
Dynamic Programming Using Polar Variance for Image 
Segmentation

José A. Rosado-Toro [Student Member, IEEE],
Electrical and Computer Engineering, University of Arizona, Tucson, AZ 85721 
(jrosado@email.arizona.edu)

María I. Altbach, and
Department of Medical Imaging, University of Arizona, Tucson, AZ 85724 
(maltbach@radiology.arizona.edu)

Jeffrey J. Rodríguez [Senior Member, IEEE]
Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ 85721 
(jjrodrig@email.arizona.edu)

Abstract

When using polar dynamic programming (PDP) for image segmentation, the object size is one of 

the main features used. This is because if size is left unconstrained the final segmentation may 

include high-gradient regions that are not associated with the object. In this paper, we propose a 

new feature, polar variance, which allows the algorithm to segment objects of different sizes 

without the need for training data. The polar variance is the variance in a polar region between a 

user-selected origin and a pixel we want to analyze. We also incorporate a new technique that 

allows PDP to segment complex shapes by finding low-gradient regions and growing them. The 

experimental analysis consisted on comparing our technique with different active contour 

segmentation techniques on a series of tests. The tests consisted on robustness to additive Gaussian 

noise, segmentation accuracy with different grayscale images and finally robustness to algorithm-

specific parameters. Experimental results show that our technique performs favorably when 

compared to other segmentation techniques.
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I. INTRODUCTION

Automated object segmentation is a necessary step in many image analysis applications. In 

this manuscript we propose an improved method for extracting a closed contour of an object 

based on a single user-defined seed point within the object. Kass et al. [1] developed a 

segmentation technique known as active contours or snakes, which uses external forces such 

as edge strength and internal forces such as elasticity to evolve an initial contour to a 

minimum energy state. One of the problems with the technique is its inability to segment 

complex objects [2]. To address this issue, several models have been developed. Among 

them are gradient vector flow models [2][3][4][5][6], region-based models[7][8][9][10][11]
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[12], and level-set models [13][14][15][16][17][18][19]. Although these algorithms can 

segment complex shapes, the evolution of the curves is constrained by the number of 

iterations. If the number of iterations is too small, the contour may not evolve to its optimum 

state, whereas if it is too large and it does not converge quickly the algorithm may take a 

long time to run.

Another approach for segmenting objects is dynamic programming [20]. Dynamic 

programming has been used for a series of applications including outlining pectoral muscle 

boundaries [21], resizing images [22], creating superpixels [23], and generating a closed 

contour [24]-[26]. To generate a closed contour, Sun and Pallotino [24], Timp and 

Karssemeijer [25] and Zhang et al. [26] transformed the image space from Cartesian to polar 

coordinates. By finding a path, as defined by [20], in polar coordinates, they were able to 

segment features in medical images, such as masses in mammograms [25] and bladders in 

MR images [26] without needing an iteration parameter. Unfortunately, the algorithm 

outlined in [24]-[26] consists of two major drawbacks that prevent it from being used as a 

general-purpose algorithm. First, it requires training data to constrain the size of the object 

being segmented. The size constraint helps prevent the closed contour from latching onto 

high-gradient regions that are not associated with the object. The second major drawback is 

that this algorithm cannot segment shapes for which rays emanating from the selected origin 

within the shape intersect the shape boundary in more than one point, for example a hand. 

To allow the algorithm to segment different-sized objects without needing training data, we 

introduce a preprocessing step where a polar variance image is calculated from the image 

(Section II-A). To segment complex shapes using the polar representation of the image, 

techniques such as fast marching techniques [27][28], PDEs [29], or active contours [30] are 

used to find a path. In this manuscript, we develop a technique that uses dynamic 

programming to segment complex shapes by growing low-gradient regions of the contour 

(Section II-E). We provide experimental results comparing our algorithm, which we call 

polar dynamic programming (PDP), with other state-of-the-art algorithms on a variety of test 

images.

