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Bayer Demosaicking with Polynomial Interpolation
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Abstract—Demosaicking is a digital image process to recon-
struct full color digital images from incomplete color samples
from an image sensor. It is an unavoidable process for many
devices incorporating camera sensor (e.g. mobile phones, tablet,
etc.). In this paper, we introduce a new demosaicking algorithm
based on polynomial interpolation-based demosaicking (PID).
Our method makes three contributions: calculation of error
predictors, edge classification based on color differences, and
a refinement stage using a weighted sum strategy. Our new
predictors are generated on the basis of on the polynomial
interpolation, and can be used as a sound alternative to other
predictors obtained by bilinear or Laplacian interpolation. In this
paper we show how our predictors can be combined according
to the proposed edge classifier. After populating three color
channels, a refinement stage is applied to enhance the image
quality and reduce demosaicking artifacts. Our experimental re-
sults show that the proposed method substantially improves over
existing demosaicking methods in terms of objective performance
(CPSNR, S-CIELAB AE™, and FSIM), and visual performance.

Index Terms—Demosaicking, color interpolation, polynomial
interpolation, edge classifier.

I. INTRODUCTION

Digital cameras are increasingly widespread, and camera
modules are now embedded in a variety of handheld devices
including mobile phones and tablet PCs. In most digital
cameras, images are captured by a single image sensor whose
surface is covered with a color filter array (CFA). This widely
adopted solution keeps cost and size of digital cameras under
control, because the image sensor is the most expensive
component of the camera [1]. A single image sensor obtains
only one color component at each pixel position; therefore,
the captured image is in the form of a mosaic pattern. To
reconstruct a full color image from the CFA-sampled image,
an image processing technique that estimates the missing
color values is needed. Such a technique is known as CFA
interpolation or demosaicking.

The most common CFA pattern is the Bayer pattern, which
is shown in Fig. 1 [2]. Because the spectral response of a green
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Fig. 1. A 7 x 7 Bayer pattern. Parameters ¢ and j are row and column
numbers, respectively.

(G) channel corresponds to that of the human visual system’s
luminance channel [3], [4], the green components are sampled
at twice the rate of the red (R) or blue (B) components.
In other words, the green components are sampled using a
quincunx grid, and the red and blue components are obtained
by a rectangular grid. This technique is used in most digital
cameras [5].

In demosaicking, it is commonly assumed that color ratios
and color differences are constant over small regions. These
are referred to as the color ratio model and color difference
models, respectively [6]. In [7], Cok reconstructed the missing
green components and then estimated the red and blue ones
using bilinear interpolation of the red-to-green and blue-to-
green difference ratios. In [8], Lukac et al. proposed a nor-
malized model for color ratio-based demosaicking. Because of
its simplicity and effectiveness, many methods utilize the color
difference model, i.e., red-green and blue-green [9]. In both
cases, correct interpolation of the missing green components
is crucial because interpolated green components are used to
reconstruct the other colors.

Improper interpolation of neighboring pixel values leads
to demosaicking artifacts, such as false colors and the so-
called zipper effect [10]. One strategy for interpolation of
neighboring pixels is the edge-directed method. In this method,
two or more predictors are estimated along the candidate
directions, and one of them is selected as the value of the
missing pixel [11-15]. The objective of this strategy is to
perform interpolation along edges rather than across them.
Another strategy is computing a weighted sum of predic-
tors [16-22]. After estimating predictors along the candidate
directions, some weights are calculated on the basis of the
edge directions. Each missing pixel is then interpolated by
the weighted sum of predictors with the calculated weights.
Other strategies use various schemes such as pattern matching,
median filtering, bilateral filtering, and optimization-based
filtering. Wu et al. exploited pattern matching [23] while
Freeman utilized the median filter to improve reconstruction
near edges [24]. Ramanth et al. proposed the use of a bilateral
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filter [25]. Zhang and Wu introduced the directional linear
minimum mean square error estimation (LMMSE) method
for demosaicking [26]. Menon and Calvagno incorporated
regularization approaches to demosaicking (RAD) [27].

Demosaicking has been studied in the frequency domain
as well. One promising class of algorithms is based on a
frequency-domain explanation of the spatial multiplexing of
red, green and blue components; it has been termed luma-
chroma demultiplexing in [28-32]. In this paper, we intro-
duce a new demosaicking algorithm based on polynomial
interpolation-based demosaicking (PID). Our method makes
three contributions with respect to the state of the art: i) new
calculation of error predictors, ii) edge classification based
on color differences and predicted error, and iii) a refinement
stage using a weighted sum strategy for artefacts reduction.

The remainder of the paper is arranged as follows. Con-
ventional edge-directed color channel interpolation methods
including adaptive color plane interpolation (ACPI) and ef-
fective color interpolation (ECI) are explained in Section II.
The polynomial interpolation, a motivation of our proposed
method, is summarized and its application to demosaicking
is presented in Section III. Our proposed method based
on the polynomial interpolation is explained in Section IV.
The experimental results comparing the proposed polynomial
interpolation-based demosaicking (PID) method with other
reference methods are provided in Section V. We conclude
the paper in Section VL.

II. EDGE-DIRECTED COLOR CHANNEL INTERPOLATION
METHODS

Several methods generate predictors along all candidate
directions, as mentioned above; then, either one of them is
selected, or they are fused with appropriate weights based on
the direction. In this paper, we assume X; ; is the intensity
value at (i,5) in the X color plane. X, ; is the estimated
value after demosaicking and X 4,7 1s temporary variable value
to calculate )?”

In [11], the authors proposed ACPI and generate two
predictors, defined as

qi — Gig1+Gijpn 2R = Rijoo = Rijio
2,7 2 4 7
GY. = Gi—1,j + Gitj n 2R j — Ri—2; — Riyo
2,7 2 4 )
H Vv
a G tGy 0
i, 9 )

where GH and GV are estimates for the horizontal and verti-
cal dlrectlons and GA - 1s an estimate for the omni-direction.
To select one of them an edge classifier composed of the
Laplacian second-order terms for R/B and the gradient terms
for GG is utilized. This technique is known to provide good
results, and it has been further studied by many researchers.
For example, an edge classifier using the variances of color
differences was presented by Chung et al. [12]. The directional
filtering and a posteriori decision method was proposed by
Menon et al., who used a different edge classifier composed
of the sum of the gradients in the horizontal and vertical

directions [13]. Dengwen et al. improved the DFPD [14],
while Su and Kao exploited discrete wavelet transformed
coefficients as the classifier [15].

Another method for estimating predictors is to exploit the
weighted sum of color differences in the vicinity. In early study
in effective color interpolation (ECI) [16], the missing green
components were reconstructed as follows:

Glj_le+Klj

K,g 1+K1j+1+K7, 1]+K1+1,]

1 2

=Rij+

where K; ,j 1s considered as difference between original R; ;
and estimated G +,j» and the color difference values of the four
neighbors are computed as

f(i,j—l =Gjj-1— ]?Zi7j,1 =Gij1— W’
I?@J'H =Gijy1 — Ei,j+1 =Gjj+1 — W’
f(i—l,j =Gi_1,j — Ei_l,j =Gi1j— W’

Chang and Tan improved ECI by using adaptive weight
obtained by a gradient operator instead of the fixed weight,
1/4 [17]. An effective demosaicking algorithm based on edge
property (EDAEP) is an another approach based on ECI,
in which the weights are determined according to the edge
direction [18]. Pekkucuksen and Altunbasak utilized the edge
strength filter (ESF) [19] and proposed multiscale gradients-
based method (MSG) [20]. Kim et al. used geometric duality
and the dilated directional differentiation of color differences
for demosaicking (GD) [21]. Chen et al. proposed a demo-
saicking method by introducing a voting strategy and provided
accurate directional interpolation method [22].

In fact, the predictor for the horizontal direction in Eq. (1)
can be represented by

1 Rij+Rij_
G%Rm+(gm4ﬂ+d2)

2 2
1 RL i+ Ri, i+2
+ 5 (Gz’,j+1 _ 72J+)
1 ~ -
=R;; + 5{(Gi,j71 —Rij1)+(Gijy1 — Rij+1)}
“4)

In the same manner, GVJ can be obtained. As shown in
Egs. (2) and (4), both of ECI-based and ACPI-based meth-
ods use temporally interpolated red components at neigh-
boring green sampling positions. This property is used in
our study because temporal interpolation is as important for
demosaicked image quality as the fusing strategy. Based on
this observation, we propose a new demosaicking algorithm,
including a new scheme to generate the predictors and a new
edge classifier. A new refinement scheme is also presented,
which follows the concept of the initial interpolation.
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III. INTERPOLATION ERROR AND ITS APPLICATION TO
DEMOSAICKING

A. Interpolation Error

Assume that f € C"*1[a,b] and 0, 21,...,, are distinct
nodes in [a, b]. Let f be n+1 times continuously differentiable
on a closed interval [a, b], and p,, (z) be the unique polynomial
of degree with maximum n that interpolates f at n+ 1 distinct
points {x;}, where i = 0,1,...,n, in that interval. Then, for
each x in the interval, there exists ¢ in that interval such that

(@) = pn(®) = en(), &)

where the error function is given by

n

L SENCSEIRG § P
CESAN ()g( i)- (©6)

en(z) =
That is, the error function is given in the form of the Taylor
series [33]. The expression for the error e,, can be simpler if
we select to distribute our nodes so that they are uniformly
spaced. That is, fix n and define the step length h = (b—a)/n,
then we can clarify the partition of the interval [a, b] as follows:
ro = a,r; = a+ih,x, =0b, for i = 1,2,...,n. When the
points are equally spaced!, the interpolation error is bound. If
we consider n = 2 for two points g and xg + h, it follows
from Eq. (6) that there is a point ¢ such that

f(xo + 1) — f(x0)

J@) = flwo) + 2S00 (4 — )
+@(x—xo)(x—(mo+h)). (7)
For 2 = z0 + h/2, we have
o (o
S (OES CORE0 MY R

In general, we cannot calculate f”(&) (i.e. the error-amender
term) because we do not have any information for the value
between f(z —1) and f(x + 1). In the case of demosaicking,
however, we can estimate a good candidate value for £ by
considering the color difference model.

