
1

Context Tree based Image Contour Coding using A
Geometric Prior

Amin Zheng Student Member, IEEE, Gene Cheung Senior Member, IEEE, Dinei Florencio Fellow, IEEE

Abstract—If object contours in images are coded efficiently
as side information, then they can facilitate advanced image /
video coding techniques, such as graph Fourier transform coding
or motion prediction of arbitrarily shaped pixel blocks. In this
paper, we study the problem of lossless and lossy compression
of detected contours in images. Specifically, we first convert a
detected object contour composed of contiguous between-pixel
edges to a sequence of directional symbols drawn from a small
alphabet. To encode the symbol sequence using arithmetic coding,
we compute an optimal variable-length context tree (VCT) T via
a maximum a posterior (MAP) formulation to estimate symbols’
conditional probabilities. MAP prevents us from overfitting given
a small training set X of past symbol sequences by identifying a
VCT T that achieves a high likelihood P (X|T) of observing X
given T , and a large geometric prior P (T) stating that image
contours are more often straight than curvy. For the lossy case,
we design efficient dynamic programming (DP) algorithms that
optimally trade off coding rate of an approximate contour x̂
given a VCT T with two notions of distortion of x̂ with respect
to the original contour x. To reduce the size of the DP tables,
a total suffix tree is derived from a given VCT T for compact
table entry indexing, reducing complexity. Experimental results
show that for lossless contour coding, our proposed algorithm
outperforms state-of-the-art context-based schemes consistently
for both small and large training datasets. For lossy contour
coding, our algorithms outperform comparable schemes in the
literature in rate-distortion performance.

Index Terms—contour coding, lossless coding, statistical learn-
ing, image compression

I. INTRODUCTION

Advances in depth sensing technologies like Microsoft
Kinect 2.0 mean that depth images—per pixel distances be-
tween physical objects in a 3D scene and the camera—can now
be captured easily and inexpensively. Depth imaging has in
turn eased the detection of object contours in a captured image,
which was traditionally a challenging computer vision problem
[1]. If detected object contours in images are compressed
efficiently as side information (SI), then they can enable
advanced image / video coding techniques such as graph
Fourier transform (GFT) coding [2–5] and motion prediction
[6, 7] of arbitrarily shaped pixel blocks. Moreover, coded
contours can be transmitted to a central cloud for computation-
intensive object detection or activity recognition [8], at a much
lower coding cost than compressed depth video. We focus on
the problem of coding object contours in this paper.

A. Zheng is with Department of Electronic and Computer Engineering, The
Hong Kong University of Science and Technology, Clear Water Bay, Hong
Kong, China (e-mail: amzheng@connect.ust.hk).

G. Cheung is with National Institute of Informatics, 2-1-2, Hitotsubashi,
Chiyoda-ku, Tokyo, Japan 101–8430 (e-mail: cheung@nii.ac.jp).

D. Florencio is with Microsoft Research, Redmond, WA USA (e-mail:
dinei@microsoft.com).

Object contour coding was studied extensively during
1990’s when the concept of object-based video coding
(OBVC) was popular during the MPEG-4 video coding stan-
dardization. However, the shape coding techniques developed
to represent boundaries of objects [9]—called video object
planes (VOP)—were not efficient enough, resulting in large SI
overhead that rendered OBVC uncompetitive in compression
performance. Some contemporary interest in the problem has
shifted to lossy contour coding, where curve- and spline-based
approximations are used [10–12].

Two recent technological trends have provided new am-
munitions to revisit the old lossless contour coding prob-
lem. First, advances in statistical machine learning have led
to sophisticated algorithms that construct suitable variable-
length context trees (VCT) to estimate conditional probabilities
given a training dataset of symbol strings [13–16]. Estimated
probability distributions can then be used to compress symbol
strings of finite alphabets via arithmetic coding [17]. Second,
the availability of fast computing resource, locally or in a
nearby cloudlet [18], allows this statistical learning on relevant
training datasets to be performed in real-time in restricted
cases. While promising, the convergence of these develop-
ments has led to a new “small data” statistical learning
problem: due to either statistical non-stationarity and/or tight
real-time application requirements, the size of dataset used
for statistical training may be limited, and data overfitting
becomes a significant concern.

In response, in this paper we propose a maximum a posteri-
ori (MAP) formulation to optimize a VCT T for lossless and
lossy contour coding. In particular, given small training data
X , we select a VCT T that has both high likelihood P (X|T)
(agreement between constructed contexts and observations),
and high prior probability P (T)—a geometric prior stating
that image contours are more often straight than curvy. Like
Bayesian information criterion (BIC) [19], we design the prior
weight parameter α to scale naturally with training data size,
so that when the volume of relevant training data becomes
larger and thus more reliable, α becomes smaller.

For lossy coding, we design efficient dynamic programming
(DP) algorithms that optimally trade off coding rate of an ap-
proximate contour x̂ given a VCT T with two different notions
of distortion of x̂ with respect to the original contour x: sum
squared distance distortion (SSDD) and maximum absolute
distance distortion (MADD) [9]. To reduce the size of the
DP tables, a new tool called total suffix tree (TST) is derived
from a VCT T for compact table entry indexing, reducing
computation complexity. Experimental results show that for
lossless contour coding, our proposed algorithm outperforms

ar
X

iv
:1

60
4.

08
00

1v
1

 [
cs

.M
M

]
 2

7
A

pr
 2

01
6

2

state-of-the-art context-based schemes [7, 13] consistently for
both small and large training datasets. For lossy contour
coding, our algorithms outperform comparable schemes in the
literature [9, 12] in rate-distortion (RD) performance. Towards
the goal of reproducible research [20], we have made the
source code for lossless contour coding publicly available1.

The outline of the paper is as follows. We first discuss
related works in Section II. We then discuss our proposal
for lossless and lossy contour coding in Section III and IV,
respectively. We discuss efficient coding of contour starting
points in Section V. Finally, we present experimental results
and conclusion in Section VI and VII, respectively.

II. RELATED WORK

A. Lossless Contour Coding

Most works in lossless contour coding [7, 17, 21–27] first
convert an image contour into a chain code [28]: a sequence
of symbols each representing one of four or eight possible
absolute directions on the pixel grid. Alternatively, a differ-
ential chain code (DCC) [21] that specifies relative directions
instead can be used. DCC symbols are entropy-coded using
either Huffman [22] or arithmetic coding [17] given symbol
probabilities. The challenge is to estimate conditional proba-
bilities for DCC symbols given a set of training data; this is
the core problem we address in Section III.

[7, 29] propose a linear geometric model to estimate
conditional probabilities of the next DCC symbol. In summary,
given a window of previous edges, a line-of-best-fit that
minimizes the sum of distances to the edges’ endpoints is first
constructed. Then the probability of a candidate direction for
the next symbol is assumed inversely proportional to the angle
difference between the direction and the fitted line. We show in
Section VI that this scheme is inferior in estimating symbol
probabilities compared to context models, because there are
only a few possible angle differences for a small number of
previous edges, limiting the expressiveness of the model.

An alternative approach is context modeling: given a win-
dow of l previous symbols (context) xi−1

i−l , compute the
conditional probability P (xi|xi−1

i−l) of the next symbol xi by
counting the number of occurrences of xi−1

i−l followed by xi
in the training data. In [17, 23–25, 30], Markov models of
fixed order up to eight are used for lossless coding. However,
in applications where the training data is small, there may
be not enough occurrences of xi−1

i−l to reliably estimate the
conditional probabilities.

VCT [13, 14] provides a more flexible approach for Markov
context modeling by allowing the context to have variable
length. There are many ways to construct the VCT: Lempel-
Ziv-78 (LZ78) [31], prediction by partial matching (PPM)
[15], and probabilistic suffix trees (PST) [16]. LZ78 constructs
a dictionary from scratch using the input data directly as
training data. The probability estimation quality varies de-
pending on the order of first appearing input symbols. PPM
considers all contexts restricted by a maximum length with
non-zero occurrences in the training data when building VCT.

1http://research.nii.ac.jp/∼cheung/software.html

PPM is efficient for lossless sequential data compression if
sufficient training data is available [26, 27], but may suffer
from overfitting if training data is limited.

PST first constructs an initial VCT similar to PPM, and then
the initial VCT is pruned using five user-selected thresholds
[16]. PST algorithm is widely used for protein modeling
problems [32, 33]. Through pruning, PST algorithm can avoid
overfitting in some cases. However, choosing properly the five
application-specific thresholds used for pruning is difficult in
general. In contrast, we propose a geometric shape prior—
requiring only one parameter—to avoid overfitting specifically
for contour coding.

