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Global Hashing System for Fast Image Search
Dayong Tian and Dacheng Tao, Fellow, IEEE

Abstract—Hashing methods have been widely investigated for
fast approximate nearest neighbor searching in large datasets.
Most existing methods use binary vectors in lower dimensional
spaces to represent data points, which are usually real vectors of
higher dimensionality. However, according to Shannon’s Source
Coding Theorem (SSCT) in information theory, it is logical to
represent low-dimensional real vectors with high-dimensional
binary vectors, since a binary bit contains less information than
a real number. We design a novel hashing method based on this
principle. Data points are first embedded in a low-dimensional
space, and then the Global Positioning System (GPS) method is
introduced but modified for hashing. We devise data-independent
and data-dependent methods to distribute the “satellites” at
appropriate locations. Benefitting from the rationale of SSCT
and rules on distributing satellites in a GPS, our data-dependent
method outperforms other methods in different-sized datasets
from 100K to 10M. By incorporating the orthogonality of the code
matrix, both our data-independent and data-dependent methods
are particularly impressive in experiments on longer bits.

Index Terms—Hashing, image retrieval, Global Positioning
System.

I. INTRODUCTION

Hashing methods are efficient for approximate nearest
neighbor (ANN) searching, which is important in computer
vision [1][2][3][4] and machine learning [5][6][7][8]. Hashing
methods map original input data points to binary hash codes
while preserving their mutual distances; that is, the binary
strings of similar data points in the original feature space
should have low Hamming distances. Hashing with short codes
can substantially reduce storage requirements and boost the
ANN searching speed.

Popular hashing methods can be categorized into two
groups according to their dependence on data. The most
well-known data-independent hashing methods are Locality-
Sensitive Hashing (LSH) [9] and its variances, e.g., those
adopting cosine similarity [10] and kernel similarity [11]. The
main drawback of these methods is the demand of more bits
per hashing table, due to randomized hashing [12].

Data-dependent methods have become popular in the ma-
chine learning community. Spectral Hashing (SH) [13], one of
the most popular data-dependent methods, generate hashing
codes by solving the relaxed mathematical problem to cir-
cumvent the computation of pairwise distances in the whole
dataset, i.e, the affinity matrix and the constraints that lead
a NP-hard problem. Anchor Graph Hashing (AGH) [14]
optimizes the object function of SH by using anchor points
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to construct a highly sparse affinity matrix. Discrete Graph
Hashing (DGH) [15] follows this idea and incorporates the
orthogonality of hashing code matrix. There are also methods
based on linear projections of Principal Component Analysis
(PCA) [16][17][18] or Linear Discriminant Analysis [19] and
those hashing in kernel space, such as binary reconstructive
embeddings (BRE) [20], random maximum margin hashing
(RMMH) [21] and kernel-based supervised hashing (KSH) [2].
Unlike the ITQ that rotates the projection matrix obtained by
PCA to minimize the loss function, the Neighborhood Dis-
criminant Hashing (NDH) [22] incorporate the computation
of the projection matrix during the minimization procedure.
In general, the linear dimensionality reduction techniques,
such as PCA, is inferior to nonlinear manifold learning meth-
ods which are able to more effectively preserve the local
structure of the input data without assuming global lineari-
ty [23]. However, the nonlinear manifold techniques may be
intractable for large datasets because of their high computation
costs. To address this problem, Inductive Manifold Hashing
(IMH) [12][24] learns the nonlinear manifold on a small
subset and inductively insert the remainder of data. Besides,
hashing methods focus on the image representations have been
developed recently. For example, RZhang et al. [25] unifies the
feature extraction and the hashing function learning. Zhang et
al. [26] and Liu et al [27] develop their methods on multiple
representations.

However, the main theoretical deficit in the data-dependent
methods is that they fail to conform to Shannon’s Source
Coding Theorem (SSCT) [28]. In practice, an image in the
dataset is usually represented by a descriptor, e.g., SIFT [29]
or GIST [30] descriptor with more than 128-dimensional 8-
bit characters or 32-bit single real numbers in a computer.
In information theory [28], entropy is the average amount of
information contained in a message, which, in this context,
refers to a descriptor vector or binary code vector. According
to SSCT, the code length should be no less than the Shannon
entropy of original data points. Without ambiguity in this
paper, entropy refers to Shannon entropy. The entropy is
defined as H (Ξ) = −

∑
i P (Ξ = ξi) log2P (Ξ = ξi), where

Ξ is a random variable and P (Ξ = ξi) is the probability of
Ξ = ξi. For instance, by assuming uniform distribution, the
entropy of a 64-dimensional 8-bit character vector is 512,
which means 512-bit binary strings are needed.