B. Application to Demosaicking

In this section, we explain the application of the poly-
nomial interpolation introduced in the previous section to
the demosaicking process. The application of this theorem
is performed using the same color components for the first
term and different color components for the second term
in Eq. (8). The pixels in CFA are spaced one pixel apart,
(zo + 3h) — (w9) = (zo + h) — (w0 + $h) = 1; that is,

'In case of non-equal but linear spacing, this bound can be easily general-
ized to be a symmetric function of the spacing step [34].

Step 1:
Predictor generation

Step 2:
Fusion of the predictors

Bayer CFA

Demosaicked
image

Fig. 2. Flowchart of the proposed algorithm.

h = 2. Then, the estimate of R; ;_;, as shown in Fig. 1, can
be calculated using Eq. (8):

Rm‘fl =~ (&) — % - h?
CRij o+ Ry (&) o
- E 2 . — ] 'h7 (9)

where the second term on the right side is defined as

I"(&1) 2 L (R —Rijon Rijoi— Rijs
8 T 2h h h
Y - .
_ Rijn 1‘;1},52 1+ Rij 3 (10)

Let the color difference plane, A, between G and R be defined
as

A=G-R, (11)

Then, by applying the color difference model of Eq. (11), we
obtain
F&) g2 o (Giger = Nigr) = 2(Gijo1 — Aij1)
8 2h2
(Gij—3 — Nij—3)
: : . 12
+ 57,2 (12)
The color differences are quite constant over small regions;
ie., Ajjt1 = A;j—1 = A; ;3. Therefore, Eq. (12) can be
approximated to

F'€) 42 o Gigr1 = 2Gij1 = Gij-s
8 N 2h? ’
Substituting Eq. (13) into Eq. (9) gives

E ~ Ri,j*Z + Ri,j+1 Gi,j+1 - 2Gi,j71 - Gi,j*B
byl = 2 B 2h2

13)

(14)

We can analogously compute the estimate of R; ;.

IV. DEMOSAICKING IMPLEMENTATION
A. Green Channel Interpolation

Our proposed method is presented as a flowchart in Figure 2.
The first step in reconstructing the missing green components
is to generate the directional predictors. Because the color
difference plane is smoother than the R/ B plane, interpolating
a pixel using the color difference plane is much more effective
than using the original values such as R or B [9]. In our
method, we interpolate the green plane with the use of the
color difference model. For a missing green component at a
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red sampled position, ?; ; in Fig. 1, we define the predictor
for the horizontal direction as

Nij—1+ A j41

Giy = Rij+Aij = Rij+ (S

where A = G — R. Using the color difference model, we have

Gij-1—Rij-1+Gijr1— Rijn
2
Gij-1+Gijr1  Rij1+ Rijn
2 2 ’
where the third term of the right side can be calculated using
Eq. (14). The predictor for the vertical direction is analogously
obtained as

Gl >R+

]

= Rij + (16)

Gic1j —Ric1,j + Gig1,j — Rivaj
2 ~ ~
Gic1j +Giv1;  Riciyj+Riqy
2 2 '
Note that in order to calculate a predictor, 12 addition opera-
tions and seven shift operations are required. This calculation
can be reduced to seven addition operations and four shift
operations by reusing some intermediate computation results.
The second step is to fill in the missing pixels based on
the edge classifier. In our method, we consider two directions:
horizontal and vertical. Let 1/ and ¢V be the costs for the
horizontal and vertical directions, respectively, defined as

/\V Il
G/ ; =R ;+

= Ri’j + 17

v = Z Z G jin — Ritmjtnl;
m={-2,0,2} n={-2,0,2}
v = Z Z |@Z"{Fm7j+n = Rivmjtnl (18)

m={—2,0,2} n={—2,0,2}

The ratio, ¥, of the two cost values is used as the edge
classifier, which is computed by

oY
i)
If W is larger than a predefined threshold, 7, the pixel is defined

to be in a strong edge region. In this case, the missing green
component is interpolated as follows:

L :max( (19)

G, =Gl it (0> )& (0= 47),
Gij=GY, if (0> 7)& (¥ =Ly ),
- HAH vV AV

(20)

Pixels which are not classified into a strong edge region (v <
7) are interpolated using the weighted sum method strategy.
Here, w' and w" are weights for the horizontal and vertical
directions, respectively, and are defined as

1
H _
YT d e
1
v
== 21
n dv +¢’ @D

where ¢ is a small number added to the denominators to avoid
division by zero. For computational simplicity, we use the
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Fig. 3. Four cases of red and blue channel interpolation (a) and (b): green
pixel-centered cases, (c) red pixel-centered case, (d) blue pixel-centered case.

directional differences used in ACPI as d” and d in Eq. (21),
which are respectively defined as
d =|Gijo1 — Gijn| + 2R —
d" =|Gi-1j = Gis15l + 2Rij — Ri—aj — Riyajl. (22)

Rij—o— Rijial,

B. Red and Blue Channel Interpolation

After populating the G channel, we can estimate R and
B channels using G channel information. Figure 3 shows
four possible cases. Figures 3(a) and 3(b) represent the cases
in which a green pixel is centered, and Figs. 3(c) and 3(d)
are the cases in which a B component interpolation at an
R pixel is required and vice versa. When interpolating an
R component in a GR line, as shown in Fig. 3(a), there
is no vertical information for red pixels. A similar problem
also occurs in a GB line, where horizontal information for
red pixels is not available, as shown in Fig. 3(b). For that
reason, we horizontally apply the polynomial interpolation-
based demosaicking algorithm in a G R line and vertically in
a GB line.

Recall that A is a color difference plane between the
populated green channel and the red channel, A = G — R.
Then, an R component at the G sampling position in the GR
line in Fig. 3(a) is interpolated as follows:

E = Gi,j — Ki) j
=G — {Ai,j—l +Aij f(&) } .

1,3

5 3 (23)

Because we apply a polynomial interpolation-based demo-
saicking scheme to the color difference plane, information for
& between two pixels located at (¢,7 —1) and (¢,5+1) is not
directly available. One solution for estimating & is to average
the second derivatives at (i,j — 1) and (%, j + 1). Therefore,
Eq. (23) can be approximated as

Aij1+Aijn

Rij=Gij— 5

n 1A =200+ Aijs

8 2
n 1 (A3 =20 5400+ Aija

8 2

Aij1+Ais

=Gy — b=t J2F J+1

Nijg—ANij—1—Nijp1+Nijys

: : : S (o4

+ T (24)
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For the reconstruction of a missing red component in a GB
line in Fig. 3(b), we use a similar equation:
~ A + A; .
Ri; =G, ——=l T2y
Nicgj—Nim1j — N1 i+ Nigs
16 '

When reconstructing a missing red component at a blue
sampling position, as shown in Fig. 3(d), we use the four
adjacent color values along the diagonal directions. Namely,
we employ the averaging strategy given as follows:

+ 25)

Rij=Gij—Aij
Niqjr+F A1 A j—1 + N i
I .

= Gi,j +
(26)

C. Refinement Process

After reconstructing the full color image, we refine it to
reduce demosaicking artifacts, such as false colors and the
zipper effect. At this point, we have three color values at
every sampling position; therefore, we can make effective use
of additional color information compared to when performing
the initial interpolation described in the previous section. In
the refinement step for the green components, we utilize four
directions, north (N), west (W), south (5), and east (F). The
gradient values, A%, for each direction, ®, are defined as

AN = |R;i; — Ri_a| +|Gi—1; — Gi—s;l,
AW =|R;j — Rij—2| +|Gij-1 — Gij-sl,
A% =|R;; — Risaj| + |Gis1j — Giysjl,

AP =|R;; — Ri jio| +|Gijr1 — Gijasl, (2D

where we use original sampling values to compute the gra-
dients because they are more reliable than the interpolated
values. Based on these gradient values, we calculate the
weights for the four directions as follows:

o ¥®

w =
ZX:{N,W,S,E} PX

for ® = {N,W, S, E}, (28)

where w@ is the cost value in ® direction, for each direction
and are respectively defined as

w{) _ HX:{N,W,S,E} A¥
= X:
The final green component, G;;, is obtained using the

weighted sum of the four neighboring color difference values
with the use of the weights computed by Eq. (28) as:

for ® = {N,W, S, E}, (29)

Gij=Rij+ @ Ay +0™ Ay

+ ws . Ai+1,j + wE . Ai,j+1). (30)

Following green channel refinement, the red and blue
channels are updated. The red components are refined using
Eqgs. (28-30) with the refined green components, and the blue
components are similarly updated by exchanging R for B in
Egs. (28-30).

