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Joint Facial Action Unit Detection and Feature
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Abstract— Automated analysis of facial expressions can benefit
many domains, from marketing to clinical diagnosis of neurode-
velopmental disorders. Facial expressions are typically encoded
as a combination of facial muscle activations, i.e., action units.
Depending on context, these action units co-occur in specific
patterns, and rarely in isolation. Yet, most existing methods
for automatic action unit detection fail to exploit dependencies
among them, and the corresponding facial features. To address
this, we propose a novel multi-conditional latent variable model
for simultaneous fusion of facial features and joint action unit
detection. In particular, the proposed model performs feature
fusion in a generative fashion via a low-dimensional shared
subspace, while simultaneously performing action unit detection
using a discriminative classification approach. We show that by
combining the merits of both approaches, the proposed methodol-
ogy outperforms existing purely discriminative/generative meth-
ods for the target task. To reduce the number of parameters,
and avoid overfitting, a novel Bayesian learning approach based
on Monte Carlo sampling is proposed, to integrate out the
shared subspace. We validate the proposed method on posed
and spontaneous data from three publicly available data sets
(CK+, DISFA, and Shoulder-pain), and show that both feature
fusion and joint learning of action units leads to improved
performance compared with the state-of-the-art methods for the
task.

Index Terms— Multiple action unit detection, multi-conditional
learning, multi-label, Gaussian processes.

I. INTRODUCTION

FACIAL expression is one of the most powerful channels
of non-verbal communication [1]. It conveys emotions,

provides clues about people’s personality and intentions,
reveals the state of pain, weakness or hesitation, among others.
Automatic analysis of facial expressions has attracted signif-
icant research attention over the past decade, due to its wide
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importance in various domains such as medicine, security and
psychology [2]. The facial action coding system (FACS) [3]
is the most comprehensive anatomically-based system for
describing facial expressions in terms of non-overlapping,
visually detectable facial muscle activations, named action
units (AUs). FACS defines 32 unique AUs, several categories
of head/eye positions and other movements, which can be
used to describe every possible facial expression. Automatic
detection of AUs is a challenging task mainly due to the
complexity and subtlety of human facial behavior, but also due
to individual differences variations in head-pose, illumination,
occlusions, etc [2]. In computer vision, these sources of
variation in facial expression data are typically accounted for
at (i) the feature level, by deriving facial features that are
robust to the aforementioned variations, and/or (ii) the model
level, by capturing temporal dynamics of AUs (e.g., changes
in AU intensity over time) and semantics of AUs, i.e., their co-
occurrences, as commonly encountered in spontaneous data.

At the feature level, detection of AUs can be performed
using either geometric or appearance features, or both [2]. The
geometric features capture changes in the location of specific
salient facial points caused by activity of facial muscles
(e.g., the displacement of the facial points between expres-
sive and expressionless faces [4]). On the other hand, the
appearance-based features capture transient differences in
the facial appearance such as wrinkles, bulges and furrows.
While the former are more robust to illumination and pose
changes, not all AUs can be detected solely from the geo-
metric features [5]. For example, the activation of AU6
wrinkles the skin around the outer corners of the eyes and
raises the cheeks, which makes it difficult, if not impossi-
ble, to detect this AU from facial landmarks only. On the
other hand, appearance-based features are typically high-
dimensional and contain subject-specific information, both of
which can adversely affect the classification/detection per-
formance. Therefore, using both geometric and appearance
features might be the best choice, letting the model to choose
the most relevant features for detection of target AUs. Thus,
our goal is to achieve an effective fusion of these two types
of features while still keeping the model computationally
tractable.

AUs rarely appear in isolation (more than 7,000 AU com-
binations have been observed in everyday life [6]). For this
reason, the AU detection can be improved at the model
level by exploiting the ‘semantics’ of AUs, in terms of their
co-occurrences. These co-occurrences are usually driven by

1057-7149 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



5728 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 25, NO. 12, DECEMBER 2016

Fig. 1. The proposed MC-LVM. The geometrical and appearance input features, y(1) and y(2), are first projected onto the shared manifold X . The fusion
is attained via GP conditionals, p( y(1)|x) and p( y(2)|x), that generate the inputs. Classification is performed on the manifold via simultaneously learned
logistic functions p(z(c)|x) for multiple AU detection. The subspace is regularized using constraints imposed on both latent positions and output classifiers,
encoding local and global dependencies among the AUs.

the context in which the target facial behavior occurs (e.g.,
pain or joy). Encoding this type of information during the
joint AU prediction helps to reduce the space of possible AU
combinations in target data, resulting in simpler and more
effective models for the joint prediction. Also, the co-occurring
AUs can be non-additive, in the case of which one AU masks
another, or a new and distinct set of appearances is created [3].
For instance, AU4 (brow lowerer) appears differently depend-
ing on whether it occurs alone or in combination with AU1
(inner brow raise). When AU4 occurs alone, the brows are
drawn together and lowered. In AU1+4, the brows are drawn
together but are raised due to the action of AU1. This, in turn,
significantly affects the appearance features of the target AUs.
Moreover, some AUs are often activated together due to the
latent variables such as emotions (e.g., AU12 and AU6 in the
case of joy).

Despite all this, most of the existing approaches to
AU detection model each AU independently, using either a
single type of facial features [7], [8], or combining multiple
features by means of naive approach (i.e., simple feature
concatenation) [4], [9] or multiple-kernel learning (MKL) [10].
Furthermore, some methods treat different combinations of
AUs as new independent classes [11]; however, this is imprac-
tical given the number of possible AU combinations. On the
other hand, methods that do attempt to model the AU co-
occurrences (e.g., [12]–[14]) fail to exploit different types
of facial features in their models. To our knowledge, the
only methods that attempt both are [15]–[17]. However, these
methods either suffer from the curse of dimensionality as they
perform feature fusion by concatenation of geometric- and
appearance-based features using parametric models [15], [16],
or cannot model more than a few AUs jointly due to
the computational burden of their (non-parametric) inference
methods [17].

To this end, we propose a Multi-conditional Latent Variable
Model (MC-LVM) that performs simultaneously the fusion of
different facial features and joint detection of AUs. Instead
of performing the AU detection in the original feature space,
as done in existing works [15]–[17], the MC-LVM attains
the feature fusion via a low-dimensional subspace shared
across feature sets. This subspace is learned by employing
the framework of shared Gaussian processes (GPs) [18].
Here, the learning is constrained by two types of newly

introduced constraints. Topological constraints encode local
dependencies (from image pairs) among multiple AUs by
means of string kernels [19]. Relational constraints, enforce
the co-occurrences of the model predictions to match those of
the target labels. The learning of the subspace is performed
jointly with the AU detectors. The latter are modeled via
multiple logistic regressors which operate on the shared sub-
space of the fused features. Note that, in contrast to existing
multi-output subspace learning methods (e.g., [20], [21]), the
MC-LVM learns a subspace for multiple AU detection that
combines both the generative and discriminative properties
of probabilistic models, while simultaneously modeling the
AU correlations at both feature level (via the proposed fusion
approach) and model level (via the introduced regularizers).
Due to its multi-conditional likelihood function, the proposed
model is less susceptible to overfitting compared to purely
discriminative models. Its generative part acts as an efficient
regularizer during parameter learning. The proposed multi-
conditional learning is motivated by the fact that discriminative
learning usually yields better results when provided with
sufficient training data, as it does not expend its modeling
power on the marginal distribution of the features, as done
in its generative counterparts. On the other hand, genera-
tive models, if specified well, can generalize better with
fewer training data [22]. Thus, leveraging the advantages of
the two approaches during the model learning process is
expected to lead to better generalization performance. To fur-
ther improve the robustness and efficiency of the parameter
estimation, a Bayesian learning of the data subspace is facil-
itated through Monte Carlo sampling, and an Expectation-
Maximization (EM)-like learning approach. During inference,
the simultaneous detection of multiple AUs is performed by
applying the learned back-mappings from inputs to the shared
subspace, where the detection of target AUs is performed con-
sequently. The outline of the proposed approach is illustrated
in Fig. 1.