Exploiting this principle, we first reduce the dimensionality
of the original data points, i.e., the descriptor vectors, by
PCA. Then, the projections on the first d principle components
are encoded by c-dimensional binary code, where c > d.
Hence, we need an over-determined system that can uniquely
position every data point. This is similar to Global Posi-
tioning Systems (GPS) [31], which use dozens of satellites
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to position a receiver on the 2D Earth surface. Since our
method is directly inspired by GPS, we name it the Global
Hashing System (GHS). We tackle the major issue of how
to distribute satellites and propose two methods: one data-
dependent method and one data-independent method. Unlike
most existing methods [16][13][18] that handle the degraded
version of orthogonality of code matrix in continuous domain,
both our methods approximate the orthogonal code matrix
directly in binary domain, which leads better performance on
long-bit experiments. Note that although SH can be regarded
as assigning more bits to PCA directions along which the data
have greater ranges, it is somewhat heuristic [16].

After the satellites are well distributed, the distances from
data points to each satellite (to simplify following discussion,
this distance is denoted as D2S hereafter) are sorted separately.
The nearest half is denoted as -1 while the other half is denoted
as 1. Hence, our method can generate balanced code matrix
easily. Although a balanced code matrix is considered to be
one of the two conditions for good codes [13], it is rarely
considered because it usually results in a NP-hard problem.

II. METHODOLOGY

Let us define the used notations. A set of n data points in a
D-dimensional space is represented by {x1, ...,xn}, xi ∈ RD

which form the rows of data matrix X ∈ Rn×D. W ∈ RD×d

is obtained by the first d eigenvectors of the data covariance
matrix X⊤X. Y = XW and yi is the ith row vector of
Y. A binary code corresponding to xi is defined by bi =
{−1,+1}c, where c is the length of the code and the code
matrix B =

[
b⊤
1 , ...,b

⊤
c

]⊤.

A. Global Positioning/Coding System

A satellite in a GPS has the ability to measure the distance
between itself and a signal receiver on Earth surface. This
results in a circle on which every point has the same distance to
this satellite as the receiver. Hence, at least three satellites are
needed to determine the true position which is the unique inter-
section of three such circles. More generally, a d-dimensional
point can be determined by its Euclidean distances to d + 1
other points in this space [32].

In our GHS, each satellite only has 1-bit to record the
Euclidean distances. That is, the receivers far from a satellite
are denoted as 1 while the nearby ones are denoted as -1.
Hence, our hashing function can be defined as:

h (yi − sj) =

{
−1, ∥yi − sj∥ ≤ f

(∥∥Y − 1n×1sj
∥∥
c

)
+1, ∥yi − sj∥ > f

(∥∥Y − 1n×1sj
∥∥
c

) ,

(1)
where ∥A∥c computes the Frobenius norm of each row of A
and f can be any proper functions that return a positive real
number. Here median() is adopted to generate a balanced
code matrix. sj is the coordinate of the jth satellite and it
forms up the jth row of satellite matrix S.

B. Data-dependent method (GHS-DD)

Formally, our hashing model can be described as:

argmin
{sj}

n−1∑
i=1

n∑
i′=i+1

e−∥yi−yi′∥
2

(
c∑

p=1
∥h (yi − si)− h (yi′ − sj)∥

)
.

(2)

Randomly setting sj does not produce satisfactory results.
Furthermore, Eq. (2) requires pairwise distance between each
pair of data points, which leads heavy burden in storage and
computation. Inspired by ITQ, we circumvent it by minimizing
the quantization loss.
At first, let us consider following quantization loss:

argmin
Bij∈{−1,1},sj

n∑
i=1

c∑
j=1

(
Bij + 1

2
− ∥yi − sj∥

)2

. (3)

Because ∥yi − sj∥ is always non-negative, we scale and shift
B to [0, 1]. The underlying reasonability of Eq. (3) is similar
to ITQ. To uniquely position a data point in d-dimensional
space, at least d + 1 satellites are required and the locations
of these satellites should satisfy following condition [32]:

rank
([

Γ θ
])

=d, (4)

where Γ = [s2; ...; sd+1] and θ = [s2 − s1; ...; sd+1 − s1]. E-
q. (4) is called the existence and uniqueness condition for GPS
solution [32]. It can be satisfied by initializing an orthogonal
Γ. Hence, we create g groups of satellites. Within each group,
there are d + 1 satellites, d of which are orthogonal to each
other. We define ρ := c/ (d+ 1), a parameter discussed in
Section II-D. Note that no more than d mutual orthogonal
vectors in a d-dimensional space. Each group is rotated by an
orthogonal matrix Rk to find the best location, which gives
the following model:

argmin
Bij∈{−1,1}
βj ,αj ,Rk

E =
n∑

i=1

c∑
j=1

g∑
k=1

δk (sj) (Bij + βj − αj ∥yi − sjRk∥)2

s.t. 1B = 0, Rk
⊤Rk = I,

(5)
where δk is an indicator function. δk (sj) = 1, if sj ∈ Group k
and δk (sj) = 0, if sj /∈ Group k. αj and βj are used to
transform the values of D2S into a proper interval. Eq. (5) is
minimized by iterative minimization.