B. Lossy Contour Coding

There are two main approaches to lossy contour coding:
chain-code-based and vertex-based. In the first approach, the
contours are first converted to chain codes as done in the loss-
less case. Then the chain codes are approximated according
to different criteria before entropy coding. In [34], an approx-
imated chain code must be composed of several predefined
sub-chain codes, and the indices of the sub-chain codes are
coded. In [35], a line processing technique generates straighter
contour segments than the input, which are then efficiently
compressed. In [7], a chain code is simplified by removing “ir-
regularities”, which are predefined non-smooth edge patterns.
All these approaches approximate the chain codes without
considering explicitly distortion due to approximation, and one
cannot specify a desired compression ratio. In contrast, we
approximate a chain code via RD optimization algorithms, so
that different compression ratios can be achieved.

Vertex-based approaches select representative points called
vertices along the contour for coding. [36, 37] use a top-down
/ bottom-up framework to select and code vertices indepen-
dently. [9, 38, 39] propose an operational rate-distortion (ORD)
optimal algorithm to jointly select and code vertices. Many
improvements on ORD have since been proposed, including
[10–12, 40, 41]. Compared to the chain-code-based approach,
the vertex-based approach requires fewer points for coding,
but each point (vertex) will consume more bits. We follow the
chain-code-based approach for lossy coding in Section IV.

III. LOSSLESS CONTOUR CODING

We first propose an algorithm to efficiently code object
contours losslessly in a target image. A small set of training
images are used for statistical learning; we assume that the
target image and the training images are statistically correlated,
such as consecutive frames in a video sequence. We assume
also that, as a pre-processing step, object contours in an
image have first been either outlined manually, or detected
automatically using an existing method such as gradient-based
edge detection [7]. Each contour is defined by a starting point
and a sequence of connected edges. See Fig. 1 for two example
contours of VOPs in a frame of MPEG4 test sequence news2.
Our objective here is to losslessly encode the sequence of
connected edges in a given contour; coding of the starting
points of contours is discussed later in Section V.

2ftp://ftp.tnt.uni-hannover.de/pub/MPEG/mpeg4 masks/

3

TABLE I
NOTATIONS FOR LOSSLESS & LOSSY CONTOUR CODING

Notation Description
D alphabet of relative directions, D = {l,s,r}
A alphabet of absolute directions, A = {N,E,S,W}
X training set of DCC strings

x(m) m-th DCC string in training set X
M number of DCC strings in X
lm number of symbols in string x(m)
L total number of symbols in X

N(u) number of occurrences of sub-string u in X
P (x|u) conditional probability of symbol x given context u
x, xi DCC string and its i-th symbol, xi ∈ D
N length of the DCC string
x̂ approximated DCC string
N̂ length of the approximated DCC string

xj
i

A sub-string of length j − i+ 1 from xi to xj ,
xj
i = [xj , xj−1, . . . , xi]

w context
T , T ∗ context tree, an optimal context tree
F context forest composed of all possible context trees
D maximum depth of the context tree
T 0 initial context tree
K Number of nodes on T 0

Ts total suffix tree
α prior weight parameter, α = a lnL

Dmax maximum distortion of the approximated DCC string

We first overview our lossless contour coding algorithm,
based on the general concept of context tree model [13, 14].
The algorithm is composed of the following steps:

1) Convert each contour in a set of training images and
a target image into a differential chain code (DCC)
[21]—a string of symbols each chosen from a size-three
alphabet.

2) Construct a suitable context tree given the DCC strings
in the training images by solving a maximum a posterior
(MAP) problem.

3) For each symbol in an input DCC string (corresponding
to a contour in the target image), identify the conditional
probability distribution using the constructed context
tree, which is used for arithmetic coding of the symbol.

We discuss these steps in order. Notations for the technical
discussions in the sequel are shown in Table I.

A. Differential Chain Code

We first convert each contour into a DCC string; DCC is one
member of the family of chain codes proposed by Freeman
[21]. A contour is composed of a sequence of “between-
pixel” edges that divide pixels in the local neighborhood
into two sides, as illustrated in Fig. 2(a). A length-(N + 1)
contour can be compactly described as a symbol string denoted
by xo = [x0, . . . , xN]. For the first edge x0, we assume
equal probability for each of four absolute directions, north,
east, south and west, with respect to the starting point.
For each subsequent DCC symbol xi, i ≥ 1, only three relative
directions are possible on a 2D grid with respect to the previ-
ous symbol xi−1: left, straight and right, as shown in
Fig. 2(b). We denote them by l, s and r, respectively, which
constitute a size-three alphabet D = {l,s,r}. The problem

(a) (b)

Fig. 1. An example of object contours of VOP in an MPEG4 video frame: (a)
input image. (b) image with two object contours. The contours are the edges
between the green and the red pixels. The starting points of the contours are
indicated by the white arrows.

(a)

previous

direction

left: l

right: r

straight: s

(b)

Fig. 2. (a) An example of a contour represented by a four-connected chain
codes: east−s−r−s−l−l−s−r−l−r−s−l−r−s−s−r−l−s−s.
(b) directional code.

is thus to code a DCC string x (without the first edge), where
xi ∈ D for i ≥ 1.

B. Definition of Context Tree

We first define notations. Denote by x(m), 1 ≤ m ≤M , the
m-th DCC string in the training set X = {x(1), . . . ,x(M)},
where M denotes the total number of DCC strings in X . The
length of x(m) is denoted by lm, and the total number of
symbols in X is denoted by L =

∑M
m=1 lm.

Denote by xj
i = [xj , xj−1, . . . , xi], i < j and i, j ∈ Z+,

a sub-string of length j − i + 1 from the i-th symbol xi to
the j-th symbol xj in reverse order. Further, denote by uv the
concatenation of sub-strings u and v.

We now define N(u) as the number of occurrences of sub-
string u in the training set X . N(u) can be computed as:

N(u) =

M∑
m=1

lm−|u|+1∑
i=1

1
(
x(m)

i+|u|−1
i = u

)
(1)

where 1(c) is an indicator function that evaluates to 1 if the
specified binary clause c is true and 0 otherwise.

Denote by P (x|u) the conditional probability of symbol x
occurring given its previous sub-string is u, where x ∈ D.
Given training data X , P (x|u) can be estimated using N(u)
as done in [32],

P (x|u) = N(xu)
N(u) (2)

Given X , we learn a context model to assign a conditional
probability to any symbol given its previous symbols in a DCC
string. Specifically, to calculate the conditional probability
P (xi|xi−1

1) for the symbol xi given all its previous symbols
xi−1
1 , the model determines a context w to calculate P (xi|w),

4

ss

l rs

rssr rl rrsl

sls slrsll

l s r

l

l

ls

s

s rr

r

Fig. 3. An example of context tree. Each node is a sub-string and the
root node is an empty sub-string. The contexts are all the end nodes on T :
T = {l,sll,sls,slr,ss,sr,rl,rs,rr}.

where w is a prefix of the sub-string xi−1
1 , i.e., w = xi−1

i−l for
some context length l:

P (xi|xi−1
1) = P (xi|w) (3)

P (xi|w) is calculated using (2) given X . The context model
determines a unique context w of finite length for every
possible past xi−1

1 . The set of all mappings from xi−1
1 to w

can be represented compactly as a context tree.
Denote by T the context tree, where T is a full ternary

tree: each node has either zero children (an end node) or all
three children (an intermediate node). The root node has an
empty sub-string, and each child node has a sub-string ux
that is a concatenation of: i) its parent’s sub-string u if any,
and ii) the symbol x (one of l, s and r) representing the
link connecting the parent node and itself in T . An example
is shown in Fig. 3. The sub-strings of the end nodes are the
contexts of the tree T . For each xi−1

1 , a context w is obtained
by traversing T from the root node until an end node, matching
symbols xi−1, xi−2, . . . into the past.

All possible context trees constitute a context forest denoted
by F . The modeling problem is to find the best tree T from
the forest F given X .

C. Problem Definition for Optimal Context Tree

Given limited observations X , we aim to find a suitable tree
T that best describes X without overfitting. We first write the
posterior probability of T given X via Bayes’ rule:

P (T |X) = P (X|T)P (T)
P (X)

(4)

where P (X|T) is the likelihood of observing X given context
tree T , and P (T) is the prior which describes a priori knowl-
edge about the context tree. We next define the likelihood and
prior terms, and then use the MAP estimator to formulate the
context tree optimization problem.

1) Likelihood Term: The likelihood is defined as the joint
conditional probability of all the observed symbols in X given
their past and T ,

P (X|T) =
M∏

m=1

lm∏
i=1

P (x(m)i|x(m)i−11 , T) (5)

Given tree T , for each symbol x(m)i a prefix (context) w of
past symbols x(m)i−11 is identified to compute the conditional

probability. Hence (5) can be rewritten as follows using (3),
similarly done in [42]:

P (X|T) =
∏
w∈T

∏
x∈D

P (x|w)N(xw) (6)

2) Prior Term: Overfitting occurs if the complexity of a
model is too large for the given observed data size. In the case
of context tree, it means that the number of occurrences N(u)
of a particular context u is too small to have probabilities
P (x|u) reliably estimated using N(xu)

N(u) . To avoid overfitting,
one can design a prior to control the size of T—the complexity
of the model—depending on the volume of training data. This
general idea is used for example in [42], where Bayesian
information criterion (BIC) [19] is employed to constrain the
order of a fixed-length Markov model for given data size.