II. PROPOSED METHOD

The proposed PDP algorithm begins with a simple PDP (SPDP) method to generate a closed 

contour representing a simple object shape. The first step of the SPDP algorithm is to 

preprocess the input image to obtain a polar variance image. The second step is to calculate 

the cost function needed by the dynamic programming algorithm. This includes generating 

the cost function in Cartesian space and later resampling to a uniform polar grid (Up). The 

third step is to use dynamic programming to generate a closed contour representing the 

object shape. The PDP algorithm then extends this contour by applying a localized region 

growing technique for segmenting complex shapes.

A. Polar Variance Image

To obtain closed contours using dynamic programming, Timp [25] and Zhang [26] had to 

constrain the size of the final segmentation by using training data. They constrained the size 

because the closed contour may latch onto high-gradient regions that are not associated with 
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the object. Requiring training data to constrain the size of the final segmentation reduces the 

generalization of the algorithm; therefore, we introduce a preprocessing step to generate 

what we define as the polar variance image.

Given an image I, the first step is to normalize the intensities from 0 to 1. We then define 

each pixel in I as I(x, y) where (x, y) are the coordinates in the uniform grid G(x, y) and is 

the edge strength of I(x, y). The edge strength with no Gaussian smoothing is generally 

calculated as

G x, y = ∣ ∇I x, y ∣2, (1)

whereas with Gaussian smoothing the edge strength is calculated as

G x, y = ∣ ∇ Gσ x, y ∗ I x, y ∣2 . (2)

Here, Gσ(x, y) is a 2-D Gaussian function with standard deviation σ, * denotes linear 

convolution, and ∇ is the gradient operator [1]. We assume that I(x, y) is scalar (i.e., a 

grayscale image), but the derivation can be generalized for higher dimensionality. 

Introducing an origin (xo, yo) allows us to represent I(x, y) and G(x, y) as f(θ, ρ) and in polar 

coordinates as follows:

ρ = x − xo
2 + y − yo

2, (3)

θ = tan−1 y − yo
x − xo

, (4)

f θ, ρ = I x, y , (5)

g θ, ρ = G x, y . (6)

Using the polar representation, we define the polar variance image as
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V θ, ρ = ∫
0

ρ∫
θ − γ

θ + γ
f ϕ, r − f‒ ϕ, r 2dr dϕ, (7)

where

f‒ θ, ρ = ∫
0

ρ∫
θ − γ

θ + γ
f ϕ, r dr dϕ . (8)

In these equations, γ is a smoothing parameter. The higher γ is, the more smoothed the 

polar variance image will be. Note that the polar variance image is cumulative because the 

integral spans radii from the origin to the pixel being analyzed. Although variance as a 

feature has been used for segmentation [8] and as a preprocessing technique [27][32], to the 

best of our knowledge ours is the first segmentation algorithm that calculates a cumulative 

variance based on polar region coordinates. Fig. 1 shows the results of the polar variance 

image on two different scenarios. The short-axis cardiac MR image, shown in Fig. 1(a), 

contains high-gradient regions that are not part of the right ventricle (i.e. the object with the 

dot). Fig. 1(b) shows an image where rays emanating from an origin (the dot) will intersect 

the hand boundary in more than one point. Fig. 1(c) shows the polar variance image of Fig. 

1(a). Note that the right ventricle has low variance values, whereas high gradient regions that 

are not associated with the right ventricle have high variance values. Fig. 1(d) shows the 

polar variance image of Fig. 1(b). Note that the polar variance image does not have low 

values in the entire hand boundary just in the regions where the rays intersect the shape 

boundary at only one point.

B. Cost Function

The gradient and variance values are the features that will be optimized using dynamic 

programming. As a general rule, we want the variance values inside the closed contour to be 

low, and we want the gradient values along the contour to be high. Therefore, we define the 

cost function as

C θ, ρ = αV θ, ρ + β exp − g θ, ρ , (9)

where α and β are parameters for determining the importance of each feature.

