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Abstract—Facial expression is temporally dynamic event which
can be decomposed into a set of muscle motions occurring in
different facial regions over various time intervals. For dynamic
expression recognition, two key issues, temporal alignment and
semantics-aware dynamic representation, must be taken into
account. In this paper, we attempt to solve both problems via
manifold modeling of videos based on a novel mid-level rep-
resentation, i.e. expressionlet. Specifically, our method contains
three key stages: 1) each expression video clip is characterized
as a spatial-temporal manifold (STM) formed by dense low-
level features; 2) a Universal Manifold Model (UMM) is learned
over all low-level features and represented as a set of local
modes to statistically unify all the STMs. 3) the local modes
on each STM can be instantiated by fitting to UMM, and
the corresponding expressionlet is constructed by modeling the
variations in each local mode. With above strategy, expression
videos are naturally aligned both spatially and temporally. To
enhance the discriminative power, the expressionlet-based STM
representation is further processed with discriminant embedding.
Our method is evaluated on four public expression databases,
CK+, MMI, Oulu-CASIA, and FERA. In all cases, our method
outperforms the known state-of-the-art by a large margin.

I. INTRODUCTION

Automatic facial expression recognition plays an important
role in various applications, such as Human-Computer Inter-
action (HCI) and diagnosing mental disorders. Early research
mostly focused on expression analysis from static facial im-
ages [1]. However, as facial expression can be better described
as the sequential variation in a dynamic process, recognizing
facial expression from video is more natural and proved to be
more effective in recent research works [2], [3], [4], [5], [6].

Among these video-based facial expression recognition
methods, one of the main concerns is how to effectively
encode the dynamic information in videos. Currently, the
mainstream approaches to dynamic representation are based
on local spatial-temporal features like LBP-TOP [2], HOG 3D
[7]. These local descriptors extracted in local cuboid are then
pooled over the whole video or some hand-crafted segments, to
obtain a representation with certain length independent of time
resolution. As the low-level features possess the property of re-
peatability, integrating them by pooling leads to robustness to
intra-class variations and deformations of different expression
styles. However, this kind of technique lacks of consideration
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Fig. 1. A schematic illustration of constructing the mid-level representation
– the proposed “expressionlets” (“COV” is short for “covariance matrix”).
Each strip stands for a local feature, and the K feature modes (similar to
codewords) are pre-learned and modeled via GMM.

of two important issues: 1) Temporal alignment. Expres-
sions are inherently dynamic events consisting of onset, apex,
and offset phases. Intuitively, the recognition should conduct
matching among corresponding phases, which thus requires
globally temporal alignment among different sequences. The
rigid pooling has inevitably dropped those sequential relations
and temporal correspondences. 2) Semantics-aware dynamic
representation. Each expression can be decomposed into a
group of semantic action units, which exhibit in different facial
regions with varying sizes and last for different lengths of time.
Since the manually designed cuboids can only capture low-
level information short of representative and discriminative
ability, they are incapable of modeling the expression dynamic
in higher semantic level.

In this paper, we attempt to address both issues via spatial-
temporal manifold modeling based on a set of mid-level
representations, i.e. expressionlets. The proposed mid-level
expressionlet is a kind of modeling that aims to characterize
the variations among a group of low-level features as shown
in Figure 1. The notation “-let” means that it serves as
a local (both spatially and temporally) dynamic component
within a whole expression process, which shares similar spirit
with “motionlet” [8] in action recognition community. Thus
expressionlet bridges the gap between low-level features and
high-level semantics desirably. Specifically, given an individ-
ual video clip, we first characterize it as a Spatial-Temporal
Manifold (STM) spanned by its low-level features. To conduct
spatial-temporal alignment among STMs, we build a Universal
Manifold Model (UMM), and represent it by a number of
universal local ST modes, which can be learned by EM-like
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Fig. 2. The schema of the proposed method. Given an individual video clip, we intend to model it as a Spatial-Temporal Manifold (STM) spanned by local
spatial-temporal features, which however leads to difficulty of aligning different STMs. To statistically unify and thus facilitate the alignment of STMs, we
propose a Universal Manifold Model (UMM), represented as a number of universal local ST modes, which can be learned by EM-like methods. With UMM
constructed, the local modes on each STM can be instantiated by fitting to UMM and thus aligned mutually, then the corresponding expressionlet is built
to model the variations (via covariance matrix) in each local ST mode. Thus we obtain an expressionlet-based representation of STM. Please note that, for
UMM training, we exploit both appearance and spatial-temporal location information of the local features in order to enforce some degree of locality both
spatially and temporally.

methods among all collection of low-level features. By fitting
to UMM, the local modes on each STM can be instantiated
respectively and all of the different STMs are inherently
and mutually well-aligned to UMM via these corresponding
modes. Finally, our expressionlet is constructed by modeling
each local mode on STMs. To capture and characterize the
correlations and variations among low-level features within
each mode, the expressionlet comes in the form of covariance
matrix of the feature set in a statistical manner, which also
makes it robust to local misalignment [9], [10], [11].

To further enhance the discriminative ability of expres-
sionlet, we perform a discriminant learning with these mid-
level representations on all of the STMs. By considering the
“margin” among corresponding expressionlets, we exploit a
graph-embedding [12], [13] method by constructing partially
connected graphs to keep the links between expressionlets with
the same semantics. In the end, the embedded features are
correspondingly concatenated into a long vector as the final
manifold (video) representation for classification. Hence, the
proposed expressionlet has the following characteristics: 1)
Flexible spatial-temporal range. i.e. varying sizes of spatial
regions and temporal durations. 2) Variation modeling. It
encodes the local variations caused by expression using a
covariance matrix. 3) Discriminative ability. It is descriptive
and contains category information for recognition.

Preliminary results of the method have been published
in [14]. Compared with the conference version, this paper
has made three major extensions. First, we generalize the
framework to be compatible for various low-level 2D/3D
descriptors to construct mid-level expressionlet. Second, we

provide a more detailed comparison and discussion regarding
different strategies for UMM learning, including the alignment
manners of local modes in UMM training stage and the low-
level feature assignment manners in UMM fitting stage. Third,
more extensive experiments are carried out to evaluate each
component in the method and compare with other state-of-the-
art algorithms.