To summarize, the contributions of the proposed work are:
• To the best of our knowledge, this is the first approach

for multiple AU recognition that jointly performs facial
feature fusion and AU detection simultaneously, via mani-
fold learning. The proposed MC-LVM is derived in a fully
Bayesian multi-conditional formulation, and combines
the properties of both generative and discriminative model
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by merging the framework of shared GPs with logistic
classifiers.

• We introduce novel topological and relational constraints
that successfully encode the AU dependencies at both fea-
ture and model level into the proposed manifold learning
for joint AU detection. We show that such constraints play
an important role in increasing the discriminative power
of the learned manifold, resulting in improved (average)
detection performance.

• We demonstrate on three publicly-available datasets that
the proposed approach outperforms the state-of-the-art
methods for joint AU detection, and several recently
proposed methods for feature fusion and multi-label
classification.

Note that a preliminary version of this work appeared
in [23]. Herein, we extensively evaluate the model’s perfor-
mance under various settings, in order to extend and conclude
the analysis performed in [23]. Specifically, in our experiments
are now included: 1) A thorough assessment of the contri-
bution of the weighted multi-conditional formulation to the
detection of each AU. 2) An evaluation of the generalization
ability of the proposed model on two cross-dataset scenarios.
3) Additional experimental results based on extra evaluation
metrics for our comparisons to existing state-of-the-art.

The remainder of the paper is organized as follows. Sec. II
gives an overview of existing work on AU detection and
related models for the target task. In Sec. III, we introduce
the proposed MC-LVM. Sec. IV shows the results of the
experimental evaluation, and Sec. V concludes the paper.

II. RELATED WORK

A. Multiple Facial AU Detection

The majority of the existing works attempt to
recognize AUs or certain AU combinations independently [4],
[5], [7]–[9], [11], [24], [25]. A common limitation of these
methods is that they construct independent AU classifiers
that ignore the relations among the AUs. Based on how the
AU-specific classifiers are designed, they can be divided into
two main categories: (a) static modeling approaches, where
each frame is evaluated independently [4], [7]–[9], [11],
and (b) temporal modeling approaches, where temporal
dynamics are explored within a video sequence [5],
[24], [26]. Representatives of the first group commonly
apply independent classifiers, e.g., support vector
machine (SVM) [4], [9], and Adaboost [7] on the collected
features, or use the notion of domain adaptation to develop
personalized AU-classifiers [8]. Alternatively, in [11] sparse
representations are employed to create a dictionary of facial
images with certain AU combinations. In the second group,
the majority of the works are based on variants of dynamic
Bayesian networks (DBN). Reference [5] combines SVM
and hidden Markov models (HMM) to encode the AUs
and their temporal activations, while the authors in [24]
use a combination of GentleBoost and HMM for the target
task. More recently, the authors in [26] account for the
ordinal information in the framework of conditional random
field (CRF), to model the relations between the temporal
segments of each AU. Regardless of the modeling technique,

none of the above methods takes into account the relations
among the AUs.

To the best of our knowledge, there are only few works
that perform joint detection of AUs [12], [13], [15]–[17], [27].
Reference [12] proposed a generative framework based on
DBNs to model the semantics of different AUs. Due to
the Markov assumptions while learning the network of the
co-occurred AUs, this model can handle only local depen-
dencies between pairs of AUs. The authors in [27] propose a
generative latent tree algorithm for AU intensity estimation.
The dependencies among observed features and multiple AUs
are modeled via latent variables. Nevertheless, [12] and [27]
lack the classification power of the discriminative models.
On the other hand, the models in [13] and [15]–[17] are
defined in a fully discriminative framework. Specifically,
[16] first learns the logistic classifiers for multiple AUs using
the notion of multi-task feature learning, and then uses a pre-
trained BN to refine the predictions. Note that this model fails
to account for AU dependencies at the feature level, which can
result in loss of information, e.g., in case of non-additive AUs.
Reference [14] tries to learn independent logistic classifiers by
first selecting a sparse subset of facial patches which are more
relevant to each AU. Yet, the fusion task is not addressed,
while the AU-dependencies are regarded only between prede-
fined pairs. Reference [15] employed the restricted Boltzmann
machine (RBM) to overcome the pair-wise AU modeling
limitation of the DBN [12]. The authors proposed a parametric
model, in which discrete latent variables account for correla-
tions among discrete outputs that are directly connected to the
image features. Since the latent variables are not connected to
the feature space, they cannot model correlations between the
inputs, hence, concatenation of the input features is used for
the fusion task. Reference [17] combines multi-task learning
with MKL to jointly learn different AU classifiers. The authors
introduce l p-norm regularization to the MKL, in order to fuse
multiple types of features with different kernels, and account
for dependencies among different tasks (i.e., AUs). However,
this non-parametric method can deal only with small subsets
of AUs (typically less than 4) in its output. Reference [13]
proposed a probabilistic framework, based on Bayesian com-
pressed sensing (BCS), to encode the co-occurrence structure
and the (group) sparsity patterns of the AUs to the compressed
signal (latent variables). The relations between the original
data and the latent variables are modeled via linear regression,
where the inputs are the appearance based features. Hence, this
work cannot deal with fusion of different input features.

The proposed approach advances the existing work in many
aspects. The fusion of the facial features is performed in a
continuous (low-dimensional) subspace, allowing the model
to capture dependencies among multiple AUs at both feature
and model level during learning. Contrary to the methods men-
tioned above, which are purely generative or discriminative,
the proposed MC-LVM takes the best of both approaches and
successfully combines them in its multi-conditional likelihood
function. Note that the the proposed MC-LVM is closely
related to the MKL model in [17], which performs the
feature fusion implicitly via the kernel-induced space, while
MC-LVM does it explicitly via the fixed point estimate of the
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shared low-dimensional latent projections. Yet, the complexity
of the model in [17] increases quadratically with the number
of AUs in the output, while it increases only linearly in case
of MC-LVM. Consequently, MC-LVM can efficiently model
relations among a relatively large number of outputs, without
the requirement to a priori define groups of AUs as done
in [14] and [17].

B. Multi-Modal Fusion

The analysis of multi-modal streams of data has attracted
significant research attention in the fields of computer vision
and especially the facial behavior analysis. Reference [28]
provides an extensive overview on how vocal, gestural and
facial features extracted from both audio and visual modalities
can be used to identify particular human behaviors. As we have
already seen, the most evident way towards feature fusion is
to concatenate the individual modalities and apply a single
classifier for the target task [4], [9]. An orthogonal approach
is to first train individual classifiers per modality and then
fuse the predictions, e.g., by feeding their outputs in another
classifier as in [29]. Alternatively, fusion can be performed via
employing the framework of MKL, which aims to integrate
the information from different features by learning a weighted
combination of respective kernels. A detailed survey of the
MKL-related methods can be found in [30]. Another possible
direction toward feature fusion is to exploit the notion of joint
sparse representations or learn multi-modal dictionaries based
on joint sparsity constraints. Based on these techniques, the
authors in [31] and [32] managed to fuse the information
from various biometrics in order to perform more accurate face
verification. A similar approach is to perform joint dimension-
ality reduction and project the multiple features on a common
subspace. For instance, in [33] and [34] facial images from
various channels (e.g., infrared images and forensic sketches)
are commonly projected to the space obtained by PCA, before
applying a classifier for face recognition. Likewise, the authors
in [35] employed the canonical correlation analysis (CCA) in
order to fuse the information from fMRI, sMRI and EEG data,
for detecting patients diagnosed with schizophrenia.

