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Abstract— In this paper, we propose a real-time image super- 

pixel segmentation method with 50 frames/s by using the density- 
based spatial clustering of applications with noise (DBSCAN) 
algorithm. In order to decrease the computational costs of 

superpixel algorithms, we  adopt  a  fast  two-step  framework.  
In the first clustering stage, the DBSCAN algorithm with color- 
similarity and geometric restrictions is used to rapidly cluster   

the pixels, and then, small clusters are merged into superpixels  
by their neighborhood through a distance measurement defined 
by  color  and  spatial  features  in   the  second   merging   stage. 

A robust and simple distance function is defined for obtaining 
better superpixels in these two steps. The experimental results 
demonstrate that our real-time superpixel algorithm (50 frames/s) 

by the DBSCAN clustering outperforms the state-of-the-art 
superpixel segmentation methods in terms of both accuracy and 
efficiency. 

Index Terms— Real-time, superpixel, DBSCAN, segmentation. 

 
I. INTRODUCTION 

S AN important preprocessing stage of many applica- 

tions in the field of computer vision and image  process- 

ing, superpixels generation has attracted substantial attention 

during the last decade. The superpixel concept was originally 

presented by Ren and Malik [1] as the perceptually uniform 

regions using the normalized cuts (NCuts) algorithm. 

Superpixels are clusters of pixels which share similar features, 

thus they can be used as mid-level units to decrease the com- 

putational cost in many vision problems, such as image/video 

segmentation  [3]–[7],  [10],  [15],  [40],  saliency  [19],   [31], 

[36],  [38],  [39],  [45],  tracking  [8],  [20],  [21],  [37], classi- 

fication  [9],  [11],  object  detection  [12],  [41],  [46], motion 

estimation  [14],  reconstruction  [16],  [44],  and  other vision 

applications [13], [26], [43]. 
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There are many popular superpixel approaches such as nor- 

malized cut [17], SLIC [18], LSC [42], ERS [34], SEEDS [22], 

mean shift [23], Turbo-pixel [24], graphcuts [25], and pseudo- 

boolean optimization (PB) [32]. Each algorithm has its own 

advantage and disadvantage for superpixel segmentation, how- 

ever, it is still very challenging  to  develop  a  high  quality 

and real-time superpixel algorithm that exhibits the  proper- 

ties including good boundary adherence, compact constraints, 

regular shapes and low  computational complexity. In  order  

to satisfy these desired requirements, we propose a real-time 

superpixel segmentation algorithm by Density-Based Spatial 

Clustering of Applications with Noise (DBSCAN) [27] to 

achieve better performance than state-of-the-art methods. This 

is the first time that the DBSCAN clustering algorithm is 

applied to superpixel segmentation. 

Superpixels are used to replace pixels for a more compact 

visual representation together with fast computation. As an 

important preprocessing step of a large number of image 

processing applications, its computational cost is the mostly 

concerned issue. Among these superpixel algorithms, the  

SLIC algorithm becomes popular, since it can produce super- 

pixels quickly without sacrificing much of the segmentation 

accuracy. But there is still much  room  for  the  improve-  

ment of superpixel in computational cost and adherence to 

boundaries. 

A desired superpixel method needs to not only fulfil the 

requirement of good boundary adherence, but also be efficient. 

Since the superpixels are used as a preprocessing step in vision 

applications, the algorithm of high-quality superpixels with 

less computation is preferred. In this paper, we propose a new 

real-time superpixel method using DBSCAN [27] clustering, 

which inherits the advantages of existing superpixel algorithms 

(such as SLIC) and further carries forward beyond these 

advantages. Our DBSCAN superpixel segmentation algorithm 

is not only more efficient but also more accurate than previous 

superpixel algorithms. 