Initialization. In each group, Γ is initialized by the left
singular vectors of a d×d random matrix, so does Rk. Another
random 1× d vector is added into each group.

Update Bij . The jth column of B is calculated by Eq. (1).

Update αj . Take the partial derivative with respect to αj ,
resulting

αj =

n∑
i=1

g∑
k=1

δk (sj) (Bij + βj) ∥yi − sjRk∥

n∑
i=1

g∑
k=1

δk (sj) ∥yi − sjRk∥2
. (6)
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Update βj . Similar to αj ,

βj =
1

n

n∑
i=1

g∑
k=1

δk (sj) (αj ∥yi − sjRk∥ −Bij). (7)

Please note when we deduce Eq. (7),
∑g

k=1 δk (sj) = 1 is
applied.
Update Rk. We divide this step to two sub-problems. First,
sjRk is substituted by s′j to form up following minimization
problem:

argmin
s′j

n∑
i=1

c∑
j=1

(
Bij + βj − αj

∥∥yi − s′j
∥∥)2, (8)

which is equivalent to

argmin
s′j

n∑
i=1

c∑
j=1

(
B′

ij −
∥∥yi − s′j

∥∥)2. (9)

where B′
ij = (Bij + βj) /αj . If we treat s′j as a receiver, yi

as satellites and B′
ij as the D2S, the solution of Eq. (9) is the

standard solution of GPS [33].

We construct following two matrices for each s′j : Y =[
Y,B′

·j
]

and Z = diag
(
YY

⊤)
, where B′

·j represents the jth
column of B′ and diag(A) returns a row vector which con-

tains the diagonal elements of A. Let Y
+
=
(
Y

⊤
Y
)−1

Y
⊤

.
Then solve following quadratic equation about Λ:

Λ2
(
Y

+
1
)⊤ (

Y
+
1
)
+2Λ

((
Y

+
Z⊤
)⊤ (

Y
+
1
)
− 1

)
+
(
Y

+
Z⊤
)⊤ (

Y
+
Z⊤
)
= 0.

(10)
Eq. (10) usually have two solutions Λ1 and Λ2, therefore two
possible s′j can be found by s′j = Y

+ (
Z⊤ + Λ1

)
, where

s′j =
[
s′j , τ

]
and τ which is useless in our model is related to

D2S. To automatically choose a suitable s′j from two solutions,
we initialize sj with ∥sj∥ = rs, where rs is a positive
real constant. The s′j whose norm is closer to rs is chosen
for following steps. rs is also used in our data-independent
satellite distribution algorithm and discussed in Section II-D
along with parameter ρ.

After s′js are calculated, Rk is found by minimizing fol-
lowing problem:

argmin
Rk

c∑
j=1

δ (sj)
∥∥s′j − sjRk

∥∥ . (11)

Eq. (11) can be solved by singular value decomposition (SVD).
Given S′

k and Sk which contain s′j and sj of Group k,
respectively, through SVD, we can get L1VL⊤

2 = S′
k
⊤
Sk

and Rk = L2L
⊤
1 .

Convergence. When
∣∣Ek−1 − Ek

∣∣ < ε or maximum iteration
is reached, the algorithm is terminated, where ε is a small
positive real constant.

Output. S and thresholds, i.e., g
(∥∥Y − 1n×1sj

∥∥
c

)
in Eq. (1).

Out-of-Sample Hashing. A new query is projected by W

and then its distance to each satellite sj is cut off by
g
(∥∥Y − 1n×1sj

∥∥
c

)
.

C. Data-independent method (GHS-DI)

Another condition for good code is uncorrelation [23],
i.e., B⊤B = nI. A direct way to satisfy this condition is
distributing the satellites such that only one is close to each
receiver; that is, there is no intersection among all (sj , rj)
spheres, where rj is the minimum radius that include the
nearby data points of sj . However, in this situation, each
receiver only has 1-bit 1. The hamming distance between any
pair of receivers is 0 or 2, which means the distance between
two data points in input space is not well preserved. What’s
more, if we strictly satisfy the balance condition as well as
uncorrelation condition in this way, at most 2 satellites can be
used.

An alternative way is minimizing the intersections of
(sj , rj) sphere and (sj′ , rj′) sphere for any j ̸= j′. That is,
we put a tolerance for the values of non-diagonal elements of
B⊤B. They are allowed to be non-zero numbers with small
absolute values.