In the current work we follow the approach of joint dimen-
sionality reduction in order to fuse the information from the
geometric and appearance features. In contrast to the methods
described above, MC-LVM employs the framework of shared
GP latent variable models (S-GPLVM) [18] to unravel a shared
non-linear manifold that generates the input features. This
results in a more natural fusion, since the latent representations
are learned in a way to to generate the multiple modalities.
The generative process of MC-LVM is utilized via a non-
parametric probabilistic mapping from the latent space to
the observed features. This property constitutes the proposed
approach less prone to overfitting. Finally, MC-LVM, as an
inherent kernel method, can effectively deal with input features
of higher dimensionality and more complex structure.

C. Multi-Label Classification

The proposed MC-LVM is related to existing works on
multi-label classification that attempt to learn robust classi-
fiers by exploiting efficiently the label dependencies. For an

extensive overview, the reader is referred to [36] and [37].
For instance, [38] extended the k-nearest neighbor (kNN)
to the multi-label scenario by using the number of neigh-
boring instances belonging to each possible class, as prior
information to determine the label set for an unseen
instance. Reference [39] derived the back-propagation algo-
rithm of the neural networks for the multi-label classification.
Reference [40] proposed an approximate learning approach in
order to extended the work of structured SVM [41] to multi-
label classification. The latter is also highly related to multi-
task learning techniques. The latter rely on the introduction of
an inductive bias on the joint space of all tasks (e.g., AUs)
that reflects our prior beliefs regarding the related structure.
A popular approach is to jointly learn the tasks under a
regularization framework [42]. The regularization operates
on the parameter space and penalizes distances between the
different tasks, which results in uncovering a common set
of parameters across the tasks. Hence, it allows to capture
the similarities among the outputs through parameter sharing.
Based on this idea, [21] introduced a manifold regularization
approach to the multi-task learning. The key assumption is
that the task parameters lie on a low dimensional manifold, and
thus, they cannot vary arbitrarily. Instead of explicitly learning
the manifold, the authors model the projection functions in a
parametric formulation, and alternate between solving for the
task parameters and minimizing their distances in the projected
manifold. Similarly, [20] defines a latent variable model,
which generates the task specific parameters in a probabilistic
fashion. Due to its probabilistic formulation, several priors can
be imposed on the latent variables to induce a desired structure
to the task specific manifold.

The above methods rely on implicit assumptions that all
tasks are related to each other. Contrary to this belief, [43] aims
to uncover a structured pattern among the tasks, and com-
bine them into different groups. Each task parameters are
assumed to be a sparse, linear combination of underlying
latent basic tasks. The overlap in the sparsity patterns of any
two tasks controls the amount of sharing between them. In a
similar fashion, [44] introduced the use of multi-output GP,
for modeling task dependent regressors (latent functions) via
GP priors. The output of each task is a weighted combination
of a number of shared latent functions, which enables the
collaboration among the tasks, plus an individual task-specific
latent function. In order to deal efficiently with the problem
of large number of output tasks and input data points, the
authors derived a formulation based on variational inference.
Following a different approach, [45] used the notion of spectral
graph regularization to jointly learn clusters of closely related
tasks. Relationships between the tasks are defined in terms of
the graph Laplacian, which favors similar tasks to be close
in the parameter space. The authors proposed an alternating
optimization algorithm based on proximity operators, in order
to jointly learn the tasks and the graph. While applicable to
the task of multiple AU detection, these methods do not per-
form simultaneous feature fusion and multi-label classification.
By contrast, the proposed MC-LVM can be seen as a multi-
task learning approach, where the relations of different tasks
(i.e., AUs) are learned directly in the shared subspace, by
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implicitly relating them through their feature and label depen-
dencies. The latter are encoded by the local and global priors
proposed in our model.

More recent works in the GP and multi-label classification
context [46], [47] try to combine multi-task learning and
feature fusion via subspace learning. Reference [46] jointly
optimizes latent variables in order to reconstruct the input
data, and account for multiple tasks in the output. A downside
of this method is that latent space learning is done by the
maximum likelihood (ML) strategy, i.e., the latent space is
directly optimized during learning. In the case of large amount
of data, this can easily lead to overfitting [48]. To ameliorate
this, [47] proposed a fully Bayesian framework, based on
variational inference, to integrate out the latent space.

In contrast to these methods, MC-LVM employs multi-
conditional learning strategies to re-weight the generative and
discriminative conditionals, in order to unravel a suitable
subspace for joint feature fusion and multi-label classification.
In our Bayesian approach, the latent space is approximated
via an efficient Monte Carlo sampling, where the conditional
models determine the importance of each sample. Moreover,
the inference step is efficiently performed via the learned pro-
jection mappings to the manifold. This overcomes the require-
ment of [47] to learn another approximation to the posterior
of the test inputs. Finally, note that none of these approaches
have been evaluated in the task of multiple AU detection.

III. MULTI-CONDITIONAL LATENT VARIABLE MODEL

A. Notation and Preliminaries

Let us denote the training set as D = {Y , Z}, which is
comprised of V observed input channels Y = {Y (v)}V

v=1,
and the associated output labels Z. Each observed channel is
comprised of N i.i.d. multivariate samples Y (v) = { y(v)

i }N
i=1,

where y(v)
i ∈ R

Dv denote corresponding facial features.
Furthermore, Z = {zi }N

i=1 denote multiple binary labels, with
zi ∈ {−1,+1}C encoding C (co-occurring) outputs. Let us
further assume the existence of a latent space X = {xi }N

i=1,
where xi ∈ Rq , q � Dv , which is a low-dimensional
representation of the original observations Y . This implies that
there exists a set of latent functions f (v), that can generate
y(v)

i from xi , i.e., y(v)
i = f (v)(xi ) + ε, where ε ∼ N (0, σ 2

v I)
is additive Gaussian noise. In the proposed approach we
model these functions using the framework of GPs [19]. For
notation simplicity, we set the number of input spaces to
V = 2, as generalization to more than two input spaces is
straightforward. The model outline is depicted in Fig. 2.

B. Model Definition

Our goal is to learn a model that simultaneously combines
different inputs and detects activations of multiple outputs.
To this end, we are interested in finding the latent repre-
sentations x, that jointly generate y and z. In a Bayesian
approach, this requires the computation of the joint marginal
likelihood:

p(y, z) =
∫

p(y(1)|x)p(y(2)|x)p(z|x)p(x)d x, (1)

Fig. 2. Graphical representation of the proposed MC-LVM. The definition
of the conditionals is given in Sec. III-C.

where we exploited the property of conditional independence,
i.e., { y(1), y(2), z} are independent given the latent variable x.
Note that in order to compute the above integral, we need
to marginalize out x. However, for the non-linear conditional
models, which we detail in Section III-C, the integral in Eq. (1)
is intractable. To overcome this, we numerically approximate
the marginal likelihood using Monte Carlo sampling [49]

p(y, z) ≈ 1

S

S∑
s=1

p(y(1)|xs)p(y(2)|xs)p(z|xs). (2)

The samples xs , s = 1, . . . , S are drawn from p(x), which
is defined in Sec. III-C. Using the Bayes’ rule, we can derive
the posterior over the latent variable

p(x| y(1), y(2), z) = p(z|x)p(y(1), y(2)|x)p(x)
1
S

∑S
s=1 p(y(1), y(2)|xs)p(z|xs)

. (3)

We then calculate the above probability for all pairs of
training data i and Monte Carlo latent samples s, to obtain
the membership probabilities p(s, i) = p(xs | y(1)

i , y(2)
i , zi ).