1) Polar Resampling—To use dynamic programming as defined by [20], we require a 

uniform grid. Due to the discrete nature of I, its polar representation is not uniformly 

sampled. Therefore, we resample on a uniform polar grid (Up), which is the lattice 

comprising points (θi, ρj) = (iΔθ, jΔρ) that span the image domain. We derive the sampling 

intervals (Δρ and Δθ) to ensure that the polar grid has sufficient resolution to localize each 

pixel in the rectangular grid. First, we find the (x, y) coordinates that are farthest from the 
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origin (xo, yo). We consider a neighboring pixel (e.g., this could be the pixel at (x - 1, y) if 

the farthest point is at the upper-right corner). As a general rule, the smaller the angular 

sampling interval (Δθ), the bigger the maximum allowed curvature of the extracted contour. 

To find the minimum Δθ required to localize every pixel in the image, we find the angular 

difference between the two neighboring pixels farthest from the origin:

Δ θmin = tan−1 y − yo
x − xo

− tan−1 y − yo
x − 1 − xo

. (10)

The Δθ values used for analysis are multiples of Δθmin.

The minimum absolute radial difference between pixels with the same angular value is 1 

pixel. Therefore a Δρ ≤ 1 can be used to localize every pixel in the image. For our 

experiments we used Δρ = 0.5.

Unlike active contours, our cost function (9) does not explicitly minimize the curvature of 

the extracted contour. Instead, the curvature of the contour of the segmented object is based 

on the value of we select. Fig. 2 shows how the value affects the curvature of the contour.

2) Interpolation—For each (θi, ρj) ϵ UP point we compute the corresponding Cartesian 

coordinates as

x = ρ j cos θi , (11)

y = ρ j sin θi . (12)

Then we use bilinear interpolation [33] to generate the cost function (CP(θi, ρj)) from the 

cost function values at the four pixels that surround the point (x, y) in the Cartesian space.

C. Dynamic Programming

After generating a uniformly sampled polar representation of the cost function (CP), the next 

step is to use dynamic programming to compute the object contour by finding a path, as 

defined by [20]. This path, denoted as ρpath(θi), is a function of θi because the path will pass 

through only one radius value for each θi. Also, the absolute radial difference between 

adjacent angles will be Δρ or 0. The general approach is to find the radii that minimize the 

cumulative sum of the cost function (Cp). To obtain a closed contour, the ρpath value 

associated with θi = 0° and θi = 360° must be the same. To add this constraint to the 

dynamic programming, we use the image patching algorithm (IPA). This technique, coined 

by Sun and Pallotino [24], consists of extending θi in a periodic fashion. In their work, Timp 

and Karssemeijer extends θi from [−180°, 180°] to [−540°, 540°]. For these experiments we 
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define our array from [0°, 360°] and in turn extend to [−360°, 720°]. This extended version 

of the cost function is referred as Cp
∗.

Given Cp
∗ we initialize the cumulative sum Mp as follows. To initialize we let 

Mp − 360°, ρ j = Cp
∗ − 360°, ρ j  for each ρj. The other Mp values are recursively computed:

Mp θi, ρ j = min Mp θi − Δ θ, ρ j − Δ ρ , Mp θi

− Δ θ, ρ j , Mp θi − Δ θ, ρ j

+ Δ ρ + Cp
∗ θi, ρ j ,

(13)

for each θi ∈ − 360° + Δ θ, 720°  and for each ρj.

Once Mp has been generated, ρpath is initialized as follows:

ρpath 720° = argmin
ρ

Mp 720°, ρ . (14)

The rest of the path, for θi ∈ − 360°, 720° − Δ θ , is created as follows:

ρpath θi = argmin
ρ ∈ ρpath θi + Δ θ ,

ρpath θi + Δ θ + Δ ρ,

ρpath θi + Δ θ − Δ ρ

Mp θi, ρ . (15)

Note that ρpath is defined for θi ∈ − 360°, 720° , just like MP. To generate the closed 

contour, we only keep ρpath for θi ∈ 0°, 360° − Δ θ . To convert to the Cartesian 

coordinate system, we use (11) and (12) to convert ρpath and θi to x and y.

One of the drawbacks of the IPA is that a closed path is not guaranteed[24][25]. Timp and 

Karssemeijer noted that using IPA generated a closed contour on 98 percent of the data they 

used for analysis. To ensure a closed contour we use Bresenham’s line algorithm [34] to join 

the (x, y) coordinates associated with ρpath(0°) and ρpath(360° − Δθ). This step allowed our 

technique to generate a closed contour on all cases.