The intersection of two d-dimensional sphere is too difficult
to compute, therefore the pairwise distance between each pair
of satellites is maximized. Without constraints, the resulting
∥sj∥ may be +∞. A reasonable constraint is distributing all
satellites on the surface of (0, rs) sphere. As there is no prior
knowledge about the data, we assume data points are uniform-
ly distributed in a (0, r) sphere. By ∥s1∥ = ... = ∥sc∥ = rs,
the D2S of each satellite will be comparable.

Under the abovementioned assumption, minimizing inter-
sections can be achieved by maximizing the pairwise distance
between each pair of satellites:

argmax
{sj}

E :=
c−1∑
j=1

c∑
j′=j+1

∥sj − sj′∥2 s.t. ∥sj∥2 = r2s , ∀j.

(12)
Eq. (12) can be maximized by Gradient Projection Algorithm
(GPA) [34]. The GPA iteratively updates sj by moving sj
along the gradient direction of E and projects sj to the
boundary defined by the constraint (Algorithm 1). The gradient
of E with respect to sj is

∂E

∂sj
= (c− j) sj −

c∑
j′=j+1

sj′ . (13)

The projection step can be directly implemented by nor-
malizing each sj . As the orthogonality of B is considered, our
GHS-DI method usually produces the second best results on
experiments of longer hash bits. Actually the way that GHS-
DD satisfies Eq. (4) intrinsically incorporates orthogonality.
When rs → +∞, the hyper-sphere surface that separates the
near and far data points can be treated as a hyper-plane. In
this situation, with orthogonal {sj} and assumption of uniform
distribution of data points, this property is easy to understand
in 2D and 3D cases. More generally, we have following
theorem.
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Fig. 1. MAP on CIFAR-10 dataset for GHS-DI and GHS-DD. When rs approximates 0, both methods fail to get satisfactory results. The performance of
both methods become stable after rs is larger than 1. On the other hand, GHS-DI gets its best results when ρ is in interval [0.5, 1], while it is [0.7, 1] for
GHS-DD. For c < 16, the best results appear when ρ approximates 1, because enough amounts of principal components should be selected.

TABLE I
MAP @ CIFAR-10 FOR PARAMETER SETTING c = d+ 1 AND c = d

8 12 16 24 32 64 96

GHS-DD
c = d 0.1890 0.2232 0.2392 0.2761 0.3053 0.3816 0.4131

c = d+ 1 0.1884 0.2214 0.2412 0.2806 0.3089 0.3972 0.4324
-0.32% -0.81% 0.83% 1.60% 1.17% 3.93% 4.46%

GHS-DI
c = d 0.1543 0.1838 0.2079 0.2581 0.2757 0.3474 0.4018

c = d+ 1 0.1537 0.1861 0.2098 0.2688 0.3008 0.3653 0.4144
-0.39% 1.24% 0.91% 3.98% 8.34% 4.90% 3.04%

Theorem 1. If (1) data points yi ∈ Rd are uniformly
distributed in a (0, r) sphere, (2) sj⊥sj′ and (3) rs → +∞,
then h⊤

j hj′ = 0(j ̸= j′), where hj and hj′ are column
vectors whose elements are the binary hash codes generated
by Eq. (1).

Proof. Since the data points are uniformly distributed in a
(0, r) sphere, without losing generality, let us set sj =

rs(1, 0, 0, ..., 0)
d and sj′ = rs(0, 1, 0, ..., 0)

d. In Eq. (1),
if ∥yi − sj∥ > rs, the ith element of hj will be set to
1, otherwise it will be set to −1. For any two points yi

and yj that satisfy ∥yi − sj∥ = ∥yj − sj∥ = rs, we have
(yi − sj) (yj − sj)

⊤
/r2s = 1, when rs → +∞. That is,

cos θ → 1 which implies θ → 0, where θ is the angle between
two unit vectors along yi−sj and yj−sj , respectively. Hence,
yi and yj locate on a plane P whose distance to sj is rs.
To generate a balanced hj , P should cross the origin and
perpendicular to sj . Since sj⊥sj′ , P is also perpendicular to
Q which corresponds to sj′ . It is evident that P and Q separate

Algorithm 1 Data-Independent Satellite Distribution Algo-
rithm
Input: S ∈ Rc×d

1: while E not converged do
2: s

t+1/2
j = stj +∆t∂E/∂stj

3: st+1
j = rss

t+1/2
j /

∥∥∥st+1/2
j

∥∥∥
4: end while

Output: S

the (0, r) sphere into four parts with equal volume:

{yi| ∥yi − sj∥ > rs} ∩ {yi| ∥yi − sj′∥ > rs}
hj (i) = 1,hj′ (i) = 1

{yi| ∥yi − sj∥ > rs} ∩ {yi| ∥yi − sj′∥ < rs}
hj (i) = 1,hj′ (i) = −1

{yi| ∥yi − sj∥ < rs} ∩ {yi| ∥yi − sj′∥ > rs}
hj (i) = −1,hj′ (i) = 1

{yi| ∥yi − sj∥ < rs} ∩ {yi| ∥yi − sj′∥ < rs}
hj (i) = −1,hj′ (i) = −1

. (14)

Since there are equal number of data points in these four parts,
it is easy to verify that h⊤

j hj′ = 0.