Hence, p(s, i) denotes the posterior probability of acquiring

the sample xs , having observed the inputs y(1)
i , y(2)

i and
outputs zi . This gives rise to the expectation of the latent points
under the sampling distribution:

xi = E{x| y(1)
i , y(2)

i , zi } =
S∑

s=1

p(s, i)xs , (4)

which allows us to obtain the point estimates of the shared
latent positions without explicitly optimizing them for each
training pair. In this way, not only we end up with a proba-
bilistic estimation of the latent space, but we also considerably
reduce the number of model parameters.

C. Conditional Models

From Eq. (1), we see that the marginal likelihood of the
desired model is composed of the conditional probabilities
p(y(v)|x) and p(z|x), while it also depends on the sampling
distribution p(x). Hence, the correct choice of these distri-
butions affects critically the representational capacity of the
shared subspace, and thus, the model’s performance. Effec-
tively, this requires the learning of the conditional models that
provide: (i) generative mappings from the latent space to the
inputs (x → y(v), v = 1, 2); (ii) projection mappings from the
inputs to latent space ( y(v) → x); (iii) discriminative mappings
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from latent space to multiple binary outputs (x → z), as
depicted in Fig. 2.

1) Generative Mappings: Different probabilistic models
such as Gaussian models [50] or naive Bayes models [51]
can be employed to recover the generative mappings. Yet,
parametric models are limited in their ability to recover non-
linear mappings from the latent space to high-dimensional
input features. To this end, we place GP priors on the functions
that generate the observed features. This gives rise to the
likelihood:

p(Y (v)|X, θ (v))

= 1√
(2π)N Dv |K (v)

Y + σ 2
v I |Dv

× exp

[
−1

2
tr

(
(K (v)

Y + σ 2
v I)−1Y (v)Y (v)T

)]
, (5)

where K (v)
Y is a N × N kernel matrix, obtained by applying

the covariance function k(x, x ′) to the elements of X , and it is
shared across the dimensions of Y (v). The covariance function
is usually chosen as the sum of the radial basis function (RBF)
kernel, bias and noise terms

k(v)(x, x′) = θ
(v)
1 exp(−θ

(v)
2

2
‖x − x′‖2) + θ

(v)
3 + δx,x′

θ
(v)
4

, (6)

where δx,x′ is the Kronecker delta function, and θ (v) =
{θ(v)

1 , θ
(v)
2 , θ

(v)
3 , θ

(v)
4 } are the kernel hyperparameters. The

parameter learning in GPs is performed by gradient-based
minimization of −logp(Y (v)|X, θ (v)) w.r.t. θ (v) [19]. Then,
the predictive probability of the GP for a new x∗ is given by

p(y(v)∗ |x∗, X, Y (v)) = N (μy(v)∗
, σ 2

y(v)∗
), (7)

with μy(v)∗
and σ 2

y(v)∗
as:

μy(v)∗
= k(v)∗

T
(K (v)

Y + σ 2
v I)−1Y (v) (8)

σ 2
y(v)∗

= k(v)∗∗ − k(v)∗
T
(K (v)

Y + σ 2
v I)−1k(v)∗ + σ 2

v . (9)

The kernel values k(v)∗ and k(v)∗∗ are computed by applying
Eq. (6) to the pairs (X, x∗) and (x∗, x∗), respectively, and
σ 2

v is the noise of the process. Hence, the conditional model
p(y(v)|x), v = 1, 2, in Eq. (3) is now fully defined by the
Gaussian distribution in Eq. (7), where the latent sample xs

acts as the new latent position x∗.
2) Projection Mappings and Sampling: To model the sam-

pling distribution p(x), the simplest choice is to assume a
spherical Gaussian prior over the latent points x. However,
such an uninformative prior would give rise to latent rep-
resentations that cannot effectively exploit the structure of
input data. To this end, we define a sampling distribution that
constraints the samples xs by conditioning them on the inputs,
i.e., p̃(x) = p(x|y(1), y(2)). This is motivated by the notion of
back-constraints in GP latent variable model (GPLVM) [52],
where this type of conditional distribution is used to learn
the mappings from the input to the latent space. We learn
the conditional model for p̃(x) using GPs, as done for

the generative mappings. The use of GPs in the projection
mappings, apart from modeling the sampling distribution, also
allows us to easily combine multiple features within its kernel
matrix as K X = K (1)

X + K (2)
X , corresponding to the sum of the

kernel functions defined on y(1) and y(2), respectively. Hence,
the resulting kernel is responsible for effectively performing
the non-linear fusion of the input features into a single latent
point. It can be regarded as an automatic MKL approach with
non-parametric GP regression functions. Finally, the resulting
conditional model p(x∗| y(1)∗ , y(2)∗ ) has the form of Eq. (7)
(with the relations between y(v) and x being reverted), and
since it is a low-dimensional Gaussian distribution, sampling
from it can be performed efficiently.

3) Discriminative Mappings: Since we are interested in
binary detection of activations of multiple AUs, we use the
conditional models based on the logistic regression [19] to
model p(z|x). By assuming conditional independence given
the latent positions x, we can factorize this conditional as:

p(z|x, W) = p(z(1)|x,w1) . . . p(z(C)|x,wC), (10)

p(z(c)|x,wc) = (1 + e−xT wcz(c)
)−1, c = 1, . . . , C, (11)

where W = [w1, . . . ,wC ] ∈ Rq×C contains the weight
vectors of the individual functions. During inference, if
p(z(c)∗ |x∗) > 0.5, the c-th output is active, i.e., z(c)∗ = 1.

D. Output Constraints

Due to the potentially large number of outputs, the topology
of the latent space needs to be constrained to avoid the model
focusing on unimportant variation in the data (e.g., modeling
relations between rarely co-occurring outputs). Furthermore,
we need to encourage the model to produce similar predictions
for outputs that are more likely to co-occur (e.g., AU6+12),
and competing predictions for those that rarely co-occur
(e.g., AU12 and AU17). We describe below how we construct
target constraints based on the output relations, and how these
are incorporated into the MC-LVM framework.1

1) Topological Constraints: Herein, we define the con-
straints that encode co-occurrences of the output labels using
the notion of graph regularization [53]. We construct an
undirected graph G = (V, E) where V = {V1, V2, . . . , VN }
is the node set, with node Vi corresponding to latent
positions xi , and E = {(Vi , Vj )i, j=1...N |i 
= j, xi and
x j have co-activated outputs} is the edge set. By pairing each
node with the latent variables, we obtain a Gaussian Markov
random field [54] w.r.t. graph G. Next, we need to associate
each edge in the graph with a weight. For this purpose we
encode the relations between the data into an N × N weight
matrix S. The latter is defined in a supervised fashion by
measuring the similarity between the output label vectors using
the notion of string kernels [19] as:

S(x, x ′) =
∑
l∈A

zT
l,x zl,x ′ , (12)

where A is the set of all possible 2C combination of the output
labels and l is the set of possible sub-labels of tuples, triples,

1For the mathematical analysis of this subsection, the negative class in the
output labels z will be denoted with 0 instead of the used −1.
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etc. zl,x denotes the specific sub-label of x and holds the
currently active ‘sub-string’ l of the actual labels. Hence, Si j

contains the number of co-activated outputs in all sub-labels
between two instances. Note that contrary to [14], we measure
the similarity of the outputs based on all possible groups of
co-occurring AUs, and not only on pairs of AUs. The graph
Laplacian matrix is then defined as L = D − S, where D is
a diagonal matrix with Dii = ∑

j Si j . Finally, using Eq. (4),
we arrive at the Laplacian regularization term

C = tr(XT LX) =
N∑
i, j

S∑
s=1

S∑
t=1

Li j p(s, i)p(t, j)xT
s xt . (13)

Eq. (13) incurs higher penalty if latent projections of co-
occurring AUs are distant in the manifold. Thus, projections
with strongly related AUs are placed close to each other.

