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Automatic Attribute Profiles
Gabriele Cavallaro, Member, IEEE, Nicola Falco, Member, IEEE,

Mauro Dalla Mura, Member, IEEE, and Jón Atli Benediktsson, Fellow, IEEE

Abstract—Morphological attribute profiles are multilevel de-
compositions of images obtained with a sequence of transfor-
mations performed by connected operators. They have been
extensively employed in performing multi-scale and region-based
analysis in a large number of applications. One main, still
unresolved, issue is the selection of filter parameters able to
provide representative and non-redundant threshold decompo-
sition of the image. This paper presents a framework for the
automatic selection of filter thresholds based on Granulometric
Characteristic Functions (GCFs). GCFs describe the way that
non-linear morphological filters simplify a scene according to
a given measure. Since attribute filters rely on a hierarchical
representation of an image (e.g., the Tree of Shapes) for their
implementation, GCFs can be efficiently computed by taking
advantage of the tree representation. Eventually, the study of the
GCFs allows the identification of a meaningful set of thresholds.
Therefore, a trial and error approach is not necessary for
the threshold selection, automating the process and in turn
decreasing the computational time. It is shown that the redundant
information is reduced within the resulting profiles (a problem
of high occurrence, as regards manual selection). The proposed
approach is tested on two real remote sensing data sets, and the
classification results are compared with strategies present in the
literature.

Index Terms—automatic attribute profiles, filter parameter
selection, tree representation, mathematical morphology, remote
sensing, image processing.

I. INTRODUCTION

TAKING into account the spatial information of images
(e.g., the contextual relations among neighboring pixels,

shape characteristics of regions, scale, etc) has proved to
be beneficial for the interpretation of the image content in
many application domains, such as astronomy [1], medical
imaging [2] and remote sensing [3], [4]. However, modeling
and retrieving spatial features is a challenging task. In this
context, mathematical morphology (MM) [5] has been playing
an important role, since it provides a wide set of operators
that perform contextual image transformations. These trans-
formations are able to probe the image content and can be
useful to infer hints on spatial characteristics of objects in
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the image (e.g., geometry, shape, and edges) according to
the output of the transformations. In remote sensing, the MM
finds its main applications in image filtering, segmentation and
measurements [6]. In order to solve such problems, pixel-based
approaches are not usually considered as good candidates. To
meet this need, the MM framework contains useful tools that
provide tree-based image representations, i.e., a representation
of the image content in a tree structure in which each node
corresponds to a region in the image. Tree representations
are an important solution for many image processing appli-
cations, e.g., pattern recognition in astronomical imaging [7],
representation of different types of multivariate images (e.g.,
color natural images, multimodal medical imaging, etc.) [8],
detection and localization of objects in images [9], etc. Tree
representations of images can be divided into two groups [10]:
hierarchies of segmentation (i.e., hierarchy of image partitions
such as minimum spanning tree (MST) [11], alpha-tree [12],
binary partition tree (BPT) [13]) and threshold decompositions
(i.e., hierarchy of regions such as min- and max-tree [14],
[15], Tree of Shapes (ToS) [16]). The difference between a
hierarchy of segmentation and tree based on the threshold
decomposition is that when taking a horizontal cut, the former
leads to a partition of the image (i.e., set of non-overlapping
regions whose union covers the entire image domain) whereas
the latter to a set of regions representing a partial partition.
In general, these representations enable multi-scale analysis of
objects and spatial analysis of the image organization [17].

The work presented in this paper deals with the threshold
decomposition representations, which are composed of a set of
regions organized in a hierarchical way. Threshold decompo-
sitions have been popularized by connected operators, such as
attribute filters [5] [18], which have been extensively used for
the modelling of spatial information of images from remote
sensing [19], astronomy [20] and medical scanning [21] [22].
Attribute filters are edge-preserving and flexible operators
since they preserve the contours of the processed objects and
rely on many different spatial measures (i.e., attributes). For
example, one can express the objects to be filtered out through
a criterion (attribute) that tells the connected components (i.e.,
flat zones [23]) whether to be preserved or removed. This
attribute can be increasing (e.g., the area of the component)
or non-increasing (e.g., standard deviation, moment of inertia,
etc.). A given attribute causes a specific filtering transforma-
tion, extracting contextual information that is complementary
to the one extracted by other attributes. The possibility to
perform a multi-attribute analysis (i.e., attribute filters built
by employing different attributes) enriches the extraction of
spatial arrangement and improves the discrimination between
different structures. However, the analysis of a scene becomes
more challenging when heterogeneous structures populate
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the scene. In this case, a multi-level decomposition of the
original gray-level image obtained by applying a sequence
of attribute filters according to a pre-defined set of filter
thresholds is preferable. The result of this operation are the
so-called attribute profiles (APs) [24] or self-dual attribute
profiles (SDAP) [25], [26], in case of min- and max-tree or
ToS, respectively. Due to the aforementioned properties, these
operators and their multi-channel and multi-attribute exten-
sions [27] [28] have gained an increasing popularity. They
have been exploited mainly in remote sensing (e.g., classifi-
cation [29]–[32], data fusion [33] and change detection [34],
[35]) and medical imaging processing (e.g., segmentation of
computed tomographic images [36]).