In our paper, we bring the DBSCAN clustering algorithm to 

the generation of superpixels. Density-based spatial clustering 

of applications with noise is a data clustering algorithm 

proposed by Martin et al. [35]. It is a density-based clustering 

algorithm. Since DBSCAN can find arbitrarily shaped clusters, 

it has a good potential to segment complex and irregularly 

shaped objects.  In  order  to  produce  regular  superpixles,  it 

is necessary to introduce extra geometric restrictions on the 

DBSCAN clustering algorithm. The regularity is also an 

important criterion for evaluating the performance of super- 

pixels.  In  our  superpixel algorithm, the  geometric constraint 



 

 
 

  
 

  

Fig. 1. Results by our real-time DBSCAN superpixel method. Here the 
numbers of superpixels are about 250, 450, and 900 in the regions separated 
by two white parallel  lines. 

 

obtains the regular shape by restricting the searching paths and 

searching range. 

As mentioned before, we adopt two fast stages in our algo- 

rithm. First, we get the initial superpixels by clustering pixels 

using only color and geometric restrictions by the DBSCAN 

cluster algorithm. In this stage, our distance function contains 

two items - the seed distance item and the neighbor distance 

item. The seed distance item ensures the pixels contained in 

the same superpixel should be similar. The neighbor distance 

item has more influence in weak boundary and flat regions. 

And then we merge the small initial superpixels with their 

neighbor superpixels through a measurement of color and 

spatial information. Both DBSCAN clustering and the merging 

procedure have low computational complexity. Our algorithm 

can also handle the situation of twisted objects to form the final 

regular superpixels. Fig. 1 gives some superpixel results with 

vary numbers of DBSCAN, and more quantitative results about 

boundary adherence and efficiency will be demonstrated in the 

later experiments section. Our source code will be publicly 

available at.1 

The main contributions of this paper are  twofold: 

• We propose a real-time superpixel algorithm  based  on 

the DBSCAN clustering, achieving the state-of-the-art 

performance at a substantially reduced computational 

cost. 

• Our proposed method has good performance in adherence 

of boundaries, even for complex and irregular objects in 

images that state-of-the-art superpixel algorithms cannot 

handle. 
 

II. RELATED WORK 

In order to produce satisfying superpixels, two types of 

superpixel segmentation methods have been proposed in the 

past few years, and we briefly review them in this  section.  

The first class is based on clustering, including the normalized 

cuts [17], SLIC [18], LSC [42], SEEDS [22] and Turbo   [24]. 

1http://github.com/shenjianbing/realtimesuperpixel 

In this class, superpixels are  regarded as  clusters  of  pixels. 

As a result, many clustering methods can be employed to 

produce different superpixel results. Shi and Malik [17] use 

the normalized cut as the clustering method to produce 

homogeneous superpixels. However, the normalized cut is 

computationally expensive, since it is a two-way clustering 

method and each iteration of the calculation can only produce 

one superpixel. Achanta et al. [18] change the clustering 

process to the k-means algorithm, which is quite efficient. 

Therefore, this method becomes the most popular superpixels 

preprocessing step in many applications. The main shortcom- 

ing of the SLIC is that it only uses the color and coordinates  

of each pixel as features, therefore their superpixels cannot 

adhere to the boundaries of objects well, especially when 

superpixels are not small enough. Li and Chen [42] adopt lin- 

ear spectral clustering (LSC) to extract superpxiels. The LSC 

combines the advantages of normalized cut and k-means to  

get good quality superpixels. However, due to the calculations 

of features, the LSC is pretty slow as a preprocessing method. 

Levinshtein et al. [24] generate highly uniform lattice-like 

superpixels by iteratively dilating regularly distributed seeds. 

But, the generated superpixels present relatively low adherence 

to boundaries and high computational complexity, due to the 

stability and efficiency issues of the level-set  method. 

The other class is based on  optimization,  such  as  

graphcuts [33], lattice cut [28], entropy rate (ERS) [34], 

pseudo-boolean optimization (PB) [32] and  lazy  random  

walk (LRW) [2]. Most of these methods use the graphcut as the 

basic optimization framework. Veksler et al. [33] introduced 

the use of both a data term and a smoothness term that are 

typical in graph-cut based optimization. Zhang et al. [32] 

further add more constraints to generate superpxiels between 

two horizontal and vertical strips.  Then,  their  superpixels  

are regular and square-like, and cannot align well in some 

places. Shen et al. [2] propose a method using LRW to obtain 

superpixel segmentation results. The LRW  algorithm  is  to 

get the probabilities of each pixel from the input image, and 

utilizes the probabilities and the commute time to get initial 

superpixels. Then their method introduces an energy function 

to optimize iteratively the initial superpixels, which is related 

to the texture measurement and the commute time. However, 

the LRW superpixel algorithm is very expensive, and it usu- 

ally costs several seconds to generate the final superpixels.  