The rest of the paper is organized as follows: Section II
briefly reviews the previous related work for dynamic facial
expression recognition. Section III introduces the Universal
Manifold Model, i.e. a statistical model for spatial-temporal
alignment among different expression manifolds (videos). Sec-
tion IV presents the mid-level expressionlet learning based on
UMM and conducts detailed discussions with other related
works. In Section V, we provide comprehensive evaluations
of the whole framework as well as each of the building
block. Experiments are conducted on four public expression
databases and extensively compared with the state-of-the-art
methods. Finally, we conclude the work and discuss possible
future efforts in Section VI.

II. RELATED WORKS

In the past several decades, facial expression recognition
based on static images had aroused lots of interests among
researchers. For facial feature representation, typical image
descriptors including Local Binary Pattern (LBP) [15], Local
Gabor Binary Pattern (LGBP) [16], Histogram of Oriented
Gradient (HOG) [17], and Scale Invariant Feature Transform
(SIFT) [18] have been successfully applied in this domain.
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Lucey et al. [19] also applied Active Appearance Model
(AAM) to encode both shape (facial landmarks) and appear-
ance variations. A comprehensive survey of some of these
techniques can be found in [1] and [20].

However, as facial expressions are more naturally viewed
as dynamic events involving facial motions over a time inter-
val, recently, there becomes strong interest in modeling the
temporal dynamics of facial expressions in video clips. The
psychological experiments conducted in [21] have provided
evidence that facial dynamics modeling is crucial for interpret-
ing and discriminating facial expressions. Generally, the tem-
poral modeling manners can be categorized into two groups:
hard-coded and learning-based. In this paper, we review some
related works of dynamic facial expression recognition based
on the two schemes mentioned above.

The hard-coded modeling scheme encodes the variations
among several successive frames using predefined computa-
tions. For example, optical flow is calculated between con-
secutive frames and has been applied in some early works
for expression recognition [22], [23]. Koelstra et al. [24]
used Motion History Images (MHI) to compress the motions
over several frames into a single image by layering the
pixel differences between consecutive frames. Another kind
of typical implementation is designing spatial-temporal local
descriptors to capture the dynamic information. For instance,
Yang et al. [3] designed dynamic binary patterns mapping for
temporally clustered Haar-like features and adopted boosting
classifiers for expression recognition. Zhao et al. [5] en-
coded spatial-temporal information in image volumes using
LBP-TOP [2] and employed SVM and sparse representation
classifier for recognition. Hayat et al. [25] evaluated various
dynamic descriptors including HOG/HOF [26], HOG3D [7],
and 3D SIFT [27] using bag of features framework for video-
based facial expression recognition. All these methods benefit
from the low computational cost of local descriptors and also
show favourable generalizations to different data sources and
recognition tasks.

To consider the specific characteristics of dynamic facial
expressions, the learning-based modeling schemes attempt
to explore the intrinsic correlations among facial variations
using dynamic graphical models. Some representative works
are briefly introduced as follows: Cohen et al. [28] used
Tree-Augmented Naive Bayes (TAN) classifier to learn the
dependencies among the facial motion features extracted from
a continuous video. Shang et al. [29] applied a non-parametric
discriminant Hidden Markov Model (HMM) on the facial
features tracked with Active Shape Model (ASM) to recognize
dynamic expressions. Jain et al. [30] proposed a framework
by modeling temporal variations within facial shapes us-
ing Latent-Dynamic Conditional Random Fields (LDCRFs),
which obtains the entire video prediction and continuously
frame labels at the same time. To further characterize the
complex activities both spatially and temporally, Wang et al.
[31] proposed Interval Temporal Bayesian Networks (ITBN)
to represent the spatial dependencies among primary facial
events and the large variety of time-constrained relations
simultaneously. To summarize, the learning-based modeling
can better reveal the intrinsic principles of the dynamic varia-

tions caused by facial expressions. However the construction
and optimization of a such model required lots of domain
knowledge and high computational cost.

III. UNIVERSAL MANIFOLD MODEL (UMM)

A facial expression video depicts continuous shape or
appearance variations and can be naturally modeled by a non-
linear manifold, on which each point corresponds to a certain
local spatial-temporal pattern. For dynamic expression recog-
nition, the main challenge is the large arbitrary inter-personal
variance of expressing manners and execution rate for the same
expression category, thus it is crucial to conduct both spatial
and temporal alignment among different expression manifolds.
In this section, we first introduce the manifold modeling of
videos and then propose a statistic-based Universal Manifold
Model (UMM) to achieve implicit alignment among different
expression videos.

A. Spatial-Temporal Manifold

For clarification, we first present the spatial-temporal mani-
fold (STM) for modeling each video clip. The STM is spanned
by 3D (i.e. spatial-temporal) blocks densely sampled from
the video volume, which cover a variety of local variations
in both spatial and temporal space. Two kinds of common
descriptors, i.e. SIFT and HOG, are employed for low-level
feature extraction on each sampled block with the size of
w ∗h ∗ l, where w, h are the numbers of pixels on two spatial
directions, and l is the number of frames. The extracted feature
is denoted as axyt, where x, y, t are spatial-temporal index of
the block on the STM.

To consider the manifold structure information, for all the
blocks we augment the appearance features with their spatial-
temporal coordinates, i.e. f = {axyt, x/w∗, y/h∗, t/l∗},
where axyt is the appearance feature of the block located at
{x, y, t}, and w∗, h∗, l∗ are the numbers of blocks on width,
height and time length direction on the STM. An illustration
of the local features is shown in Figure 3.

w 
h 

h 
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l 

l 

(𝑥1, 𝑦1, 𝑡1) 

(𝑥2, 𝑦2, 𝑡2) 

Fig. 3. An illustration of the spatial-temporal blocks for low-level feature
extraction. The augmented feature are then used to construct the STM.

B. UMM Learning

1) Training stage: Universal Manifold Model (UMM) is
defined to statistically model the STMs from different peo-
ple with different expressions. As a person-independent and
expression-independent model, UMM facilitates the robust
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parameterized modeling of the STMs. Inspired by [32], [33],
we employ a Gaussian Mixture Model (GMM) to learn the
UMM by estimating the appearance and location distribution
of all the 3D block features. Thus each Gaussian component
can represent a certain spatial-temporal mode modeling the
variations among a set of low-level features with similar
appearance and relative locations in videos.