In the case of contour coding, we propose a geometric prior,
defined as the sum of straightness, s(w), of all contexts w
in tree T , based on the assumption that contours in natural
images are more likely straight than curvy. We calculate s(w)
as follows. We first map a context w to a shape segment on a
2D grid with |w| + 2 points from the most recent symbol
w|w| to the symbol w1 furthest in the past plus an initial
edge. Without loss of generality, we assume that the absolute
direction of the initial edge is East. As an example, Fig. 4(b)
shows a context w = lrl with five points, where the dotted
arrow is the initial edge. Denote by pk, 1 ≤ k ≤ |w| + 2,
the 2D coordinate of the k-th point. s(w) is defined as the
maximum distance dist() from any pk to a straight line
f(p1,p|w|+2) connecting p1 and p|w|+2,

s(w) = max
k

dist
(
pk, f(p1,p|w|+2)

)
(7)

Some examples of s(w) are shown in Fig. 4.

s(w)

(a)

s(w)

(b) (c)

Fig. 4. Three examples of s(w). (a) w = srrl and s(w) = 4
√
5/5. (b)

w = lrl and s(w) =
√
2/2. (c) w = ss and s(w) = 0.

We can now define prior P (T) based on the sum of s(w)
of all contexts w in T as follows:

P (T) = exp

(
−α

∑
w∈T

s(w)

)
(8)

where α is an important parameter to be discussed soon. We
see that in general a tree T with fewer contexts w has a
smaller sum in (8), meaning that our prior tends to reduce
the number of parameters. Further, in general fewer contexts
also means a shallower context tree. Thus, our prior promotes
shorter contexts, which is also reasonable.

3) MAP Estimation: We can now write the optimal context
tree problem via a MAP formulation:

T ∗ = argmax
T ∈F

P (X|T)P (T) (9)

5

(9) can be rewritten as:

T ∗ = argmax
T ∈F{∏

w∈T

∏
x∈D

P (x|w)N(xw) · exp

(
−α

∑
w∈T

s(w)

)}
(10)

For ease of computation, we minimize the negative log of
(10) instead and divide by L:

F (T) =

− 1

L

∑
w∈T

∑
x∈D

N(xw) · lnP (x|w) +
α

L

∑
w∈T

s(w) (11)

The first term in (11) can be interpreted as the average
information of all symbols in observed X . The second term is
the average straightness of all contexts. α weighs the relative
importance of the prior against the likelihood.

4) Selection of Weighting Parameter: Similar in principle
to BIC [19], we define α = a lnL, where a is a chosen
parameter. In doing so, when the size of the training data
L becomes larger, the weight factor for the prior a lnL/L
becomes smaller. This agrees with the intuition that when
sufficient training data is available, the prior term becomes
less important.

D. Optimization of Context Tree

The optimization of context tree consists of two main steps.
We first construct an initial context tree denoted by T 0 by
collecting statistics from X . We then prune T 0 to get the
optimal context tree T ∗ by minimizing the objective (11).

1) Construction of Initial Context Tree: Since T ∗ is a sub-
tree of T 0, each node (intermediate node or end node) in
T 0 can be a potential context (end node) in T ∗. Given a
maximum tree depth D, [32, 43] construct T 0 by collecting
statistics for all nodes, i.e., (3D+1 − 1)/2, which means that
the required memory is exponential with respect to D. To
reduce the memory requirement, we enforce an upper-bound
K on the number of nodes in T 0 given D. Specifically, we
first choose D = dlnL/ ln 3e as done in [14], which ensures a
large enough D to capture natural statistics of the training data
of length L. We then choose K = 3D3 in our experiments,
which is much smaller than (3D+1 − 1)/2.

Having chosen D and K, we parse the training data X
to collect statistics for K potential contexts. Specifically, we
traverse X once to first collect statistics for the first 2K
different sub-strings u we encounter, where |u| ≤ D. Each
sub-string u has three counters which store the number of
occurrences of sub-strings lu, su and ru, i.e., N(lu), N(su)
and N(ru). Then we keep only the K sub-strings with the
largest numbers of occurrences to construct T 0, as described
in Algorithm 1.

The obtained tree by Algorithm 1 may not be a full tree,
because some intermediate nodes may have only one or two
children. Thus, we add children to these intermediate nodes
to ensure that each intermediate node has three children. We
assume that the statistics of a newly added child uv is the same
as its parent u; i.e., P (x|uv) = P (x|u). The occurrences of
the added children are set to ensure that the total number of

Algorithm 1 Choose K potential contexts
1: Initialize T 0 to an empty tree with only root node
2: for each symbol xi, i ≥ D + 2 in X , match xi−1i−k with

nodes on T 0 from k = 1 to k = D in order do
3: if there exist a node u = xi−1i−k on T 0 then
4: increase the counter N(xiu) by 1
5: else if number of nodes on T 0 is less than 2K then
6: add node u = xi−1i−k to T 0

7: end if
8: end for
9: Sort nodes on T 0 by N(u) in descending order and choose

the first K nodes from the sorted nodes.

occurrences of all three children is equal to the number of
occurrence of their parent. Specifically, N(uv) = N(u) −∑
z∈D,z 6=v

N(uz) if only one child uv is added, and N(uv) =

N(us) = 1
2 (N(u) −

∑
z∈D,z 6=v,z 6=s

N(uz)) if two children uv

and us are added.
After the adding procedure, we arrive at an initial context

tree T 0 with maximum depth D. The memory requirement
of the initialization is O(3 · 2K) = O(K), and the time
complexity is O(K · L).

2) Pruning of Initial Context Tree: The obtained initial tree
T 0 is then pruned to minimize the objective (11), resulting in
an optimal tree T ∗. Since both the likelihood and the prior in
(11) are summations of all the contexts (end nodes) in T , we
rewrite the objective as the sum of end node cost denoted by
f(w):

F (T) =
∑
w∈T

f(w) (12)

where

f(w) = − 1

L

∑
x∈D

N(xw) · lnP (x|w) + a · lnL
L
· s(w) (13)

f(w) is the cost of end node w on T .
We minimize (12) recursively by dividing the original

problem into sub-problems. The sub-problem is to minimize
the end node cost F (T 0

u) of a sub-tree T 0
u rooted at node

u. Specifically, we define a recurisve function J(T 0
u) that

minimizes F (T 0
u) as follows:

J(T 0
u) = min{J(T 0

ul) + J(T 0
us) + J(T 0

ur), f(u)} (14)

In words, (14) states that we can either treat node u as an end
node and compute its cost f(u) (and as a result eliminating
all nodes in the sub-tree below), or treat it as an intermediate
node and recurse. The complexity of (14)—the total number
of recursions—with initial tree T 0 as argument is proportional
to the number of nodes, hence O(K).

3) Analysis of the Optimization Algorithm: To better un-
derstand the relationship between the likelihood and the depth
of the context tree, for an intermediate node u with three end-
node children on tree T , we examine the change in likelihood
if the three end-node children are pruned. Following (11), the
change in likelihood is calculated as follows:

6

− 1

L

∑
v∈D

∑
x∈D

N(xuv) lnP (x|uv) + 1

L

∑
x∈D

N(xu) lnP (x|u)

= − 1

L

∑
v∈D

N(uv)
∑
x∈D

P (x|uv) ln P (x|uv)
P (x|u)

= − 1

L

∑
v∈D

N(uv)DKL(P (·|uv)||P (·|u))

(15)

where DKL(P (·|uv)||P (·|u)) is the Kullback-Leibler diver-
gence (KLD) [44] of P (·|u) from P (·|uv), which is non-
negative. As discussed previously, the average negative log
of the likelihood can be regarded as the average information.
Hence this difference is the average information gain when the
children of node u are pruned. In general, we can conclude
that the log likelihood term becomes smaller when the tree
grows deeper. On the other hand, the log prior becomes larger
when the tree grows deeper. Our objective is thus to find a
properly sized context tree that balances these two terms.

E. Adaptive Arithmetic Coding

For each symbol xi in the DCC strings of the target image,
we first find the matched context w of xi, i.e., w = xi−1

i−|w|,
and get the corresponding conditional probability distribution
P (xi|w) from the resulting optimal context tree T ∗. Then, the
probability distribution is inputted into an adaptive arithmetic
coder [17] to encode xi. The length of the DCC string is also
losslessly coded using fixed length binary coding.