Liu et al. [34] formulated the superpixel segmentation problem 

as an objective function that consists of the entropy rate (ERS) 

of a random walk on a graph and a balancing term which 

encourages the generation of superpixels with similar sizes. 

The entropy rate can help to cluster the compact and homo- 

geneous regions, which also favors the superpixels to overlap 

with a single object on the perceptual boundaries. However, 

the irregular shape of ERS superpixels may become a potential 

drawback in future application. 

In addition, another important related work with our paper is 

the DBSCAN algorithm and its application in image process- 

ing [29], [30]. Density-based spatial clustering of applications 

with noise (DBSCAN) is a data clustering algorithm proposed 

by Martin et al. [35]. Given a set of points in some space, it 

groups points  that  are  closely  packed  together  (points with 

http://github.com/shenjianbing/realtimesuperpixel


 

 

many nearby neighbors), marking as outliers points that lie 

alone in low-density regions whose nearest neighbors are too 

far away. DBSCAN is one of the most common clustering 

algorithms and also the most cited algorithm in the leading 

data mining literature. Manavalan and Thangavel [29] use 

DBSCAN clustering for transrectal ultrasound image segmen- 

tation. The ultrasound images usually have poor image quality, 

such as low contrast, speckle noise, and weak boundaries, and 

it is very difficult to segment them by conventional clustering 

approaches. However, the DBSCAN algorithm is quite suit- 

able to detect and segment most of these important regions. 

Their segmentation procedure can extract the prostate region 

efficiently and accurately through a series of experiments and 

evaluation. Hou et al. [30] propose a DSets-DBSCAN algo- 

rithm framework for image segmentation, which overcomes 

the drawback of the original DBSCAN clustering algorithm 

that is sensitive to similar measures and  requires  appro-  

priate parameters to generate satisfactory clustering results. 

DSets-DBSCAN is able to generate clusters of arbitrary shapes 

and determine the number of clusters  automatically. 

III. DBSCAN SUPERPIXELS 

In this section, we give the details of our simple algorithm 

framework to generate superpixels that is not only faster than 

existing well-known algorithms (LSC [42], SLIC [18] and 

SEED [22]), but also exhibits better boundary adherence. The 

goal of superpixels is to cluster pixels with a homogenous 

appearance from an image into small, compact regions. The 

superpixel segmentation can be considered as a clustering 

problem where each superpixel contains a unique feature in 

color and shape. The DBSCAN is a density-based clustering 

algorithm, and it will improve the performance of segmenta- 

tion algorithms by adding geometric constraints. The proposed 

method includes two stages - a clustering stage and a merging 

stage. Firstly, we aggregate pixels to get initial superpixels by 

the DBSCAN algorithm. Secondly, these initial superpixels 

are refined to obtain final superpixel results through merging 

very small superpixels. The entire algorithm is summarized as 

follows. 

In the clustering stage, we define two sets as labeled set  

and candidate set, respectively, then assign the top-left pixel   

a label for the first seed and add  it  into  the  labeled  set.  

Now we have three kinds of pixels, i.e., the seed, labeled 

pixels and unlabeled ones. Firstly, we find all of the unlabeled 

four neighboring pixels of the labeled set, then calculate the 

combination distance between each unlabeled pixel of its 

center pixel (the unlabeled pixel is generated by the center 

pixel) and the seed - if the distance is less than the threshold 

we defined, we put it into the candidate set. Secondly, we 

update the labeled set through replacing it  by  the  candidate 

set and give them the same label with the seed. We repeat the 

two steps until the termination condition is  satisfied. 