2) Global Relational Constraints: In order for the MC-LVM
to fully benefit from the above topological constraint, it is
important to ensure that the model produces similar predictions
for frequently co-occurring AUs. Therefore, we introduce the
global relational constraints as:

R = ‖PT
z P z − ZT Z‖2

F , (14)

where P z = [p(z1|x1), . . . , p(zN |xN )]T are the predictions
from Eq. (11) for each xi , and Z is the true label set. Thus,
Eq. (14), incurs a high penalty if correlated outputs have
dissimilar predictions. In this way, the co-occurrence matrix of
the predictions is forced to be similar to that of the true labels,
and hence, the discriminative power of the output detectors is
increased.

E. Learning and Inference

The objective function of our model is the sum of the com-
plete data log-likelihood of the (weighted) joint distribution in
Eq. (2) penalized by the constraints in Eq. (13,14)

L(�) =
N∑

i=1

log
S∑

s=1

p(y(1), y(2)|xs)︸ ︷︷ ︸
pg,i

1−α
p(z|xs)︸ ︷︷ ︸

pd,i

α

− λCC − λR R, (15)

where � = {θ (v), W}. Note that in contrast to the standard ML
optimization, we set the parameter α ∈ [0, 1] to find an optimal
balance between the generative (pg,i ) and discriminative (pd,i )
components of our MC-LVM. The generative component has
the key role in unraveling the latent space of the fused features,
while the discriminative component regularizes the manifold
by using the labels’ structure information. Large α values give
rise to models that depend more on the labels to define the
decision boundaries for the detection, while for small α the
model expends more effort on capturing the variations in
the features (e.g., due to various sources of noise in data
such as head-pose variation in spontaneous data). By finding
optimal α via a cross-validation procedure, as explained in
Sec. IV-C, we allow the model to find a trade-off between the
discriminative and generative part.

Another key difference to the ML approach, is that the
Bayesian optimization requires the computation of the pos-
terior of the latent space. The latter depends on the parame-
ters �, and thus, direct optimizing of the objective in Eq. (15)

w.r.t. � is not possible. Hence, we propose an EM-based
approach for parameter learning. In the E-step, we find the
expectation of the complete-data log-likelihood in Eq. (15)
under the posterior in Eq. (3), which is given by

Q(�,�(old)) =
N∑

i=1

S∑
s=1

p(s, i) log
(

p1−α
g,i pα

d,i

)
, (16)

where the membership probabilities, p(s, i), are computed
with �(old). In the M-step, we find �(new) by optimizing

�(new) = arg max
�

Q(�,�(old)) − λC C − λR R, (17)

w.r.t. � using the conjugate gradient method [19].
The full training of the model is split into two stages,

where in each stage we compute p(x| y(1), y(2)) and
p(y(1), y(2), z|x) in an alternating fashion. Specifically, we
first initialize the latent coordinates X , using a dimensionality
reduction method, e.g., PCA [49], on the concatenation of
the two feature sets. Then, we learn the sampling distribution
p(x| y(1), y(2)) by training a GP on the projection mappings,
as explained in Sec.III-C, and collect S samples from corre-
sponding GP posterior. During the second stage, we employ
the EM algorithm described above to learn the parameters �.
Note that the constraints C and R implicitly depend on the
posterior, which is a function of the current estimate of �,
hence, we need to compute their derivatives w.r.t to �. The
penalized log-likelihood can be optimized jointly [50] or
separately [55] without violating the EM-optimization scheme,
since the updates from the penalty terms do not affect the
computation of the expectation. After the M-step we refine
our original estimate of the latent space X , using Eq. (4).
We iterate between stage 1 and 2 until convergence of the
objective function in Eq. (17).

1) Inference: Inference in the proposed MC-LVM is
straightforward. The test data y(1)∗ , y(2)∗ , are first projected onto
the manifold using Eq. (7). In the second step, the activation
of each output is detected by applying the classifiers from
Eq. (11) to the obtained latent position. The learning and
inference procedure described above is summarized in Alg. 1.

2) Theoretical Analysis: The optimization scheme
described earlier in this section does not have theoretical
guarantees that it increases the penalized complete log-
likelihood after each EM cycle. The reasons behind this are
twofold: (i) Eq. (17) cannot be solved analytically, and thus,
we need to resort to an iterative procedure based on the
conjugate gradient method. Therefore, in each M-step we can
only guarantee that a local optimum of the posterior will be
recovered. (ii) The expectation of the complete log-likelihood
in Eq. (16) is numerically approximated via Monte Carlo
sampling, and thus, as in every stochastic optimization
problem there is no guarantee that the objective function will
strictly increase after each iteration. Hence, it is required to
take cautious steps in order not to derive diverge solutions.
By carefully initializing both the latent coordinates and the
kernel hyper-parameters, and appropriate selection of the
number of samples, S, we can effectively learn a latent space
with correctly recovered data structure. This is illustrated
in Fig. 3, where we can see how the topological constraint
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Fig. 3. Evolution of the learned data structure in KY (1) , through the EM-iterations during the optimization on CK+ dataset. The kernels are sorted in order
to depict the structure of AU12 (bottom right square) compared to other AU activations (upper right square).

Algorithm 1 MC-LVM: Learning and Inference

imposes the structure of AU12 on the manifold, through the
evolution of the iterative EM algorithm. In the initialization
step the latent space can roughly model the structure of the
positive class (AU12). As the EM iterations progress we
see that MC-LVM not only uncovers the structure of AU12
(iteration #5), but it also differentiates it from the structure of
the remaining AUs (iteration #15). Additional experimental
evaluations regarding the convergence of MC-LVM are given
in Sec. IV-C.

3) Complexity: Since MC-LVM is based on the framework
of GPs, each iteration during training (within an EM cycle)
requires O(N3) computations. On the other hand, inference for
a new test sample is far more efficient and can be achieved in
real-time, since the evaluation of the predictive mean requires
O(N) (predictive variance is not required for classifying a new
test point).

F. Relation to Multi-Conditional Models and GPLVM

In the proposed MC-LVM, we employ the GP framework
to derive a latent variable model with a joint distribution given
by Eq. (1). We then introduce a set of conditional distributions
(observed variables given latent positions p(y, z|x), and latent
positions given the observed data p(x| y)) to form the multi-
conditional objective function. The idea of multi-conditional

learning has originally been explored in [50] and [51]. How-
ever, these approaches are based on simple parametric con-
ditional models and can deal with single-input single-output
scenarios only. The proposed MC-LVM is a generalization of
these approaches to multi-input multi-output settings and non-
parametric conditionals modeled via GPs.

Modeling of the aforementioned conditionals in MC-LVM
resembles that in the GPLVMs [56]. Namely, mani-
fold relevance determination (MRD) [47], multi-task latent
GP (MT-LGP) [46] and discriminative shared GP latent vari-
able model (DS-GPLVM) [57], as purely generative methods,
try to model the joint likelihood

p(Y , X) = p(Y |X)p(X). (18)

The learning in these methods consists of maximizing
the (marginal) log-likelihood of the joint given above.
References [46] and [57] directly optimize the latent
variables in a maximum a posterior (MAP) estimation.
Reference [47] maximizes a lower bound of the log-marginal
likelihood, which is obtained through a variational distribution
that approximates the latent space. By contrast, in MC-LVM
we model the distribution of both observed inputs and latent
variables by employing the predictive posterior of the GP. This
results in learning a more robust mapping x → y, and also
allows us to efficiently estimate an instance of the latent space
using the Monte Carlo sampling.

Finally, our proposed sampling distribution is closely related
to the notion of ‘back-constraints’ in the GP literature. Back-
constraints were introduced in [52] as a deterministic, para-
metric mapping that pairs the latent variables of the GPLVM
with the observations. This mapping facilitates a fast inference
mechanism and enforces structure preservation in the mani-
fold. The same mechanism has been used in [46] and [57].
On the contrary, MC-LVM learns probabilistic mappings via
the non-parametric GPs, which can result in latent projections,
that are less prone to overfitting.