(a) (b) ()
Fig. 4. Test sets for comparison: (a) 18 McM dataset, (b) 16 CMLA dataset,
and (c) 24 Kodak dataset.

V. EXPERIMENTAL RESULTS

In this section, the performance of the proposed method is
evaluated and compared with some reference benchmarks. In
the experiments, three image sets were used for comparison
test and three image sets were used for training. Test sets
include 18 McM dataset [41], 16 CMLA dataset [36], and 24
Kodak dataset, while training sets include 150 LC dataset [37],
25 Zahra dataset [38], and 9,907 Stanford dataset [39].
Figure 4 shows test image sets: McM, CMLA, and Kodak
datasets. Compare to McM dataset, the Kodak images are
statistically less colorful and sharper.

A. Simulation Setup for Comparison

In this section, the performance of the proposed method is
evaluated and compared with some reference benchmarks. In
the experiments, two image sets were used for comparison
test and three image sets were used for training. Test sets
include 18 McM dataset [35] and 16 CMLA dataset [36],
while training sets include 150 LC dataset [37], 25 Zahra
dataset [38], and 9,907 Stanford dataset [39]. Figure 4 shows
test image sets: McM and CMLA datasets.

The McM dataset has been used in many recent survey
papers. The McM dataset consists of 18 full color images with
500 x 500 pixel resolution. We also used a CMLA dataset of 16
images obtained with a Nikon D80 camera using ISO 1250 and
exposure time 1/640 s. In CMLA images the darkest pixels
are saturated, and therefore the noise curve does not follow the
linear variance model. CMLA dataset contains some views
of buildings, dice, people, and outdoor images. Especially,
two building images are highly textured. The CMLA dataset
consists of 16 full color images with 704 x 469 pixel resolution,
respectively.

The full color images were first downsampled in the Bayer
CFA pattern and then interpolated using the proposed PID
method. The demosaicked images were compared to the
original full color images, and the results are reported in
terms of color peak signal-to-noise ratio (CPSNR), S-CIELAB
AFE* [40], and feature-similarity (FSIM) [41]. For compari-
son, we have selected the following reference methods:

(A) A luma-chroma demultiplexing (LSLCD) method
uses a least-squares design methodology for the
required bandpass filters [31]. LSLCD examines the
tradeoff relationship between demosaicking quality
and speed using trained filters in order to recommend
filter specifications for the best system that balances
quality and speed. Before applying LSLCD, training
set is required for filter design, and the selection
of training set may affect the sensitivity of the
performance.
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There are two steps in color demosaicking
with directional filtering and weighting (CDDFW)
method [14], initial step and refinement step. In the
initial step, the initial estimates of the R, G and B
planes are computed, whereas in the refinement step
the G plane can be further refined using the initial
R and B planes and vice versa. CDDFW classifies
region into two, strong edge region and smooth
region, and applies DFPD for strong edge region and
applies weighted average for smooth region.

In effective demosaicking algorithm based on edge
property for color filter arrays (EDAEP) method [15],
authors apply initial interpolation and refinement
process. The initial interpolation is modification of
EDI and refinement process is identical to [42].
The obtained accurate weights are used for image
demosaicking, before refinement is made in post-
processing. We note that, refinement is performed
only to the interpolated green pixel values.

In edge strength filter based CFA interpolation
(ESF) [19], authors proposed an orientation-free edge
strength filter and applied it to the demosaicking
issue. The ESF output is utilized both to improve
the initial green channel interpolation and to apply
the constant color difference rule adaptively.

The same authors of [19] proposed the multi-
scale gradients-based CFA interpolation (MSG) [20],
where the authors proposed a method that uses mul-
tiscale color gradients to adaptively combine color
difference estimates from different directions. The
MSG method does not require any thresholds as it
does not make hard decision, and all process is non-
iterative.

In geometric duality and dilated directional dif-
ferentiation based method (GD) [21], the authors
noticed that a given high resolution image and its
low resolution image obtained by sampling have
similar edge properties. By using this property, GD
computes the interpolation errors for the candidate
directions in the low resolution image, and exploits
them as a cost term for the direction. By combining
the edge classifier and the weighted sum of the
estimates obtained by approximation, demosaicking
is performed.

In voting-based directional interpolation method
(VDI) [22], authors introduced the voting strategy
and its application to the interpolation direction of
the center missing color component. Along the de-
termined interpolation direction, the center missing
color component is determined accurately and in-
terpolated using the gradient weighted interpolation
method by exploring the intra-channel gradient cor-
relation of the neighboring pixels.

Our polynomial interpolation-based demosaicking
(PID) method has three steps, (1) calculation of error
predictors, (2) edge classification based on color
differences, (3) a refinement stage using a weighted
sum strategy. The proposed predictors are generated

(2) () (©
Fig. 5. CMSE results for: (a) 150 LC dataset (7 = 1.8), (b) 25 Zahra dataset
(t = 1.9), and (c) 9,907 Stanford dataset (= = 2.0). Threshold value T is
determined as 1.9.

(© (d) ©)
Fig. 6. An example of Zahra #4 image: (a) original image, (b) Welght maps
of ¥V /4pH, (c) pixels with G 4,5 = GH (d) pixels with G 47 = G , and
(e) pixels with ¥ < 7. We note that we a%%umed T=1.09.

on the basis on the polynomial interpolation. After
interpolating three color channels, a refinement stage
is applied to enhance the image quality and reduce
demosaicking artifacts.

Seven recently presented demosaicking methods, which
are published after 2011, were implemented for compari-
son: LSLCD [31], CDDFW [14], EDAEP [15], ESF [19],
MSG [20], GD [21], and VDI [22]. All of the simulations
were carried out on the Intel Core i7-3537U CPU at 2.00
GHz.

B. Threshold Parameter Tuning

A proper setting for threshold parameter 7 is important for
the success of our method. Parameter 7 plays an 1mportant role
to balance performance of Eq. (20). In our scheme, G
GVj is assigned to G ; when W is larger than predetermmed
threshold 7 because the pixel is assumed to be in a strong edge
rgglon. Otherwise, weighted sum strategy is used to compute
Gi ;.
1{0 obtain the most suitable parameter 7, we tested our
method with several values of 7, ranging from 1.0 to 10.0,
with 0.1 increments. Figure 5 shows the average CMSE
performance for 150 LC dataset, 25 Zahra dataset, and 9, 907
Stanford dataset using Eq. (20). From Fig. 5, we found that
7 =1.8,1.9, and 2.0 yield the least CMSE for LC, Zahra, and
Stanford datasets, respectively. Therefore, we concluded that
7 = 1.9 is the most reliable parameter value.

Figure 6 shows an example of #4 Zahra image. Figure 6(a)
is the original image, Fig. 6(b) is the weight maps of ¥
Figs. 6(c-e) show pixels with G;; = G/, Gi; = GV,
and W < 7, respectively. It was found that 13 80% of pixels
were determined as G; g = = G, that 8.94% of pixels were

wH9
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Average result for McM #01 to #18 Average result for CMLA #01 to #16

Optimal T for McM and CMLA imageset by self training cMLA #5
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Fig. 7. (a) Average CMSE for various 7 for McM dataset, (b) average CMSE for various 7 for CMLA dataset, (c) optimal 7 for McM and CMLA imageset
by self-training, and (d) CMSE for varying 7 values on #5 of the CMLA dataset.

TABLE I
FOUR METRICS TO ASSESS PERFORMANCE FOR TWO 7 CONDITIONS
CPSNR | S-CIELAB AE* | FESIM CMSE
T=1.9 30.35 20112 0.99378 | 59.9902
T=26 | 303727 2.0097 0.99379 | 59.6772
Difference | 0.0227 -0.0015 0.00001 | -0.313

GY., and 77.26%

determined as G ; i

determined as ¥ < 7.

Figure 7 shows the optimal 7 for McM and CMLA image-
set. For McM imageset, best 7 was 1.8, which is very close
to our assumption (7 = 1.9). It can be found from Fig. 7(c)
that throughout 18 McM images, 7 values range from 1.5 (#2)
to 2.4 (#7), and most 7 values locate around 1.9. For CMLA
imageset, best 7 was 2.2, which is 0.3 bigger value than our
assumption. The 7 values range from 1.5 (#4, 6, 8) to 2.7
(#13), and most 7 values locate around 2.2. However, MSE of
#13 for 2.1 < 7 < 2.7 showed similar performance. Therefore,
we conclude that our assumption 7 = 1.9 is reasonable.