Simply we can train a GMM with spherical Gaussian
components as follows:

P (f |Θ) =

K∑
k=1

wkG(f |µk, σ
2
kI), (1)

where Θ = (w1, µ1, σ1, ..., wK , µK , σK); K is the number of
Gaussian mixture components; I is identity matrix; wk, µk, σk
are the mixture weight, mean, and diagonal covariance of
the k-th Gaussian component G(f |µk, σk). We use typical
Expectation Maximization (EM) algorithm to estimate the
paremeters of GMM by maximizing the likelihood of the
training feature set. After training the UMM, each Gaussian
component builds correspondence of a group of block features
from different STMs, which constitute a local ST mode
universally.

2) Fitting stage: The UMM learned above can be regarded
as a container with K-components GMM. Then, given any
STM, we aim to formulate it as a parameterized instance of the
UMM. For this purpose, our basic idea is assigning some of the
local ST features of the STM into the K Gaussian ”buckets”
and further modeling the distribution of the local features in
each Gaussian bucket with their covariance matrix.

Formally, an expression manifold M i can be presented
as a set of local block features, i.e. F i = {f i1, ..., f iBi

},
where Bi is the number of features on M i. For the k-th
Gaussian component G(f |µk, σk) on UMM, we can calculate
the probabilities of each f ib in F i as

P i
k = {pk(f ib) | pk(f ib) = wkG(f ib |µk, σ

2
kI)}Bi

b=1. (2)

We sort the block features f ib in descending order of P i
k, and

the top T features with the largest probabilities are selected
for the k-th local mode construction, which can be represented
as F i

k = {f ik1
, ..., f ikT

}. The selected features in each set
are expected to be close in space-time location and share
similar appearance characteristics, which can represent the
local variations occurred in a certain facial region during a
small period of time. Different from the hard assignment in tra-
ditional GMM, by using such soft manner, one feature can be
assigned to multiple modes (components) for sharing, which
brings favorable robustness against mis-assignment. Moreover,
discarding some useless features with low probabilities to any
mode can also be regarded as a “filtering” operation, which
can alleviate the influence of unexpected noises irrelevant to
expressions. In Figure 4, we also demonstrate some examples
of the learned local modes referring to the original spatial-
temporal locations in videos.

Finally, an overall procedure is summarized in Algorithm 1.
Based on the input unaligned STMs F1, ...,FN , each of which
is represented by a set of low-level features, the algorithm pro-
vides two kinds of outputs: a group of learned optimal UMM
parameters Θ∗, and the mutually aligned STMs F̃1, ..., F̃N ,

Timeline 

Timeline 

Fig. 4. Examples of typical local modes (a set of features with largest T
(T = 24 in the examples) probabilities to a certain Gaussian component on
UMM) referring to the original spatial-temporal locations in videos. Different
colors represent different local modes. Best viewed in color.

each of which is represented by K corresponding local modes
instantiated by fitting to UMM.

Algorithm 1 : UMM Learning
Input:

Unaligned STMs (represented by sets of low-level fea-
tures): F1, ...,FN

Output:
Mutually aligned STMs (represented by corresponding
local modes instantiated by fitting to UMM): F̃1, ..., F̃N

— Training —
1: Initialize UMM (GMM) parameter: Θ = {(ωk, µk, σk)}
2: Use EM algorithm to learn optimal UMM parameters:

Θ∗ = argmaxΘ

∑
i,b,k ωkG(f ib |µk, σ

2
kI)

— Fitting —
3: for i:=1 to N do
4: for k:=1 to K do
5: Find top T block features F i

k = {f ikt
}Tt=1 with the

largest probabilities on Gk:
G(f ikt

|µ∗
k, (σ

∗
k)2I) > G(f ikt+1

|µ∗
k, (σ

∗
k)2I)

6: end for
7: F̃ i = {F i

1, F
i
2, ..., F

i
K}

8: end for
9: return Θ∗, F̃1, ..., F̃N

IV. EXPRESSIONLET LEARNING

A. Expressionlet modeling

Considering the correlations and variations among the fea-
tures in a local model, we calculate the covariance matrix of
the set F i

k as the representation of an expressionlet:

Ci
k =

1

T − 1

T∑
t=1

(f ikt
− f ik)(f ikt

− f ik)T , (3)

where f ik is the mean of the block features in set F i
k. The

diagonal entries of Ci
k represent the variance of each individ-

ual feature, and the non-diagonal entries are their respective
correlations. As the expressionlets are globally aligned via



5

UMM, the covariance modeling can provide a desirable locally
tolerance to spatial-temporal misalignment.

In the end, the i-th manifold M i can be represented as
a set of expressionlets, i.e. Ei = {Ci

1, C
i
2, ..., C

i
K}. Here the

expressionlets are Symmetric Positive Definite (SPD) matrices
(i.e. nonsingular covariance matrices), lying on a Riemannian
manifold [34]. We exploit a Log-Euclidean Distance (LED)
[35] to project these points to Euclidean vector space, where
standard vector learning methods are ripely studied, as advo-
cated in [11].

Given a covariance matrix C, the mapping to vector space is
equivalent to embedding the SPD manifoldM into its tangent
space T at identity matrix I , i.e.:

Ψ :M 7→ TI , C 7→ (log(C)). (4)

Let C = UΣUT be the eigen-decomposition of SPD matrix
C, its log can be computed by

log(C) = Ulog(Σ)UT . (5)

As we obtain a vector mapping of C spanned by log(C),
general vector learning methods, e.g. PCA, can be employed
to reduce the high dimension of expressionlet. Basically, in
this work, we preserve 99% energies for the expressionlets
using PCA for further discriminant learning.

B. Discriminant learning with Expressionlets
As the expressionlet possesses the property of spatial-

temporal locality, an effective way of enhancing its discrimi-
native power is to consider the “margin” among corresponding
expressionlets from different STM samples. Thus we can
formulate our learning scheme via the graph embedding [12]
framework.
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Fig. 5. The adjacency relationships of the intrinsic and penalty graphs for
the discriminative learning with expressionlets (Different colors represent the
different Gaussian components in UMM). M i and Mj are two manifolds
with the same class label, while M i∗ and Mj∗ are with different class labels.
The intrisic/penalty graph only considers the “margin” among corresponding
expressionlets (Ci

k and Cj
k) generated from the same Gaussian component k.