IV. LOSSY CONTOUR CODING

We now discuss lossy contour coding. Specifically, we
approximate each DCC string in the test image by minimizing
an RD cost. The rate of encoding an approximated DCC
string is computed using a context tree T ∗, constructed from
training data as described previously. Two distortion metrics,
sum squared distance distortion (SSDD) and maximum abso-
lute distance distortion (MADD), are introduced for different
applications. We first discuss the two distortion metrics. Then
we discuss the algorithms of approximating the DCC strings
using one of the two metrics in order.

A. Distortion Definition

When approximating a contour, the chosen distortion metric
should be application-specific. If the intended application is
image / video compression, where coded contours are used as
side information to facilitate transform coding [4] or motion
prediction of arbitrarily shaped blocks [7], then a metric
measuring the aggregate distortion between the original and
approximated contours would be appropriate. SSDD would be
a suitable metric in this case.

Denote by x and x̂ the original and approximated DCC
strings respectively, and by N and N̂ the lengths of x and x̂.
To describe a DCC string geometrically on a 2D grid, we first
map x to a contour segment, composed of contiguous vertical
or horizontal edges. Fig. 2(a) shows a contour segment and

the corresponding DCC string. Specifically, given a default
starting point (0, 0) on the 2D grid, we determine the i-th
edge relative to the (i− 1)-th edge using the i-th symbol xi.
Denote by px(i) the 2D coordinate of the endpoint of the i-th
edge and ax(i) ∈ A = {N,E,S,W} the absolute direction of
the i-th edge. The i-th edge is uniquely determined by the
coordinate px(i) and the absolute direction ax(i) alone.

Denote by d(px̂(j),x) the distortion of the j-th approxi-
mated symbol x̂j with respect to the original DCC string x.
d(px̂(j),x) is calculated as the minimum absolute distance
between coordinate px̂(j) of the j-th edge and the segment
derived from x on the 2D grid:

d(px̂(j),x) = min
1≤i≤N

|px̂(j)− px(i)| (16)

SSDD DS(x̂,x) is then calculated as the sum of squared
distortions of all approximated symbols:

DS(x̂,x) =
N̂∑
j=1

d2(px̂(j),x) (17)

Another distortion metric is MADD, which measures the
maximum distortion between the original and approximated
contours. MADD is suitable for applications where perceptual
quality is evaluated [11, 12, 45]. Consider for example a long
contour with all edges shifted to the left by one pixel. The
contour shift should incur a small perceptual penalty rather
than the sum of all individual edge shifts, and so MADD is
more reasonable than SSDD in this case. We calculate MADD
DM (x̂,x) as the maximum distortion of all the approximated
symbols:

DM (x̂,x) = max
1≤j≤N̂

d(px̂(j),x) (18)

B. SSDD based Contour Coding

To approximate contour x using SSDD (17) as the distortion
metric, we first write the RD cost as follows:

min
x̂

DS(x̂,x) + λR(x̂) (19)

where R(x̂) denotes the overhead to encode DCC string x̂
and λ is the Lagrange multiplier. R(x̂) is approximated as the
total information of the symbols in x̂,

R(x̂) = −
N̂∑
j=1

log2 P (x̂j |x̂
j−1
1) (20)

Given a context tree T ∗, a context w is selected for each
x̂j to calculate P (x̂j |x̂j−1

1), where w is a prefix of x̂j−1
1 .

Specifically, P (x̂j |x̂j−1
1) = P (x̂j |w), calculated as N(x̂jw)

N(w) .
Using the definitions of DS(x̂,x) and R(x̂), the objective

is written as:

FS(x̂,x) =

N̂∑
j=1

d2(px̂(j),x)− λ
N̂∑
j=1

log2 P (x̂j |x̂
j−1
1) (21)

For simplicity, we assume that the 2D coordinates of the first
and last edges of the approximated x̂ are the same as those of
the original x, i.e., px̂(1) = px(1) and px̂(N̂) = px(N).

7

1) Dynamic Programming Algorithm: We now describe
an efficient DP algorithm to find the optimal approximated
contour x̂, minimizing (21). We first rewrite (21) as:

FS(x̂,x) =

N̂∑
j=1

f(px̂(j), x̂
j
1) (22)

where

f(px̂(j), x̂
j
1) = d2(px̂(j),x)− λ log2 P (x̂j |x̂

j−1
1) (23)

f(px̂(j), x̂
j
1) is the RD cost of symbol x̂j . Since x is fixed,

we omit it in the parameters of f() to simplify notations.
Denote by Cj(x̂

j−1
j−D,px̂(j − 1), ax̂(j − 1)) the minimum

aggregate RD cost from x̂j to last edge x̂N̂ given that the
D previous symbols (called history in the sequel) are x̂j−1

j−D,
and the previous edge has coordinate px̂(j − 1) and absolute
direction ax̂(j−1). D is the maximum depth of T ∗. The code
rate of x̂j depends on no more than its D previous symbols
in history x̂j−1

j−D.
We can calculate Cj(x̂

j−1
j−D,px̂(j−1), ax̂(j−1)) recursively

as follows:

Cj(x̂
j−1
j−D,px̂(j − 1), ax̂(j − 1)) =

min
x̂j∈D


f(px̂(j), x̂

j
j−D), px̂(j) = px(N)

f(px̂(j), x̂
j
j−D)

+ Cj+1(x̂
j
j+1−D,px̂(j), ax̂(j)),

o.w.

(24)

where px̂(j) and ax̂(j) are the coordinate and absolute di-
rection of the j-th edge derived from chosen symbol x̂j . In
words, (24) chooses the next symbol x̂j to minimize the sum
of a local cost f(px̂(j), x̂

j
j−D) and a recursive cost Cj+1()

for the remaining symbols in x̂, given updated history x̂j
j+1−D

and the j-th edge. If the coordinate of the next edge matches
the coordinate of the last edge of x, i.e., px̂(j) = px(N), we
terminate the recursion.

The absolute direction ax̂(j) and the coordinate px̂(j) of the
next edge j are derived from the chosen next symbol x̂j . ax̂(j)
is the resulting absolute direction after the previous absolute
direction ax̂(j−1) proceeds in the relative direction specified
by x̂j . Coordinate px̂(j) is then derived from ax̂(j) relative
to the previous coordinate px̂(j− 1). For example, given that
the previous absolute direction is North, after turning left,
i.e., x̂j = l, the resulting absolute direction is West. Then
px̂(j) is computed as px̂(j−1) going west by one pixel. With
the updated px̂(j) and x̂j

j−D, the local cost f(px̂(j), x̂
j
j−D)

is computed using (23).
In practice, we restrict the approximated DCC string x̂ to

be no longer than the original DCC string x, i.e., N̂ ≤ N , to
induce a lower rate. So if j > N , we stop the recursion and
return infinity to signal an invalid solution.

2) Complexity Analysis: The complexity of the DP algo-
rithm is upper-bounded by the size of the DP table times the
complexity of computing each table entry. Denote by Q the
total number of possible coordinates3 px̂(j−1). Examining the

3As a computation / quality tradeoff, we can restrict the set of potential
coordinates, for example, to be a set of neighborhood grid points within some
fixed distance Dmax from the original contour segment x; e.g., the set of
points in the grey area in Fig. 5 within Dmax = 2 from original x.

Fig. 5. An example of possible locations (region in gray) of approximated
DCC string defined by Dmax. In this example, Dmax = 2.

Fig. 6. An example of total suffix tree (TST) derived from the
context tree in Fig. 3. End nodes in gray are added nodes based
on the context tree. All the end nodes construct a TST: T ∗

s =
{ll,ls,lr,sll,sls,slr,ss,sr,rl,rs,rr}.

subscript and three arguments of the recursive function Cj(),
we see that the DP table size is N×3D×Q×4, or O(N3DQ).
The complexity of compute one table entry using (24) is O(1).
Hence the complexity of the algorithm is O(N3DQ).

3) Total Suffix Tree (TST): When the training data is large,
D is also large, resulting in a very large DP table size due
to the exponential term 3D. In (24) when calculating local
cost f(px̂(j), x̂

j
j−D), actually the context required to compute

rate is w = x̂j−1
j−|w|, where the context length |w| is typically

smaller than D because the context tree T ∗ of maximum depth
D is variable-length. Thus, if we can, at appropriate recursive
calls, reduce the history from x̂j

j+1−D of length D to x̂j
j+1−k

of length k, k < D, for recursive call to Cj+1() in (24), then
we can reduce the DP table size and in turn the computation
complexity of the DP algorithm.

The challenge is how to “remember” just enough previous
symbols x̂j , x̂j−1, . . . during recursion so that the right context
w can still be correctly identified to compute rate at a later
recursive call. The solution to this problem can be described
simply. Let w be a context (end node) in context tree T ∗.
Context w must be created at some previous recursive call
Cj() by concatenating a chosen j-th symbol x̂j = w|w| with
suffix w

|w|−1
1 of context w. It implies that the recursion in

(24) must remember suffix w
|w|−1
1 for this creation of w to

take place at a later recursion. To create suffix w
|w|−1
1 at a

later recursive call, one must remember its suffix w
|w|−2
1 at

an earlier call. We can thus generalize this observation and
state that a necessary and sufficient condition to preserve all
contexts w in context tree T ∗ is to remember all suffixes of
w during the recursion.

