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Deep Aesthetic Quality Assessment with Semantic
Information

Yueying Kao, Ran He, Kaiqi Huang

Abstract—Human beings often assess the aesthetic quality of
an image coupled with the identification of the image’s semantic
content. This paper addresses the correlation issue between
automatic aesthetic quality assessment and semantic recognition.
We cast the assessment problem as the main task among a multi-
task deep model, and argue that semantic recognition task offers
the key to address this problem. Based on convolutional neural
networks, we employ a single and simple multi-task framework to
efficiently utilize the supervision of aesthetic and semantic labels.
A correlation item between these two tasks is further introduced
to the framework by incorporating the inter-task relationship
learning. This item not only provides some useful insight about
the correlation but also improves assessment accuracy of the
aesthetic task. Particularly, an effective strategy is developed
to keep a balance between the two tasks, which facilitates to
optimize the parameters of the framework. Extensive experiments
on the challenging AVA dataset and Photo.net dataset validate
the importance of semantic recognition in aesthetic quality
assessment, and demonstrate that multi-task deep models can
discover an effective aesthetic representation to achieve state-of-
the-art results.

Index Terms—Visual aesthetic quality assessment, semantic
information, multi-task learning.

I. INTRODUCTION

Aesthetic image analysis has attracted increasing attention
in computer vision community [1], [2], (3], (4], [S], (6], [Z],
[8]]. It is related to the high-level perception of visual aes-
thetics. Machine learning models for visual aesthetic quality
assessment have shown to be useful in many applications, e.g.,
image retrieval, photo management, image editing, and pho-
tography [9], [LO], [11], [12]]. Since visual aesthetics is a sub-
jective attribute, automatically assessing aesthetic quality of
images is still challenging. Many data-driven approaches [[13]],
(141, 1150, [1el, (171, (30, 1181, (1901, [20], [21] have been
proposed to address this issue. These methods often learn from
the aesthetic quality of images that are labeled by humans.
Most of these methods aim to discover a meaningful and better
aesthetic representation, and often formulate the representation
learning as a single and standalone classification task.

Handcrafted features are earlier attempts. They are based
on the intuitions of how people perceive the aesthetic qual-
ity of images or photographic rules. These features include
color [10], [13], [22]], the rule of thirds [13], simplicity [14],
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[3], and composition [15]. Later, generic image descriptors
such as bag-of-visual-words (BOV) [23] and fisher vectors
(FV) [24] are used to assess aesthetic quality. They are
shown to outperform the traditional handcrafted features [[16]],
[25], [26]. Recently, deep convolutional neural networks
(CNNs) [27], [28] have been applied to aesthetic quality
assessment [29]], [30l], [31], [32]. Nevertheless, these com-
putational approaches provide either accurate or interpretable
results [4].

For human beings, aesthetic quality assessment is always
coupled with the identification of semantic content of im-
ages [33]], [34]. It is difficult for humans to treat aesthetic
quality assessment as an isolate and independent task. When
humans assess the aesthetic quality of an image, they first
understand what they are assessing. That is, they have known
the sematic information of this image. Seen from Fig. [I]
we can recognize the semantic content from these images at
a glance and assess the aesthetic quality quickly. Hence it
is reasonable to assume that, assessing aesthetic quality and
semantic recognition are correlated tasks for machine learning.
However, the relationship between semantic recognition and
automatically assessing visual aesthetic quality has not been
fully explored.

This paper addresses the correlation issue between auto-
matic aesthetic quality assessment and semantic recognition.
We employ multi-task convolutional neural network to explore
the potential correlation. Multi-task learning can learn multiple
related tasks in parallel with shared knowledge. It has been
demonstrated that this approach can boost some or all of the
tasks [35]]. Our goal is to utilize semantic recognition in the
joint objective function to improve the aesthetic quality assess-
ment, our main task. However, there is still a typical challenge
in the multi-task learning for our multi-task problem. That is,
the aesthetic task and semantic task face the different learning
difficulties. The main reason is that the semantic recognition is
much easier than aesthetics assessment. The semantic content
is much objective, while the aesthetic attributes are subjective.
Thus, different from the strategies of treating all tasks equally
and early stopping [35]], [36], [37] we present a strategy to
keep the effect of both tasks balanced in the joint objective
function.

In addition, to discover the relationships between aesthetic
and semantic tasks automatically and to better exploit the inter-
task relatedness for more effective feature learning, we model
the task relationship and impose it in the objective function.
To some extent, it can explain the factors in aesthetic quality
assessment and make our results more interpretable. Thus, to
investigate how to make full use of semantic information and
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Fig. 1. Example images with their aesthetic and semantic labels on AVA dataset.

how semantic information influence aesthetic task, our multi-
task framework considers the strategy of keeping the effect
of two tasks balanced and the relationship learning between
semantic and aesthetic tasks.

In the evaluation, the most challenging large-scale AVA
dataset [23] is used to verify the effectiveness of semantic
information for aesthetic feature learning and investigate the
correlation among aesthetic and semantic content recognitions.
The experiments show that our results significantly outperform
the state-of-the-art results [29]], [31]], [32] for aesthetic quality
assessment on AVA dataset. Furthermore, it is demonstrated
that the learned representation with our multi-task framework
can be transferred for the dataset (here we use Photo.net
dataset [1]], [13])) with only aesthetic labels and other semantic
representation (such as from Imagenet) can also be used for
aesthetic representation learning.