D. Optimizing for Multiple Values

In case a single Δθ does not suffice, we generate a closed contour using multiple Δθ values 

(i.e., multiple curvature values), which are multiples of Δθmin, as discussed in Section II-B.

1. We select the Δθ value that optimizes a cost function as follows:
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Δ θ∗ = argmin
Δ θ

α∫
Ω1

V x, y dxdy

+ β∫
Ω2

exp g x, y dxdy

(16)

where Ω1 is the interior of the extracted closed contour and Ω2 is the extracted closed 

contour. We define the union of Ω1 and Ω2 as the mask, Ω = Ω1 ∪ Ω2.

E. Localized Region Growing

The simple PDP algorithm (SPDP) presented in Sections II-A to II-D can segment simple 

shapes for which rays emanating from an origin within the shape intersect the shape 

boundary in one point without the need for training data. However, this technique may 

generate undersized contours in the case of more complex shapes. To segment complex 

shapes, we grow the extracted closed contour (Ω2) using the localized region growing 

procedure shown in Fig. 3. The procedure begins by localizing weak sub-contours (Fig. 3, 

line 2). A weak sub-contour is a region in Ω2 that has a gradient magnitude less than or equal 

to the mean gradient magnitude in Ω1. A size constraint can be used to potentially reduce the 

number of analyzed weak sub-contours. For our experiments we do not use a size constraint. 

For each weak sub-contour, we run SPDP with a new origin located on the weak sub-contour 

to produce a temporary mask (Ωtemp) (Fig. 3, lines 5-7). This temporary mask is refined to 

include regions that do not overlap with Ω, thus forming a new mask (Ωnew) (Fig. 3, lines 

8-13). If the total length of the weak sub-contours in the new mask is less than the length of 

the weak sub-contour we are growing, we keep the new mask (Fig. 3, lines 14-18). The 

portion of the weak sub-contour that overlaps with the new mask is marked as closed (Fig. 3, 

line 19-20). Finally, new weak sub-contours are added (Fig. 3, line 23). This is repeated until 

all the weak sub-contours have been examined. Fig. 4 shows an example where the localized 

region growing is used to grow the closed contour to include the thumb.

F. Complexity Analysis

The complexity of the algorithm is expressed as O r n2 + α 3vu . n is the number of 

elements in the image, u and v are the height and width of the polar representation of the 

cost function that is used with dynamic programming. u =
ρmax
Δ ρ + 1 , where ρmax is the 

Euclidean distance between the origin and the farthest point in the image; v = 3 360°
Δ θ + 1

(see Section II-C). α are the number of angles used (Section II-D) and r are the number of 

low-gradient regions that will be grown (Section II-F). O(n2) is the complexity associated 

with calculating the variance image, and O(3vu) is the complexity associated with finding a 

path using IPA. Note that in the case where α > 1, the upper bound complexity can be found 

by using the widest v (i.e., when Δθ = Δθmin).
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III. RESULTS AND ANALYSIS

We compare the PDP algorithm to several active contour segmentation algorithms [5][6],[8],

[12],[19],[27] using a variety of tests. The first test measures the robustness to additive 

Gaussian noise. The second test measures segmentation accuracy using different grayscale 

images. The third test shows the robustness to algorithm-specific parameters. The final test 

tests the robustness of PDP to changes in origin selection.

The algorithms’ performance is measured using the Dice metric [35] and the average border 

positioning error (BPE) [36]. The Dice metric finds the mutual overlap between the mask 

generated by the automated algorithm and the mask generated by manual segmentation (i.e., 

ground truth). The average BPE gives the mean difference (in pixels) between the automated 

and manual contours. An automated mask that perfectly matches the manual mask will yield 

an average Dice value of 1 and an average BPE of 0 pixels.

The images used for these experiments are roughly100×100. The experiments were carried 

out in a MacBook Pro with 2.4 GHz Intel Core i5 processor and 4 GB RAM.