As shown in Fig. 2, the terminate conditions include two 

aspects. The first one is that the number of pixels in this cluster 

is more than a threshold S/N , where S represents the size of 

the input image,  N  denotes the number of superpixels that  

the user needs. This condition is used  to control the size of  

the cluster. The second one is the labeled set that becomes 

 

 
 

Fig. 2. Illustration of DBSCAN clustering process. The strategy of the 
proposed superpixel generation by DBSCAN clustering is described as the 
right sub-figure, where each grid in above figure represents a pixel. The 
searching strategy is similar with Breadth-First-Search method, where pixel S 
is the seed that expand the labeled set until the termination conditions are 
satisfied. The right sub-figure (e.g., pixels S, 1, 2, 3) demonstrate the detailed 
illustration about this iterative process. 

 

 

  

Fig. 3. Illustration of the searching space. (a) is the searching space of the 
conventional DBSCAN algorithm [27], which contains the whole image. (b) is 
the searching space of our algorithm. The black dot is a seed, and the rhombus 
region is the corresponding limited space. Moreover, if the seed locates at a  
flat region, the final superpixel will be a rhombus  region. 

 

an empty set. It indicates that the neighboring pixels of the 

previous labeled set will locate at the boundary regions, and 

this condition guarantees the algorithm to stop at the boundary. 

Then we select a new seed with a conventional order from the 

unlabeled pixels and repeat the above procedure until all the 

pixels are labeled. This conventional order is from left to right 

and from top to bottom for selecting the seeds. Finally, initial 

superpixels are produced after getting enough clusters with 

different labels, which can be viewed  as  initial  superpixels. 

In each initial superpixel, pixels are similar in color through 

the distance constraint. 

Our searching strategy in clustering stage is different from 

the conventional DBSCAN algorithm [27]. As shown in Fig. 3, 

the searching range of the  original  DBSCAN  algorithm  is 

the whole image, while our algorithm limits the searching 

range in the rhombus neighbor region around the seed. This 

local searching strategy will greatly reduce the computational 

complexity and also make each superpixel with a uniform 

shape as possible. 

After the clustering, we obtain the initial superpixels L( p) 

whose boundaries align the edges of objects well in  most 

cases. Fig. 4 gives an example of the fragments (very small 

initial superpixels) at some edges of objects. In our method, 

the clustering stage generates relatively small superpixels and 

fragments, and the merging stage is used to merge the initial 

superpixels and eliminate the small  fragments  produced  in 

the clustering stage, as shown in Fig. 4. The reason of these 

fragments generation is the usage of distance between pixels, 

which is  sensitive  to  the  local  color features. Therefore, we 
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enhancing the  superpixel internal consistency. The    distance 

1 (i, j ) is defined as 

dn(i, j ) = (Ri − Rj)2 + (Gi − G j )2 + (Bi − Bj)2 

ds (i, k) = 
,

(Ri − Rk)2 + (G i − Gk)2 + (Bi − Bk)2 

Dk k 

 

  
 

Fig. 4. Illustrating superpixel segmentation  results in different stages. The  
left two images are the results after the proposed clustering stage, and the  
right two images are the final superpixel results by the merging    stage. 

 

 

perform the merging stage  to  refine  the  initial  superpixels 

by eliminating those fragments. There are two strategies for 

eliminating the fragments. One is to add  a  small  fragment 

into  its  neighbor to  form a  larger superpixel, and the    other 

1 (i, j ) = α1ds (i, Ck) + α2dn(i, j ) (3) 

where Ri , Gi , Bi  represent the RGB color features of pixel i , 

α1, α2 are the weight parameters, and α1 + α2 = 1. 

In  the  merging stage,  the  distance function  D2  is applied 
to calculate the distance between the initial superpixels. The 

function combines color distance and spatial distance. A good 

superpixel should be measured by not only the performance   

of adhering to the boundaries of superpixels to the edges of 

objects, but also the capability of  maintaining the uniform  

size of superpixels. In our method, the  color  difference  is 

used to determine whether two initial superpixels should be 

merged into one or not, and the spatial distance guarantees the 

regularity of final superpixels. Thus, the merging distance D2 

is defined as 

dc(l, p) = 

,

( R̄l − R̄ p)2 + (Ḡ l − Ḡ p)2 + (B̄l − B̄ p)2 

is  to  merge  two  neighbor  fragments.  Here  we  introduce   

a superpixel distance to control the merging strategy. This 

distance combines color distance and spatial distance, which 

are described in the next subsection in   detail. 

