,
and subsequently outperforms other ranking methods in
all cases, with much more true relevant images returned
after rank fusion. Even though the semantic complexity is
quite different on CIFAR-10 and TRECVID, our method
can consistently capture the intrinsic relations and obtain
the best performance in most cases.

It is worth noting that our rank fusion framework is
generic for any type of binary hashing algorithms including
the linear (LSH, PCAH, ITQ, etc.), nonlinear (KLSH, SPH,
etc.), random (LSH, KLSH, etc.) and optimized (PCAH,
ITQ, SPH, etc.) hashing. Therefore, it can be easily applied
to state-of-the-art hashing research to support effective hash
table search using multiple sources, achieving significant
performance gains without too much efforts.

Finally, we investigate the efficiency of different methods
in Table III. For multiple hash tables, the search process
can be completed in parallel, which will be close to that
of the single table search. Due to online computation
of the query adaptive bit weights, query-specific ranking
will cost a little more than standard Hamming distance
ranking. For QsRF, since the candidate graph is quite
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TABLE II
AP (%) OF HASH TABLE SEARCH USING DIFFERENT RANKING METHODS OVER MULTIPLE TABLES ON CIFAR-10 AND TRECVID.

HASHING→ LSH KLSH PCAH ITQ SPH
METHODS AP@5 AP@10 AP@5 AP@10 AP@5 AP@10 AP@5 AP@10 AP@5 AP@10

C
IF

A
R

-1
0

F1 14.93 15.19 16.09 16.13 18.38 18.58 17.94 17.99 18.96 18.44
F2 18.17 17.91 21.25 20.62 26.72 25.80 27.92 27.55 23.58 22.93

F1-QS 15.21 15.39 16.57 16.44 19.24 18.70 18.32 18.57 19.52 18.41
F2-QS 19.31 19.53 21.95 21.90 28.20 28.17 28.52 28.22 24.30 24.34
MFH 15.56 18.89 15.56 18.89 15.56 18.89 15.56 18.89 15.56 18.89
HRF 13.33 16.67 13.33 16.67 13.33 13.33 13.33 17.78 15.56 17.78

F1-F2-QSRF 20.81 20.49 23.89 23.25 29.68 29.40 28.72 28.51 26.58 26.50

T
R

E
C

V
ID

F1 23.84 23.12 44.01 35.96 46.53 37.37 43.91 37.09 46.25 38.02
F2 32.23 29.34 42.25 35.52 46.60 38.01 38.14 34.07 44.31 37.12

F1-QS 23.88 23.15 43.76 35.81 45.66 36.68 43.43 36.81 46.31 38.11
F2-QS 32.24 29.37 42.34 35.80 45.94 37.18 37.88 34.00 44.04 36.82
MFH 22.22 21.11 22.22 21.11 22.22 21.11 22.22 21.11 22.22 21.11
HRF 24.44 23.33 35.56 34.44 46.67 33.33 26.67 26.67 33.33 30.00

F1-F2-QSRF 38.78 33.31 48.32 40.23 50.31 41.41 45.92 39.86 50.30 42.27
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TABLE II
AP (%) OF HASH TABLE SEARCH USING DIFFERENT RANKING METHODS OVER MULTIPLE TABLES ON CIFAR-10 AND TRECVID.

HASHING → LSH KLSH PCAH ITQ SPH
METHODS AP@5 AP@10 AP@5 AP@10 AP@5 AP@10 AP@5 AP@10 AP@5 AP@10
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R

-1
0

F1 14.93 15.19 16.09 16.13 18.38 18.58 17.94 17.99 18.96 18.44
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F2-QS 19.31 19.53 21.95 21.90 28.20 28.17 28.52 28.22 24.30 24.34
MFH 15.56 18.89 15.56 18.89 15.56 18.89 15.56 18.89 15.56 18.89
HRF 13.33 16.67 13.33 16.67 13.33 13.33 13.33 17.78 15.56 17.78

F1-F2-QSRF 20.81 20.49 23.89 23.25 29.68 29.40 28.72 28.51 26.58 26.50
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F2 32.23 29.34 42.25 35.52 46.60 38.01 38.14 34.07 44.31 37.12

F1-QS 23.88 23.15 43.76 35.81 45.66 36.68 43.43 36.81 46.31 38.11
F2-QS 32.24 29.37 42.34 35.80 45.94 37.18 37.88 34.00 44.04 36.82
MFH 22.22 21.11 22.22 21.11 22.22 21.11 22.22 21.11 22.22 21.11
HRF 24.44 23.33 35.56 34.44 46.67 33.33 26.67 26.67 33.33 30.00
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Fig. 7. Recall performances of different ranking methods over
multiple tables on CIFAR-10 and TRECVID.

TABLE III
SEARCH TIME (MS) OF DIFFERENT METHODS ON CIFAR-10

F1/F2 F1/F2-Qs MFH HRF QsRF
distance rank 26 57 38 26 56
rank fusion 0 0 0 21 36

total 26 57 38 47 92

level, the hash code ranking method named QRank learns
a query-adaptive bitwise weights by simultaneously con-
sidering both the individual quality of each hash function

and their complement for nearest neighbor search. At
the tablewise level, a query specific rank fusion method
represents results of each table using QRank as an edge-
weighted graph with comparable similarities across differ-
ent tables, and promotes the common candidates and their
neighbors from different tables using a localized PageRank
algorithm over the merged graph. Compared to state-of-
the-art weighting methods, our rank fusion method serves
as a general solution to enabling fine-grained ranking over
multiple hash tables with multiple sources, which supports
different kinds of hashing algorithms and different feature
types. Due to both the query-adaptive ranking and data-
dependent fusion, our method significantly and efficiently
boosts the ranking performance in practice. Further work
can be concentrated on learning a more discriminative
similarity metric and building each hash table from multiple
views with the query specific ranking.
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porating information from multiple views. At the bitwise
level, the hash code ranking method named QRank learns
a query-adaptive bitwise weights by simultaneously con-
sidering both the individual quality of each hash function
and their complement for nearest neighbor search. At
the tablewise level, a query specific rank fusion method
represents results of each table using QRank as an edge-
weighted graph with comparable similarities across differ-
ent tables, and promotes the common candidates and their
neighbors from different tables using a localized PageRank
algorithm over the merged graph. Compared to state-of-
the-art weighting methods, our rank fusion method serves
as a general solution to enabling fine-grained ranking over
multiple hash tables with multiple sources, which supports
different kinds of hashing algorithms and different feature
types. Due to both the query-adaptive ranking and data-
dependent fusion, our method significantly and efficiently
boosts the ranking performance in practice. Further work
can be concentrated on learning a more discriminative
similarity metric and building each hash table from multiple
views with the query specific ranking.
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