Although 7 = 1.9 was selected for our system, this value
caused worse performance for #5 of the CMLA dataset.
Figure 7(d) shows CMSE result for varying 7 values. It is
obvious that 7 = 2.6 is the optimal selection for this image
with CMSE (=59.6772), while globally selected 7 = 1.9
gives worse CMSE (59.9902). Table I shows results of four
metrics (CPSNR, S-CIELAB AFE*, FSIM, and CMSE) for
two 7 conditions: 7 = 1.9 and 7 = 2.6. It is noted that all
numerical results were obtained from PIDyy to clearly show
the effect of the 7 selection. It can be found from Table I
that the optimal selection (7 = 2.6) outperformed the global
selection (7 = 1.9) for all four metrics.

of pixels were

C. Performance Comparison in CFA images

Tables II and III show the CPSNR results of the 18 McM
and 16 CMLA images and the average error measures and
three rankings. Ryg, Rp, and Ry, stand for PID performance
without refinement and with refinement, and ranking of each
reference method. We rejected an eleven pixels wide border
from each image during the performance calculations to leave
edge effects not representative of the error performance of the
various methods. These numerical results may not match di-
rectly to those informed in original published articles because
of differences in the test platforms, such as different versions
of the same images being adopted or slight differences in the
metric calculations.

TABLE II
CPSNR RESULTS ON MCM DATASET FOR VARIOUS DEMOSAICKING
METHODS (IN DB)

Im# LSLCD | CDDFW EDAEP ESF MSG GD VDI PIDwg PID Rwr Rp
I | 27644 | 27133 | 27591 | 26.061 | 27.193 | 27.145 | 28054 | 26487 | 29.082 | 8 1
2 | 33579 | 33539 | 33981 | 33.07 | 33807 | 33868 | 34.281 | 33345 | 34619 | 8 1
3 | 31272 | 32616 | 32055 | 32.291 | 33.029 | 33.023 | 32643 [ 32535 | 3219 | 5 7
4 | 34501 | 34709 | 34347 | 34647 | 35713 | 358 | 35989 | 34.646 | 36395 | 7 1
5 | 32365 | 3108 | 32076 | 30.279 | 31.251 | 31.471 | 32.696 | 30.619 | 34.059 | 8 1
6 | 35622 | 33749 | 35037 | 32.109 | 33.773 | 33.797 | 35.783 | 32.68 | 37596 | 8 1
7 3464 | 38971 | 36215 | 38796 | 39.138 | 38.627 | 36.025 | 39.061 | 34811 | 2 3
8 | 36581 | 37.312 | 37.114 | 37.286 | 37.635 | 37.927 | 37428 | 37.538 | 36.61 | 3 8
9 | 35656 | 34794 | 35244 | 33968 | 34.868 | 35.029 | 36.159 | 34.015 | 36778 | 8 1
10 | 3686 | 36917 | 36994 | 35553 | 36.669 | 36.428 | 37.452 | 35709 | 38281 | 8 1
11 | 37.828 | 37.501 | 37.829 | 36438 | 37.44 | 37373 | 38.144 | 36597 | 39.468 | 8 1
12 | 3714 | 36827 | 37.148 | 35888 | 36.901 | 36.916 | 37.54 | 36415 | 38209 | 8 1
13 | 39232 | 38629 | 39332 | 38271 | 38952 | 39.1 | 39.843 | 38454 | 40879 | 8 1
14 | 37738 | 37127 | 37.641 | 36652 | 37.235 | 37313 | 38.04 | 36.815 | 38598 | 8 1
15 | 37958 | 37321 | 37757 | 36.708 | 37.302 | 37.305 | 38.153 | 36.759 | 39.094 | 8 1
16 | 3168 | 30058 | 31.402 | 28989 | 3026 | 30.51 | 31.89 | 29.685 | 34.194 | 8 1
17 | 30859 | 29774 | 30578 | 28334 | 29.486 | 29.559 | 31.196 | 28471 | 33167 | 8 1
18 | 34062 | 3382 | 34066 | 33502 | 34.172 | 34.296 | 34.545 | 33918 | 35549 | 7 1

Ave. | 34734 | 34549 348 | 33.825 | 34.712 | 34.749 | 35326 | 34.097 | 36.088 | 8 1

Ry 5 7 3 9 6 4 2 8 1

TABLE IIT

CPSNR RESULTS ON CMLA DATASET FOR VARIOUS DEMOSAICKING
METHODS (IN DB)

Im# LSLCD | CDDFW | EDAEP ESF MSG GD VDI PIDwg PID Rwr | Rp
1 31.211 33.06 33.525 | 32.802 | 33.495 | 33512 | 33.67 | 33.291 | 33.744 6 1
2 30.512 32.429 32.63 32446 | 32921 | 32975 | 32.799 | 32.854 | 32.791 3 5
3 30.922 35.106 34.675 | 34.145 | 35.123 | 35.051 | 34.947 | 34.583 | 35.141 7 1
4 38.127 43.888 43.638 | 42421 | 43.737 | 43.449 | 44.324 | 42.594 | 46.482 7 1
5 28.157 30.136 30.868 | 29.812 | 30.496 | 30.693 | 30.993 | 30.356 | 31.593 6 1
6 32.453 38.399 38.827 | 36.988 | 38.383 | 38.585 | 40.111 | 37.189 | 41.993 7 1
7 40.665 43.806 43.93 43727 | 44.046 | 44.153 | 44.148 | 43.814 | 44.373 6 1
8 37.409 41.393 41.555 | 41.325 | 41.829 | 41.804 | 41.69 | 41.585 | 42.162 5 1
9 41.318 44.885 45.169 | 44.305 | 44.969 | 44.887 | 45336 | 44.547 | 46.025 7 1
10 39.799 43.463 43491 | 43.143 | 43.786 | 43.736 | 43.781 | 43.389 | 43.498 7 4
11 33.923 35.615 36.205 | 35.641 | 36.11 | 36.185 | 36.406 | 36.041 | 36.303 6 2
12 34.701 37.666 3722 37.712 | 38.098 | 37.969 | 37.21 37.93 37.09 3 8
13 31.232 34.119 34.114 | 34.188 | 34.721 | 34.745 | 34.446 | 34.537 | 34.206 3 5
14 33.205 35.668 35746 | 35.639 | 36.169 | 36.229 | 36.073 | 35.982 | 36.138 5 3
15 29.081 32.119 31.956 | 31.773 | 32397 | 32325 | 32.13 | 32.165 | 32.536 4 1
16 3272 35.138 35248 | 35.198 | 35701 | 35.773 | 35.551 | 35.498 | 35.391 4 5

Avg. 34.09 37.306 37425 | 36.954 | 37.624 | 37.629 | 37.726 | 37.272 | 38.092 7 1

Rar 9 6 5 8 4 3 2 7 1

It can be seen from Table II that the estimates of the
demosaicked images by our PID method are very competitive
with the reference methods. The PID method outperformed
most other methods on average: 1.354 dB (LSLCD), 1.539
dB (CDDFW), 1.288 dB (EDAEP), 2.263 dB (ESF), 1.376
dB (MSG), 1.339 dB (GD), 0.762 dB (VDI), and 1.991 dB
(PIDyg), respectively. We note that TO filters were used for
LSLCD results. Although the PID method did not provide
better performance than MSG or GD for #3, #7, #8 McM
images, the average results outperformed both methods.