All suffixes of contexts in T ∗ can themselves be represented
as a tree, which we call a total suffix tree (TST), denoted as

8

T ∗s . By definition, T ∗ is a sub-tree of T ∗s . Further, TST T ∗s is
also a full tree given T ∗ is a full tree; T ∗s is essentially a union
of all sub-trees of T ∗, and a sub-tree of a full tree is also a
full tree. T ∗ has O(K) contexts, each of maximum length D.
Each context can induce O(D) additional end nodes in TST
T ∗s . Hence TST T ∗s has O(KD) end-nodes.

Fig. 6 illustrates one example of TST derived from the
context tree shown in Fig. 3. TST T ∗s can be used for compact
DP table entry indexing during recursion (24) as follows.
When an updated history x̂j

j+1−D is created from a selection
of symbol x̂j , we first truncate x̂j

j+1−D to x̂j
j+1−k, where

x̂j
j+1−k is the longest matching string in T ∗s from root node

down. Because TST T ∗s is a full tree, the longest matching
string always corresponds to an end node. The shortened
history x̂j

j+1−k is then used as the new argument for the
recursive call. Practically, it means that only DP table entries
of arguments x̂j

j+1−k that are end nodes of TST T ∗s will be
indexed, thus reducing complexity from original O(N3DQ)
to O(NKDQ), which is now polynomial in D.

C. MADD based Contour Coding
When the distortion metric is MADD, instead of an un-

constrained Lagrangian formulation, we formulate instead a
distortion-constrained problem as follows:

min
x̂

R(x̂)

s.t. DM (x̂,x) ≤ Dmax

(25)

where Dmax is the maximum distortion permitted. Example
when Dmax = 2 is shown in Fig. 5. Dmax can be varied to
induce different RD tradeoff.

Given the definition of rate and distortion, (25) can be
rewritten as:

min
x̂

−
N̂∑
j=1

log2 P (x̂j |x̂
j−1
1)

s.t. max
1≤j≤N̂

d(px̂(j),x) ≤ Dmax

(26)

Similar to the SSDD case, this minimization problem can
also be solved by using DP by simplifying the problem to:

min
x̂

N̂∑
j=1

r(x̂j
1)

s.t. r(x̂j
1) = − log2 P (x̂j |x̂

j−1
1)

d(px̂(j),x) ≤ Dmax

(27)

where r(x̂j
1) denotes the coding cost of x̂j . The problem

becomes finding an approximated DCC string x̂ in the region
R restricted by Dmax in order to minimize the total rate.

Denote by C ′j(x̂
j−1
j−D,px̂(j − 1), ax̂(j − 1)) the minimum

total rate from x̂j to x̂N̂ given the D previous symbols x̂j−1
j−D,

and the previous edge has coordinate px̂(j − 1) and abso-
lute direction ax̂(j − 1). We can compute C ′j(x̂

j−1
j−D,px̂(j −

1), ax̂(j − 1)) recursively as follows:

C ′j(x̂
j−1
j−D,px̂(j − 1), ax̂(j − 1)) =

min
x̂j∈D


r(x̂j

j−D), px̂(j) = px(N)

r(x̂j
j−D)

+ C ′j+1(x̂
j
j+1−D,px̂(j), ax̂(j)),

o.w.

(28)

(a) (b)

Fig. 7. Examples of starting points. Green pixels are the pixels along one
side of the detected edges and red pixels (inside white circles) are the starting
points. (a) Laundry. (b) Moebius.

where we restrict x̂j to induce only edges that are within the
feasible region R delimited by Dmax. The recursion is same
as (24) except the local cost function. Hence the complexity
of the DP algorithm here is also same as in the SSDD case.

V. STARTING POINT CODING

We propose a mixed-Golomb (M-Golomb) algorithm to
encode the 2D coordinates of starting points of all contours
in the target image. In general, the starting points are not
uniformly distributed on the image. They tend to cluster
around objects or figures that appear in the scene, as illustrated
in Fig. 7. This means that the differences in coordinates of
neighboring starting points tend to be small, and Golomb
coding [46] is suitable to encode coordinate differences that
are more likely small than large.

A 2D coordinate of a starting point has two components
(horizontal and vertical); we use Golomb coding to code only
the differences in coordinates in one component. Specifically,
we first sort the starting points according to this chosen
component in ascending order. The coordinate differences in
neighboring points are then coded using Golomb coding. The
coordinates in the other component are coded using fixed
length binary coding.

Golomb coding uses a tunable parameter to divide an input
value into two parts: the remainder and the quotient. The
quotient is sent in unary coding, followed by the remainder
in truncated binary coding. For simplicity, we choose the
parameter as 2k, where 0 ≤ k ≤ dlog2W e and W is the
maximum input value. We examine all possible values of
k to find the smallest coding cost of all the starting points
in the target image and send this selected parameter as side
information.

VI. EXPERIMENTAL RESULTS

We evaluate the performance of our lossless and lossy
contour coding algorithms in three scenarios. For scenario 1,
we first present results for lossless contour coding of VOPs in
MEPG4 sequences, then results for lossless contour coding
of objects in depth images and starting points coding in
order. For scenario 2, we present visual comparisons of lossy
contour coding of objects in depth images, then show the
RD performance of lossy depth image coding. For scenario

9

3, we present visual comparisons of different silhouette ap-
proximating methods, then show the RD performance of lossy
multiview silhouette coding for 3D reconstruction.

A. Lossless Contour Coding

To evaluate the performance of our proposed context tree
based lossless contour coding (CT-LL), we used VOPs of four
MPEG4 sequences4, Children, Stefan, Robot and Cyc,
as test data. The spatial resolution of all four sequences is
352 × 240. 10 frames were tested for each sequence. Note
that the contours of the VOPs were already outlined as input
to our coding algorithm. We also coded object contours in four
Middleburry depth images5: Moebius (456×368), Cones
(448×368), Teddy (448×368) and Laundry (440×368).
The contours were detected using a gradient-based edge de-
tection scheme in [7].

To code VOPs in a given video frame of a MPEG-4
sequence, previous two frames of the same sequence were
used to train the context tree. To code object contours of a
Middleburry depth image, we used other Middleburry images
to train the context tree. We tested two training image sets
(Train1 and Train2), where each contains four different
randomly selected images. To test the performance of our
proposed CT-LL with different training sets, we used also
a combined training image set (Train1+Train2), which
contains images in both Train1 and Train2. We set the
parameter a = 0.25 in all the experiments.

We compared CT-LL against four lossless compression
schemes: i) the Lempel-Ziv-Welch (LZW) algorithm in [47], an
improved version of LZ78; ii) the probability suffix tree (PST)
algorithm in [16], iii) the prediction by partial matching (PPM)
algorithm in [48], and iv) the arithmetic edge coding (AEC)
scheme in [7]. The training datasets for PST and PPM were
the same as those for CT-LL. Our proposed starting points
coding scheme (M-Golomb) was compared against fixed
length binary coding (Binary). All the contour compression
methods used our proposed M-Golomb for coding the starting
points in the experiments.

TABLE II
RESULTS OF LOSSLESS CONTOUR CODING OF VOPS IN BITS PER

SYMBOL

Bits/Symbol LZW AEC PST PPM CT-LL
Children 1.685 1.256 1.176 1.257 1.170
Stefan 1.494 1.117 0.914 0.956 0.894
Robot 1.808 1.414 1.341 1.318 1.278
Cyc 1.525 1.182 0.879 0.823 0.828

Average 1.628 1.242 1.078 1.089 1.043

1) Results for Lossless Contour Coding of VOPs in MPEG4
Sequences: Table II shows the compression results in average
bits per symbol for VOP lossless coding using different meth-
ods. Compared to the other methods, our proposed CT-LL
achieves noticeable bitrate reduction on average. Specifically,
on average we reduce the bitrate by 35.97% compared to

4ftp://ftp.tnt.uni-hannover.de/pub/MPEG/mpeg4 masks/
5http://vision.middlebury.edu/stereo/data/

LZW, 16.08% compared to AEC, 3.26% compared to PST,
and 4.23% compared to PPM.

In general, the context based methods (PST, PPM and
CT-LL) outperform LZW and AEC significantly. Compared to
PPM, the gain of our CT-LL varies depending on different
sequences. In particular, for Children and Stefan with
large motion, CT-LL outperforms PPM by 6.92% and 6.49%.
While for Cyc with very small motion, CT-LL is worse
than PPM marginally by 0.60%. Since there is no prior to
prune the contexts in PPM, it fails to avoid overfitting for
sequences with large motion. Compared to PST, which can
avoid overfitting by setting five application-specific thresholds,
CT-LL has steady gain because of the our proposed geometric
prior for contour coding.