A. Parameter Selection

To achieve the best performance, the proper set of parameters needs to be used. Table I 

shows the algorithm-specific parameters that will be tuned to compare the algorithms. The 

ranges used for the parameters are the ones specified by the authors [5][6][12][19] in their 

work. For [27] we introduce the parameter Δθ. Experimental results showed that the 

technique is susceptible to changes in the polar representation of the image; therefore similar 

values to the ones used for PDP are used. In [12], the authors note that the Chan-Vese 

algorithm [8] is just a specific formulation (zero-degree polynomial) of the generalized 

Legendre polynomial framework. Therefore, we rename the algorithm using the zero-degree 

polynomial (m = 0) as the Chan-Vese (CV) algorithm. Higher-degree polynomials are 

defined as the Legendre level-sets (L2S) algorithm. The algorithms described in [19],[5][6] 

and [27] are defined as distance-regularized level-set evolution (DRLSE), Poisson inverse 

gradient (PIG) and globally optimal geodesic active contour (GOGAC), respectively.

The PDP method uses the following parameters: γ, Δρ, Δθ, α, β, σ. For the images used in 

this paper (100 × 100 pixels), we use γ = 5° and Δρ = 0.5 pixels. To further reduce our 

search space, we let β = 1 − α. Even though (7) allows the PDP algorithm to handle multiple 

curvatures (see Section II-D), for simplicity we use only one curvature value for the 

parameter selection. Note that Δθ the values shown in Table I are multiples of Δθmin. For the 

images used in this paper, Δθmin = 0.1°.

Aside from the parameters, the L2S, DRLSE, and CV algorithms require a mask, whereas 

PDP and GOGAC require an origin, (xo, yo). PIG is able to generate the mask in an 

automated fashion.

B. Sensitivity to Additive Gaussian Noise

To evaluate the performance of PDP under additive Gaussian noise, we add zero-mean 

Gaussian noise to a simulated crescent-shaped object, shown in Fig. 5(a), using 11 different 
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signal-to-noise ratio (SNR) levels in the 0–10 dB range. The SNR [37] is calculated in terms 

of the mean intensity values as

SNR = 10 log10
∣ μobject − μbackground ∣

σbackground
dB . (17)

To ensure that the results are statistically significant, we used 100 noise realizations at each 

SNR level. Fig. 5(b) and 5(c) show an instantiation of the 5 dB and the 0 dB cases. To find 

the parameters for the different algorithms, we randomly selected an image from each of the 

11 noise levels and selected the set of parameters (shown in Table I) that gave the best mean 

Dice metric. Fig. 5(a) shows the initial contour used for L2S, DRLSE, and CV and the origin 

(shown as a dot) required for PDP and GOGAC. The results (i.e., average Dice and average 

BPE) for all the algorithms for different SNR levels are shown in Fig. 6. At low SNRs (e.g., 

0-1), GOGAC outperforms all techniques, and for higher SNRs CV and L2S outperform all 

the other techniques. One explanation for the low performance for CV and L2S at low SNR 

is that they do not smooth the input image as a preprocessing step and thus can be influenced 

by high noise. Conversely, the absence of smoothing allows these algorithms to generate 

good results at higher SNR levels. One explanation for the low performance of PDP at low 

SNR levels is the gradient image. At low SNR levels there are multiple high gradient regions 

associated with noisy pixels and thus the technique may get latched into edges associated 

with noisy pixels. Increasing σ will mitigate these problems.

C. Grayscale Images

To evaluate the performance of the algorithms with different grayscale images we used the 

non-medical and medical images shown in Fig. 7. The first row shows the initialization 

contour for L2S, DRLSE, CV, as well as the initial origin (dot) used for PDP and GOGAC. 

The other rows show the closed contours obtained with the PDP, L2S, DRLSE, PIG, 

GOGAC, and CV algorithms. In Fig. 7(e) and 7(f) the algorithms are outlining the right 

ventricle and left atrium on cardiac MR images, respectively. The parameters used for the 

different algorithms are those that gave the best Dice metric. The Dice metric and average 

BPE for the images are shown in Table II. The proposed algorithm is able to segment high 

curvature objects with well defined edges similar to L2S or CV (e.g., Fig. 7(a), 7(b), and 

7(c)), while also being able to segment lower curvature objects with lower contrast (e.g., Fig. 