The CPSNR results on CMLA dataset are shown in Ta-
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TABLE IV TABLE VI
S-CIELAB A E* RESULTS ON MCM DATASET FOR VARIOUS FSIM RESULTS ON MCM DATASET FOR SEVERAL DEMOSAICKING
DEMOSAICKING METHODS METHODS
Im# | LSLCD | CDDFW | EDAEP | ESF | MSG | GD VDI | PIDwg | PID | Rwg | Rp Im# | LSLCD | CDDFW | EDAEP | ESF MSG GD VDI | PIDyz PID | Ryg | Rp
1 28057 | 3.1895 | 29027 | 3.7844 | 3.0946 | 3.0861 | 2.62 | 3.4693 | 26171 | 8 1 1 09921 | 099208 | 0.99287 | 0.99066 | 0.99269 | 099258 | 0.99363 | 0.99124 | 0.99396 | 8 1
2 11486 | 12964 | 12458 | 14533 | 12202 | 12612 | 1.1444 | 1.3689 | 1.1682 | 8 3 2 [ 099635 | 09964 | 0.99668 | 0.99603 | 0.99666 | 0.99667 | 0.99678 | 0.99619 | 0.99694 | 8 1
3 1.736 2.0829 2.2897 2.0759 1.7848 1.7993 1.8931 2.0834 1.7059 8 1 3 0.99614 0.99756 0.99698 | 0.99734 | 0.99784 | 0.99777 | 0.99745 0.9975 0.99724 4 7
4 0.8595 1.2531 14838 | 14612 | 1.0304 | 1.177 1113 | 1.4308 | 0.8617 7 ) 4 099729 | 0.9986 | 0.99822 | 0.99852 | 0.99884 | 0.9988 | 0.99871 | 0.9985 | 0.99888 7 1
5 1381 15506 | 15258 | 1.771 | 15053 | 15503 | 13735 | 1.7586 | 12147 | 8 1 5 ] 099678 | 099653 | 0.99708 [ 099602 | 0.99684 [ 0.99689 | 09974 | 0.9961 | 099832 | 8 1
6 10866 | 14644 | 12781 | 1.8569 | 14524 | 14904 | 1.1271 | 17557 | 09875 | 8 1 6 | 099802 | 099793 | 0.99838 | 0.9971 | 0.99811 [ 0.99809 | 0.99851 | 0.99748 | 0.99891 | 8 1
7 12851 | 09321 | 12284 | 0944 | 0.9011 | 0.9489 | 11994 | 0.9074 | 1.2386 | 2 3 7 ] 099713 | 099879 | 0.99775 | 0.99869 | 0.99882 | 0.99867 | 0.99778 | 0.9988 | 0.9975 | 2 3
S | 05988 | 06315 | 07229 | 06586 | 05843 | 05723 | 06125 | 0.6126 | 0.6205 | 5 3 8 [ 099781 | 099767 | 0.99783 | 0.99777 | 099788 | 0.99801 | 0.99804 | 0.99782 | 0.99761 | 5 9
) 10033 | 12160 | 13045 | 13957 | L1659 | 12124 | 1.0579 | 14224 | 09294 | 9 1 9 099737 | 099742 | 0.99752 | 0.99667 | 0.99728 | 0.99733 | 0.99789 | 0.99662 | 0.99798 | 9 1
10 0.9064 0.9759 0.9988 11917 0.99 1.0606 | 0.9318 11718 | 0.8929 8 1 10 0.99815 0.99866 0.99844 | 0.99815 | 0.99857 | 0.99839 | 0.99858 | 0.99809 | 0.99884 9 1
11 0.6503 07647 0.7246 09074 | 07633 | 07857 | 0.6752 | 0.8865 | 0.6348 Py 1 11 0.9983 0.99845 0.99846 | 0.99799 | 0.99845 | 0.99839 | 0.99844 | 0.99801 0.99876 8 1
2 9 9 S 9 2 9
2 0.0422 1.0672 0.94 12573 1.0581 10943 | 09558 11194 | 09107 3 1 :; 0.998? 0. ))342 ()A)983j 0. )9802 0.99846 (]998;1& ().9982: 0,;;81 8 (1.998:5 8 :
oot | owo [t [orwe o [ose [osws [ame (s [1] (oo ek e e e e e
14 | 07257 | 07958 | 0.7893 | 0.8597 | 0.7687 | 0.7854 | 07415 | 0.84 | 07113 | 8 1 . - e R - i R - -
5 075 1 o522 osor oo o2 osest [07734 oo [o7oos 15 . 15 | 099789 | 099804 | 0.99799 | 0.99777 | 0.99804 | 0.99799 | 0.99807 | 0.99767 | 0.99834 [ 9 1
1‘6 N 704] 2'2;49 1'6727 2‘83;5 3 ;733 2‘ 1506 1'49;;7 3 ;1828 1'5217 p 3 16 | 099709 | 099654 | 0.99768 | 0.99542 | 0.99695 | 0.99721 | 0.9979 | 0.99631 | 0.99814 | 8 1
. - . S Hid — . - — 17 | 099432 | 099543 | 0.99568 | 0.99358 | 0.99532 | 0.99506 | 0.9959% | 0.99364 | 0.99735 | 8 1
17 18179 23518 2.2904 30903 | 2.5054 | 2.6275 19595 3.1425 17021 o ! 18 0.99759 0.99786 0.9977 0.99766 | 0.99803 | 0.99804 | 0.99802 | 0.99781 | 0.99806 6 1
2
18 1335 1.5224 1451 1.6007 1442 1447 1.2873 1.5266 13743 s 3 Avg. | 0.99707 0.99734 0.99745 | 0.99682 | 0.99749 | 0.99747 0.9977 0.99697 | 0.99794 8 1
Avg. | 11912 | 13844 | 13528 | 15999 | 13359 | 13681 | 1.2008 | 1.5347 | 11335 | 8 1 Ras 2 s 5 ) 3 " 3 s N
Ras 2 7 5 9 4 6 3 3 1
TABLE VII
TABLE V FSIM RESULTS ON CMLA DATASET FOR SEVERAL DEMOSAICKING
S-CIELAB AE* RESULTS ON CMLA DATASET FOR VARIOUS METHODS
DEMOSAICKING METHODS
Im# | LSLCD | CDDFW | EDAEP ESF MSG GD VDI PIDywg PID Rz | Rp
Im# LSLCD | CDDFW | EDAEP ESF MSG GD VDI PIDwg PID Rwr Rp 1 0.99294 0.99611 0.99652 | 0.99568 | 0.99641 | 0.99643 | 0.99687 | 0.99616 | 0.99622 6 5
1 1.6366 1.3848 1.2673 1.4721 1.3014 1.329 1.1924 1.3729 1.2393 6 2 2 0.99192 0.99522 0.99534 | 0.99514 | 0.99548 0.9956 0.99563 | 0.99548 | 0.99493 3 8
2 1.9195 1.5179 1.4491 1.569 1.4318 1.4356 1.346 1.4921 1.3354 6 1 3 0.99253 0.99812 0.99752 | 0.99756 | 0.99804 | 0.99789 | 0.99754 | 0.99771 0.99767 4 5
3 16503 | 1.0097 | 09311 | 1255 | 1.0557 | 1.0979 | 09172 | 1.1179 | 0.8667 | 7 1 4 ] 099758 | 099919 | 0.99899 [ 099903 | 0.99912 [ 0.99907 | 0.99909 | 0.99898 | 0.99938 | 8 1
4 0.7588 0.348 0.3723 0.4022 | 0.3475 0.369 0.3409 | 0.4068 | 0.2985 8 1 5 0.9877 0.99353 | 0.99403 | 0.99304 | 0.99391 0.9941 0.99433 | 0.99378 | 0.99395 6 4
5 | 24966 | 20371 | 17959 | 2.1799 | 1.9475 | 1.9241 | 1.7065 | 2.0105 | 1.7355 | 6 2 6 | 09955 | 099906 | 0.9992 | 099865 | 0.99903 [ 0.99909 | 0.99935 | 0.99877 | 0.99943 | 7 1
6 13464 | 06307 | 05954 | 07916 | 0.6358 | 0.6283 | 0.5106 | 0.7765 | 0.4355 | 7 1 7 [ 099780 | 09988 | 09988 | 0.9988 | 0.99883 | 0.99886 | 0.99878 | 0.9988 | 0.99883 | 4 2
7 04178 | 03004 | 03018 | 03112 | 02964 | 02968 | 0.2968 | 0.3057 | 0.2865 | 7 1 8 | 099727 | 0.99886 | 0.99887 | 0.99882 | 0.99891 | 0.99889 | 0.9988 | 0.99888 | 0.99887 | 3 5
8 0.7708 0.4296 0.4268 04737 | 04237 | 04346 | 03947 | 0.4454 | 03809 7 1 9 0.99832 0.99893 0.99897 | 0.99888 | 0.99896 | 0.99896 | 0.99896 | 0.99891 0.99903 7 1
9 0.4392 0.2849 0.2824 03105 | 0.2845 | 02922 | 0.2777 0.303 02578 7 1 10 0.99788 0.99899 0.99901 0.99893 | 0.99902 | 0.99902 | 0.99902 | 0.99896 | 0.99903 7 1
10 10252 | 02999 | 0298 | 03163 | 02892 | 0295 | 02971 | 03067 | 02933 | 7 2 11 099404 | 099639 | 0.99678 | 0.99635 | 0.99669 | 0.99672 [ 099689 | 0.99664 | 0.99632 [ 5 3
T 109295 | 07582 | 06954 | 07599 | 07013 | 07042 | 06556 | 07235 | 0705 | 6 7 12 ] 099543 | 099698 | 0.99693 | 0.99703 | 099714 | 0.99715 | 0.9969 | 0.99711 | 0.9971 3 4
5 T 0955 | 0677 | osesi | 0698 | 0651 106562 | 06357 1 06736 [ o61ss | 6 N 13 | 099 i 35 0.99602 0.99602 | 0.99604 | 0.99636 | 0.99645 | 0.99636 | 0.99629 | 0.99562 | 4 3
B e | 1ase | 1aw7 | aen 120 | i2ise | Liss | 1ae | 12066 | 5 | 3 te[ooos7s | aowrss [aowmo [ osonas | 0007 [ oowts | osvres | 0ods | owmad | 4 | s
14 | 11072 | 07715 | 07616 | 08382 | 0.7319 | 0.7531 | 0.6993 | 0.7825 | 0.6844 | 7 1 SR T - - - - - - -
16 0.99377 0.99705 0.99696 | 0.99698 | 0.99723 0.9973 0.99719 | 0.99715 0.9966 4 8
15 | 25457 | 18231 | 1.8012 | 19379 | 17375 | 1.7842 | 1.662 | 1.8307 | 15524 | 7 1
Avg. | 0.99422 0.99728 0.99728 | 0.99709 | 0.99741 0.99743 | 0.99744 | 0.99729 | 0.99725 4 7
16 | 1.1079 | 0.8801 0.884 | 09163 | 0.8168 | 0.8302 | 0.7927 | 0.893 | 07736 | 7 1 = 5 5 S 3 3 3 | . 7
Avg. | 12758 | 09016 | 0.8638 | 09735 | 0.8661 | 0.8779 | 0.8068 | 0.9189 [ 0.7918 | 7 1 A . -
Ry 9 6 3 3 4 5 2 7 1

ble III. The PID method outperformed the tested methods with
most CMLA images except #2, #10-14, and #16. The average
CPSNR achieved by the proposed method was 0.463 dB and
0.366 dB higher than those of GD and VDI, respectively,
which were the second and third best performing methods.