In the overall expressionlet set {E1, ..., EN}, given the m-
th expressionlet, which corresponds to the p-th mode on M i,
denoted as Ci

p; and the n-th expressionlet, which corresponds
to the q-th mode on M j , denoted as Cj

q (Note that, if all STMs
are ordered, we can denote m = (i− 1) ∗K+ p and similarly
n = (j − 1) ∗K + q. The indices m and n are used for better
illustration), with the class label li, lj for Mi,Mj respectively,
the intrinsic graph Ww and penalty graph Wb can be defined
as follows:

Ww(m,n) =

{
1, if li = lj , and p = q

0, otherwise
(6)

Wb(m,n) =

{
1, if li 6= lj , and p = q

0, otherwise
(7)

We aim to learn an embedding function φ to maximize
the discriminative power while simultaneously preserve the
correspondence of expressionlets from the same Gaussian
component. According to Ww and Wb, the within-class scatter
Sw and between-class scatter Sb can be defined as:

Sw =
∑
m,n

Dis(φ(Ci
p), φ(Cj

q ))Ww(m,n), (8)

Sb =
∑
m,n

Dis(φ(Ci
p), φ(Cj

q ))Wb(m,n), (9)

where Dis(φ(Ci
p), φ(Cj

q )) denotes the distance between two
embedded expressionlets φ(Ci

p) and φ(Cj
q ).

According to Equation 4 we can obtain a vector represen-
tation xm of the m-th expressionlet, i.e. Ci

p, where xm is a
vector spanned by log(Ci

p). Simply consider a linear projection
v, we can reformulate the embedded features and the distance
between them in classical Euclidean space as

φ(Ci
p) = vTxm, φ(Cj

q ) = vTxn, (10)

Dis(φ(Ci
p), φ(Cj

q )) = ||vTxm − vTxn||2. (11)

Accordingly, we only need to learn the projection v instead
of φ, by maximizing the between-class scatter Sb while
minimizing the within-class scatter Sw:

vopt = arg max
vTX(Db −Wb)X

T v

vTX(Dw −Ww)XT v
, (12)

where Dw and Db are diagonal matrices with diagonal
elements Dw(m,m) =

∑
nWw(m,n) and Db(m,m) =∑

nWb(m,n). Let Lw and Lb be the Laplacian matrices of
two graphs Ww and Wb. The columns of an optimal v are
the generalized eigenvectors corresponding to the l largest
eigenvalues in

XLbX
T v = λXLwX

T v. (13)

With the learned embedding function φ, the K expression-
lets from Mi can be represented as {φ(Ci

1), ..., φ(Ci
K)}. These

K features are concatenated to form a long vector as the final
expression manifold (video) representation. In the end, we
use multi-class linear SVM implemented by Liblinear [36] for
classification.

C. Discussion

1) Expressionlet vs. AU: Action Units (AU) [37] are fun-
damental actions of individual or groups of facial muscles
for encoding facial expression based on Facial Action Coding
System (FACS). Similarly, our expressionlets are designed to
model expression variations over local spatio-temporal regions
in the same spirit as AUs. However, there are two differences
between expressionlets and AUs: (i) AUs are manually defined
concepts that are independent of person and category, while
expressionlets are some mid-level representations extracted
from data using learning scheme, which possess the dynamic
modeling ability and discriminative power. (ii) According to
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FACS, each expression is encoded by the existence of a certain
number of AUs. Instead of the binary coding manner, in our
method, an expression can be represented by various real-
valued expressionlet patterns which provide more flexible and
rich information.

2) Expressionlet vs. BoVW/VLAD/FV: In our method, we
extract dense local spatial-temporal features and construct
a codebook (via GMM), in which each codeword can be
considered as a representative of several similar local features.
Both of the two operations (i.e. local feature extraction, and
codebook construction) are also typical steps in Bag of Visual
Words (BoVW) (or Vector of Locally Aggregated Descriptors
(VLAD), and Fisher Vectors (FV)) framework.

However, in pooling stage, BoVW/VLAD/FV all perform
summing/accumulating operation among the local features
assigned to each certain codeword. Specifically, BoVW [38]
simply estimates histogram(s) of occurrences of each code-
word; VLAD accumulates the first-order difference of the
vectors assigned to each codeword, which characterizes the
distribution with respect to the center (codeword) [39]; Com-
pared to VLAD, FV encodes both first-order and second-
order statistics of the difference between the codewords and
pooled local features and accumulates them based on the
Gaussian component weights of GMM learned for codebook
construction [40]. However, in our method, different from
the summing operation, we make use of the second-order
statistics by estimating the covariance of all the local features
(augmented with location information) falling into each bucket
(codeword). In this way, the local features are pooled to
keep more variations, which not only encodes the relationship
(difference) between the center and pooled features, but also
includes the internal correlations among those pooled features
which collaboratively describe some kind of motion patterns
(i.e. expressionlets). In addition, in our method, by limiting the
number (T in Algorithm 1) of local features falling into each
bucket, not all local features are necessarily taken into account
by the second-order pooling, which is also different from
traditional methods. We believe such a strategy can alleviate
the influence of unexpected noise or signal distortions (e.g.
caused by occlusion).

V. EXPERIMENTS

A. Datasets and protocols
1) CK+ database: The CK+ database [41] consists of 593

sequences from 123 subjects, which is an extended version
of Cohn-Kanade (CK) database. The image sequence vary
in duration from 10 to 60 frames and incorporate the onset
(neutral face) to peak formation of the facial expression.
The validated expression labels are only assigned to 327
sequences which are found to meet the criteria for 1 of 7
discrete emotions (Anger, Contempt, Disgust, Fear, Happiness,
Sadness, and Surprise) based on Facial Action Coding System
(FACS). We adopt leave-one-subject-out cross-validation (118
folds) following the general setup in [41].

2) Oulu-CASIA database: The Oulu-CASIA VIS database
[5] is a subset of the Oulu-CASIA NIR-VIS database, in which
all the videos were taken under the visible (VIS) light condi-
tion. We evaluated our method only on the normal illumination

condition (i.e. strong and good lighting). It includes 80 sub-
jects between 23 and 58 years old, with six basic expressions
(i.e. anger, disgust, fear, happiness, sadness, and surprise) of
each person. Each video starts at a neutral face and ends at
the apex of expression as the same settings in CK+. Similar
to [5] and [42], we adopted person-independent 10-fold cross-
validation scheme on the total 480 sequences. Figure 6 shows
some sample facial expression images extracted from the apex
frames of video from Oulu-CASIA databse.

Angry Disgust Fear Happiness Sadness Surprise 

Fig. 6. The sample facial expression images extracted from the apex frames
of video from Oulu-CASIA databse.