IV. EXPERIMENTS

A. Datasets

We evaluate the proposed model on three publicly
available datasets: Extended Cohn-Kanade (CK+) [4],
UNBC-McMaster Shoulder Pain Expression Archive
(Shoulder-pain) [58], and Denver Intensity of Spontaneous
Facial Actions (DISFA) [59]. These are benchmark datasets
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Fig. 4. Example images with activated AUs from CK+ (top), DISFA (middle)
and Shoulder-pain (bottom) datasets.

Fig. 5. The global AU relations (in terms of correlation coefficients) (upper
row), and the distribution of AU activations within the datasets (lower row).

of posed (CK+), and spontaneous (Shoulder-pain, DISFA)
data, containing a large number of FACS coded AUs.

CK+ dataset [4] contains 593 video recordings of
123 subjects displaying posed facial expressions in near frontal
views. The image sequences begin from neutral and proceed
to the target expression. The last frame (peak frame) is
annotated in terms of AU activations (presence/absence). For
our experiments, we used the peak frames of all available
subjects.

The Shoulder-pain dataset [58] contains video recordings
of 25 patients suffering from chronic shoulder pain while
performing a range of arm motion tests. Each frame is coded
in terms of AU intensity on a six-point ordinal scale.

DISFA dataset [59] contains video recordings of
27 subjects while watching YouTube videos. Again, each
frame is coded in terms of the AU intensity on a six-point
ordinal scale.

For both DISFA and Shoulder-pain datasets, we treated each
AU with intensity larger than zero as active. Sample images
from the three datasets, along with examples of AUs present,
are shown in Fig. 4. Fig. 5 depicts the AU relations, and the
distribution of the AU activations for the data used from each
dataset. Note that the co-occurrence patterns and the relations
among the AUs differ significantly across all three datasets.

TABLE I

DEFINITIONS OF THE USED AUs FROM CK+, DISFA,
AND SHOULDER-PAIN DATASETS

B. Experimental Settings

1) Features: In each frame of an input sequence 49 fiducial
facial points were extracted using the 2D Active Appearance
Model [60]. Based on these points, we registered the images
to a reference face (average face for each dataset) using an
affine transformation. As input to our model, we used both
geometric features, i.e., the registered facial points (feature
set I), and appearance features, i.e., local binary patterns (LBP)
histograms [61] (feature set II) extracted around each facial
point from a region of 32×32 pixels. We chose these features
as they showed good performance in variety of AU recognition
tasks [10]. To reduce the dimensionality of the extracted
features we applied PCA, retaining 95% of the energy. This
resulted in approximately 20D (geometric) and 40D (appear-
ance) feature vectors, for each dataset.

2) Evaluation Procedure: Some AUs occur rarely
(e.g., AU9,11,26 in CK+). Others do not exhibit strong
co-occurrence patterns (e.g., AU5 in DISFA). Hence, we
selected the following subsets of highly correlated AUs:
AUs (1, 2, 4, 6, 7, 12, 15, 17) for CK+, AUs (1, 2, 4, 6,
12, 15, 17) for DISFA and AUs (4, 6, 7, 9, 10, 43) for
Shoulder-pain. The selected AUs occur jointly in the context
of recorded expressions (e.g., pain expression, see [58]). In
order to prove the model’s ability to deal with large number
of outputs, we also show the performance when all AUs
(from CK+) are used. A detailed description of the AUs
used for the model evaluation is shown in Table I. We report
the F1 score and the area under the ROC curve (AUC) as
the performance measures. Both metrics are widely used
in the literature as they quantify different characteristics
of the classifier’s performance. Specifically, F1, defined as
F1 = 2·Precision·Recall

Precision+Recall , is the harmonic mean between the
precision and recall. It puts emphasis on the classification
task, while being largely robust to imbalanced data (such
as examples of different AUs). AUC quantifies the relation
between true and false positives, showing the robustness of
a classifier to the choice of its decision threshold. In all
our experiments, we performed a 5 fold subject independent
cross-validation.

3) Models Compared: We compare the proposed MC-LVM
to GP methods with different learning strategy. Specifically, we
compare to the manifold relevance determination (MRD) [47],
which uses the variational approximation, to the
discriminative shared Gaussian process latent variable
model (DS-GPVLM) [57] and to the multi-task latent
GP (MT-LGP) [46], which perform exact ML learning.
We also compare to the multi-label backpropagation and
kNN (k=1), i.e., the BPMLL [39] and ML-KNN [38],
respectively. Lastly, we compare to the state-of-the-art
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Fig. 6. The penalized negative log-likelihood of the MC-LVM for different number of samples used to estimate the posterior of the latent space (left), and
average F1 score for multiple AU detection as a function of the dimensionality of the latent space (middle), and the regularization parameter α (right).

methods for multiple AU detection: the parametric methods
Bayesian group-sparse compressed sensing (BGCS) [13],
hierarchical RBM (HRBM) [15], joint patch multi-label
learning (JPML) [14], and the kernel method l p-regularized
multi-task MKL (l p-MTMKL) [17]. All the compared
methods are evaluated using the same previously described
input features. Note that implementation of JPML [14] was
not available, and thus, in our comparison we report the
results from the corresponding paper ([14] employed the SIFT
appearance descriptor). For the single input methods (i.e.,
BGCS, HRBM, BPMLL and ML-KNN), we concatenated
the two feature sets. For the kernel-based methods, we
used the RBF kernel. For l p-MTMKL we also used the
polynomial kernel, as suggested in [17]. Due to the high
learning complexity of l p-MTMKL (O(N2T 2)), where
T is the number of target AUs), we followed the training
scheme in [17] where multiple AUs were split into groups:
{{AU1, AU2, AU4}, {AU6, AU7, AU12}, {AU15, AU17}}
for CK+, the same groups (without AU7) for DISFA, and
{{AU4, AU43, AU7}, {AU6, AU9, AU10}} for Shoulder-
pain. The parameters of each method were tuned as described
in the corresponding papers. For the MC-LVM, optimal
values for the weighting parameters α, the regularization
parameters λC , λR , as well as the size of the latent space
were found via a validation procedure on the training set.

C. MC-LVM: Theoretical Evaluation

This section analyzes MC-LVM performance in terms of
different parameter choices and settings. Fig. 6 (left) shows the
convergence of the learning criterion in MC-LVM as a function
of the used Monte Carlo samples during training on the CK+
dataset. We see that for small number of samples, the model
does not converge to a (local) minimum. This is expected,
since with 100−500 samples the posterior in Eq. (3) cannot be
approximated well. The model converges when 1000 samples
are used, and its convergence does not change considerably
after that. Thus, we fixed the number of samples to 1000.
From Fig. 6 (middle), we see how the size of the latent
space affects the performance of the learned model. It is clear
that for both posed and spontaneous data, an 8-dimensional
latent space is sufficient for the task of joint feature fusion
and multiple AU detection, and results in the best average
F1-score. Lower dimensional manifolds fail to explain the

correlations between the input features and to capture the
dependencies among multiple AUs, while manifolds with
more than 8D do not include any additional discriminative
information. Hence, in what follows, we fixed the size of the
latent space to 8D. Fig. 6 (right) shows the effect of changing α
on the discriminative power of the model. We observe that the
model prefers a weighted conditional distribution over a fully
generative or discriminative component. The optimal value
of α is around 0.4 for posed, and 0.8 for spontaneous data.
This difference is due to the fact that in case of spontaneous
data (DISFA, Shoulder-pain), the model puts less focus on
explaining unnecessary variations for the AU detection task,
e.g., due to the subject-specific features and errors due to the
pose registration. Therefore, the influence of the generative
component is lower (higher α) than in the case of posed
facial expressions from CK+. Moreover, the CK+ dataset
contains significantly less data (around 600 annotated frames)
than DISFA and Shoulder-pain. Hence, MC-LVM prioritizes
the generative component, to avoid overfitting the training
data. On the other hand, when we have sufficient training
examples (DISFA, Shoulder-pain), MC-LVM prefers to give
less emphasis to the conditional distribution of the features
(generative component). Such behavior of multi-conditional
models has been also observed in other domains (e.g., in [22]
for pixel classification).