Our contributions lie in three-fold:

« Instead of taking visual aesthetic quality assessment as an
isolated task, we propose to exploit the semantic recog-
nition to jointly assess the aesthetic quality with a single
multi-task convolutional neural network (MTCNN). It is
a novel attempt to learn aesthetic features with the help
of a related task, i.e. semantic recognition.

e We propose to automatically learn the correlations be-
tween the aesthetic and semantic tasks by simultaneously
modeling the inter-task relationship and controlling the
parameters’ complexity of each task in our multi-task
framework. It can explain the factors in aesthetic quality
assessment and makes our results more interpretable.

o Facing the different learning difficulties between the two
tasks, we present a strategy to keep the effect of both tasks
balanced in the joint objective function. The proposed
method outperforms the state-of-the-art methods on the
challenging AVA dataset and Photo.net dataset.

The rest of this paper is organized as follows: we summarize
related work in Section [l describe our method in detail
in Section present the experiments in Section and
conclude the paper in Section [V]

II. RELATED WORK

Since our work is related to the aesthetic quality assessment
and multi-task learning, we will mainly review work related
to the two parts in this section.

A. Aesthetic quality assessment

Most previous works [13]], [10], [13], [16], [38], [39] on
aesthetic quality assessment focus on the challenging prob-
lem of designing appropriate features. Typically, handcrafted
features are proposed based on the intuitions about human
perception of the aesthetic quality of images or photographic
rules. For example, Datta et al. design certain visual
features such as colorfulness, the rule of thirds, and low
depth of field indicators, to discriminate between aesthetically
pleasing and displeasing images. Dhar et al. extract some
high level attributes including compositional, content, and
sky-illumination attributes, which are characteristically used
by humans to describe images. Luo et al. [38] and Tang
et al. [3] consider that photos may have different aesthetic
criteria in mind for different type of images and design visual
features in different ways according to the variety of photo
content. In [16], generic image descriptors are used to assess
aesthetic quality, which are shown to outperform the traditional
handcrafted features.

Despite the success of handcrafted features and generic
image descriptors, CNNs have been applied to aesthetic quality
assessment [29], [30], [31], and obtain the state-of-the-
art performance. CNNs learn aesthetic features automatically.
However, they extract features by treating aesthetic quality
assessment as an independent problem. The network in ,
RDCNN, hopes to leverage the idea of multi-task learning with
the style attributes to help determine the aesthetic quality of
images. Unfortunately, due to many missing labels for style
attributes, they can not jointly perform aesthetics categoriza-
tion and style classification in a neural network, and just
concatenate the features of the aesthetics and style by using
transfer learning. Our work is also related to CNNs for aes-
thetics classification. In contrast, firstly, we exploit semantic
information to assist in learning aesthetic representation with a
multi-task learning framework. We can jointly learn aesthetics
categorization and semantic recognition with a single multi-
task network, which is different from RDCNN [29]]. Secondly,
our multi-task CNN considers the strategy of keeping the effect
of two tasks balanced and the relationship learning between
semantic and aesthetic tasks. Finally, images are labeled with
semantic information much easier than style attributes in real
world. This is because only professional photographer and
photography amateurs are familiar with all the style attributes.
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Fig. 2. An illustration for the architecture of our MTCNN #1.

B. Multi-task learning

Multi-task learning aims to boost the generalization perfor-
mance by learning multiple related tasks simultaneously [35]],
[401], [37], [41]. It does this by learning tasks in parallel while
using a shared representation [35]. Deep neural network can
learn features jointly under multiple objectives and it is the
earliest models for multi-task learning. Multi-task learning
based on deep neural network has been applied to many
computer vision problems [37]], [36]], [42]]. However, there are
many strategies for sharing knowledge and learning process
for different problems. For example, Zhang et al. [43] share
parameters in all layers and learn the common features for all
tasks, while Liu et al. [44] just sharing in some bottom layers
and learn respective representation in some top layers for each
task. Yim et al. [36] treat all tasks equally important. In con-
trast, early stopping strategy is used in some related tasks [37],
due to different learning difficulties and convergence rates in
different tasks. In our problem, because semantic recognition
task is much easier than aesthetic quality assessment, common
features of our two tasks are learned simultaneously and an
effective strategy of keeping effect of all the tasks balanced
in the joint objective function is used. In addition, the task
relationships can be learned from the data automatically in
the conventional methods [45]], [46], [47]. Inspired by this,
we consider the relationship learning in our multi-task neural
networks to explore the relationships between the aesthetic and
semantic tasks.

III. METHOD

In this section, we propose to exploit the semantic informa-
tion to help identify the aesthetic quality of images, assuming
that they are considered as the related attributes [33], [34].
Here the aesthetic quality assessment is our main task and the
semantic content recognition is the aided task. Our problem is
firstly formulated as a multi-task convolutional neural network
(MTCNN) model without learning task relationships automat-
ically from data. Then we develop a multi-task relationship
learning convolutional neural network (MTRLCNN) model by
adding the task relationship learning in the objective function
to discover the correlation between aesthetic task and semantic
tasks. An example of MTCNN architectures is illustrated in

Fig. [2 Furthermore, we explore and adapt different network
structures to our problem.