In Theorem 1, condition (1) and (2) are impractical and
therefore only the second sufficient condition can be satisfied
by setting c = d; however, this contravenes the perspective
of SSCT and the existence and uniqueness condition for GPS
solution. In Section II-D, we will show c = d usually cannot
generate the best results. Although our methods cannot exactly
fulfill these three conditions, its superiority of considering the
orthogonality was proven by its high F-measure in experiments
on longer bits (Section IV).

D. Parameters rs and ρ

There are two key parameters in our methods - rs and ρ.
rs should not be too small. Consider an extreme example that
rs = 0, then all bits of the points close to the origin will equal
to 0 and bits of other points will equal to 1. Obviously, such
codes are inefficient.

ρ should be moderate. If ρ is too large, the binary codes will
gradually lose their ability to encode the values of projections
which are real numbers. On the other hand, when ρ becomes
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small, fewer projections can be used, so the data points
reconstructed by these projections cannot approximate the
original ones accurately enough.

The mean average precision (MAP) on CIFAR-10 dataset
[35] with varying rs and ρ is shown in Fig. 1. CIFAR-10
comprises of 60K images from the 80 Million Tiny Image
dataset [4] and we use 1024-dimensional GIST descriptor to
represent each image. Their PCA projections are normalized
by the largest Euclidean norm of all projected data. When
testing on different ρs , at most one group containing less
than d+1 satellites may exist. Based on the results in Fig. 1,
we empirically set rs as 2 for all experiments and set ρ as 1
for experiments whose c ≤ 16 , while 0.5 for others.

We also tested our two methods by setting c = d (Table I).
The percentages shown in Table I denote the improvement by
setting c = d + 1. Referring to Table I, we observe that for
c > 16, both methods perform 1%−8% better with c = d+1,
suggesting that the existence and uniqueness condition for
GPS solution is important. For experiment on c ≤ 16, the
situation is opposite, because the number of PCA projections
are too small and its effect dominates results. However, the
differences are slight in these cases (less than 1%), so we did
not use parameter setting c = d in experiments of Section 4.

III. RELATIONS TO EXISTING METHODS

During past several years, many state-of-the-art data-
dependent hashing methods have been proposed. These meth-
ods derive from various motivations. In this section, only those
related to our proposed methods are briefly reviewed.

A. Iterative Quantization (ITQ)

Gong et al. [16] formulated ITQ as a minimization problem:

argmin
B,R

∥B−XWR∥2F . (15)

Eq. (18) is minimized by iteratively updating B and R. R
is required to be orthogonal, which can be considered as
a rotation to W. IsoH [17] is directly derived from ITQ
by finding a projection with equal variances for different
dimensions. HH [36] rotates W; however, unlike ITQ, it
uses an auxiliary variable for the code matrix during the
iterative optimization and puts an orthogonal constraint on it.
Then, the auxiliary variable is thresholded to generate code
matrix. ok-means [?] rotates and scales B to minimize the
quantization loss. Our method rotates S and scales the D2S.
ITQ, IsoH and HH use principle components whose number
is exactly equal to the bit length of hash codes. That is, they
cannot be used to produce hash code that is longer than
the data dimension. Theoretically, our methods can produce
arbitrary length of hash codes.

B. Inductive Hashing on Manifolds (IMH)

IMH [12] first generates the Base matrix C by K-means
clustering. Each column C corresponds to a cluster center.

Then it embeds B into low-dimensional space by manifold
learning methods [37][38]. The embedding methods affect
the performance of IMH. Throughout this paper, t-SNE [37]
is used because it achieved the best results in the authors’
experiments [12]. Finally, the embedding for the training data
is calculated by

Y = WXBYB, (16)

where the elements Wij in WXB is defined as

Wij =
exp

(
−∥xi − cj∥2/σ2

)
m∑
i=1

exp
(
−∥xi − cj∥2/σ2

) . (17)

where cj is the jth column of C. Eq. (17) is quite similar to
membership in fuzzy c-means clustering [39]. The embedding
for the training data is linear combination of embedding for
C. In our method, each satellite encodes 1-bit according to
the distances from itself to the data points and we don’t
encode the satellites.

C. Spectral Hashing (SH)

Weiss et al. [13] formulated the SH as:

argmin
Y

∑
xi,xj∈X

e−∥xi−xj∥2/σ2∥bi − bj∥2

s.t. B ∈ {−1, 1}n×c
, B⊤B = nI, B⊤1 = 0.