To provide a better insight regarding the advantages of
selecting a weighted conditional distribution, in Fig. 7 we
compare the performance of the MC-LVM when the likelihood
term consists of only the discriminative conditional (α = 1),
and the optimal weighted conditional (α = 0.4 for CK+ and
α = 0.8 for DISFA and Shoulder-pain). We can see that
the weighted conditional improves the performance on most
of AUs, with significant enhancement in the performance on
certain AUs (3% on AU7,15 on CK+, 6% on AU1 and 3% on
AU6,15 on DISFA, and 10% on AU7,9,10 on Shoulder-pain).

In Fig. 8 (left) we see the effect of the introduced rela-
tional constraints on the model’s performance. At first we
observe that when no regularization is used (λC , λR = 0),
MC-LVM achieves the lowest performance for both posed and
spontaneous data. By including only the topological constraint
(λC 
= 0, λR = 0), MC-LVM attains a better representation of
the data in the manifold, which results in higher F1 scores.
Finally, with the addition of the global relational constraint
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Fig. 7. Joint AU detection with MC-LVM on CK+ (left), DISFA (middle) and Shoulder-pain (right) for different value of α. The comparisons are between
the discriminative-only conditional (α = 1) and the optimal weighted conditionals (α = 0.4 for CK+ and α = 0.8 for DISFA and Shoulder-pain).

TABLE II

F1 SCORE AND AUC FOR JOINT AU DETECTION ON CK+ DATASET. COMPARISONS TO STATE-OF-THE-ART

Fig. 8. Average F1 score on all three datasets. The effect of the relational
constraints (left), and the feature fusion (right) on the joint AU detection task.

(λC , λR 
= 0) MC-LVM achieves the highest scores. Note
that the difference is more pronounced in data from DISFA
and Shoulder-pain. This evidences the importance of modeling
the global relations for the detection of spontaneous (more
subtle) AUs. This is because the features of these AUs are
corrupted by higher noise levels and thus, their joint prediction
can help to reduce uncertainty of the classifiers, as has been
reported in [62]. Fig. 8 (right) shows the average performance
of the model for different feature combinations. In the single
input case, we observe that, on average, geometric features
(I) outperform the appearance features (II) (apart from DISFA
where features (I) suffer from residual errors from the pose
registration due to large variations in the head pose). This
is because, by concatenating the LBP histograms obtained
from each patch, the local information of the data is lost,
and thus, the model obtains lower scores. However, when

both inputs are used, MC-LVM can unravel a very informative
shared latent space. This results in the highest F1 score, with
significant improvement on the spontaneous data of DISFA
and Shoulder-pain. In general, from Fig. 8 we see that the
effect of the introduced regularization and the feature fusion
is far more pronounced in the spontaneous expressions, where
a limited and imbalanced number of examples is available for
each AU.

D. Model Comparisons on Posed Data

We next compare the proposed MC-LVM to several state-
of-the-art methods on the posed data from CK+. We first
inspect the performance of MC-LVM and the GP-related
methods. From Table II, we can see that the MAP-based
methods, i.e., the MT-LGP [46] and DS-GPLVM [57], achieve
similar performance on average since they are based on the
same learning scheme. On the other hand, MRD [47], uses
a variational distribution to approximate a manifold shared
across multiple inputs and outputs, without any additional
constraints over the latent variables. This results in a poor
accuracy. Also, MRD learns an approximation to the posterior,
in order to predict the variational latent positions that best
generate the inputs, while MT-LGP and DS-GPLVM learn
accurate back mappings from the input spaces to the manifold.
By contrast, the combination of the approximate learning
with the relational constraints used in the proposed MC-LVM
results in a significant increase in performance over the GP-
based methods. We partly attribute this to the explicit modeling



5738 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 25, NO. 12, DECEMBER 2016

TABLE III

F1 SCORE FOR JOINT AU DETECTION (ALL 17) ON CK+ DATASET. COMPARISON TO STATE-OF-THE-ART

TABLE IV

F1 SCORE AND AUC FOR JOINT AU DETECTION ON DISFA DATASET. COMPARISONS TO THE STATE-OF-THE-ART

of AU co-occurrences through the introduced constraints,
as well as to the multi-conditional learning based on the
proposed sampling scheme. The importance of the latter is
further evidenced in the performance of the single output
instance of MC-LVM, which for the case of the posed data
achieves comparable scores to the multi-output. We see that
joint learning does not improve detection of all AUs. It even
shows reduced performance for certain AUs. For example,
from Fig. 5, we see that AU1,2 are strongly correlated, yet
single output achieves higher F1 on both AUs compared to
the multi-output setting. This shows that for given data, these
two AUs can be predicted well without relying on each other.
On the other hand, the performance of AU15, which is strongly
correlated with AU17, and has significantly less examples than
other AUs, is considerably improved (F1 9% higher). The
similar performance between the two settings is also explained
from the nature of the posed data of CK+. Joint AU learning
is expected to be advantageous, in cases where the input data
suffer from high-dimensional noise [62]. Hence the superior
performance of the multi-output setting will be evidenced in
the evaluations on the spontaneous data from DISFA and
Shoulder-pain in Sec. IV-E.

Table II, also summarizes the performance of the state-of-
the-art models for joint AU detection: BGCS, HRBM and l p-
MTMKL. These models, manage to improve the detection of
AU1 and AU6, by successfully modeling their co-occurrences
between the related AUs (AU2 and AU12 respectively) in
the expressions of Surprise and Happiness. However, their
performance on more subtle AUs, e.g., AU7,15,17 is sig-
nificantly lower than that of the proposed MC-LVM. This
is due to the fact that the parametric models BGCS and
HRBM cannot handle simultaneously the fusion of the con-
catenated features and the modeling of the AU dependencies
using compressed/binary latent variables. On the other hand,
l p-MTMKL can perform the fusion through the MKL frame-
work. However, due to its modeling complexity, it is trained
on subsets of AUs, which affects its ability to capture all AU
relations. More importantly, in contrast to MC-LVM, these
models lack the generative component, which, evidently, acts

as a powerful regularizer. The results of JPML were obtained
from [14], thus, they are not directly comparable to the other
models. Yet, we report this performance as a reference to
the state-of-the-art. Finally, the baseline multi-label methods,
BPMLL and ML-KNN attempt to model the AU dependencies
directly in the classifier level, as in l p-MTMKL, but they
cannot perform the fusion of the input features. Hence, they
achieve the lowest average scores.

To demonstrate the model’s scalability when dealing with
large number of outputs, we compare the proposed approach
to the state-of-the-art HRBM and BGCS for joint AU detection
on all 17 AUs from CK+ (l p-MTMKL cannot be evaluated
on this experiment due to its learning complexity). As we can
see from Table III, modeling the remaining (less frequent)
AUs affects the overall performance of all three models, i.e.,
MC-LVM, BGCS and HRBM, which suffer a drop of 8.6%,
8.4% and 7.6%, respectively. However, MC-LVM outperforms
HRBM on 14 out of 17 AUs and BGCS on 12 out of 17 AUs,
which demonstrates the ability of the former to better model
the relations among AUs, even in case of many AU classes.