A. Multi-Task Probabilistic Framework

Our problem can be interpreted as a probabilistic model.
Using the probabilistic formulation, various deep networks can
solve our problem by optimizing the model parameters that
maximize the posterior probability. Then, Bayesian analysis is
leveraged to predict most likely aesthetic quality and semantic
attributes of given images.

Assuming a training dataset with a total of IV samples,
which are associated with C' aesthetic classes and M semantic
attributes. Considering each image has only one aesthetic class
and multiple semantic attributes in real world, each image is
represented as (T, Yn,2n),n = 1,2,..., N. Here z,, repre-
sents the n-th image sample, y, = ¢,c = 0,...,C — 1 is the

aesthetic label and z, = [z}, ..., 2™, ..., 2M]7T is the semantic

ey 2oy
label for the n-th image sample. If the n-th image sample
has the m-th semantic attribute, the m-th semantic label is
set as z;,' = 1, otherwise z;' = 0. Therefore a given dataset
is denoted as (X,Y,Z) = {(xn,Yn,2n),n € {1,2,.... N}}.
For our MTCNNs (our MTCNN #1 is shown in Fig. , ©
denotes the common parameters in some bottom layers to
learn features for all tasks, and W = [W,, W] indicates
the specific parameters for associated tasks. W, and Wj
represent the parameters for aesthetic quality assessment and
semantic recognition respectively. Each column in W, or W
corresponds to a subtask. The goal is to find the optimal or
sub-optimal parameters ©, W, A by maximizing the following
posterior probability

6, W, A= argmax p(©, W, \|X,Y, Z), (D

0,W,\
where ) is the weight coefficient of the semantic recognition
task in the joint learning process.
Based on the Bayesian theorem, we have

p(X,Y, Z|0, W, \)p(©, W, \)
p(X.Y,Z) 2
x p(X,Y, Z|©, W, \)p(6, W, A),

where p(X,Y, Z|©, W, )\) is the conditional probability, and
p(©, W, A) is the prior probability.

p(O,WAX,Y,Z) =




Then Eqn. (1) takes the form

e, W, \
ox argmax p(Y|X, 0, W, )p(Z|X, 0, W, \)p(0)p(W)p(A).
o,W,\
3)

Each term in Eqn. (3) is defined as:

1) The conditional probability p(Y|X, O, W,,) corresponds
to the task of aesthetic quality assessment. Here assessing
aesthetic quality is interpreted as a classification problem and
modeled as a multinomial logistic regression similar to tradi-
tional classification problems [27]. The conditional probability
p(Y|X,0,W,) can be formulated as

N C
p(Y[X,0,W,) = [[ D Hyn = c}p(yn = clan, ©, W),

n=1c=1
“)

where 1{-} is the indicator function, it has two values,
1{a true statement} =1, and 1{a false statement} = 0.
P(Yn = ¢|an, ©, W,) is calculated by the softmax function

=clz,,0,W, eXp(WCT(@Txn)) . 5
= TS epT @)

2) The conditional probability p(Z|X, 0, W, A\) corre-
sponds to the semantic recognition. Since each element of
the semantic label of a given image is binary: z)' €
{0,1}, each semantic attribute recognition can be interpreted
as a logistic regression. Hence the conditional probability
p(Z|X,0, W, A) can be

p(Z]X,0,W,, \)
= (p(z = 1|z, ©, W) (6)

n=1m=1

(1= (= = Llza, ©, W) 50),

where p(z]* = 1|x,,©, W) is calculated by a sigmoid
function o(z) = 1/(1 + exp(—x)).

3) The prior probability p(©) corresponds to the network
parameters for common features. The parameters © can be
initialized as a standard normal d1str1but10n like previous
network [27]]. p(©) = szl p(b) = Hk 1 N(0,1), where
0 is a zero matrix and I is an identity matrix.

4) Similar to ©, the parameters W for specific tasks can also
be initialized as a standard normal distribution. Thus, the prior
probability can be p(W) = p(W,)p(Wy) = N, (0, I)N,(0,1).

5) Ais used to control the influence of semantic recognition
task in the final objective function. The prior probability p(\)
is implemented by defining A obeying a normal distribution,
p(N) = N(u, 02).

Then Eqns. (4), (5) and (6) are substituted into Eqn. (3),
negative log function is taken for Eqn. (3), and the constant

terms are omitted. As a result, the objective function can be

ar mln Hy,, = clto exp(W;T(@Txn))
o, - Zl z; =) S G
- Z Z (210go (W (©T,)) + (1 — 2) (1-

n=1m=1
logo (W T (0 2,)))) + 070 + WTW + (A — p)°}.
(7

B. Multi-Task Relationship Learning Probabilistic Framework

To automatically learn the relationships between aesthetic
and semantic tasks and to better exploit the inter-task related-
ness for aesthetic feature learning, we model the relationships
between tasks as a covariance matrix {2 and add it to our
above multi-task framework. The new framework is called
Multi-Task Relationship Learning (MTRL) framework. In the
MTRL framework, the goal is to find the optimal or sub-
optimal parameters ©, W, A, ) by maximizing the following
posterior probability