3) MMI database: The MMI database [43] includes 30
subjects of both sexes and ages from 19 to 62. In the database,
213 sequences have been labeled with six basic expressions,
in which 205 sequences were captured in frontal view. Each
of the sequence reflects the whole temporal activation patterns
(onset → apex → offset) of a single facial expression type.
In our experiments, all of these data were used and also a
person-independent 10-fold cross-validation was conducted as
in several previous work [42], [14]. Compared with CK+ and
Oulu-CASIA, MMI is thought to be more challenging for
the subjects pose expressions non-uniformly and usually wear
some accessories (e.g. glasses, moustache). The number of
video samples for each expression in the three databases is
illustrated in Table I.

TABLE I
THE NUMBER OF SAMPLES FOR EACH EXPRESSION IN CK+,

OULU-CASIA, AND MMI DATABASES.

An Co Di Fe Ha Sa Su Total

CK+ 45 18 59 25 69 28 83 327

Oulu 80 – 80 80 80 80 80 480

MMI 31 – 32 28 42 32 40 205

4) FERA database: The FERA database [44] is a fraction
of the GEMEP corpus [45] that has been put together to
meet the criteria for a challenge on facial AUs and emotion
recognition. For the emotion sub-challenge, a total of 289
portrayals were selected: 155 for training and 134 for testing.
The training set included 7 (3 men) actors with 3 to 5
instances of each emotion per actor, and the test set includes
6 actors, each of whom contributed 3 to 10 instances per
emotion. As the labels on test set remain unreleased, we only
use the training set and adopt leave-one-subject-out cross-
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validation for evaluation. The 155 sequences in training set
have been labeled with 5 expression categories: Anger (An),
Fear (Fe), Joy (Jo), Sadness (Sa), and Relief (Re). FERA
is more challenging than CK+, Oulu and MMI because the
expressions are spontaneous in natural environment. Figure 7
shows some sample facial expression images extracted from
the apex frames of video from FERA databse.

Anger Joy Fear Relief Sadness 

Fig. 7. The sample facial expression images extracted from the key frames
of video from FERA databse.

B. Parameter settings
For preprocessing, all the faces images are normalized to

96x96 pixels based on the locations of two eyes. In the STM
construction step, the low-level 3D blocks are w ∗ h ∗ l pixels
and sampled with a stride of 0.5 ∗ w in spatial dimension
and one frame in temporal dimension. Here w, h are tunable
parameters varying in 16,24,32 (the evaluations are provided
in the next subsection). Two kinds of descriptors, SIFT and
HOG, are employed for low-level feature extraction. For SIFT,
we apply the descriptor to the center point of each w ∗ h ∗ 1
patch and obtain a typical 4 ∗ 4 ∗ 8 = 128 dimensions feature
vector. PCA is further applied to reduce the dimension to 64.
For HOG, each w ∗ h ∗ 4 block is divided into 2 ∗ 2 ∗ 2 grids
and in each grid, the gradient orientations are quantized to 8
histogram bins, thus results in 2 ∗ 2 ∗ 2 ∗ 8 = 64 dimensions
for each block.

In the following, we conduct detailed discussions on each
framework component: (i) The effect of spatial scale for
low-level feature extraction, which involves the parameter of
patch size w, h; (ii) The effect of alignment via UMM. We
compare the rigid blocking and elastic alignment manners for
K local modes construction, which involves the parameter of
number of modes (i.e. Gaussian components in UMM); (iii)
The effect of low-level feature assignment manner in UMM
fitting. Both hard-assignment and soft-assignment manners are
compared and discussed regarding to the parameter of number
of low-level features T to construct an expressionlet; (iv)
The effect of discriminant learning with expressionlets. The
high-dimensions of expressionlets can be reduced simply by
unsupervised PCA in vector space, or a marginal discriminant
learning introduced in Section IV-B. The performance of these
two schemes are compared and discussed regarding to the
parameter of reduced dimension dim for an expressionlet.

C. Evaluations of framework components
1) The effect of spatial scale for low-level feature ex-

traction: We first evaluate the effect of spatial scale, i.e.

patch size w, h, for low-level feature extraction. The w, h
are varying in 16, 24, 32. Here we only take SIFT feature
for example. Other parameters T = 64 and dim = 256 are
fixed in the experiments on all datasets. Figure 8 illustrates the
performance of different patch sizes with different numbers of
Gaussian components K. As shown, on CK+, Oulu-CASIA,
MMI, the green curves with 24 ∗ 24 perform the best. While
on FERA, the results become better when adopting larger
patch size. The reason may be that muscle motions induced by
spontaneous expression is likely to involve larger facial regions
compared to posed expression. In the following evaluations,
we uniformly apply w = h = 24 on all datasets.
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Fig. 8. Average recognition accuracy (%) with different patch sizes for low-
level feature extraction on four datasets. (a) CK+ (b) Oulu-CASIA (c) MMI
(d) FERA. (using Dense SIFT feature).

2) The effect of alignment via UMM: We compare the
rigid blocking and elastic alignment (UMM) manners for the
construction of a bank of local modes. In our experiments, the
number of blocks/modes K is varying in 16,32,64,128,256.
For rigid blocking manner, the number of blocks in spatial
dimension is fixed to 4 ∗ 4 = 16 and the blocking scheme
is illustrated in Figure 9. Then the number of partitions in
temporal dimension is K/16 (i.e. 1,2,4,8,16).

The performance comparison is shown in Figure 10. On
CK+ and Oulu-CASIA, the elastic manner performs not better
than rigid manner, especially with smaller value of K on Oulu-
CASIA. It is possibly due to that the expression sequences of
CK+ and Oulu-CASIA demonstrate a monotonous variation
from neutral to apex status, thus the temporal alignment is
not the major challenge for recognition. For MMI, each of the
sequence reflects the whole temporal activation from onset to
apex and then to offset of a single expression in a long term;
For FERA, the expression samples show much more complex
temporal variations in the spontaneous manner, even with no
explicit segmentation of onset, apex, or offset stages. In such
situation, a temporal alignment becomes crucial for building
correspondence among different sequences. As verified in our
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96px 

36px 

24px 

Note: “  ” is the key point for SIFT 

Fig. 9. An illustration of rigid blocking scheme in spatial dimension. The
whole image is 96 ∗ 96 pixels and each block is 36 ∗ 36 pixels in spatial. For
w = h = 24, the whole image contains 7 ∗ 7 = 49 key points “◦” for SIFT
descriptor and each block covers 4 as shown in the right.