In the merging stage, all the initial superpixels are processed 

in a similar  order as  in  the  first  stage,  which  is  from left  

to right and from top to bottom. If  the number of  pixels  in 

one initial superpixel is less than a threshold, we will merge 

another initial superpixel from its shortest distance neighbor 

into this one. After the merging stage, we can obtain the final 

refined superpixels with the regular shapes. These two stages 

can be formulated as 

L( p) = {i ∈ I | D
p
(i, j) < ψ, i ∼ j, j ∈ P}∪ L( p) (1) 

where p is a superpixel, ψ is a threshold (distance constraint), 

i ∼ j indicates pixel i around pixel j , j is in labeled set L(p), 
and D

p
(i, j ) is the distance between pixels i and  j . (1) is used 

to produce the initial superpixels during the clustering   stage. 

L(i) = argminD2( p, i ), i ∼ p 

LR( p) = L( p) ∪ L(i) (2) 

We use the above equation in the merging stage, where 

D2(L( p), L(i)) is the distance between  initial  superpixels  p 

and i . More details are shown in (4). Our DBSCAN superpixel 

segmentation is a clustering algorithm by comparing the 

distance between pixels in the RGB color space. The distance 

metric is an important step, and we define two distance metric 

functions in clustering and merging stages. In the     clustering 

stage, we generate a linear combination function Dk(i, j ) 

by  integrating two  Euclidean  metric functions dn(i, j ) and 

s (i, k), where dn(i, j ) is the distance between two adjacent 

pixels in RGB color space and dk(i, k) is the distance between 

an unlabeled pixel i and a seed k. As dn(i, j ) is simple but not 

robust enough especially in the weak boundaries, we improve 

this  boundary  discrimination  ability  by  adding  dk(i, k) and 

, 

da(l, p) = (x̄l − x̄ p)2 + ( ȳl − ȳ p)2 

D2(l, p) = dc(l, p) + α3da(l, p) (4) 

where dc(l, p) represents the color distance between two initial 

superpixels l and p, and ensures a high degree of similarity, 

da(l, p) is the spatial distance that has a large influence on 

the shape of final superpixel results.  R̄ p, Ḡ p, and  B̄ p  are the 

average RGB  color  values for  initial superpixel  p,  x̄  p  and  

ȳ  p are the coordinates of the centroid in superpixel p. The 
parameter α3 in (4) is a positive coefficient for balancing the 
relative influence between  dc(l, p) and  da(l,  p). 

Finally, we summarize these two main stages in Algorithm 1 

and Algorithm 2. 
 

IV. EXPERIMENTAL RESULTS 

We evaluate the performance of the proposed DBSCAN 

superpixel algorithm by comparing with state-of-the-art 

algorithms,   including   SLIC   [18],   PB   [32],   Ncuts  [17], 

Tubopixel   [24],   ERS   [34],   SEEDS   [22],   LRW   [2] and 

LSC [42]. Their results are generated by running publicly 

available implementations provided by the original authors. 

All the experiments are performed on the Berkeley    Segmen- 

tation Database (BSD) [35], which consists of five hundred 

321×481 images, together with human-annotated ground truth 
segmentations. We  will  demonstrate the effectiveness of   the 

proposed method by first giving the visual comparison results 

of those methods and then providing a detailed quantitative 

comparison. In our experiments, we set the default parameters 

α1 = 0.6, α2 = 0.4, α3 = 1.0 and ψ = 30 to obtain a balanced 
good performance. 

 
A. Visual Comparison 

In order to obtain a fair comparison on superpixel quality, 

we run all of the state-of-the-art algorithms by using their sug- 

gested parameters to generate the optimal results. Fig. 5  gives 



 

 
 

 

Algorithm 1 Initial Superpixel by DBSCAN  Clustering 
 

 
 

     

 

 

 

 

 

 

 

 

 
 

  
 

 

 

 

 
 

 

 
Algorithm 2 Superpixel Refinement by Merging Optimization 

 

 
 

  
 

 
 

 
the representative visual superpixel results generated by SLIC, 

LSC, ERS and our algorithm. It is obvious that our method 

obtains a better performance of image edges adherence than 

the other methods. This is because that our algorithm consid- 

ers color information to detect the image boundaries more 

accurately than other algorithms. Our superpixel  algorithm 

also produces compact and regular superpixels through the 

proposed extra geometric shape constraints. The ERS (Fig. 5, 

the third row) has the worst performance in compact and reg- 

ular shape of superpixel compared with the other algorithms. 