7(d), 7(e), and 7(f)), similar to the PIG and GOGAC algorithms.

Note that for the PIG algorithm we had to input the number of objects present in the image. 

In the horse and short-axis right ventricle image, we indicated to look for two objects, 

whereas for the four-chamber left atrium we indicated to look for four objects. Once the 

algorithm had generated multiple contours, we kept the contour with the best Dice metric.

The main limitation of the PDP algorithm is shown in Fig. 8, which is a schematic of the tail 

region of the horse shown in Fig. 7(c). Given a weak sub-contour, shown as a thick black 

line in Fig. 8(a), the localized region growing (Section II-E) finds a new origin, shown in 

Fig. 8(b), and generates a new mask. To add the new mask (Ωn) to the prior mask (Ω), the 

Rosado-Toro et al. Page 9

IEEE Trans Image Process. Author manuscript; available in PMC 2018 April 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



number of low-gradient pixels in the new extracted closed contour must be less than the 

number of pixels in the weak sub-contour. Since the PDP segmentation (Sections II-A to II-

D) finds the optimum path given that the rays emanating from the new origin within the 

shape intersect the shape boundary in one point, the new mask is not the entire tail, but a 

subsection of the tail, shown in Fig. 8(c). Since the weak gradient region of the new mask, 

shown as a thick black line in Fig. 8(c), is bigger than the weak sub-contour, the weak sub-

contour is marked as closed and thus the algorithm fails to outline the horse tail. Note that 

the segmentation generated by GOGAC for Fig. 7(c) is very similar to the one generated by 

PDP.

The evaluation of the grayscale images using a suboptimal implementation of the PDP in 

MATLAB took 10-70 seconds; similar MATLAB implementations of L2S, DRLSE, PIG, 

GOGAC and CV took 1-7 seconds, 20-49 seconds, 0.3-1 seconds, 0.5-7 seconds and 0.5-5 

seconds respectively.

D. Parameter Robustness

Aside from the segmentation accuracy, we also evaluated the robustness of the algorithm-

specific parameters shown in Table I. We selected the parameters that generated the masks 

shown in Fig. 7 and changed them by ±1, ±5, ±10 and ±15 percent. An algorithm that is 

robust to its parameters will yield similar results even when the parameter has been changed 

by as much as percent. This analysis was performed only on the grayscale images where the 

technique yielded a Dice metric equal or higher than 0.8, as seen in Table II. For PDP, and 

GOGAC all 6 images where used; for PIG and DRLSE 5 of 6 images were used; for CV 4 of 

6 images were used and for L2S 3 of 6 images were used.

Table III shows the mean difference between the performance metrics given the change in 

parameters. These changes were done with some constraints (shown in Table III) to generate 

valid values. For example, in PDP and DRLSE there can be smoothing (σ = 1.5) or no 

smoothing (σ = 0). Non-positive σ values are not valid; therefore, in cases where a non-

smoothed gradient (σ = 0) generated the best result, σ = 0.01, 0.05, 0.1, 0.15 were used 

instead.

Positive values in Table III show performance degradation, meaning that the masks 

generated with the new parameters yielded a smaller Dice metric or higher average BPE 

than the ones generated with the initial parameter. A negative value (i.e., improvement) 

means that using the new parameter generated a mask with either a higher Dice metric or a 

lower average BPE than the initial parameter. There are cases where the Dice metric gives a 

positive value while the average BPE shows a negative value. This is because we are using 

the parameters that optimize the Dice metric, not the average BPE.

As a general rule, the value of α should be selected as follows. To segment an object with 

one mode (e.g., Fig. 7(e)) the value of α should be in the 0.6-0.9 range. When segmenting an 

object that has more than one mode, but its gradient magnitude is high compared to the 

background (e.g., Fig. 7(d)), the value of α should be in the 0-0.3 range. For high-curvature 

objects (e.g., Fig. 7(b)), a σθ value close to σθmin should be used. For low-curvature objects, 

σθ should be a multiple of σθmin. When the gap between the edges is small (e.g., Fig. 7(c)), 
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no smoothing should be applied (i.e., σ = 0). When dealing with noisy images, a value of σ 
> 0 should be used.