2) Results for Lossless Contour Coding of Objects in
Middlebury Depth Images: Table III shows the compression
results for lossless contour coding of objects in depth images.
Our CT-LL outperforms the other four methods for all three
training sets. Specifically, for Train1, the average bit re-
ductions are 30.96%, 10.35%, 7.89% and 2.45% over LZW,
AEC, PST and PPM, respectively; for Train2, the average
bit reductions are 30.93%, 10.30%, 7.76% and 3.31%; for
Train1+Train2, the average bit reductions are 31.74%,
11.36%, 6.62% and 2.49%.

Compared to the results of lossless contour coding of VOPs,
the performance of CT-LL of lossless contour coding of
objects in depth images decreased a bit. The difference mainly
stems from the dissimilarity in statistics between the test and
training images in the latter case. Specifically, for coding
VOPs in MPEG4 video sequences, the training images are
the previous frames, which are quite similar to the current
frame. While for the test depth images, the training images
are randomly selected images, which were obtained using
the same setup but from different 3D scenes. Nonetheless,
as shown in Table III, we can still achieve bitrate reduction
compared to other methods using different training sets.

Comparing the results of Train1+Train2 to that of
Train1 and Train2, we can see that all three context based
methods (PST, PPM and CT-LL) benefited from more train-
ing data, resulting in lower average bitrates. With twice the
training data, PST and PPM resulted in a larger improvement
compared to CT-LL. This demonstrates that the performance
of our proposed CT-LL is stable for large and small data size.
In other words, unlike other context based methods like PST
and PPM, our CT-LL maintains good coding performance even
for small data size by avoiding overfitting using our proposed
geometric prior.

3) Results for Starting Points Coding: The performance
of our proposed starting points coding scheme (M-Golomb)
compared to the fixed binary coding (Binary) is shown in
Table IV. We tested both the VOPs in MPEG4 sequences
and the object contours in depth images. Both the number
of contours and the bit overhead in coding contours of VOPs
are averaged to one frame to better compare to that of the
depth images. For the VOPs which contain only a few contours
in one frame, i.e., Children and Stefan, the proposed
M-Golomb has little advantage over Binary. However, we
can save on average 29.56% bits of starting points and 6.94%

10

TABLE III
RESULTS OF LOSSLESS CODING CONTOURS OF OBJECTS IN DEPTH IMAGES IN BITS PER SYMBOL

Bits/Symbol LZW AEC
Train1 Train2 Train1+Train2

PST PPM CT-LL PST PPM CT-LL PST PPM CT-LL
Moebius 1.912 1.409 1.378 1.272 1.233 1.373 1.286 1.240 1.326 1.257 1.220
Cones 1.727 1.424 1.245 1.181 1.164 1.282 1.232 1.199 1.241 1.176 1.154
Teddy 2.014 1.519 1.555 1.493 1.450 1.550 1.493 1.434 1.510 1.479 1.439
Laundry 1.642 1.265 1.290 1.216 1.189 1.257 1.199 1.165 1.255 1.195 1.166
Average 1.824 1.404 1.367 1.291 1.259 1.366 1.303 1.260 1.333 1.277 1.245

TABLE IV
RESULTS OF CODING STARTING POINTS

Input Average Num Bits of Starting Points Total Bits
of Contours Binary M-Golomb 4Bits Binary M-Golomb 4Bits

Children 3.4 57.8 58.7 1.56% 1684.7 1685.6 0.05%
Mask Stefan 1 17 21 23.53% 517.1 521.1 0.77%

Seqeunces Robot 21.3 362.1 273.8 -24.39% 2474.1 2385.8 -3.57%
Cyc 21.6 367.2 295.5 -19.53% 2959.5 2887.8 -2.42%

Average 11.8 201.0 162.3 -19.29% 1908.9 1870.1 -2.03%
Moebius 144 2592 1785 -31.13% 8825 8018 -9.14%

Depth Cones 82 1476 1081 -26.76% 7399 7004 -5.34%
Images Teddy 100 1800 1289 -28.39% 7894 7467 -5.41%

Laundry 125 2250 1563 -30.53% 9254 8567 -7.42%
Average 112.8 2029.5 1429.5 -29.56% 8343.0 7764.0 -6.94%

bits of total bits for the depth images which contain lots of
contours in one image.

B. Depth Image Coding

We implemented our proposed SSDD based lossy con-
tour coding (CT-SSDD) scheme for coding edges as side
information in MR-GFT [4], one of the state-of-the-art depth
image compression methods. In [4], the detected edges of the
whole image are losslessly coded by employing AEC [7] and
transmitted to the decoder for directional intra prediction. We
replace AEC with CT-SSDD to compress four Middleburry
depth images which are same as that in section VI-A. Train2
are used as the training images.

Different from the losslessly edge coding in MR-GFT, we
compressed contours lossily using our proposed CT-SSDD.
Changes in the contours can lower the edge coding cost,
but can also lead to larger intra prediction residual. We thus
augmented the depth image to match the approximated edges
obtained using CT-SSDD, in order to reduce the prediction
residual. Specifically, the pixel values between the original
edge and the approximated edge were replaced with the pixel
values on the other side of the approximated edge, as shown
on Fig. 8.

Since the contours are coded as side information for com-
pressing depth images, the distortion term in CT-SSDD should
be related to the distortion of the depth signal. Distortion of
our described depth image coding scheme comes from two
sources: i) distortion due to quantization of the transform co-
efficients, and ii) distortion due to depth pixel augmentation to
suit approximated contours, as described previously. Because
the contour coding and the residual coding in MR-GFT are
performed in separate steps, it is impractical to consider both
distortions simultaneously.

As a straightforward attempt, the distortion term DS(x̂,x)
in (17) is modified and defined as the augmentation distortion,

which is calculated as the sum of squared distortion of
augmented depth pixels instead of the approximated symbols.
Further, we choose λ = 0.85 × (2

QP−12
3), which is the same

λ as used in the mode selection part of MR-GFT, where
QP is the quantization parameter. Thus this selection of λ
provides an appropriate weight between the edge coding and
the residual coding.

We compare the depth image coding performance of
our proposed MR-GFT+CT-SSDD against MR-GFT+CT-LL,
MR-GFT+PPM, the original MR-GFT in [4] and HEVC
Test Model HM-16.06 (HEVC), where MR-GFT+CT-LL and
MR-GFT+PPM are obtained by replacing the edge coding
scheme (AEC) in MR-GFT with the proposed CT-LL and PPM.

1) Edge Approximation and Depth Image Augmentation:
Fig. 8 shows two examples of edge approximation and depth
image augmentation. We see that the changed edges are mostly
the irregular edges (e.g., the white region in Fig. 8). This is
because these irregular edges along with their contexts have
more scattered probability distributions in the trained context
tree T ∗, which will consume larger amount of bits after
arithmetic coding. As shown in Fig. 8, after approximating
the edges, the depth pixels are augmented to match the new
edges.

Note that edges with smaller gradient (e.g., mesh grid of
basket in Fig. 8(b) and flower in Fig. 8(d)) are more likely
to be approximated than edges with larger gradient (e.g.,
the boundaries of basket in Fig. 8(b) and Teddy bear in
Fig. 8(d)). This is because approximation of the edges with
larger gradient will result in larger augmentation distortion.

2) Results in RD Performance: The RD performance of the
proposed MR-GFT+CT-SSDD and MR-GFT+CT-LL against
MR-GFT+PPM, MR-GFT and HEVC is presented in Fig. 9.
The proposed MR-GFT+CT-SSDD achieves promising bit rate
reduction over a wide range of PSNR, and the proposed

6https://hevc.hhi.fraunhofer.de/svn/svn HEVCSoftware/tags/HM-16.0/

11

(a) (b)

(c) (d)

Fig. 8. Examples of edge approximation and depth image augmentation. (a)
Original depth image of Laundry. (b) Augmented depth image of Laundry
after edge approximation with QP = 37. (c) Original depth image of Teddy.
(d) Augmented depth image of Teddy after edge approximation with QP =
37.

TABLE V
RESULTS OF BIT ALLOCATION FOR CODING TEDDY

QP
MR-GFT MR-GFT MR-GFT

CT-LL CT-SSDD
Edge Resi Total Edge Resi Total Edge Resi Total

22 6515 12132 18647 6178 12132 18310 6160 12132 18292
27 6515 7857 14372 6178 7857 14035 6101 7854 13955
32 6515 6225 12740 6178 6225 12403 5827 6021 11848
37 6515 5344 11859 6178 5344 11522 5548 5322 10870

MR-GFT+CT-LL also outperforms other three schemes. On
average, we achieve a bit rate reduction of 19.34% over HEVC,
10.29% over MG-GFT, 5.02% over MR-GFT+PPM and 3.46%
over MR-GFT+CT-LL.