O, W, X = argmax p(©, W, \,Q|X,Y, Z), (8)
0,W,\
Based on the Bayesian theorem, Eqn. (8) takes the form

O, W, \ x argmaxp(Y|X, 0, W,)p(Z|X,0, W, A)-
0,W,\ )
p(W[Q)p(O©)p(W)p(A).
The conditional probability p(Y|X,©,W,), the conditional
probability p(Z|X,©, W, \), the prior probability p(©), the
prior probability p(W) and the prior probability p()\) are same
to the above definition in Section For the prior on the
W, we consider two terms p(W) and p(W|Q). The prior
probability p(W) is to model the each column of W as a
standard normal distribution for each task and can separately
penalize the complexity of the each column of W. The
p(W|Q) is to model the structure of W between tasks by
using a matrix-variate normal distribution [45], [48]]. So we
have
p(W|Q) = MN(0,I ® )
exp(—3tr(I7'WQ=IWT))

- (27T-)d(M+C')/2|I|(]W+C)/2|Q|d/2’

(10)

where d is the dimension of the common representation of all
the tasks, such as the dimension of layer 7 in Fig. 2| The new
objective function can be

exp(Wg' (07 z,))
argmin{ - ; Z} Hyn = c}log S0 exp(WLT(O7Tz,))
_ )\Z Z 2nlogo (W (0" 2,)) + (1 — 27 (1—

n=1m=1
logo(WmT (0T z,)))) + 0TO + WITW + (A — p)?
+tr(WQ W),
st. >0, tr(Q)=1.
1D
Where the constraint ¢r(€2) = 1 is the same as in [45]].
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C. Optimization Procedure

The multi-task objective function in Eqn. (7) and (11)
can be optimized by a network through stochastic gradient
descent (SGD) [27]]. Here a specific CNN is applied to search
optima for the parameters ©, W, A, ). One architecture of our
MTCNNS is shown in Fig. [2] For the optimization procedure
of MTCNN:S, firstly, all tasks share knowledge in bottom
layers. Then specific features are learned for each task in top
layers. Finally, the combination of the softmax loss function
for aesthetic quality prediction (the first term in Eqn. (7))
and the cross entropy loss function for semantic recognition
(the second term in Eqn. (7)) are employed to update the
parameters of the network jointly by back propagation. For
the MTRLCNN, we adopt an alternate optimization proce-
dure [43] to minimize the objective function in Eqn. (11)
for the parameters O, W, Q). Firstly, we update ©, W by back

propagation like the MTCNN with fixed 2. Then fix ©, W and
(WTW)I/Z

optimize the €2, ) = T WTWYI/Z)

until convergence.

Traditionally, multiple tasks are treated equally important in
back propagation of multi-task learning [35]], [36] assuming
that they can reach best performance roughly at the same
time. However, different tasks may have different learning
difficulties and convergence rates. Caruana [35] propose to
control the effect of different tasks by adjusting the learning
weight on each output task. He also put forward some strate-
gies for this problem, such as early-stopping. Early stopping
strategy has been used to some works and good perfor-
mance is achieved. Nevertheless, this strategy is not suited
to our problem. This is because the extra task (i.e., semantic
recognition task) is much easier, and often converges more
quickly than the main task (i.e., aesthetic quality assessment).
Our experimental results (details in Table [[] and Section [[V)
show that, if the convergent semantic recognition task is early
stopped, the training loss of the aesthetic task will do not
drop obviously and converge in a low rate. We think that it is
mainly because the aesthetic is subjective and needs the help
of semantic task in entire training process. Hence, we present a

We repeat this procedure

simple strategy to keep the effect of all tasks balanced in back
propagation. Because the softmax loss function only considers
the value corresponding ground truth label for each example.
In our problem, A = 1/M is fixed in the objective function in
the entire training process.

D. Network Architectures Implementation Exploration

To implement the multi-task model, we investigate several
multi-task network architectures to utilize semantic informa-
tion for visual aesthetic quality assessment. Take the MTCNN
as an example and adapt the networks to our problem, then
apply suited network architecture to our MTRLCNN. These
networks are explained in Fig. [3] The supervision of aesthetic
and semantic labels can be in the same or different layers in
the network. Here we propose and explore three basic network
architectures and an enhanced network. For all networks, the
input is a 227 x 227 x 3 patch randomly extracted from a
resized image 256 x 256 x 3 as previous work [29].

MTCNN #1: Since our goal is to discover the effective
features for aesthetic assessment with the help of semantic
information, a simple idea is to learn all parameters for aes-
thetic representations with aesthetic and semantic supervision
in a network until the last layers. MTCNN #1 implements this
idea. The architecture of MTCNN #1 (in Fig. 3 is detailed
in Fig. 2} The network contains four convolutional layers and
two fully-connected layers with parameters © for common
feature learning. Then the network is split into two branches,
the two last layers for two specific tasks. Thus the parameters
W = [W,, W] from layer 6 to layer 7 for each task are
learned separately. Then, the softmax loss function is adopted
for aesthetic quality prediction, and the cross entropy loss
function for semantic recognition. The combination of the two
loss functions is employed to jointly update the parameters of
the network.