E. Model Comparisons on Spontaneous Data

We further investigate the models’ performance on spon-
taneous data from DISFA and Shoulder-pain datasets.
We focus here on the best performing methods from Table II.
From Tables IV–V, we can observe a significant drop in the
performance of all methods on both datasets. This evidences
the difficulty of the task of AU detection in realistic envi-
ronments, where spontaneous expressions are present. Also,
typical for naturalistic data, the distribution of the activated
AUs is more imbalanced than in the case of the posed dataset.
This poses an additional modeling challenge since training
data for certain AUs (e.g., AU2,15 for DISFA, and AU9,10
for Shoulder-pain) are limited. Consequently, the models need
to put more emphasis on the AU co-occurrences for detection
of these AUs. As evidenced by the results in Tables IV–V,
this adversely affects the single output MC-LVM. Contrary
to the high achieved performance on the posed data, the
single output instance reports here significantly lower scores
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TABLE V

F1 SCORE AND AUC FOR JOINT AU DETECTION ON SHOULDER-PAIN DATASET. COMPARISONS TO THE STATE-OF-THE-ART

TABLE VI

CROSS-DATASET EVALUATIONS OF THE STATE-OF-THE-ART MODELS ON 7 AUs PRESENT IN BOTH CK+ AND DISFA DATASETS. THE MODELS

ARE TRAINED ON DATA FROM CK+ DATASET AND TESTED ON DATA FROM DISFA DATASET (C→D), AND THE OTHER WAY AROUND (D→C)

for the aforementioned AUs in both datasets. Furthermore,
the small amount of training data for some AUs, imposes an
additional difficulty when modeling the global AU relations.
Consequently, the parametric discriminative models, BGCS
and HRBM, overfit the data and report low performance. This
exemplifies the importance of modeling the relations among
the features via the generative component, in the proposed
approach. Note that for some AUs with sufficient training
data, e.g., AU4,6 in DISFA, BGCS and HRBM achieve
similar or better scores than the MC-LVM. This is in part
due to modeling the multiple AU detectors under a joint
cost function – each method selects to put more emphasis
on modeling different AUs than the others. However, the
MC-LVM outperforms these models on average. l p-MTMKL
obtains very low scores (especially in the Shoulder-pain),
which is a result of not modeling global relations, due to
its training scheme. MT-LGP also fails to model explicitly
the relations between AUs, achieving low scores as well. The
proposed MC-LVM is more robust to the data imbalance, and
can better discover the AU relations, which in turn gives not
only the best average F1 scores, but also achieves more robust
performance as evidenced by the higher AUC.

F. Cross Dataset Experiments on CK+ and DISFA

Herein, we evaluate the robustness of the models
in a cross dataset experiment. Specifically, we perform
two different cross-dataset experiments, CK+→DISFA and
DISFA→CK+.2 We evaluate the models’ performance on
7 AUs (i.e., 1, 2, 4, 6, 12, 15, 17) that are present in both
datasets. This is a rather challenging task due to the different
characteristics of the data. First of all, as shown in Fig. 4, the
facial images differ in terms of illumination, pose and size,

2‘A→B’ denotes the training on dataset A and testing on dataset B.

which imposes a further difficulty on the alignment of the input
facial features. Another key challenge is the difference in the
context of the two datasets. The data from CK+ contain posed
expressions, which vary considerably in subtlety compared to
the spontaneous data of DISFA. The latter also affects the
co-occurrence patterns among the AUs, as can be seen from
Fig. 5

From Table VI, we see that the performance of the models
is lower for most of AUs compared to that attained on the
original dataset (see Tables II-V). This is expected for the
reasons mentioned above. Interestingly, BGCS achieves higher
performance on the cross dataset experiment CK+→DISFA,
than when both training and testing is performed on DISFA
dataset. This confirms our claims in Section IV-E that this
method cannot fully unravel the dependencies among the AUs
when dealing with imbalanced data in the training phase. The
parametric model, i.e., BGCS, can better model the AU rela-
tions with small (but well distributed) amount of training data,
as in CK+. Hence, it achieves higher performance compared
to MC-LVM. However, on the DISFA→CK+ experiment,
we see that the proposed MC-LVM, benefits from the use
of the non-parametric feature fusion, and manages to suc-
cessfully unravel the structure and the co-occurrence patterns
in the data, regardless of the imbalances in the amount of
training examples and the subtlety of the spontaneous facial
expressions. Thus, it attains superior performance compared
to the BGCS, especially for AU1,2,4, where the two models
achieve similar predictions for training and testing on CK+
(see Table II). Finally, the proposed MC-LVM consistently
outperforms HRBM and l p-MTMKL on both cross-dataset
experiments, as evidenced from both F1 and AUC results.

Finally, in Fig. 9 we see the recovered AU dependencies
from the MC-LVM, on the test data in both within and
cross-dataset experiments. As we observe from Fig. 9(a)&(c),
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Fig. 9. The learned global AU relations (in terms of correlation coefficients) for within datasets (a),(b) and cross-datasets (c),(d) experiments.

the recovered AU dependencies for CK+ are similar to the
original co-occurrence patterns from Fig. 5. Hence, the pro-
posed MC-LVM attains competitive results for CK+ and the
DISFA→CK+ experiments. On the other hand, by comparing
Fig. 9(d)&(b) and Fig. 5, we observe that MC-LVM has falsely
recovered strong correlations between AU1,2 and AU15,17,
which results in the low performance in the CK+→DISFA
experiment. We attribute this to the fact that AU1,4,17 are the
dominant AUs in CK+, which is not the case for DISFA. Thus
the model trained on CK+ seems to have a bias on predicting
AU1,4,17. Due to their strong relations with AU2,15 MC-LVM
recovers the false dependencies on DISFA dataset.

V. CONCLUSIONS

To conclude, we proposed the multi-conditional latent vari-
able model that brings together GPs and multi-conditional
learning to achieve a feature fusion for multi-label classi-
fication of facial AUs. The majority of existing approaches
perform feature fusion via simple vector concatenation. How-
ever, this leads to the false assumption that the multiple
feature sets are identically distributed. By assuming condi-
tional independence given the subspace of AUs, MC-LVM
learns different distributions for each feature set via sepa-
rate GPs, resulting in more accurate fusion in the manifold,
and hence, more discriminative features for the detection
task. More importantly, the newly introduced multi-conditional
objective allows the generative and discriminative costs to
act in concert during the model learning – the generative
component has the key role in unraveling the latent space
for the feature fusion, while the discriminative component
endows the space with the relational/class information of
the outputs. The retrieved manifold leads to superior perfor-
mance compared to other solely discriminative or generative
approaches. We further proved that the novel topological and
relational constraints can increase the discriminative power
of the model, by successfully encoding the AU dependencies
into the learned manifold. We demonstrated the effectiveness
of these properties on three publicly available datasets, and
showed that the proposed model outperforms the existing
works for multiple AU detection, and several methods for
feature fusion and multi-label learning. We also showed that
the proposed model is able to generalize across different
datasets.

One main limitation of the proposed approach is its inef-
ficiency to deal with large data during training. As purely

based on the framework of GPs, MC-LVM’s training scales
in O(N3), which typically imposes a restriction on using
datasets of size O(104). However, this can be addressed by
sparse [63] or distributed [64] computations, which scale GPs
to O(107). An extra burden during the training of MC-LVM
is the requirement for manual selection of the weighting
between the generative and discriminative components. Ide-
ally, within our probabilistic formulation, the balancing of
the conditional distributions should be handled automatically.
Finally, as evidenced by our experiments, the proposed joint
inference improves detection of most AUs and the overall
performance. Yet, sometimes this results in decreased detec-
tion performance on other AUs, when compared to single
output AU detectors. It would be interesting to investigate
how the subsets of strongly correlated AUs could efficiently
be detangled by learning subset-specific subspaces within the
proposed framework. All these are possible directions of future
work.
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