The L2S algorithm was not affected by changes to λ1 and λ2; for v the degradation was 

fairly small. A change of ±15% in v produced a degradation of less 5% than in the mean 

Dice metric and a bias of less than 2 pixels for average BPE. For L2S the polynomial order 

(m) turned out to be a sensitive parameter in this set of images. Unlike most of the 

parameters shown in Table I, m could only have two possible values, 2 or 3. We quantified 

the effect on the performance by using the incorrect polynomial order (e.g., m = 2 instead of 

m = 3 for L2S). Using this approach we observe a degradation of 20% in the mean Dice 

metric for selecting the wrong polynomial order.

DRLSE was sensitive to variations on all its parameters. PIG was sensitive to variations on 

all its parameters, except α. The main problem of the algorithm was the inability to generate 

an initial closed contour that was on the object we wanted to segment. This is one of the 

main drawbacks of using a purely automated method for creating the mask. GOGAC was 

robust to most algorithm-specific parameters with the exception of exponential on gradient 

strength (p). Selecting the incorrect exponential of gradient strength resulted in a 

degradation of 3% in the mean Dice metric. CV was robust to changes in λ1, λ2 and v. A 

change of ±15% in v resulted in less than a in degradation in the Dice metric and a bias of 

less than 0.01 pixel.

E. Robustness to Initialization

Aside from the algorithm-specific parameters, we tested the robustness of the PDP to 

initialization (i.e., origin). This test focused on two images, the hand (Fig. 7(b)) and the 

horse (Fig. 7(c)) using the parameters that yielded the results shown in Fig. 7. Fig. 9 shows 

the location of the initialization points as well as the Dice metric, average BPE and 

convergence time. For the hand image (Fig. 9(a)) 241 initializations were used. From the 

241 used initializations, 170 (i.e., green dots) yielded comparable Dice and average BPE 

metrics reported in Table II and shown in Fig. 7(b). Most of these initializations resided in 

the central part of the hand. The other 71 initializations (i.e., red dots in Fig. 9(a)) failed to 

segment the object and thus, have a lower Dice and higher average BPE. This is because 

when the origin resides on one of the fingers, it finds an initial segmentation (SPDP) that 

outlines the finger. When GROW tries to grow the low-gradient regions (Section II.E), the 

total length of the weak sub-contours in the new mask is more than the length of the weak 

sub-contour, therefore the new mask is rejected and the technique stops growing, thus failing 

to outline the hand. This explains why there is a drop in the average convergence time.

For the horse image (Fig. 9(b)), 86 different origins were used. Out of the 86 different 

initializations, the 39 that covered the body of the horse yielded similar results to the ones 

reported in Table II and shown in Fig. 7(c). The failing cases happened when the 

initializations fell in the tail, the hind leg, the face or the front legs. Similar to Fig. 9(a) there 

is a drop in both Dice and average convergence time, and an increase in the average BPE.
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IV. CONCLUSION

We developed an algorithm that uses polar dynamic programming to outline complex 

shapes. By introducing the polar variance image, we did not have to constrain the size of the 

object for correct boundary delineation, something that previous implementations of polar 

dynamic programming [24]-[26] were not able to accomplish. The proposed algorithm is 

able to segment high curvature objects, while also segmenting low-gradient objects. We 

showed that our technique performed favorably when compared to other segmentation 

algorithms. In future work we will extend the algorithm to segment 3D objects.
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Fig. 1. 
Grayscale and polar variance images. (a) Short-axis cardiac MR image and (b) hand image. 