MTCNN #2: To explore different structures for aesthetic
features learning, we introduce MTCNN #2 (shown in Fig. E[)
to allow some top layers to learn aesthetic representations in-
dependently without semantic supervision. Similar to MTCNN



30000
&, 25000
g
£ 20000
S 15000
8
£ 10000
>
< 5000
0 A
&S T P E FELEFEFEEE LSS E S &
Y\'o%&\ S @‘Q S 5 & %Q N Qﬁg@\o@ S & \\VV&Q & RSO q’a} %@%%o“& Q\oo&o o
Q Q‘ < %4 ]° @Q & & F K. &
W Q D
Q)\qf' o &

Fig. 4. The number of images for each semantic tag on AVA dataset.

#1, the network #2 contains four convolutional layers with
parameters © for common feature learning. Then the network
is split into two branches earlier than MTCNN #1 for two
specific tasks. Different from the architecture #1, layers 5, 6
and 7 in the network #2 learn parameters W = [W,, W]
separately for the two tasks. The loss functions are also the
same as the architecture #1.

MTCNN #3: Since CNNs can learn hierarchical features,
we consider the low-level features of a network for our main
task in the MTCNN #3 (shown in Fig. [3). In this network,
four convolutional layers and three fully-connected layers are
designed for semantic recognition, while two convolutional
layers and two fully-connected layers for aesthetic quality
assessment. The two tasks share knowledge © in the two
convolutional layers. The other layers are used to learn specific
parameters W = [W,, W;] for each task. The loss functions
are also the same as the architecture #1.

Enhanced MTCNN: To further explore the effective aes-
thetic features, we propose an enhanced MTCNN by com-
bining MTCNN #1 and MTCNN #3. That is, we add extra
aesthetic supervision in the first two layers in MTCNN #I.
Shown in Fig. [3] the common parameters ©; in the first and
second convolutional layers are learned for three tasks, the
common parameters ©q in other two convolutional layers and
two fully-connected layers are learned for two tasks, and spe-
cific parameters W = [Wt;, W,, W] are learned separately in
top layers. Our goal is to enhance the supervision of aesthetic
labels in the first and second convolutional layers under the
premise of ensuring the influence of semantic information in
all network. Here we denote © = [©1,0;]. The objective
function in Eqn. (7) is transformed to

exp(We" (0" an))

argmln{ Z Z Hyn = c}og

vt zf Lexp(WL T (07 z,,))
B L — ety PV, (@1xn>>
ZZ W =t e T (6]

N M
Z Z 2" logo(Wm (0T z,)) 4+ (1 — 27)(1—

) + 07O + WIW + (A — p)?},
(12)

logo (W, (

where the first term in Eqn. (12) is our main task, and the
second term is the added task. We fix A\ = 2/M based on our
strategy for the enhanced MTCNN.

E. Transfer learning with semantic information

Semantic content recognition has been studied for many
years in computer vision, such as object recognition, object
detection, image classification and semantic segmentation [49],
[271, (501, [511, [52]]. Recently, deep learning methods have
achieved great succuss on the semantic recognition, especially
the image classification on Imagenet [27], 5311, [52], [33].
The Imagenet [33]] dataset contains rich semantic information
and can be utilized to further help aesthetic representation
learning. Thus we transfer the semantic representation learned
from the network pretrained on Imagenet to aesthetic quality
assessment. A trained model on a dataset can be transferred
to another dataset for a similar or different task [54], [53]].
Specifically, our multi-task architecture from Layer 1 to Layer
6 in Fig. ] is replaced with AlexNet [27], VGG Net [531] or
ResNet [52]. It is shown MTCNN #1 performs best in the three
basic MTCNNSs from Table [l We initialize the networks with
models pretrained on Imagenet and finetune it with the training
data labeled with aesthetic labels and semantic labels.

In addition, another meaningful direction is how to exploit
the massive dataset of visual semantic understanding for
the limited dataset with only aesthetic labels for aesthetic
assessment. To transfer the learned representation with both
aesthetic and semantic supervision to the dataset with only
aesthetic labels, we initialize the networks with pretrained
multi-task models and finetune it with the training data labeled
with only aesthetic labels.

IV. EXPERIMENTS

In this section, we evaluate the proposed method on the
challenging large-scale AVA dataset and Photo.net dataset.
Experimental results show that the benefits of semantic in-
formation and the effectiveness of our proposed method.

A. Dataset

AVA dataset: The AVA dataset [23]] is one of the most
large-scale and challenging dataset for visual aesthetic quality
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assessment. It contains more than 255,000 images gathered
from www.dpchallenge.com. Each image has about 200 voters
to assess the aesthetic score from one to ten. In addition, each
image contains 0, 1 or 2 semantic tags (attributes). We select
185,751 images used in this paper based on the following
rules. 1) More than 3000 images are available for each tag; 2)
each image contains at least one tag. Eventually 29 semantic
tags are chosen and the number of images for each tag is
listed in Fig. El From the 185,751 images, 20,000 images are
randomly selected as the testing set similar to [29], and the
rest 165,751 images as the training set. For aesthetic labels,
we follow the experimental setup as [25]], [29]], the training
set is divided into two classes: high quality and low quality

images. We designate the images with an average score larger
than 5+ 0 as high quality images, those with an average score
smaller than 5 — § as low quality images. Images with an
average score between 5+ 9 and 5— ¢ are discarded. We set §
to 0 and 1 respectively for the training set to obtain the ground
truth labels. There are 165,751 images in the training set when
6 = 0 and 38,994 images in the training set when § = 1. We
set § to O for the testing set regardless of the value of § for
the training set. For semantic labels, each image is labeled as
a 29-dim binary vector.