The superpixel results by SLIC (Fig. 5, the top row) maintains 

the best performance for regular sizes of superpixels, but the 

adherence of boundaries is worse than the superpixel results 

by our algorithm and LSC  (Fig. 5, the  second row). Since  

the LSC algorithm combines the advantages of normalized  

cut and k-means to  improve the performance of superpixels,  

it achieves the good property of compactness for the shape 

of superpixels, but LSC  cannot handle the  boundaries    well, 

such as the incorrect boundaries of superpixels in the tree 

region (Fig. 5, the second column). The existing superpixel 

algorithms (e.g. SLIC and ERS) usually produce small regular 

superpixel results, and it will be difficult to achieve good 

performance of regularity and edge coherence.  In  contrast, 

our DBSCAN clustering superpixel algorithm achieves  the 

best real-time performance, including the better boundary 

adherence and regular shapes (Fig. 5, the bottom   row). 

B. Quantitative Comparison 

One of the most important requirements for superpixels is  

to maintain its adherence of object boundaries. Therefore, we 

adopt three commonly used evaluation metrics in superpixel 

segmentation for measuring the quality of boundary adher- 

ence: under-segmentation error (UE), boundary recall (BR) 

and achievable segmentation accuracy (ASA). 

Boundary recall is an important metric for measuring the 

performance of adherence of boundaries in superpixel algo- 

rithms. It measures what fraction of the ground truth edges 

falls within at  least  two  pixels  of  a  superpixel  boundary.  

A high BR means that very few true boundaries are missed. 

We use a standard measure of boundary recall (BR) [33], [34] 

to evaluate the performance. As shown in Fig. 6(b), it is 

apparent that our superpixel DBSCAN algorithm outperforms 

the other eight algorithms from the lower superpixel densities 

to the higher superpixel densities for the BR  measurement.  

PB and Turbopixel give the worst performance  compared 

with other algorithms, and LSC and ERS produce similar 

performance as our method. 

Achievable segmentation accuracy (ASA) computes the 

highest achievable accuracy of labeling each superpixel with 

the label of ground truth that has the biggest  overlap area. 

ASA is calculated as the fraction of labeled pixels that are not 

leaking from the ground truth boundaries. A high ASA means 

that the superpixels comply well with objects in the image. 

The ASA of each algorithm is calculated by averaging the 

values of ASA across all of the images in BSD [35]. Fig. 6(c) 

plots the average ASA result values of 500 images against the 

number of superpixels, and our method outperforms the other 

eight algorithms. Our DBSCAN superpixel approach generates 

the most correct overlap regions with the same label between 

ground truth segmentations and superpixel results. 

Under-segmentation error (UE) measures  the  percentage 

of pixels  that  leak  from  the  ground  truth  boundaries  [2]. 

A good superpixel algorithm should try to avoid the under- 

segmentation areas in the segmentation results. In other words, 

we need to protect that a superpixel only overlaps with one 

object. A lower UE indicates that fewer superpixels cross 

multiple objects. As shown in Fig. 6(a), the UE curves are the 

average values for all 500 images in BSD. With the increase of 

superpixel numbers, our DBSCAN method demonstrates better 

performance. In addition, our DBSCAN method has better per- 

formance than SLIC in each number of superpixels, because 

SLIC generates superpixels without a compact constraint term. 

Considering the aforementioned three metrics comprehen- 

sively, our DBSCAN superpixel method achieves the best 

performance among the state-of-the-art superpixel algorithms, 



 

 
 

 
 

Fig. 5. Visual  comparison  of superpixel  segementation  results  when the number of superpixels  is 500. From top to bottom,  the results  are     obtained by 
SLIC [18], LSC [42], ERS [34] and our DBSCAN method,    respectively. 