For color images, human vision system-based S-CIELAB
AFE* metric may be more appropriate than CPSNR metric. S-
CIELAB AE* measure is a spatial extension of the CIELAB
AFE* and is one of the most effective measures considering
the human visual system in order to determine the difference
between the S-CIELAB AFE* representation of an original
image and that of the reconstructed image. In terms of S-
CIELAB AFE* metric on McM dataset, PID yields better
performance on average than all the other reference images (-
0.0577, -0.2509, -0.2193, -0.4664, -0.2024, -0.2346, -0.0673,
-0.4012) as shown in Table IV. We note that LSLCD and VDI
are the second the third best methods in terms of S-CIELAB
AFE* measure.

For assessing S-CIELAB A E* metric on CMLA dataset, as
shown in Table V, PID outperformed all the existing methods
with -0.484, -0.1098, -0.072, -0.1817, -0.0743, -0.0861, -
0.015, and -0.1271, on average. The second and the third best
methods for CMLA were VDI and EDAEDP, respectively.

To strongly verify the performance of our method, we also
used a third metric, the FSIM index. We note that FSIM results
close to 1.0 indicate better image quality. Tables VI and VII
show FSIM results on McM and CMLA dataset for several de-
mosaicking methods. It can be found from Table VI that, PID
outperformed all the other methods with 0.00087 (LSLCD),
0.0006 (CDDFW), 0.00049 (EDAEP), 0.00112 (ESF), 0.00045
(MSG), 0.00047 (GD), 0.00024 (VDI), 0.00097 (PIDwg), on
average. PID provides the best FSIM results for all McM
images, except #3, #7, and #8. However, PID did not outper-
form VDI (-0.00015), GD (-0.00014), and MSG (-0.00012) on
average. Although FSIM results of PID ranked 4" for CMLA
images, the difference with VDI was very close.

We now compare the performance of the PID method
against the other methods in terms of computation time. The
speed of demosaicking was assessed as the measured average

TABLE VIII
AVERAGE CPU TIME(S) TO DEMOSAIC ONE 500 X 500 IMAGE OF THE
MCM DATASET AND 704 X 469 CMLA DATASET

Im# | LSLCD | CDDFW | EDAEP | ESF MSG GD VDI | PIDyz | PID | Ruz | Rp
McM | 03498 | 9.8442 | 55962 | 10435 | 88071 | 39116 | 5.1609 | 3.64 | 50708 | 2 4
CMLA | 04211 | 12979 | 64433 | 13.1322 | 111902 | 44394 | 6.5502 | 4.0831 | 58595 | 2 4
Ave. | 03855 | 114116 | 60198 | 117836 | 9.9987 | 4.1755 | 5.8556 | 3.8615 | 54652 | 2 4
Rar 1 3 6 9 7 3 5 2 4
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TABLE IX
PERCENTAGE OF THE PROCESSING TIME FOR PID (%)
Time (sec) Percentage of the processing time for PID (%)
Im# | PIDwg PID PIDwg Refinement
1 4.4162 | 6.3903 | 69.107(%) 30.893(%)
2 6.3198 | 8.3571 | 75.622(%) 24.378(%)
3 6.6352 | 9.0124 | 73.623(%) 26.377(%)
4 4.9574 | 7.2701 | 68.188(%) 31.812(%)
5 4.7056 | 6.5798 | 71.516(%) 28.484(%)
6 2.8568 | 4.3035 | 66.383(%) 33.617(%)
7 3.1346 | 4.8201 | 65.032(%) 34.968(%)
8 3.0910 | 4.5335 | 68.182(%) 31.818(%)
9 27991 | 4.2936 | 65.193(%) 34.807(%)
10 4.5827 | 6.2355 | 73.494(%) 26.506(%)
11 3.0252 | 49078 | 61.640(%) 38.360(%)
12 4.3075 | 6.3714 | 67.606(%) 32.394(%)
13 3.7160 | 53206 | 69.841(%) 30.159(%)
14 3.7795 | 5.3082 | 71.201(%) 28.799(%)
15 3.7929 | 5.3405 | 71.021(%) 28.979(%)
16 3.2100 | 4.7077 | 68.187(%) 31.813(%)
Avg. | 4.0831 | 5.8595 | 69.683(%) 30.317(%)

time (in second) required reconstructing a full color image,
which are tabulated in Table VIII.

Here, Ryg, Rp, Ry stand for rankings of PID without and
with refinement, and ranking of CPU time consumption for
each method. As we can see in Table VIII, the computation and
implementation complexities of the PID method is consider-
ably lower than VDI, MSG, ESF, EDAEP and CDDFW, which
are known to provide good quality-speed tradeoffs among
conventional methods. The elapsed computation time of PID
is 93.3% of VDI, 54.7% of MSG, 46.4% of ESF, 90.8% of
EDAEP, and 47.9% of CDDEW. The LSLCD and GD methods
only required 7.1% and 76.4% computational time of PID,
however the objective performance of the proposed method
outperformed these methods.

We also compare complexity in terms of number of op-
eration for LSLCD, EDAEP, and PID methods. The LSLCD
is filter-based demosaicking which is processed in frequency
domain, thus the speed is fast. To demosaic a pixel using
LSLCD, total number of multiplication is 101. The EDAEP
method is one of ‘inter-channel correlation’ and ‘edge-directed
interpolation” based demosaicking methods. To demosaic a
pixel using EDAEDP, total number of operations with or without
refinement are (18M + 62A + 235 + 2C) or (2M + 304 +
75+2C), where M, A, S, C are multiplication, addition, shift,
and comparison operations. Meanwhile, number of operations
to demosaic a pixel with PID with or without refinement is
(16M + 94A +4S5 4+ 4C) or (4M + 46A + 45 + 4C).

In addition, we evaluate the computational effort of our ap-
proach considering the refinement process separately. Table IX
shows the percentage of the processing time for PID (in %). It
can be found that refinement step requires 30.3% of the total
CPU time, while the PIDyy the 69.7%.

From Table IX, it can be found that the processing time of
the PIDyg and PID were about 69.7% and 30.3%, respectively.
As can be seen in Tables II, IV, and VI, refinement process
raised performance for most test images. However, for some
images, such as #7 and #8 of McM dataset, refinement process
was not recommendable and the result images became even
worse. Figure 8(a) shows original #7 McM image, and its
corresponding PIDywx and PID images are shown in Figs. 8(b)
and 8(d). The difference between original and the PIDyy and

(b) © ()] (e)

Fig. 8. (a) Original image, (b) PIDwg, (c) PID, (d) difference between original
and PIDyg images, and (e) difference between original and PID images.

(@)

PID result images are shown in Figs. 8(c) and 8(e). It is
obvious that the refinement process was helpful for the red
yarn area located in upper left. However, refinement process
was not beneficial for gray cloth located in the right area. One
reason we can consider is that, our setting was deterministic
and it caused over-smoothing the image and unwanted artifacts
were brought in textile area. However, the refinement process
successfully reduced color artifact in yarn area produced by
PIDyg.

Figures 9-14 illustrate the subjective demosaicking perfor-
mance using the partial zoomed images of #1, #5 and #17
McM images and #3, #6, and #15 CMLA images. After the
mosaicking process using the Bayer pattern, demosaicking was
then implemented in order to reconstruct the full color image
using the proposed method and the conventional methods
mentioned in this section. The visual quality can be appraised
with regard to restoration of edges, textures, and various
kinds of geometric details such as corners, diagonals, and fine
patterns. Images in Figs. 9-14 reveal how each benchmark
method fares in restoring the demosaicked images in these
difficult regions.

The results of reference methods, such as those using
LSLCD, CDDFW, EDAEP, ESF, MSG, and GD, suffer from
severe demosaicking artifacts. The VDI method gives images
of similar characteristics in terms of visual quality assessment
compared with PID appears much smoother than the one ob-
tained demosaicking with VDI, as shown in Figs. 9(h), 10(h),
and 11(h).

This visual improvement is more distinct in CMLA dataset.
Figures 12 and 14 prove that PID generated the least color
artifacts among all compared methods. In addition, edges de-
mosaicked by PID are very similar to the original image, while
the other methods still generated unwanted color artifacts.
The edge part appears much smoother after demosaicking
with PID, as shown in Figs. 12(i), 13(i), and 14(i), especially
when compared with most of the other methods. In addition,
Figs. 12(b-g), 13(b-g), and 14(b-g) produced salt-and-pepper
noise-like artifacts along the edges. When comparing the tex-
ture detail preservation ability using McM #1 of stained glass
and #17 of flowers and their leaves, the reconstructed texture
using PID can be preserved. However, the other methods
produced many visible color artifacts like zipper artifacts and
false colors along the edges of stained glass and the leaves
and flowers where abrupt color changes exist, which can be
seen in Figs. 9(b-g), 10(b-g), and 11(b-g).