Photo.net dataseﬂ The Photo.net dataset [[1]], [13]] is a dataset

! Available at http://ritendra.weebly.com/aesthetics-datasets.html
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Fig. 6. The accuracy with different methods for aesthetic classification on “Landscape”, “Nature”, “Still Life” and “Black and White” separately with both

d=0and 6 =1.
TABLE I
ACCURACY (%) OF OUR MTCNN #1 WITH DIFFERENT A\ ON THE AVA
DATASET.
A=0[A=1/29| A=2/29 | A =1 | with early stopping
0 72.19 76.15 75.76 73.54 73.43
75.13 75.90 75.82 73.12 74.28

with only aesthetic labels. It contains 20,278 images collected
from www.photo.net. Each image is rated by at least 10 users
to assess the aesthetic quality from one to seven. Due to some
missing images in the dataset, we collect 17,232 images in all.
From the overall images, 3000 images are randomly selected
as the testing set, and the rest 15,232 images as the training
set. For the ground truth labels, we follow and choose the
average score 5.0 as median aesthetic ratings. The images with
an average score larger than 54§ are designated as high quality
images, those with an average score smaller than 5 — ¢ as low
quality images. We set § to O in the experiment. Aesthetic
quality assessment with 6 = 0 is more challenging than that
with § > 0 [23].

B. Evaluating the Effectiveness of Keeping Balance Strategy

In the objective function, A is used to control the contribu-
tions from semantic information. To validate our strategy of
keeping the influence of two tasks balanced, we implement
our MTCNN #1 with our strategy A = 1/M (here A = 1/29)
and we also compare the experimental results of MTCNN
#1 with A = 0, A = 2/29, A = 1 and early stopping
strategy (shown in Table [[). By comparing the results with
or without the supervision of semantic labels, the MTCNN
#1 with A # 0 performs better than that with A = 0. This
indicates the supervision is effective. What’s more, the results
shown in Table El demonstrate that our strategy A = 1/29
performs best on both values of §. When A\ = 1/29, the
aesthetic and semantic tasks have same effect on the process of
back propagation. Therefore the effectiveness of our strategy
is verified.

To further demonstrate the effectiveness of our MTCNN
with our strategy, we also analyze the accuracy on each

TABLE I
ACCURACY (%) OF FOUR MTCNNS ON THE AVA DATASET.
6 |[MTCNN #1 [ MTCNN #2 | MTCNN #3 | Enhanced MTCNN
0 76.15 75.91 75.92 76.58
1 75.90 75.81 75.37 76.04

semantic tag using MTCNN #1 with different setting of A in
Fig. [5| As shown, our MTCNN #1 with A = 1/29 performs
best on overall images and most semantic tags. We also
observe that different results are achieved on various semantic
tags with the same method, and different improvements with
MTCNNSs are also different on various semantic tags. For
example, the semantic tags “Family” and “Snapshot” obtain
an great improvement with different methods.

C. Evaluating the impact of network architectures

To evaluate the impact of network architectures, we analyze
the results with the three basic MTCNNs with A = 1/M
and enhanced MTCNN with A = 2/M (shown in Table @)
We can see that our enhanced MTCNN for the main task
performs best. For the enhanced MTCNN, under the premise
of ensuring the effect of semantic information in the whole
network, we enhance the aesthetic supervision in the two
bottom layers. Experimental results also show that MTCNN
#1 performs best in the three basic MTCNNs. Comparing the
MTCNN #1 and MTCNN #2, we can see that late splitting
obtains better performance for aesthetic quality assessment and
semantic information is helpful for aesthetic representation
learning. This also demonstrates that the more supervision
semantic labels makes on the aesthetic feature learning, the
better performance our MTCNN achieves. It also reveals that
the low-level features of MTCNN #3 can still perform well.

D. Evaluating the Benefits of Semantic Information

To evaluate our MTCNNSs with the help of semantic infor-
mation for aesthetic classification, we compare our results of
four MTCNNs with those of our single task CNN (STCNN,



(a) 6= 0, STCNN (MTCNN, A=0) (b) 6= 0, MTCNN, A=1/29

(c) 6= 1, STCNN (MTCNN, A=0) (d) = 1, MTCNN, A=1/29

Fig. 7. Learned filters in the first convolutional layer with STCNN for aesthetic task only and MCTNN #1 for the two tasks with both § = 0 and § = 1.

High aesthetic quality

Low aesthetic quality

Fig. 8. Example test images correctly classified by MTCNN but incorrectly by STCNN in the AVA dataset. The labels of the images on the first and second
rows are high aesthetic quality, and the labels of the images on the third and fourth rows are low aesthetic quality.
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Fig. 9. Correlation in any two subtasks of aesthetic quality classification and
semantic recognition learned by MTRLCNN #1 with § = 0.

MTCNN #1, A = 0) on the AVA dataset with both values of
d. Shown in Table [[I] and Table [[V), all the four MTCNNs
perform better than our STCNN especially when § = 0.
Aesthetic quality classification with § = 0 is more challenging
than that with § = 1 [25]]. These results demonstrate the
effectiveness of semantic information.