experiments, the elastic manner performs much better than
the rigid manner on MMI and FERA databases. It can be
observed that the improvement becomes more significant as
K increases, which indicates that a larger number of local
modes leads to a more elaborate alignment.
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K=16 K=32 K=64 K=128 K=256
30

40

50

60

70

80

The number of Gaussian components K in UMM

A
ve

ra
ge

 r
ec

og
ni

ti
on

 a
cc

ur
ac

y 
(%

)

 

 

Rigid
Elastic (UMM)

(c) MMI

K=16 K=32 K=64 K=128 K=256
30

40

50

60

70

The number of Gaussian components K in UMM

A
ve

ra
ge

 r
ec

og
ni

ti
on

 a
cc

ur
ac

y 
(%

)

 

 

Rigid
Elastic (UMM)

(d) FERA

Fig. 10. Average recognition accuracy (%) with different alignment manners
(rigid/elastic) on four datasets. (a) CK+ (b) Oulu-CASIA (c) MMI (d) FERA.
(using Dense SIFT feature).

3) The effect of low-level feature assignment manner:
In UMM fitting stage, there are also two options for low-
level feature assignment to each local mode (i.e. Gaussian
component). For hard assignment, each low-level feature must
be assigned to only one certain component according to its
largest probability (i.e. traditional GMM). For soft assignment
applied in our method, each component can obtain a fixed
number of features with top T probabilities. We compare these
two different manners under different number of local modes
(Gaussian components) K = 4, 8, 16, 32, 64, 128, 256 and fur-
ther discuss the effect of different values of T = 64, 128, 256
in soft assignment. A comprehensive evaluation results are
listed in Table II, with a graphical illustration in Figure 11.

As shown, the results based on hard manner can reach its

TABLE II
AVERAGE RECOGNITION ACCURACY (%) WITH DIFFERENT ASSIGNMENT

MANNERS (HARD/SOFT) ON FOUR DATASETS. (A) CK+ (B) OULU-CASIA
(C) MMI (D) FERA. (USING DENSE SIFT FEATURE).

(a) CK+

k=4 k=8 k=16 k=32 k=64 k=128 k=256
Hard 82.17 89.60 91.34 92.13 73.57 62.30 71.55

Soft64 86.05 86.45 87.46 89.20 90.48 90.99 91.82
Soft128 87.10 88.56 88.78 91.23 92.09 92.75 91.61
Soft256 87.21 87.14 88.33 86.47 88.86 87.79 87.25

(b) Oulu-CASIA

k=4 k=8 k=16 k=32 k=64 k=128 k=256
Hard 57.92 67.08 70.21 77.29 71.88 47.50 47.92

Soft64 61.04 67.29 70.83 71.67 73.96 75.83 76.46
Soft128 62.29 63.75 67.50 69.79 72.50 71.25 71.46
Soft256 56.67 61.46 65.42 65.42 65.42 67.29 67.08

(c) MMI

k=4 k=8 k=16 k=32 k=64 k=128 k=256
Hard 61.93 63.94 63.26 64.76 40.69 37.59 43.90

Soft64 62.84 62.34 69.28 66.52 70.14 69.83 71.33
Soft128 60.84 71.07 70.77 70.27 69.78 71.42 72.36
Soft256 63.28 67.23 66.23 64.41 65.23 67.67 69.50

(d) FERA

k=4 k=8 k=16 k=32 k=64 k=128 k=256
Hard 54.16 60.59 60.59 58.09 41.66 38.04 52.95

Soft64 49.64 58.59 60.67 59.26 60.00 61.23 63.15
Soft128 54.16 62.69 60.57 61.21 59.98 58.67 62.48
Soft256 60.55 60.61 60.65 61.28 60.02 60.63 61.21
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(b) Oulu-CASIA
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(c) MMI
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Fig. 11. Average recognition accuracy (%) with different assignment manners
(hard/soft) on four datasets. (a) CK+ (b) Oulu-CASIA (c) MMI (d) FERA.

peak at K = 16 or 32, and then suffer significant degradation
as K increases. It is because that in hard manner, the larger K
leads to the less features assigned to each component, which
results in inaccurate estimation of the feature covariance for
expressionlet representation. However, with a fixed number of
features in each mode, the soft manner can hold the increasing
trend as K becomes larger. On the other hand, to consider the
effect of different values of T , the larger T , i.e. the more
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TABLE III
AVERAGE RECOGNITION ACCURACY (%) COMPARISON WITH EXPLET OR DIS-EXPLET ON FOUR DATASETS. (A) CK+ (B) OULU-CASIA (C) MMI (D)

FERA. (USING DENSE SIFT FEATURE).

(a) CK+

dim
ExpLet Dis-ExpLet

k=64 k=128 k=256 k=64 k=128 k=256
64 86.19 87.16 88.57 91.01 91.10 88.03
128 89.28 89.76 89.93 92.84 93.81 90.56
256 90.48 90.99 91.82 92.81 93.34 93.05

(b) Oulu-CASIA

dim
ExpLet Dis-ExpLet

k=64 k=128 k=256 k=64 k=128 k=256
64 71.04 70.00 72.08 73.13 76.46 74.79
128 72.71 72.50 74.79 75.63 75.83 77.50
256 73.96 75.83 76.46 76.46 77.71 78.96

(c) MMI

dim
ExpLet Dis-ExpLet

k=64 k=128 k=256 k=64 k=128 k=256
64 61.55 64.53 68.06 76.56 72.61 74.30

128 68.56 67.51 68.15 76.65 73.79 74.93
256 70.14 69.83 71.33 76.60 75.57 76.51

(d) FERA

dim
ExpLet Dis-ExpLet

k=64 k=128 k=256 k=64 k=128 k=256
64 60.03 58.07 61.25 54.18 64.38 65.00
128 59.98 60.61 61.23 63.29 70.27 70.18
256 60.00 61.23 63.15 64.48 72.91 68.41
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Fig. 12. Average recognition accuracy (%) comparison with ExpLet or Dis-ExpLet on four datasets. (a) CK+ (b) Oulu-CASIA (c) MMI (d) FERA.

features selected in each local mode, does not always yield
better performance. The reason may be that more “noise”
features with low probabilities are involved when applying a
larger T .