(c-d) Polar variance images of (a) and (b) respectively. The dot denotes the object we wish to 

outline (right ventricle in (a), the entire hand in (b)) and is used to calculate the polar 

variance image. Black in the polar variance images represents low variance.
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Fig. 2. 
Assessing how Δθ affects closed contour. For this example, α and β equal 0.5. The dot is the 

origin used for PDP. Results using a Δθ of (a) 5° and (b) 0.1°. Closed contours have been 

dilated for viewing purposes.
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Fig. 3. 
Pseudo code of localized region-growing (Section II-E).
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Fig. 4. 
Schematic of the thumb region of the hand shown in Fig. 1(b). The thin black line represents 

the high gradient region and the white background is the low gradient region. (a) The gray 

thick line shows part of the high gradient extracted contour of the original mask. The black 

thick line is the weak sub-contour. (b) The dot is the new origin positioned in the middle of 

the weak sub-contour shown in (a). (c) The gray thick line is the high gradient extracted 

contour that does not intersect with the original mask, (a).
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Fig. 5. 
Simulated images with SNR = (a) ∞ , (b) 5 and (c) 0 dB. Outline in (a) is the initial closed 

contour used for L2S, DRLSE and CV; dot is the origin location used for PDP and GOGAC. 

Closed contour has been dilated for viewing purposes.
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Fig. 6. 
Noise sensitivity performance analysis for (a) average Dice performance and (b) average 

border positioning error (BPE) in pixels. One hundred noisy images were created for each 

SNR level by adding Gaussian noise to the image shown in Fig. 5(a).
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Fig. 7. 
Non-medical and medical images. From left to right (a) flag, (b) hand, (c) horse, (d) retina, 

(e) short-axis and (f) four chamber cardiac image. Upper row shows the initialization for the 

different algorithms. Short-axis cardiac images (e), have been cropped for display purposes. 

The image used for analysis is shown in Fig. 1(a). Closed contours have been dilated for 

viewing purposes.
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Fig. 8. 
Schematic of the tail region of the horse shown in Fig. 7(c). The thin black line represents 

the high gradient region and the white background is the low gradient region. (a) The gray 

thick line shows part of the high gradient extracted contour of the original mask. The black 

thick line is the weak sub-contour. (b) The dot is the new origin positioned in the middle of 

the weak sub-contour shown in (a). (c) The gray thick line is the high gradient extracted 

contour that does not intersect with the original mask, (a).
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Fig. 9. 
Robustness of PDP to different origin locations in (a) hand and (b) horse. Green dots are 

cases where the performance is comparable to the closed contours shown in Fig. 7. Red dots 

are cases where the performance is considerably lower than the closed contours shown in 

Fig. 7.
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TABLE I

ALGORITHM-SPECIFIC PARAMETERS

Technique Parameters Description Values

PDP Δ θ allowed curvature 0.1,0.5,1,2,3,
4,5

α variance image
weight

From 0 to
0.9, Δ = 0.1

σ Gaussian kernel
smoothing

0,1.5

L2S m Legendre
polynomial order

2,3

λ1,λ2 regularization
constraints (λ1=λ2)

From 1 to
100, Δ = 2

v contour smoothness
constraint

From 0.05 to
0.6, Δ = 0.05

DRLSE λ line integral
coefficient

From 0 to
10, Δ = 1

α area coefficient
shrinks)

From −10 to

σ Gaussian kernel
smoothing

0,1.5

PIG τ gradient edge
threshold

From 0.1 to
0.8, Δ = 0.1

α curvature weight From 0 to 1,
Δ = 0.1

γ VFK decay
coefficient

From 1.5 to
3, Δ = 0.5

R VFK radii, based on
the size of the
image (N is the size
of the image)

N/8,N/7,N/6,
N/5,N/4,N/3,
N/2

σ Gaussian kernel
smoothing

1.5

GOGAC Δ θ Allowed curvature 0.1,0.5,1

p exponential on
gradient strength

1,2

ϵ arc-length penalty
term

0.001, 0.01,
0.1, 1, 10

σ Gaussian kernel
smoothing

0,1.5

CV λ1,λ2 regularization
constraints (λ1=λ2)

From 1 to
100, Δ = 2

v contour smoothness
constraint

From 0.05 to
0.6, Δ = 0.05

Notation from original papers, and Δ is the uniform increment.
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