The LSLCD method is one of the fastest methods and it
gives the best performance when it uses ST filters. Its high
speed comes from using trained filters, therefore if one uses
other filters such as TO and RE filters, performance become
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Fig. 9. Demosaicking results of #1 McM image: (a) Original, (b) LSLCD, (c) CDDFW, (d) EDAEP, (e) ESF, (f) MSG, (g) GD, (h) VDL (i) PIDyg, and (j)

PID.
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Fig. 10. Demosaicking results of #5 McM image: (a) Original, (b) LSLCD, (c) CDDFW, (d) EDAEP, (e) ESF, (f) MSG, (g) GD, (h) VDI, (i) PIDwg, and

(j) PID.

(a) (b) (c) (d) (e)
Fig. 11.
(j) PID.

Demosaicking results of #17 McM image: (a) Original, (b) LSLCD,

() (h) ®

(c) CDDFW (d) EDAEP, (e) ESF, (f) MSG, (g) GD, (h) VDI, (i) PIDWR and

(a) (b) © (d) (e)

Fig. 12.
(j) PID.

worse. As noted in the preceding section, TO filters were used
in this paper for LSLCD results and the visual performance
was not pleasant. The performance would be even worse if
we select RE filters. In addition, LSLCD does not include
refinement process, which would be helpful to LSLCD results.

The CDDFW is based on two conventional methods [13]
and [17]. Although CDDFW is similar to [17] but CDDFW
performed in the color-difference planes and used more effec-
tive weights. CDDFW classifies region into two, strong edge
and smooth regions, and applies [13] for strong edge region
and applies weighted average for smooth region. However,
decision on strong and smooth edge region is deterministic
which appears unwanted artifacts for wrongly determined
region.

As what CDDFW did, EDAEP also has two steps: initial
interpolation and refinement process. The initial interpolation
is modification of conventional directional interpolation. How-
ever, the main drawback of this method is that the refinement
process is identical to [42], which is outdated and it is only
applied on green pixel values.

The ESF method has three steps: green channel interpo-
lation and its update, and red/blue channel interpolation. In
the second step, ESF identifies the regions where constant
color difference assumption is likely to fail, and applies edge
strength filter to avoid averaging across edge structures. The

(2) (h) ®

Demosaicking results of #3 CMLA image: (a) Original, (b) LSLCD, (c) CDDFW (d) EDAEP, (e) ESF, (f) MSG, (g) GD, (h) VDI, (i) PIDWR and

neighbor of strong edge region neighbor will contribute less
to the update result. However, refinement is performed only
to the interpolated green pixel values in ESF, which causes
red/blue channel artifact.

In MSG, multiscale color gradients were used to adaptively
combine color difference estimates from various directions.
The main contribution of this method is that it does not make
hard decision, and all process is non-iterative. This method is
improved version of ESF and its structure is similar. One of
main differences is that the edge strength filters were replaced
by multiscale color gradients, which were used in initial green
channel interpolation. However, MSG method focused on
green channel interpolation and update, and red/blue channel
reconstruction was restored by 7-by-7 simple filter where
directional information was not considered.

The high resolution image and its low resolution one has
similar property. GD is based on this idea and calculates
reconstruction errors for the possible directions in the low
resolution image and exploits them as a cost term for the
direction. The edge classifier and the weighted sum were
used to restore demosaicking. As the presented filter is dis-
continuous function, GD only uses large filter over smooth
region and uses small filter for edge region. However, GD
does not refine red/blue channel which causes artifacts at edge
region. In addition, as small filter was used for edge region,
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Fig. 13. Demosaicking results of #6 CMLA image: (a) Original, (b) LSLCD, (c) CDDFW, (d) EDAEP, (e) ESF, (f) MSG, (g) GD, (h) VDI, (i) PIDwg, and

(j) PID.
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Fig. 14. Demosaicking results of #15 CMLA image: (a) Original, (b) LSLCD, (c) CDDFW, (d) EDAEP, (e) ESF, (f) MSG, (g) GD, (h) VDI, (i) PIDwg, and

(j) PID.

restored detail images are blurred. Moreover, predetermined
four direction (0°, 45°, 90°, 135°) Sobel filters were used for
directional differentiation of image. These filters were useful
for speed, but two interpolation directions, 45° and 135°, were
considered the same directions during the process which cause
blurred image.

VDI uses color channel correlation to estimate the missing
green component, and then applies local adaptive gradient in-
verse weighted interpolation method to refine and enhance re-
constructed image. To investigate the directions of the missing
color components, VDI uses flags to classify edge direction.
The sum of flags indicates vertical, horizontal, and undefined
directions. VDI works well for both edge and complex regions
because the estimated edge direction is accurate for edge
region and the edge detection is also accurate if the domain
edge exists. However, if domain edge is not determined by
VDI, the edge direction will be omnidirectional.

The PID method uses error predictor calculation, color
difference-based edge classification, and a refinement stage
using a weighted sum strategy. Following green channel re-
finement, the red and blue channels were updated. From the
above objective and subjective evaluations of the proposed
method, it can be concluded that PID has advantages because it
better preserved edge details and created fewer artifacts when
compared with conventional methods. Moreover, the proposed
PID algorithm appears to yield visually more friendly color
images with color artifacts well removed, consistent with the
objective quality measures.

D. Effect of Refinement Process in Various AWGN Condition

In the Section V.C we claimed that the proposed refinement
step is able to improve the final results. To support its
reliability, we show some examples when the refinement step
improves the result and when refinement step is not available.
Figures 15 and 16 show good and bad cases of refinement
process, where original images, PIDyg and PID, and their
corresponding color difference are shown. Figure 15 shows an
example of good case where color difference significantly de-
creased after the refinement process. However, Fig. 16 shows
an opposite case where color difference slightly increased

TABLE X
AVERAGE PERFORMANCE RESULTS FOR CMLA IMAGESET WITH METRICS
OF PSNR (M), S-CIELAB AE* (Ms), AND FSIM (M3)

o | LSLCD | CDDFW | EDAEP | ESF MSG GD VDI | PIDyg PID | Ruz | Rp
0 | 3409 | 37306 | 37425 | 36954 | 37.624 | 37.629 | 37726 | 37272 | 38092 | 7 1
M, |10 [ 27045 [ 27962 | 28169 | 27869 | 28134 | 2824 [ 28138 [ 28177 | 9442 [ 3 1
20 | 22276 | 22778 | 2299 | 22.667 | 22919 | 23018 | 22939 | 23.007 | 24354 | 3 1
30 | 19166 | 19581 | 19797 | 19.454 | 19714 | 19811 | 19743 | 19819 | 2118 2 1
0 | 12758 | 09016 | 08638 | 09735 | 0.8661 | 0.8779 | 0.8068 | 0.9189 | 0.7918 | 7 1
My [0 [ 30454 [ 28261 [ 29827 | 28641 | 27654 | 28102 [ 30006 | 27765 | 28144 [ 2 4
20 | 56094 | 53743 | 57572 | 53767 | 52932 | 53516 | 58251 | 5251 | 54302 | 1 6
30 | 87121 | 83146 | 8902 | 82976 | 8.1693 | 8.2584 | 9.0077 | 8.0861 | 83974 | 1 6
0 | 099422 | 099728 | 0.99728 | 0.99709 | 0.99741 | 0.99743 | 0.99744 | 099729 | 099725 | 4 | 7
My |10 092912 | 09291 [ 092609 | 092894 | 092971 | 092945 [ 092491 [ 0.92975 | 093336 | 2 1
20 | 083509 | 0.83435 | 0.82701 | 0.83353 | 0.83473 | 0.83327 | 0.82531 | 0.83428 | 0.83926 | 5 1
30 | 075545 | 0.75482 | 074505 | 0.75552 | 0.7556 | 075305 | 0.74279 | 0.75507 | 0.75895 | 5 1

Fig. 17. Visual performance comparison of EADEP, GD, PIDywg, and PID for
AWGN added #15 CMLA image: (a) o = 10, (b) o = 20, and (¢) o = 30.

after refinement process. Therefore, it can be concluded that
refinement process mostly raises image quality, but not always.

We also investigated the effect of refinement process along
with different level of AWGN (o = 10,20, 30). Table X
shows average PSNR (M;), S-CIELAB AE* (M), and FSIM
(M3) results for CMLA imageset. It can be observed that PID
always yields the best CPSNR regardless AWGN noise level.
However, in terms of S-CIELAB AFE™*, refinement process
degrades the performance as AWGN noise level increases. On
the other hand, FSIM metric showed opposite results of S-
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Fig. 15. Visual performance comparison on #6 CMLA image for good case with and without refinement process: (a) original, (b) PIDyx and difference with

original, and (c) PID and difference with original.

Fig. 16. Visual performance comparison on #13 CMLA image for good case with and without refinement process: (a) original, (b) PIDwg and difference

with original, and (c) PID and difference with original.

CIELAB AFE*. When AGWN is 0, PID was ranked in 7.
However, as AWGN increases, PID gave the best performance.
Figure 17 shows visual performance comparison for #15
CMLA image.

In addition, we also found that M5 results after refinement
process on noisy images were worse than that of My results
without refinement process. However, refinement process was
helpful for My under noise-free condition. On the other hand,
for M3 metric, refinement process was helpful when CFA
images have noise. However, if the images are noise-free,
it is recommended not to use refinement process. For M;
metric, refinement process was always helpful to raise the
performance.