4) The effect of discriminant learning: Finally we evaluate
the effect of discriminant learning with expressionlets. The
original dimension of expressionlets is 64 ∗ 64 = 4096d as
the low-level features are 64d. For dimension reduction, we
can simply apply unsupervised PCA or employ the proposed
marginal discriminant learning. Here we compare these two
schemes by varying dim = 64, 128, 256 under different K,
and the results are shown in Table III and Figure 12. It can
be observed that “Dis-ExpLet” performs much better than
“ExpLet” even using a lower dimension. The improvement
is quite significant especially on MMI (∼ 5.3%) and FERA
(∼ 9.7%), which are considered to be more challenging than
CK+ and Oulu-CASIA.

D. Comprehensive comparisons with Fisher Vector

In this section, we conduct comprehensive comparisons
with the state-of-the-art encoding method Fisher Vector. The
experiments are conducted based on two kinds of descriptors,
i.e. SIFT (2D) and HOG (3D). And for Fisher Vector, we also
tune different values of w, h to obtain the best performance.
All of the results are listed in Table IV.

According to the results, for w = h = 16 or 24, we can
always observe a approximately rising trend of accuracy as

the number of GMM components K increases. However, for
w = h = 32, there usually exist an obvious degradation as K
increases (except for Oulu-CASIA). It may be caused by that
the patches with a larger scale encode less details which cannot
provide enough local patterns for lots of partitions. Thus when
K becomes larger, the cluster partitions forcibly segment some
similar or related patterns, which brings confusions in pooling
stage for higher-level semantics generation.

For fair comparison, in Table V we report the performance
based on original “ExpLet” (the dimension is reduced to dim
via unsupervised PCA) without discriminant learning. Here we
fix the other parameters w = h = 24 and T = 64. As shown,
the performance improves gradually with the increasing of the
number of “ExpLet” K and the preserved dimension dim,
and the peak values outperform the FV results significantly.
Even with the same dimension of final FV representation (i.e.
2 ∗ 64 ∗ k = 128k), our method (with dim = 128) always
performs a little better, which proves that the covariance
pooling scheme can capture more dynamic information for
expression description thus benefits the final recognition.

Another observation is about the results based on different
descriptors. For both FV and ExpLet, on CK+, Oulu-CASIA,
and MMI, dense SIFT consistently performs much better
than HOG, while on FERA, the HOG shows clearly superior
to SIFT under all settings. The main difference of the two
descriptors is whether encoding the temporal information, i.e.
SIFT is in 2D and HOG is in 3D. We conjecture that for
spontaneous samples in FERA, the variations along temporal
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TABLE IV
AVERAGE RECOGNITION ACCURACY (%) BASED ON FISHER VECTOR ON FOUR DATABASES.

(a) CK+ (HOG)

w, h k=4 k=8 k=16 k=32 k=64 k=128 k=256
16 58.07 65.91 68.43 78.27 77.10 80.22 83.60
24 61.17 71.10 79.05 82.42 82.92 84.31 82.88
32 66.36 73.16 76.68 81.52 80.83 80.56 78.38

(b) CK+ (SIFT)

w, h k=4 k=8 k=16 k=32 k=64 k=128 k=256
16 69.35 75.24 81.14 85.04 85.09 83.55 84.69
24 72.45 78.57 84.69 86.24 87.51 87.35 89.18
32 77.02 84.92 83.64 84.99 88.88 85.95 83.44

(c) Oulu-CASIA (HOG)

w, h k=4 k=8 k=16 k=32 k=64 k=128 k=256
16 48.54 50.83 54.79 57.08 59.38 64.17 67.92
24 51.88 57.08 62.71 61.67 67.08 67.71 69.79
32 46.46 51.46 56.46 61.04 64.38 68.54 67.71

(d) Oulu-CASIA (SIFT)

w, h k=4 k=8 k=16 k=32 k=64 k=128 k=256
16 54.38 58.33 62.50 65.63 66.67 71.88 71.46
24 49.58 59.79 61.67 62.08 68.13 68.96 71.67
32 55.42 58.33 61.25 66.67 68.96 70.63 72.92

(e) MMI (HOG)

w, h k=4 k=8 k=16 k=32 k=64 k=128 k=256
16 42.06 47.02 48.33 55.57 55.10 54.00 58.58
24 42.76 54.81 60.39 62.56 63.41 62.70 64.54
32 37.99 50.94 57.37 59.24 63.99 64.03 53.77

(f) MMI (SIFT)

w, h k=4 k=8 k=16 k=32 k=64 k=128 k=256
16 40.06 58.42 54.00 60.49 63.39 66.32 65.11
24 43.21 61.40 62.27 62.16 65.62 63.77 63.48
32 49.33 57.32 62.33 66.28 68.64 61.49 58.59

(g) FERA (HOG)

w, h k=4 k=8 k=16 k=32 k=64 k=128 k=256
16 53.00 58.88 53.06 55.02 61.45 60.83 58.19
24 57.42 55.44 62.01 63.39 63.48 67.29 66.58
32 59.48 62.71 60.79 59.50 67.10 60.03 54.20

(h) FERA (SIFT)

w, h k=4 k=8 k=16 k=32 k=64 k=128 k=256
16 50.47 56.25 52.38 58.88 58.31 59.54 62.15
24 59.69 56.06 61.33 60.17 60.83 60.17 60.67
32 53.03 55.57 52.97 56.94 60.75 60.71 48.41

TABLE V
AVERAGE RECOGNITION ACCURACY (%) BASED ON EXPRESSIONLET ON FOUR DATABASES.

(a) CK+ (HOG)

dim k=4 k=8 k=16 k=32 k=64 k=128 k=256
32 60.05 68.25 75.35 72.18 77.81 77.92 77.14
64 65.57 70.67 73.51 80.55 79.52 78.55 80.39
128 72.66 77.03 77.04 80.26 82.27 81.68 81.19
256 76.26 77.00 81.09 81.70 85.45 82.97 82.37
512 76.38 77.17 83.19 83.46 85.56 83.77 82.82

(b) CK+ (SIFT)

dim k=4 k=8 k=16 k=32 k=64 k=128 k=256
32 68.09 75.11 78.69 82.31 80.71 85.51 83.28
64 76.59 78.59 84.48 86.72 86.19 87.16 88.57

128 82.30 84.42 84.16 88.16 89.28 89.76 89.93
256 86.05 86.45 87.46 89.20 90.48 90.99 91.82
512 87.06 88.02 87.15 90.04 90.20 90.99 90.71