Compared to MR-GFT, the gain of the proposed two
schemes comes from the more efficient edge coding schemes.
Table V gives the detailed results of bits of coding edges
among the total bits with different QP of Teddy. When
QP = 37, we save on average 14.84% bits and 5.17% bits
for coding edges with the proposed CT-SSDD and CT-LL
compared to AEC adopted in MR-GFT. Note that the bits
of coding residuals (difference between total bits and bits of
coding edges) of MR-GFT+CT-LL and MR-GFT are the same,
while they are a bit larger than that of MR-GFT+CT-SSDD.
Using MR-GFT+CT-SSDD, the depth image is augmented
with fewer irregular edges before coding, resulting in more
efficient directional intra prediction.

The bit rate reduction of CT-SSDD over CT-LL becomes
larger when the QP increases. This is also reflected in the
RD curve in Fig. 9. As previously discussed, the strength of
the approximation is controlled by λ. When QP is small, λ
is also small which makes the edges less likely be changed.
In other words, in high bit rate situation, it is unnecessary to
approximate the edges, while more edges can be changed in

Total Bits ×104
0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

P
S

N
R

(d
B

)

42

43

44

45

46

47

48

49

50
Moebius

HEVC
MR-GFT
MR-GFT+PPM
MR-GFT+CT-LL
MR-GFT+CT-SSDD

(a)
Total Bits ×104

1 1.5 2 2.5

P
S

N
R

(d
B

)

42

43

44

45

46

47

48

49
Cones

HEVC
MR-GFT
MR-GFT+PPM
MR-GFT+CT-LL
MR-GFT+CT-SSDD

(b)

Total Bits ×104
0.8 1 1.2 1.4 1.6 1.8 2 2.2

P
S

N
R

(d
B

)

43

44

45

46

47

48

49

50
Teddy

HEVC
MR-GFT
MR-GFT+PPM
MR-GFT+CT-LL
MR-GFT+CT-SSDD

(c)
Total Bits ×104

1 1.2 1.4 1.6 1.8 2 2.2 2.4

P
S

N
R

(d
B

)

42

43

44

45

46

47

48

49

50
Laundry

HEVC
MR-GFT
MR-GFT+PPM
MR-GFT+CT-LL
MR-GFT+CT-SSDD

(d)

Fig. 9. RD performance comparison among different compression schemes
for depth images.

the low bit rate situation.

C. Multiview Silhouettes Coding for 3D Reconstruction

We test our proposed MADD based lossy contour coding
CT-MADD on the multiview silhouette sequences from Mi-
crosoft Research. The sequences are obtained using the equip-
ment set up in [49]. The spatial resolution of the silhouettes is
384×512. Each sequence contains 10 frames, and eight views
are taken for each frame. Fig. 10(a) shows an example of the
silhouettes of eight views for a single frame. The silhouettes
were extracted from the images captured with an eight camera
rig, as illustrated in Fig. 10(b). With the extracted silhouettes,
the 3D model can be reconstructed as shown in Fig. 10(c). We
coded four multiview silhouette sequences using CT-MADD
and reconstructed the 3D models with the coded silhouettes.
The RD performance was evaluated, where distortion is the
volume error between the 3D model reconstructed with the
original silhouettes and that with the coded silhouettes.

The 3D model was reconstructed based on a volume in-
tersection scheme [50]. We projected each silhouette onto an
initialized 3D volume and the final 3D model is the intersected
volume of the eight projected silhouettes.

We compare the RD performance of CT-MADD against
two lossy contour compression schemes: the operational rate-
distortion optimal polygon-based shape coding (ORD) in [9]
and the improved version based on an adaptive edge coding
scheme (EA-ORD) in [12]. ORD and EA-ORD also adopt the
MADD measure same as the proposed CT-MADD. For all three
methods, Dmax was set from 1 to 5 to test different distortion.

1) Comparison of Contour Approximation: Fig. 11 shows
one view of silhouette approximation using different methods
with Dmax = 1 and Dmax = 3. With the same Dmax,
CT-MADD consumes the fewest bits to code the silhouette.
As for subjective quality, the silhouettes approximated by
CT-MADD are most similar visually to the original silhouettes,

12

(a)

(b) (c)

Fig. 10. (a) Silhouettes of eight views for a single frame. (b) Top views of
the capture rig layout showing 8 cameras and human subject within the cube.
(c) One view of a model reconstructed from the silhouettes in (a).

while the results by ORD and EA-ORD contain lots of staircase
shapes.

In both ORD and EA-ORD, only some contour pixels are
selected for coding. The approximated silhouette was con-
structed by connecting these selected contour pixels in order,
making the result unnatural with too many staircase lines.

2) Evaluation of RD Performance: The RD performance
is shown in Fig. 12. We observe that CT-MADD outperforms
ORD and EA-ORD significantly both in bit rate and distortion.
Specifically, at the same Dmax, CT-MADD has an average
bitrate reduction of 50% and 38% and an average of distortion
reduction of 31% and 43% compared to ORD and EA-ORD.

In ORD and EA-ORD, the differences between two selected
contour pixels (vertices) are coded using unary code. Larger
differences will consume more bits. Although CT-MADD codes
more number of contour pixels, the accurately estimated
conditional probabilities enable our contour pixels to be coded
much more efficiently than ORD and EA-ORD.

VII. CONCLUSION

We investigate the problem of lossless and lossy coding of
image contours, focusing on the case when the sizes of training
datasets X are limited. To avoid overfitting, we propose a
maximum a posteriori (MAP) formulation to compute an

(a) 1429 bits (b) 1179 bits (c) 664 bits

(d) 1376 bits (e) 1128 bits (f) 646 bits

Fig. 11. Examples of silhouette approximation of different methods. The
original silhouette is the second view in Fig. 10(a). Left column: ORD. Middle
column: EA-ORD. Right column: CT-MADD. (a) ∼ (c) Dmax = 1. (d) ∼ (f)
Dmax = 3.

Bits/Symbol(bps)
0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

D
is

to
rt

io
n(

%
)

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Seq1

ORD
EA-ORD
CT-MADD

(a)
Bits/Symbol(bps)

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

D
is

to
rt

io
n(

%
)

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9
Seq2

ORD
EA-ORD
CT-MADD

(b)

Bits/Symbol(bps)
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

D
is

to
rt

io
n(

%
)

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9
Seq3

ORD
EA-ORD
CT-MADD

(c)
Bits/Symbol(bps)

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

D
is

to
rt

io
n(

%
)

1

1.5

2

2.5
Seq4

ORD
EA-ORD
CT-MADD

(d)

Fig. 12. RD performance comparison among different compression schemes
for multiview silhouettes coding.

optimal variable-length context tree (VCT) T—one that has
both large likelihood P (X|T) that can explain observed data
X , and large prior P (T) stating that contours are more likely
straight than curvy. For the lossy case, we develop dynamic
programming (DP) algorithms that approximate a detected
contour by trading off coding rate with two different notions
of distortion. The complexity of the DP algorithms can be
reduced via compact table entry indexing using a total suffix
tree (TST) derived from VCT T . Experimental results show
that our proposed lossless and lossy algorithms outperform

13

state-of-the-art coding schemes consistently for both small and
large training datasets.

REFERENCES

[1] C. Grigorescu, N. Petkov and M. A. Westenberg, “Contour detection
based on nonclassical receptive field inhibition,” IEEE Trans. Image
Process., vol. 12, no. 7, pp. 729–739, 2003.

[2] G. Shen, W.-S. Kim, S.K. Narang, A. Ortega, J. Lee, and H. Wey, “Edge-
adaptive transforms for efficient depth map coding,” in IEEE Picture
Coding Symposium, Nagoya, Japan, December 2010.

[3] W. Hu, G. Cheung, X. Li, and O. Au, “Depth map compression
using multi-resolution graph-based transform for depth-image-based
rendering,” in IEEE International Conference on Image Processing,
Orlando, FL, September 2012.

[4] W. Hu, G. Cheung, A. Ortega, and O. Au, “Multi-resolution graph
Fourier transform for compression of piecewise smooth images,” in
IEEE Transactions on Image Processing, January 2015, vol. 24, no.1,
pp. 419–433.

[5] W. Hu, G. Cheung, and A. Ortega, “Intra-prediction and generalized
graph Fourier transform for image coding,” in IEEE Signal Processing
Letters, November 2015, vol. 22, no.11, pp. 1913–1917.

[6] I. Daribo, D. Florencio, and G. Cheung, “Arbitrarily shaped sub-block
motion prediction in texture map compression using depth information,”
in 2012 Picture Coding Symposium, Krakow, Poland, May 2012.