Furthermore, we also train a separate model for each seman-
tic labels to assess aesthetic quality. Due to different number of
images for different semantic labels, we only train four CNNs
separately for “Landscape”, “Nature”, “Still Life” and ”Black
and White”. The four labels have the most number of images
in 29 labels. Here we call the CNNs trained separately for
the four semantic labels “respective CNN”. For example, the
respective CNN for “Landscape” is trained only with “Land-
scape” images for aesthetic categorization. Figure [6] shows the
results with different methods for aesthetic classification on
“Landscape”, “Nature”, “Still Life” and “Black and White”
separately with both value of d. As shown in Fig. [f] all the
MTCNNSs outperform the respective CNN on each semantic
labels, which also demonstrates the effectiveness of semantic
information for representation learning. Moreover, MTCNN5s
don’t need to know the semantic labels of the testing images,
while the respective CNNs have to know the semantic labels.

To qualitatively demonstrate the benefits of our MTCNN
with semantic information, we show learned filters in the first
convolutional layer with a STCNN for aesthetic task only and

TABLE 111
ACCURACY (%) OF DIFFERENT NETWORK WITH OR WITHOUT
RELATIONSHIP LEARNING ON THE AVA DATASET.

Architecture [ MTCNN #1 | AlexNet_FT|VGG Net_FT|ResNet_FT

MTCNN 76.15 76.70 77.73 78.56

MTRLCNN 76.56 77.35 78.46 79.08

our MCTNN #1 with both § = 0 and 6 = 1 in Fig.
Compared to the filters learned without semantic information,
the filters with semantic information are smoother, cleaner
and more understandable. The proposed MTCNN can learn
more color and high frequency edge information than STCNN.
These differences can also be observed from the examples of
test images correctly classified by MTCNN but misclassified
by STCNN in Fig. |8l The high quality images often have more
vivid color and clearer edge than low quality images. Most of
the low quality images in Fig. [8| are blurred and dull. This
indicates that the supervision of semantic labels for aesthetic
feature learning is very beneficial, and aesthetic and semantic
tasks are related to some extent.

To exploit the semantic information in the Imagenet, we se-
lect the late splitting multi-task network (such as MTCNN #1)
and replace the MTCNN #1 architecture from Layer 1 to Layer
6 in Fig. 2] with AlexNet [27], VGG Net [51] or ResNet [52]]
respectively. That is because that the MTCNN #1 performs
best in the three basic MTCNNs. The networks are initialized
with models pretrained on Imagenet and finetuned with the
training data labeled with aesthetic labels and semantic labels.
Table [ shows the results of the three MTCNN networks
(AlexNet_FT, VGG Net_FT and ResNet_FT) with finetuning.
It demonstrates the effectiveness of semantic information in
Imagenet dataset. By comparing among three pre-trained net-
works, especially the ResNet [52], the deeper network learns
more semantic representation and performs better for aesthetic
quality assessment by transfer learning.

E. Inter Tasks Correlation Analysis

To further demonstrate the effectiveness of semantic infor-
mation and investigate how semantic information influence
aesthetic task again, we analyze the correlation between the
two tasks. Since each column vector of task-specific matrix
W = [W,, W] in the network corresponds to the parameters
of a subtask, we use the learned covariance matrix ) and
calculate the correlation coefficient between any two sub-
tasks [56]. Shown in layer 7 of Fig. 2] in our problem, the
aesthetic classification task has two subtasks: high aesthetic
and low aesthetic, the semantic recognition task has 29 sub-
tasks. Figure 0] presents the correlation between the aesthetic
subtasks and sematnic subtasks learned by MTRLCNN #1
with 6 = 0, which also verifies that semantic information
is beneficial for aesthetic estimation. Seen from Fig. [0 a
low aesthetic task has high negative correlation with a high
aesthetic task. We can also see that the aesthetic tasks have
high correlation with certain semantic attributes. For instance,
the semantic tags “Snapshot” and “Candid” recognition has
high positive correlation with the low aesthetic task. In real




TABLE IV
ACCURACY (%) OF DIFFERENT METHODS ON THE AVA DATASET.

Our MTRLCNN | MTRLCNN | MTRLCNN MNA-CNN [32]
é MTCNN #1 [25] | SCNN [29] | RDCNN [29] | DMA-Net [31]
STCNN AlexNet_FT | VGG Net_FT | ResNet_FT (VGG Net_FT)
0| 72.19 76.15 77.35 78.46 79.08 66.7 71.20 74.46 75.41 77.4
1] 75.13 75.90 76.80 77.41 77.71 67.0 68.63 73.70 - 76.5
word, most of “Snapshot” and “Candid” images are usually re- TABLE V

garded as low aesthetic quality images. While “Advertisement”
and “Seascapes” recognition has positive correlation with the
high aesthetic task. This accords with the knowledge that
most of “Seascapes” and “Advertisement” images are usually
taken as high aesthetic quality images. In addition, Fig. [9]
can also visualize the correlation in different semantic tag
recognitions. We also present the results of networks with or
without relationship learning for aesthetic quality assessment
in Table which validates the task relationship learning.