(c) Oulu-CASIA (HOG)

dim k=4 k=8 k=16 k=32 k=64 k=128 k=256
32 33.75 41.04 50.63 57.29 60.63 61.67 63.75
64 36.88 48.96 60.21 62.08 63.96 64.79 67.08
128 45.21 54.79 66.67 65.83 66.46 70.21 69.58
256 50.63 58.54 68.13 68.75 70.21 72.08 72.50
512 54.17 62.50 69.38 71.04 72.50 73.54 73.75

(d) Oulu-CASIA (SIFT)

dim k=4 k=8 k=16 k=32 k=64 k=128 k=256
32 42.08 53.54 58.33 60.42 66.88 66.46 69.38
64 51.25 61.46 65.42 64.38 71.04 70.00 72.08

128 57.50 64.79 66.25 69.17 72.71 72.50 74.79
256 61.04 67.29 70.83 71.67 73.96 75.83 76.46
512 63.96 69.38 73.75 73.75 75.63 76.46 76.88

(e) MMI (HOG)

dim k=4 k=8 k=16 k=32 k=64 k=128 k=256
32 37.45 42.75 51.88 58.70 64.04 58.02 61.25
64 42.22 53.90 56.76 62.52 66.44 62.16 64.30
128 46.47 55.58 60.41 65.05 68.64 63.64 69.18
256 49.38 58.92 62.35 66.53 69.02 63.91 68.92
512 49.11 58.96 63.16 67.00 67.58 66.33 68.32

(f) MMI (SIFT)

dim k=4 k=8 k=16 k=32 k=64 k=128 k=256
32 46.13 49.12 51.71 58.42 63.89 63.27 65.16
64 52.49 55.16 58.86 67.07 61.55 64.53 68.06

128 59.59 59.00 65.33 66.84 68.56 67.51 68.15
256 62.84 62.34 65.15 66.66 70.14 69.83 71.33
512 62.16 63.83 69.35 68.17 72.00 71.29 71.88

(g) FERA (HOG)

dim k=4 k=8 k=16 k=32 k=64 k=128 k=256
32 51.99 43.06 52.30 61.32 59.90 63.75 61.85
64 53.37 44.41 54.84 59.34 61.88 65.06 63.79
128 57.95 49.60 58.69 61.92 63.79 67.58 68.25
256 56.53 52.18 58.05 62.50 63.77 68.20 69.52
512 56.53 50.91 58.01 62.46 61.83 65.62 67.58

(h) FERA (SIFT)

dim k=4 k=8 k=16 k=32 k=64 k=128 k=256
32 38.75 50.28 54.14 56.72 60.65 64.50 62.52
64 41.35 56.66 56.15 54.84 60.03 58.07 61.25
128 45.79 58.55 56.80 55.49 59.98 60.61 61.23
256 49.64 58.59 60.67 59.26 60.00 61.23 63.15
512 48.99 59.22 63.84 60.57 63.19 62.50 63.77
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dimension are more complex and thus require more detailed
and elaborate encoding via low-level descriptors.

E. Comparisons with state-of-the-art methods

In this section, we compare the final results with several
state-of-the-art methods. Two performance metrics, i.e. the
mean recognition accuracy on each category (denoted as
“mAcc”) and the overall classification accuracy (denoted as
“Acc”) are measured for comparison. The results are listed in
Table VI. The comparisons on CK+, Oulu-CASIA, and MMI
are under exactly the same protocols, and our “ExpLet” out-
performs the existing methods significantly on both indicators
(Note that, for Oulu-CASIA, “mAcc” is equal to “Acc” as the
numbers of samples of all categories are the same). On FERA,
by adopting cross-validation only on the training set (the same
to [46]), we compare the results with 4 most recent methods.
We also review some methods in FERA challenge [44], in
person-independent setting, our result ranks in the 2nd place,
only next to the “avatar” based method [47] with the accuracy
of 75.2%. This may be due to that our method used fewer
(6 vs. 7) subjects for training than [47]. Finally, the confusion
matrices based on “Dis-ExpLet” on four datasets are illustrated
in Figure 13. On all posed datasets, “happy” is always easy to
be recognized, while “fear” and “sad” are more difficult and
easy to be confused with each other. However, on spontanous
dataset FERA, low accuracy is obtained almost on all of the
categories due to the large variations in natural and different
performing manners from each subject.

VI. CONCLUSION

In this paper, we propose a new method for dynamic
facial expression recognition. By considering two critical
issues of the problem, i.e. temporal alignment and semantics-
aware dynamic representation, a kind of variation modeling
is conducted among well-aligned spatio-temporal regions to
obtain a group of expresssionlets, which serve as the mid-level
representations to bridge the gap between low-level features
and high-level semantics. As evaluated on four state-of-the-
art facial expression benchmarks, the proposed expression-
let representation has shown its superiority over traditional
methods for video based facial expression recognition. As the
framework is quite general and not limited to the task of
expression recognition, an interesting direction in the future is
to exploit its applications in other video related vision tasks,
such as action recognition and object tracking.
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TABLE VI
STATE-OF-THE-ART METHODS ON DIFFERENT DATABASES. (“EXPLET*” IS THE RESULTS REPORTED IN [14].)

(a) CK+

Methods mAcc Acc
CLM [4] 74.4 82.3

AAM [41] 83.3 88.3
ITBN [31] 86.3 88.8
MCF [48] 89.4 –

Fisher Vector 89.2 91.7
ExpLet* [14] – 94.2

ExpLet 92.8 94.8
Dis-ExpLet 93.8 95.1

(b) Oulu-CASIA

Methods (m)Acc
AdaLBP(SVM) [5] 73.5
AdaLBP(SRC) [5] 76.2

LBP-TOP [42] 72.8
Atlases [42] 75.5
Fisher Vector 72.9
ExpLet* [14] 74.6

ExpLet 76.9
Dis-ExpLet 79.0

(c) MMI

Methods mAcc Acc
HMM [31] 51.5 –
ITBN [31] 59.7 60.5

3DCNN [46] 50.7 53.2
3DCNNDAP [46] 62.2 63.4

Fisher Vector 68.6 70.7
ExpLet* [14] – 75.1

ExpLet 72.4 73.7
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(d) FERA

Methods mAcc Acc
MSR [49] 56.6 –
MCF [48] 65.6 –
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Fig. 13. Confusion matrices based on “Dis-ExpLet” on four datasets. (a) CK+ (b) Oulu-CASIA (c) MMI (d) FERA.
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