 

 

as shown in Fig. 6. Tubopixel and PB show the worst per- 

formance in terms of boundary adherence among all tested 

algorithms. LSC uses spectral clustering with an iterative 

weighted K-means clustering process and incorporates  a  

local feature into a global objective optimization   framework. 

 

Thus, it gives better boundary adherence than SLIC, but it 

costs more computational time. ERS and SEEDS have similar 

boundary adherence performance with LSC by sacrificing the 

regularity and perceptual satisfaction, and SEEDS is the fastest 

superpixel segmentation algorithm before our method. 



 

 
 

 
 

Fig. 6. Quantitative evaluation on BSDS500: (a) the curves of UE; (b) the curves of BR; (c) the curves of ASA. Our real-time DBSCAN algorithm performs 
better than the state-of-the-art algorithms (LSC [42], SLIC [18], Ncuts [17], PB [32], Tubopixel [24], SEEDS [22], ERS [34] and LRW [2]). 

 
 

     

Fig. 7. Visual comparison of superpixel segmentation results by SLIC [18], PB [32], LSC [42], ERS [34] and our DBSCAN method. The number of 
superpixels is about 500. 

 

C. More Superpixel Comparisons 

Fig. 7 shows more visual comparison results between our 

DBSCAN  algorithm and the state-of-the-art algorithms   such 

as  SLIC  [18],  LSC  [42],  ERS  [34],  and  PB  [32].  In each 

group, the top row is the superpixel  results  generated  by  

each algorithm and the bottom row is the magnified    regions. 



 

 
TABLE I 

PERFORMANCE METRICS OF SUPERPIXEL SEGMENTATION ALGORITHMS AS THE SUPERPIXEL NUMBER IS  400 
 

 

 

 
 

Fig.  8.  Average  run  time  with  varying  numbers  of  superpixels  (from  
100 to 600) by state-of-the-art superpixel algorithms (SLIC [18], PB [32], 
LSC [42], SEEDS [22], ERS [34], LRW [2] and our    DBSCAN). 

 
We can clearly see that our superpixel result achieves  the 

better adherence to object edges and keeps the superpixels 

homogeneous in both weak boundaries and  complex  tex-  

ture regions. Our method produces  superpixels  that  align  

the object boundaries well for weak edges. SLIC cannot 

segment the ridge on the wall of church well, while LSC 

cannot do well in complex and irregular regions, such as tree 

branches. In contrast, our superpixel results preserve important 

regions like the slit on the ground, the ridge on the wall of 

church and the tree branches, while SLIC as well as LSC 

results do not show the  same  distinction  between  objects. 

PB exhibits significant holes to make it hard to use for later 

analysis.  ERS  cannot provide a regular and compact shape   

of each superpixel. Generally, superpixel algorithms should 

have a low processing cost, because it  is  usually  employed  

as  a  preprocessing  step  in  image  or  video  applications. 

Our real-time DBSCAN superpixel method is the fastest 

superpixel algorithm among the state-of-the-art algorithms. 

 

D. Analysis of Computational Complexity and  Discussions 

The computational efficiency is also an important factor for 

evaluating the performance of superpixel segmentation algo- 

rithms. We will analyze the algorithm complexity and compare 

the  computational  costs  of  all  the  superpixels   algorithms. 

 

We perform all the experiments on a desktop PC equipped  

with an Intel 8-core  3.4GHZ  processor  with  4GB  RAM.  

We do not use any parallelization, GPU or dedicated hardware. 

According to Table  I,  PB  is  based  on  global  optimization 

to produce superpixels  with  the  computational  complexity 

of O(N). The  complexity of the  LRW  is  O(nN 2) and  ERS 

is O(nN 2lgN), these two methods will spend  much  more 

time in  obtaining the superpixel results. The complexity of  

our DBSCAN superpixel method is O(N) without an iter- 

ation  process,  which  is  faster  than  all  the    state-of-the-art 

superpixel algorithms. Though the complexities of SLIC and 

LSC algorithms are also O(N), their core algorithm requires 

many iterations. In addition, LSC needs more computational 

time for feature spaces under the iterative weighted K-means 

clustering than SLIC. The reason is that their algorithm 

iterates many times to find the suitable seeds for getting a 

good performance. The widely used superpixel segmentation 

algorithm such as SLIC makes a good balance between time 

costs and performance of boundaries adherence, and it has a 

good speed among our compared algorithms. Our algorithm 

only processes once in both the DBSCAN clustering step and 

the optimization step, therefore, our algorithm is real-time with 

the better performance compared to most of the state-of-the-art 

algorithms in our experiments. 