(18)

Eq. (2) is similar to Eq. (18). The graph affinity matrix W

with Wij = exp
(
−∥xi − xj∥2/σ2

)
is intractable for large

datasets. SH evaluates c smallest eigenvalues for each PCA
direction to create a list of cD eigenvalues, sorts this list
to find the c smallest eigenvalues and then thresholds the
corresponding eigenfunctions. The eigenvalue list creation
step is consistent with the perspective of SSCT, however
it is somewhat heuristic [16]. AGH and DGH compute
D2S to form up a highly sparse affinity matrix to minimize
the modified object function of SH. GHS-DD avoids the
computation and storage of pairwise distances of all data
points by minimizing the quantization loss. Furthermore, our
method generates a balanced code matrix but they cannot.

D. Spherical Hashing (SpH)

The final step of SpH [40] is the same as our method, so
SpH also generates a balanced code matrix. However, SpH
searches the locations of special points in the entire space,
which makes it difficult to find a good solution. The authors
claimed that the distances between these points should be
neither too large nor too small, and hence an empirical point-
finding procedure was devised that has less theoretical support.
With more concrete theoretical analysis, our proposed method
appears to outperform SpH.

IV. EXPERIMENTS

Our experiments were conducted on three datasets of three
different scales: SUN397 [41], GIST1M [42] and SIFT10M.
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Fig. 2. Mean F-measure of hash lookup with Hamming radius 2 for different methods on SUN397, GIST1M and SIFT10M.

TABLE II
MAP ON SUN397. c DENOTES THE NUMBER OF HASH BITS USED IN HASHING METHODS.

SUN397
c 8 12 16 24 32 64 96 128

GCS-DI 0.1336 0.1744 0.2194 0.2290 0.2579 0.3167 0.3588 0.3860
GCS-DD 0.1533 0.1945 0.2447 0.2746 0.2998 0.3492 0.3880 0.4096

ITQ 0.1508 0.1859 0.2301 0.2619 0.2886 0.3317 0.3592 0.3750
IsoH 0.1420 0.1677 0.1881 0.1950 0.2278 0.2578 0.2873 0.2882
HH 0.1478 0.1866 0.2213 0.2554 0.2687 0.3253 0.3543 0.3739
SH 0.1219 0.1369 0.1475 0.1705 0.1758 0.1897 0.2180 0.2206

IMH 0.1296 0.1357 0.1533 0.2453 0.2689 0.2896 0.3077 0.3990
okmeans 0.1469 0.1852 0.2136 0.2524 0.2716 0.3248 0.3507 0.3658

SpH 0.0377 0.0359 0.0364 0.0365 0.0363 0.0599 0.0942 0.2578

TABLE III
MAP ON GIST1M. c DENOTES THE NUMBER OF HASH BITS USED IN HASHING METHODS.

GIST1M
c 8 12 16 24 32 64 96 128

GCS-DI 0.1245 0.1552 0.1802 0.2052 0.2191 0.2596 0.2790 0.2885
GCS-DD 0.1358 0.1682 0.1952 0.2211 0.2438 0.2694 0.2854 0.2967

ITQ 0.1260 0.1593 0.1851 0.2098 0.2269 0.2577 0.2703 0.2775
IsoH 0.1121 0.1310 0.1844 0.1939 0.2288 0.2579 0.2712 0.2854
HH 0.1207 0.1603 0.1780 0.2019 0.2247 0.2597 0.2745 0.2880
SH 0.0871 0.0986 0.1033 0.1208 0.1339 0.1682 0.1781 0.1781

IMH 0.1248 0.1449 0.1748 0.1849 0.1965 0.2161 0.2385 0.2638
okmeans 0.1239 0.1610 0.1778 0.2070 0.2201 0.2565 0.2741 0.2809

SpH 0.0369 0.0349 0.0348 0.0359 0.0356 0.0637 0.0788 0.1919

SUN397 contains about 108K images and we represent each
image by a 512-dimensional GIST descriptor [30]. GIST1M
consists of 1 million 960-dimensional GIST descriptors.
SIFT10M is a 10 million subset of SIFT1B [42] dataset which
comprises of 1 billion 128-dimensional SIFT descriptors [29].
The 10 million data points are randomly chosen. 1K images
are randomly selected from the whole SUN397 to form a
separate test dataset. For GIST1M, there is a 1K test dataset
available. For SIFT10M, we randomly selected 1K data points
from its 10K test dataset. Groundtruth neighbors for a given
query are defined as the samples in the top of 2% Euclidean

distance.

A. Protocols and Baselines

We evaluate our methods by comparing to seven hashing
methods which includes: Iterative Quantization (ITQ) [16],
Isotropic Hashing (IsoH) [17], Harmonious Hashing (H-
H) [36], Spectral Hashing (SH) [13], Inductive Manifold Hash-
ing (IMH) [12], Orthogonal K-means (ok-means) [43] and
Spherical Hashing (SpH) [40]. Our data-dependent and data-
independent are denoted as GHS-DD and GHS-DI, respec-
tively. We use publicly available codes of comparing methods
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TABLE IV
MAP ON SIFT10M. c DENOTES THE NUMBER OF HASH BITS USED IN HASHING METHODS.