E. Performance Comparison of Other Types of Methods on
Kodak Dataset

The classic Kodak database is widely used to easily compare
demosaicking methods. We compare three other types of
methods with the proposed one: contour stencil-based demo-
saicking (CSD) [43], adaptive inter-channel correlation-based
demosaicking (AICD) [44], and minimized-Laplacian residual
interpolation (MLRI) [45]. There are many demosaicking ap-
proaches which adapt the interpolation in accord with obtained
edge orientations. However, while the preciseness of edge
orientations is significant, correct orientation is hard to obtain
from the CFA image.

The CSD extends contour stencils to compute image con-
tours based on total variation along curves and to obtain con-
tour orientations directly on CFA images. The color restoration
is achieved as an energy minimization, using a graph regu-
larization adapted according to the orientation estimates. The
energy function regularizes the luminance to suppress zipper
artifacts and at the same time it regularizes the chrominance to
suppress color artifacts. The AICD considers inter-channel cor-
relation and locally selects the best interpolation orientation.
The AICD uses nonlocal image self-similarity in order to de-
crease interpolation artifacts when local geometry is obscure.
The AICD has two steps: a local directional interpolation

4

(d) (e)

Fig. 18. Visual performance comparison on 24" Kodak image: (a) Original,
(b) CSD, (c) AICD, (d) MLRI, and (e) PID.

and a nonlocal filtering based in NL-means process. In the
preceding step, demosaicked image is populated by deciding
a posteriori among a set of local directionally restored images.
In the later step, a patch based algorithm takes advantage
of image similarities to refine the locally restored image.
The MLRI utilizes residual differences, which are differences
between observed and tentatively estimated pixel values. The
temporary estimate is produced by upsampling the observed
pixel values by using the guided filter. The MLRI estimates the
temporary pixel values by minimizing the Laplacian energies
of the residuals.

Figure 18 tests the methods on a 24! Kodak image (cropped
area of roof), where strong color discontinuities and curving
boundaries exist. Most conventional methods produce signifi-
cant yellow and purple color artifacts. Figures 18(b-d) compare
how conventional methods handle texture details with a crop
from the roof image. The texture details and complicated
geometry of the roof pattern make this simulation hard. The
roof image includes a pattern approaching the Nyquist limit
so that restoration critically aliases the red and blue channels.
On the other hand, the PID method shows less aliasing than
the other methods, and performs well for such images with
limited color artifacts.
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TABLE XI
AVERAGE PERFORMANCE RESULTS FOR KODAK IMAGESET WITH METRICS
OF PSNR (M1), S-CIELAB AE* (M2), AND FSIM (M3)

Metric My Ma M;
Method | CSD [ AICD | MLRI | PID | CSD | AICD | MLRI | PID CSD [ AICD | MLRI PID
1 40.574 | 35724 | 36.779 | 39.685 | 0.8984 | 1.3565 | 1.2032 [ 0.9825 | 0.99924 | 0.99716 | 0.99826 | 0.99896
2 40.775 | 39.284 | 40.747 | 41.006 | 0.5931 | 0771 | 0.6615 | 0.6461 | 0.99898 | 0.99742 | 0.99832 | 0.99843
3 42.867 | 42013 | 429 | 42537 | 04926 | 05305 | 0.4706 | 0.4932 [ 099926 | 0.99859 | 0.99927 | 0.99924
4 40.649 | 39.715 | 41.423 | 40702 [ 0.6862 | 0.7457 | 0.6406 | 0.6999 [ 0.99931 | 0.99846 [ 099917 | 0.9992
5 37.597 | 36.503 | 37.624 | 38151 | 13063 | 1.1874 | 1.1107 | 1.0582 | 0.99896 | 0.99829 | 0.99884 | 0.99895
6 39.84 | 37.01 [ 39.084 | 41103 | 08785 | 1.0299 | 0.8347 [ 0.7106 | 099912 | 0.99768 | 0.99891 | 0.9993
7 42.024 | 41432 | 4276 | 42308 | 0.6042 | 0.5942 | 0.5364 | 05675 | 0.99951 | 0.99902 | 0.99951 | 0.99951
3 36.338 | 34.566 | 34.869 | 37.129 | 12599 | 15029 | 1.4597 | 1.1791 | 0.99854 | 0.99727 | 099769 | 0.99851
9 42415 | 41111 | 42298 | 43.236 | 06163 | 0.6653 | 05772 | 0.5459 [ 099928 | 09985 | 09991 [ 0.99931
10 [ 42019 [ 41.027 | 42352 | 42.982 | 0.603 | 0.629 | 05554 | 0.5279 | 0.99927 | 099856 | 0.99919 | 0.99931
11 39.816 | 37.729 | 39.256 | 40.734 | 08338 | 09215 | 0.7695 | 0.6929 [ 0.99909 | 0.99775 | 0.99876 | 0.9991
12 [ 43.946 | 41576 | 43.175 | 43852 | 0.4615 [ 0.5446 | 04794 | 0.4457 | 0.99936 | 099825 [ 0.99913 | 0.99923
13 | 36062 | 32001 | 3312 [ 35814 | 15149 | 2.0829 | 1.8216 | 1.4479 | 0.99869 | 0.99529 | 0.99691 | 0.99839
14 [ 37207 | 3599 | 37.574 | 36585 | 1.0133 | 11591 | 0.9364 | 1.0038 | 0.99892 | 099787 [ 0.9987 | 0.99857
15 39.281 | 38.898 | 39.306 | 39.65 | 0.6464 | 0.6558 | 0.6829 | 0.6737 [ 0.99847 | 0.99751 [ 0.9983 [ 0.99869
16 | 43597 | 4035 | 4279 [ 44.594 | 05795 | 07151 | 0.5628 | 0.4999 | 099946 | 0.99829 | 0.9993 [ 0.99952
17 [ 41168 | 39.482 | 40919 | 42.276 | 0.5859 | 0.6705 | 05713 | 0.4971 | 0.99942 | 0.99861 [ 0.99927 | 0.99943
18 | 36.626 | 35.496 | 36.587 | 37.953 | 1.1669 | 1.2426 | 1.0518 | 0.9991 | 0.99818 | 0.99695 | 0.99785 | 0.99865
19 | 40402 | 3863 [ 39912 [ 41.794 | 08186 | 0919 | 0.7853 [ 0.6862 | 099928 | 0.99818 | 0.99899 | 0.9993
20 | 41235 [ 39816 | 4065 | 41.726 | 05758 | 0.6141 | 0.675 [ 0.5199 | 099914 [ 0.99849 | 0.99909 | 0.99918
21 39.996 | 37.017 | 38.141 | 40.017 | 09251 | 1.0651 | 0962 | 0.8402 | 0.99892 | 09974 | 0.99841 | 0.99883
22 | 37953 [ 36922 | 38.568 | 38.668 | 1.08 | L1515 | 0.914 | 09726 | 099841 | 099717 | 0.99846 | 0.99843
23 42.607 | 41.817 | 43.706 | 42737 | 05382 | 0.5752 | 0.4709 | 05334 | 0.99934 | 0.99891 | 0.99936 | 0.99924
24 | 34409 [ 33432 | 34709 | 35.802 | 12765 | 1321 | 1.143 [ 0.9895 | 099725 | 0.99562 | 0.99731 | 0.99788
Avg. | 39979 [ 38235 [ 39.552 | 40.46 | 0.8315 | 0.9438 | 0.8282 | 0.7589 | 0.99897 | 0.9978 | 0.99867 | 0.99896

Table XI shows the PSNR, S-CIELAB AFE*, and FSIM
results over the Kodak dataset. The bold-italic entries indicate
either the highest CPSNR or FSIM, or the smallest S-CIELAB
in each row. The table shows that while the proposed method
is relatively weak on FSIM (CSD is the best for this metric), it
has the best performance on the PSNR and S-CIELAB AE*
metrics.

VI. CONCLUSION

In this paper, a polynomial interpolation-based demosaick-
ing (PID) method was proposed. The proposed method has
three contributions, (1) predictors that consider error, (2) an
edge classifier based on color differences, and (3) a refinement
scheme using a weighted sum strategy. This method generates
directional predictors based on the polynomial interpolation
and combines them according to the proposed edge classifier
that uses the color difference model. After interpolating three
color channels, the proposed refinement was applied to en-
hance the demosaicked image quality and reduce demosaick-
ing artifacts, such as false color.

Although we used three training sets with different char-
acteristics, determined threshold parameter 7 was not very
different (7 = 1.8,1.9, and 2.0 for LC, Zahra, and Stanford
dataset, respectively). McM and CMLA datasets were used
as test datasets. Simulation results confirmed that our method
outperforms the tested existing demosaicking methods in terms
of objective (CPSNR and S-CIELAB AFE*) and subjective
performance. For FSIM metric comparison, the proposed
method was not able to provide the best performance for
CMLA dataset, while it gives the best performance for McM
dataset. We also compare other type of demosaicking methods
on widely used Kodak database.

Further work is underway to better deal with FSIM perfor-
mance on CMLA dataset. In addition, we also will investigate
the reason why PID gives 4.327 dB worse CPSNR perfor-
mance than reference method MSG.
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