Table I lists the computational statistics between the well- 

known superpixel algorithms and the proposed method, where 

the number of superpixels is about 400. The computational 

complexity of each method is also listed in Table I. The 

average computing time of the proposed algorithm achieves 

the speed of 50fps, where the clustering and merging stages 

cost  about 0.011s and  0.007s, respectively. Our  experiments 

are performed on BSDS500 with the typical image size of 

320×480. According to the average time per image in Table I, 
it  is  obvious  that  our  real-time  DBSCAN  algorithm  is the 

fastest superpixel method among all these algorithms. It is 

very important for superpixel segmentation to have the real- 

time performance to provide a fast preprocessing step in many 

image processing and vision applications. In order to demon- 

strate the real-time performance of our DBSCAN algorithm, 

we have further performed more experimental results for the 

computing time using varying numbers of superpixels with 

state-of-the-art superpixel algorithms in Fig.  8. 

It is very important to set a correct number of superpixels for 

a superpixel segmentation algorithm. The current superpixel 

algorithms  can  be  roughly  classified  into  two  main   types 



 

 

regarding setting the number  of  superpixels.  The  first  type 

is based on graphs by gradually adding cuts, and the  other 

type starts from an initial seed to gradually grow superpixels. 

SLIC et al. belong to the second type, and they have a seed 

initialization strategy on the input image before the starting of 

the superpixel segmentation algorithm, which will help these 

methods to get an approximate number of superpixels. Our 

method belongs to the first type, and we also obtain the number 

of superpixels approximately. In our method, the number of 

superpixels is set by changing the size of superpixels through 

the geometric constraint in the clustering stage and merging 

stage. The threshold S/N in Algorithms 1 and 2 controls the 

number of superpixels in our method. Since all the superpixels 

have the regular shapes and similar size, the number of pixels 

in each superpixel is also similar. Then our algorithm adopts 

threshold S/N to control the size and shape of  superpixels 

with geometric restrictions so as to obtain an approximate 

number  N  of superpixles with the size  S  of input image. 

There are many issues that we should deal with in designing 

a high quality superpixel algorithm, such as the computational 

time, uniform compact shape and boundary adherence. Our 

real-time algorithm with 50fps has the best performance com- 

pared with other algorithms in the aspects of computational 

time, uniform shape and boundary adherence. However, the 

proposed DBSCAN superpixel algorithm still has some limi- 

tations. For example, a potential limitation is that the current 

DBSCAN superpixel algorithm cannot handle the compactness 

property perfectly. The reason is that DBSCAN is a local 

optimum method in both the clustering and merging   stages. 

V. CONCLUSION 

We proposed a novel image superpixel segmentation algo- 

rithm using DBSCAN clustering in this paper. Our DBSCAN 

superpixel segmentation algorithm produces regular shaped 

superpixels in 50fps. Our proposed superpixel segmentation 

first produces the initial superpixel results with the similar 

colors by performing the DBSCAN clustering algorithm, and 

then combines the small initial superpixels with their nearest 

neighbor superpixels by considering their color and spatial 

information. Evaluation was conducted on the public Berkeley 

Segmentation Database with using three evaluation metrics. 

Our algorithm  achieves  the  state-of-the-art  performance  at 

a substantially smaller computation cost, and significantly 

outperforms the algorithms that require more computational 

costs even for the images including complex objects or com- 

plex texture regions. In future work, we will obtain better 

compactness of superpixels by developing a new DBSCAN 

algorithm that has the global optimum  property.  We  also 

plan to extend the current superpixel  framework  to  real-  

time video supervoxel segmentation for maintaining spatial- 

temporal compact shapes. 
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