SIFT10M
c 8 12 16 24 32 64 96 128

GCS-DI 0.1738 0.2193 0.2674 0.3342 0.3837 0.5156 0.5569 0.5797
GCS-DD 0.1864 0.2339 0.2769 0.3535 0.4098 0.5277 0.5692 0.5889

ITQ 0.1666 0.2195 0.2655 0.3452 0.3906 0.5025 0.5522 0.5782
IsoH 0.1764 0.2224 0.2469 0.3326 0.3766 0.4653 0.5524 0.5695
HH 0.1701 0.2258 0.2516 0.3143 0.3524 0.4494 0.5163 0.5554
SH 0.1704 0.2170 0.2382 0.2708 0.2810 0.3148 0.3039 0.3157

IMH 0.1833 0.1888 0.2007 0.2254 0.2884 0.3052 0.3358 0.3634
okmeans 0.1814 0.2260 0.2699 0.3233 0.3605 0.4401 0.4538 0.4964

SpH 0.0440 0.0487 0.0400 0.0475 0.0381 0.0615 0.1721 0.1947

TABLE V
TRAINING AND TESTING TIME IN SECONDS

SUN397 GIST1M SIFT10M
Train Test Train Test Train Test

GHS-DI 9.9 2.7× 10−4 130.4 3.5× 10−4 166.1 1.4× 10−4

GHS-DD 24.3 3.2× 10−4 212.3 3.5× 10−4 1005.1 1.4× 10−4

ITQ 14.8 3.1× 10−5 142.7 4.5× 10−5 322.0 1.3× 10−5

IsoH 9.6 3.2× 10−5 136.5 6.1× 10−5 185.6 2.0× 10−5

HH 26.8 2.1× 10−5 214.9 3.9× 10−5 1307.1 1.3× 10−5

SH 9.7 6.5× 10−4 119.3 9.2× 10−4 202.5 6.2× 10−4

IMH 97.4 2.3× 10−4 1024.4 2.8× 10−4 702.2 2.8× 10−4

okmeans 14.0 2.3× 10−5 144.5 5.5× 10−5 301.2 1.2× 10−5

SpH 28.2 3.3× 10−4 225.8 4.4× 10−4 190.7 2.7× 10−4

and follow the suggesting parameter settings by corresponding
publications. All data are zero-centered and in our methods,
their PCA projections are normalized by the largest Euclidean
norm of all projected data in our methods. Two kinds of
experiments - Hamming ranking and hash lookup were con-
ducted. The performance of Hamming ranking is measured by
MAP and F1 score which is denoted as F-measure is used for
evaluating the performance of hash lookup, where F1 score is
defined as 2(precision ·recall)/(precision+recall). Ground
truths are defined by Euclidean neighbors.

B. Quantitative Evaluation

The mean average precision (MAP) values are given in
Table II-IV. It can be seen that GHS-DD outperforms all com-
pared methods. The performance of GHS-DI is poorer than
ITQ, HH and SH except of 128-bit experiments. Benefitting
from the reasonability on information theory and balanced
code matrix, GHS-DD exceeds ITQ, IsoH and HH. Due to the
limitation on computation, SpH works on a small subset of the
whole dataset and its empirical satellite distribution algorithm
is demonstrated to be less efficient than ours. The F-measure
is illustrated in Fig. 2. Again, GHS-DD exceeds others. It
is worth noticing that GHS-DI generated the second best
MAP and F-measure in experiments on longer bits (c > 96),
because GHS-DI considers orthogonality of the code matrix.

The way that GHS-DD satisfies the condition of uniqueness
and existence of GPS solution, i.e., Eq. (4) and its data-
dependent property makes it work better than GHS-DI.

C. Computational Efficiency

Training and testing time on 32-bit are given in Table V.
All experiments were done on MATLAB R2013b installed on
a PC with 2.85 GHz CPU and 128 GB RAM. The major
computation cost of GHS-DI is the calculation of D2S at the
final step, which is linearly related to the product of data
dimension and size of dataset. Hence, it takes the least time
on GIST1M and SIFT10M. Because GHS-DD computes D2S
in every iteration, its computation cost is moderate. When
testing a new query, GHS-DI and GHS-DD computes D2S
and hence their computation costs are approximate. Although
the testing procedure of SpH is similar to ours, it computes
D2S in original input data space whose dimension is D, so its
testing time is longer.