[7] I. Daribo, D. Florencio and G. Cheung, “Arbitrarily shaped motion
prediction for depth video compression using arithmetic edge coding,”
IEEE Trans. Image Process., vol. 23, no. 11, pp. 4696–4708, Nov. 2014.

[8] D. Weinland, R. Ronfard and E. Boyer, “A survey of vision-based meth-
ods for action representation, segmentation and recognition,” Computer
Vision and Image Understanding, vol. 115, no. 2, pp. 224–241, 2011.

[9] A. K. Katsaggelos, L. P. Kondi, F. W. Meier, W. Fabian, J. O. Ostermann
and G. M. Schuster, “MPEG-4 and rate-distortion-based shape-coding
techniques,” Proceedings of the IEEE, vol. 86, no. 6, pp. 1126–1154,
1998.

[10] F. Sohel, G. C. Karmakar, L. S. Dooley and M. Bennamoun, “Sliding-
window designs for vertex-based shape coding,” IEEE Trans. Multime-
dia, vol. 14, no. 3, pp. 683–692, 2012.

[11] Z. Lai, J. Zhu, Z. Ren, W. Liu, and B. Yan, “Arbitrary directional
edge encoding schemes for the operational rate-distortion optimal shape
coding framework,” in Proc. Conf. Data Compression. IEEE, 2010, pp.
20–29.

[12] J. H. Zhu, Z. Y. Lai, W. Y. Liu and J. B. Luo, “Adaptive edge encoding
schemes for the rate-distortion optimal polygon-based shape coding,” in
Proc. Conf. Data Compression, 2014, pp. 103–112.

[13] R. El-Yaniv R. Begleiter and G. Yona, “On prediction using variable
order markov models,” Journal of Artificial Intelligence Research, pp.
385–421, 2004.

[14] J. Rissanen, “A universal data compression system,” IEEE Trans.
Information Theory, vol. 29, no. 5, pp. 656–664, 1983.

[15] J. Cleary and I. Witten, “Data compression using adaptive coding and
partial string matching,” IEEE Trans. Commun., vol. 32, no. 4, pp.
396–402, 1984.

[16] D. Ron, Y. Singer and N. Tishby, “The power of amnesia: Learning
probabilistic automata with variable memory length,” Machine learning,
vol. 25, no. 2-3, pp. 117–149, 1996.

[17] C. C. Lu and J. G. Dunham, “Highly efficient coding schemes for
contour lines based on chain code representations,” IEEE Trans.
Commun., vol. 39, no. 10, pp. 1511–1514, 1991.

[18] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, Anthony D and R. Katz,
“A view of cloud computing,” Communications of the ACM, vol. 53,
no. 4, pp. 50–58, 2010.

[19] R. W. Katz, “On some criteria for estimating the order of a markov
chain,” Technometrics, vol. 23, no. 3, pp. 243–249, 1981.

[20] P. Vandewalle, J. Kovačević and M. Vetterli, “Reproducible research in
signal processing,” IEEE Signal Processing Mag., vol. 26, no. 3, pp.
37–47, 2009.

[21] H. Freeman, “Application of the generalized chain coding scheme to
map data processing,” 1978, pp. 220–226.

[22] Y. Liu and B. Žalik, “An efficient chain code with huffman coding,”
Pattern Recognition, vol. 38, no. 4, pp. 553–557, 2005.

[23] Y. H. Chan and W. C. Siu, “Highly efficient coding schemes for contour
line drawings,” in Proc. IEEE Int. Conf. Image Process. IEEE, 1995,
pp. 424–427.

[24] R. Estes and R. Algazi, “Efficient error free chain coding of binary
documents,” in Proc. Conf. Data Compression, 1995, p. 122.

[25] M. J. Turner and N. E. Wiseman, “Efficient lossless image contour
coding,” in Computer Graphics Forum, 1996, vol. 15, no.2, pp. 107–
117.

[26] O. Egger, F. Bossen and T. Ebrahimi, “Region based coding scheme with
scalability features,” in Proc. Conf. VIII European Signal Processing.
IEEE, 1996, vol. 2, LTS-CONF-1996-062, pp. 747–750.

[27] C. Jordan, S. Bhattacharjee, F. Bossen, F. Jordan, and T. Ebrahimi,
“Shape representation and coding of visual objets in multimedia ap-
plicationsan overview,” Annals of Telecommunications, vol. 53, no. 5,
pp. 164–178, 1998.

[28] H. Freeman, “On the encoding of arbitrary geometric configurations,”
IRE Trans. Electronic Computers, , no. 2, pp. 260–268, Jun 1961.

[29] I. Daribo, G. Cheung and D. Florencio, “Arithmetic edge coding for
arbitrarily shaped sub-block motion prediction in depth video coding,”
in IEEE International Conference on Image Processing, Orlando, FL,
September 2012.

[30] T. Kaneko and M. Okudaira, “Encoding of arbitrary curves based on
the chain code representation,” IEEE Trans. Commun., vol. 33, no. 7,
pp. 697–707, 1985.

[31] J. Ziv and A. Lempel, “A universal algorithm for sequential data
compression,” IEEE Trans. Information Theory, vol. 23, no. 3, pp. 337–
343, 1977.

[32] P. Bühlmann and A. J. Wyner, “Variable length markov chains,” The
Annals of Statistics, vol. 27, no. 2, pp. 480–513, 1999.

[33] G. Bejerano and G. Yona, “Variations on probabilistic suffix trees:
statistical modeling and prediction of protein families,” Bioinformatics,
vol. 17, no. 1, pp. 23–43, 2001.

[34] M. C. Yeh, Y. L. Huang and J. S. Wang, “Scalable ideal-segmented
chain coding,” in Proc. IEEE Int. Conf. Image Process., 2002, vol. 1,
pp. 194–197.

[35] S. Zahir, K. Dhou and B. Prince George, “A new chain coding based
method for binary image compression and reconstruction,” 2007, pp.
1321–1324.

[36] J. Chung, J. Lee, J. Moon and J. Kim, “A new vertex-based binary
shape coder for high coding efficiency,” Signal processing: image
communication, vol. 15, no. 7, pp. 665–684, 2000.

[37] C. Kuo, C. Hsieh and Y. Huang, “A new adaptive vertex-based binary
shape coding technique,” Image and vision computing, vol. 25, no. 6,
pp. 863–872, 2007.

[38] G. M. Schuster and A. K. Katsaggelos, “An optimal segmentation
encoding scheme in the rate distortion sense,” in Proc. IEEE Int. Symp.
Circuits and Systems, May 1996, vol. 2, pp. 640–643.

[39] G. M. Schuster, G. Melnikov and A. K. Katsaggelos, “Operationally
optimal vertex-based shape coding,” IEEE Signal Processing Mag., vol.
15, no. 6, pp. 91–108, 1998.

[40] F. A. Sohel, L. S. Dooley and G. C. Karmakar, “Variable width
admissible control point band for vertex based operational-rate-distortion
optimal shape coding algorithms,” in Proc. IEEE Int. Conf. Image
Process. IEEE, 2006, pp. 2461–2464.

[41] F. A. Sohel, L. S. Dooley and G. C. Karmakar, “New dynamic
enhancements to the vertex-based rate-distortion optimal shape coding
framework,” IEEE Trans. Circuits Syst. Video Technol., vol. 17, no. 10,
pp. 1408–1413, 2007.

[42] S. Alcaraz-Corona and R. Rodrı́guez-Dagnino, “Bi-level image com-
pression estimating the markov order of dependencies,” IEEE Journal
of Selected Topics in Signal Processing, vol. 4, no. 3, pp. 605–611, 2010.

[43] A. Akimov, A. Kolesnikov and P. Fränti, “Lossless compression of map
contours by context tree modeling of chain codes,” Pattern Recognition,
vol. 40, no. 3, pp. 944–952, 2007.

[44] S. Kullback, “Letter to the editor: the kullback-leibler distance,” 1987.
[45] D. Neuhoff and K. G. Castor, “A rate and distortion analysis of chain

codes for line drawings,” IEEE Trans. Information Theory, vol. 31, no.
1, pp. 53–68, 1985.

[46] S. W. Golomb, “Run-length encodings,” IEEE Trans. Information
Theory, 1966.

[47] T. A. Welch, “A technique for high-performance data compression,”
Computer, vol. 6, no. 17, pp. 8–19, 1984.

[48] A. Moffat, “Implementing the ppm data compression scheme,” IEEE
Trans. Communications, vol. 38, no. 11, pp. 1917–1921, 1990.

[49] C. Loop, C. Zhang and Z. Y. Zhang, “Real-time high-resolution sparse
voxelization with application to image-based modeling,” in Proc. ACM
Conf. High-Performance Graphics, 2013, pp. 73–79.

[50] W. N. Martin and J. K. Aggarwal, “Volumetric descriptions of objects
from multiple views,” IEEE Trans. Pattern Analysis and Machine
Intelligence, , no. 2, pp. 150–158, 1983.