F. Comparison with Other State-of-the-art Methods

To further validate our method with semantic information
for aesthetic classification, we compare our results with those
of the state-of-the-art methods in [25)], [29], [31]], [32] on the
AVA dataset. Shown in Table[] and Table[[V] all the multi-task
models perform better than the method in [25], SCNN [29],
and RDCNN [29] in on both values of §. The method in [25]]
is the baseline of the AVA dataset and is implemented by
extracting fisher vector (FV) descriptors [S7] on the top of
SIFT [16] information and SVM classifier [58]]. SCNN is a
single-column CNN, and RDCNN is a double-column CNN
with an aesthetic column and a pretrained style column. Our
results of MTRLCNN with VGG net and ResNet finetuning
outperform the state-of-the-art method [32]. Thus, these results
in Table and Table [[V] illustrate the effectiveness of our
method with semantic recognition task.

Since the name list of 20,000 testing images used in [25]],
[29], [31], [32] are unavailable, the 20,000 images for testing
in this paper maybe potentially different from the 20,000
testing images in [25], [29], [31], [32]]. Thus, we performed
4 times with similar operation (20,000 images are randomly
selected for testing at each time) for MTCNN #1 (A
1/29,8 = 0). The mean and variance (76.25%, 0.0066) are
close to our 76.15%, which shows the robustness of our
method. In addition, in this paper we selects 185,751 training
images according to some rules, including the rule that all
images need to have at least one semantic tag. It seems that
the our training set is more clean than the 230,000 training
images in [25[], [29], [31], [32] and maybe helpful. To clarify
how much benefit our method training with a “clean” set, we
implement the baseline model (STCNN) trained on the full
training set of 230,000 images. The accuracies on the same test
set are 72.20% (6 = 0), 75.27% (6 = 1) and close to 72.19%
0 = 0), 75.15% (6 = 1) with a “clean” set. It seems that
training with a “clean” set does not help the current method.
This also demonstrates that our multi-task models with smaller
training data can still outperform the state-of-the-art methods.

ACCURACY (%) OF DIFFERENT METHODS ON THE PHOTO.NET DATASET.

=9

GIST_SVM|FV_SIFT_SVM|STCNN|STCNN_FT[MTCNN #1_FT
59.90 60.80 61.00 62.10 65.20

[=)

Although our goal is to improve the performance of aes-
thetic quality assessment without considering the evaluation
of semantic task, we also give the 64.89% Average Precision
of MTCNN#1 (A = 1/29,6 = 0) and 67.44% of MTRLCNN
with ResNet_FT (A = 1/29,§ = 0).

G. Evaluating the Transfer Learning for Photo.net Dataset

To utilize the semantic information for the dataset with
only aesthetic labels, we transfer the learned representation
with both aesthetic labels and semantic labels for the dataset
with only aesthetic labels. In this paper, we exploit the
learned representation with aesthetic and semantic labels from
AVA dataset in MTCNN #1 and finetune it with Photo.net
dataset with only aesthetic labels. We call this model as
MTCNN #1_FT. To validate the effectiveness of transferred
representation with semantic information, we finetune the
pretrained STCNN model on AVA dataset with only aes-
thetic labels for Photo.net dataset (STCNN_FT). Moreover, we
also train a STCNN on Photo.net dataset without finetuning.
Furthermore, we implement the GIST descriptors [59] and
FV on the top of SIFT with a SVM classifier (GIST_SVM
and FV_SIFT_SVM). Table shows the accuracy of these
methods on Photo.net dataset. Fig. [T0] visualizes some testing
images correctly classified by MTCNN #1_FT but incorrectly
by STCNN_FT in the Photo.net dataset. These reveal the
effectiveness of transfer learning with semantic information.

V. CONCLUSION AND FUTURE WORK

In this paper, we have employed the semantic information
to help discover representations for aesthetic quality assess-
ment by formulating an end-to-end multi-task deep learning
framework. Aesthetic quality assessment has not been taken
as an isolation problem. To make full use of the semantic
information and investigate how semantic information influ-
ence aesthetic task, four MTCNNs have been explored to learn
the aesthetic representation jointly with the supervision of
aesthetic and semantic labels. At the same time, a strategy
of keeping the effect of two tasks balanced is presented
to optimize the parameters of our multi-task networks. In
addition, task relationship learning is modeled in the multi-
task framework and the correlations in the two tasks have
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Fig. 10. Example test images correctly classified by MTCNN #1_FT but incorrectly by STCNN_FT in the Photo.net dataset. The labels of the images on
the first and second rows are high aesthetic quality, and the labels of the images on the third and fourth rows are low aesthetic quality.

been learned to investigate the role of semantic recognition
in aesthetic quality assessment. Experimental results have
shown that our method performs better than the state-of-the-
art methods. It is demonstrated that the semantic information
is beneficial to aesthetic feature learning and the high-level
features in the network play an important role in aesthetic
quality assessment.

Although the proposed multi-task framework results in
state-of-the-art results on the challenging dataset, how to
perform aesthetic quality assessment like a human brain is
still an ongoing issue. Future work is to explore other possi-
ble solutions to efficiently utilize the aesthetic and semantic
information in a brain-like way. Another possible trend is to
discover more possible and potential factors to affect aesthetic
quality assessment.
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