D. Incorporating Label Information

To incorporate label information, a supervised
dimensionality reduction method can be used to better
capture the semantic structure of the dataset. Among various
supervised dimensionality reduction methods, Canonical
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Fig. 3. Mean F-measure of hash lookup with Hamming radius 2 and MAP for different methods on CIFAR-10.

Correlation Analysis (CCA) [44] has proven to be efficient
for extracting a common latent space from two views [45]
and robust to noise [46].

Let zi ∈{0, 1}l be a label vector, where l is the total number
of labels. If the ith image is associated with the corresponding
label, zi =1 and zi =0 otherwise. Z ∈{0, 1}n×l is the matrix
whose rows are comprised of label vectors. The goal of CCA
is to maximize the correlation between projected data matrix
Y and label matrix Z by finding two projection directions wk

and uk. The correlation is defined as:

C (wk,uk) =
w⊤

k X
⊤Yuk√

w⊤
k X

⊤Xwku⊤
kY

⊤Yuk

s.t. w⊤
k X

⊤Xwk = 1, u⊤
k Y

⊤Y uk = 1.

(19)

wk can be got by solving the following generalized eigenvalue
problem:

X⊤Y
(
Y⊤Y + ρI

)−1
Y⊤Xwk = λ2

k

(
X⊤X+ ρI

)
wk,

(20)
where ρ is a small regularization constant and is set to be
0.0001 here. Just as in the case of PCA, the leading generalized
eigenvectors wk scaled their corresponding eigenvalues λk

form up the rows of projection matrix Ŵ ∈ RD×d and we
obtain the embeded data matrix Y = XŴ. Finally, both of
our data-independent and data-dependent methods can be
used to generate hashing codes.

CIFAR-10 dataset is used in this experiment. The 60K
images in CIFAR-10 are labelled as 10 classes with 6,000
samples for each class. Again, each image is represented by a
1024 dimensional GIST feature. 1,000 samples are randomly
chosen as queries and the remaining samples are used for
training. Our proposed supervised hashing methods are
denoted as CCA-GHS-DI and CCA-GHS-DD, respectively.
The baseline methods are Supervised Discrete Hashing
(SDH) [47], KSH [2], FastHash [48] and CCA-ITQ [16].

The mean F-measure of hash lookup Hamming distance
2 and MAP scores of the compared methods are given in

Fig. 5. Classification accuracy (%) on MNIST

Fig. 3. CCA-GHS-DD achieves the best F-measures and MAPs
for all code lengths, while CCA-GHS-DI is only a little
inferior to SDH for 16-bit code length. In the hash lookup
experiments, we found that setting Hamming distance as 2
is favorable for both of our proposed methods, because two
groups of satellites were used for experiments of c > 16. In
Fig. 4, 5 queries with their corresponding results retrieved by
compared methods using 16-bit hashing code are illustrated to
qualitatively evaluate the performance. It can be seen that both
CCA-GHS-DI and CCA-GHS-DD outperform the compared
methods.

E. Classification with hashing codes

In this subsection, the MNIST dateset is used for evaluate
the performance of the learned hashing codes by compared
methods. The MNIST dataset consists of 70, 000 images, each
of which is 784-dimensional. These images are handwritten
digits from ‘0’ to ‘9’. BRE, CCA-ITA, KSH, FastHash and
SDH are used as baselines.

Linear Support Vector Machine (SVM) is applied on the
hashing codes. The LIBLINEAR [49] solver is used to train
the SVM. The classification results are given in Fig. 5. From
Fig. 5, it can be seen that both CCA-GHS-DD gets the highest
classification accuracy over all hash bit length, while CCA-
GHS-DI is the second best when c > 32 but trail SDH in
experiments on 32-bit hash codes.
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Fig. 4. The query images and the query results returned by compared methods with 32 hash bits.

V. CONCLUSION

We have proposed a novel hashing method based on and
Shannon’s Source Coding Theorem witch requires that the
hashing codes should be longer than the embedding for
original training data. To circumvent computation of pairwise
distances between each pair of data points, we minimize
the new formulation of quantization loss which is based on
Global Positioning System (GPS). Data-dependent and data-
independent methods are proposed to distribute the satellites.
According to the experimental results on three scales of

datasets, the data-dependent method (GHS-DD) was superior
to other methods, and the data-independent method (GHS-DI)
produced promising results in less training time. However,
GHS-DD took a moderate length of time to train, and the
demand on RAM was limited by the computation of the covari-
ance matrix in PCA. By incorporating Canonical Correlation
Analysis (CCA), the proposed methods can be used for super-
vised hashing. The performance of CCA-GHS-DI and CCA-
GHS-DD are superior. Finally, the retained hashing codes
are used for classification problem to further demonstrate
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the outstanding performance of the proposed methods. Future
work will focus on improving the computational efficiency
and investigating methods to train the model using a few
samples from the whole dataset to handle larger datasets such
as SIFT1B and Tiny 80M.
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