Multi-attribute profiles can extract complementary infor-
mation and effectively model the spatial context. However,
the filter parameter selection (i.e., a set of values used in
the filtering in order to construct a profile) remains one
of the main operational issues, affecting their usability in
different applicative contexts, such as feature extraction, visual
exploration, compression, etc. Although the parameter tuning
is unavoidable, most of the works dealing with morphological
operators for multi-level analysis do not tackle this issue,
whereas the use of similar parameters, even for different case
studies, seems to be the general strategy. In the literature, only
few works addressing this issue can be found [37]–[40]. Since
the morphological analysis is data dependent, the identification
of the suitable threshold sets should be based on empirical
searching. However, such strategy can be time-consuming and
perceptively not trivial.

Focusing on this issue, this paper presents a novel automatic
approach for the selection of filter parameters1 for morpholog-
ical attribute profiles. The proposed method aims to provide
a data-adaptive and user-independent strategy to identify a
suitable threshold set for computing profiles that need to be
both representative (i.e., containing salient structures of the
image) and non-redundant (i.e., objects are present only in
one or few levels of the profile). The method exploits the
threshold decomposition representation of an image, from
which can be derived useful information related to the actual
range of the attribute values. This design choice is extremely
important since no filtering has to be performed to the image
in order to carry out the thresholds selection. The main idea
underlying the automatic selection procedure is to identify
a set of threshold values that approximate a given behav-
ior of the multi-level decomposition. For this purpose, the
concept of granulometric characteristic functions (GCFs) is
here introduced as an extension of the conventional notion
of granulometry [41]. We recall that a granulometric curve (or
granulometry) is a representation of the distribution of sizes in
an image based on the intermediate residuals of a sequence of
increasingly coarser anti-extensive or extensive morphological
filters (a granulometric family) [42, Ch. 1.4.2]. A GCF is
defined as a mapping from a grayscale image to a scalar
value which computes a global measures of the image. When
considering a set of images resulting from the application

1The parameters of the morphological filters are hereafter referred to also as
filter thresholds, since attribute filters are based on the evaluation of a binary
criterion which compare an attribute value against a given threshold

of a sequence of increasingly coarser filters, the GCF shows
the variation of the underlying measure with respect to the
increasing filtering effect. Granulometries are useful descrip-
tors for texture analysis and for gathering information on the
characteristics of objects in the image [41]. The conventional
granulometry uses the volume of the image (i.e., the sum of
the grayvalues of all pixels in the scene) as measure. However,
several measures other than the sum of graylevels can be
considered for defining functions able to represent the effects
of a sequence of filters from different aspects. For example,
in this work we propose two additional GCFs that are not
based on graylevels (i.e., the number of pixels and regions
that are affected by a filtering). However, other definitions
are possible according to which characteristic one wants to
monitor in a filter-based decomposition of the image. Since
the morphological filters considered in this work are efficiently
implemented on a hierarchical representation of the image, the
computation of GCFs that we propose also exploits the tree
representation. This is an extremely interesting feature of the
proposed selection strategy since the GCFs can be efficiently
computed directly on the tree, without requiring any prior filter
step.

For the automatic threshold selection we proceed as follows.
Similarly to [40], in this work, the set of thresholds that best
approximates the GCF computed on the full set of thresholds
is sought. The main assumption is that the distribution of a
given measure along the profile can be extracted and approx-
imated by using a subset of selected thresholds. An adaptive
regression model [43] approximates the original GCF for an
increasing number of thresholds. Eventually, the final set of
thresholds is identified when the estimation error between the
original and the approximated GCFs is minimized.

To summarize, the contributions of this paper are three-
fold: i) a framework for the automatic and efficient selection
of morphological attribute filters’ parameters, which does not
require any actual filtering of the image; ii) the definition
of Granulometric Characteristic Functions as a generalization
of the conventional granulometric curve based on grayvalues;
and iii) a strategy based on regression for the selection of
thresholds from GCFs.

The remainder of the paper is as follows: In Section II an
overview on the strategies proposed in the literature is pre-
sented. Section III provides a briefly introduction to the mor-
phological operators and tree representations. In Section IV the
proposed method is described, while the experiment analysis
is shown in Section V. Section VI concludes the paper,
discussing the findings of the study.

II. RELATED WORK

There have been only few attempts to solve the problem
of the filter threshold selection in mathematical morphology.
In general, a common approach is to derive a reasonable set
of thresholds based on the field-knowledge of the scene. This
requires a visual inspection of the scene under investigation,
followed by a manual selection. This approach often requires
multiple filtering tests to select the appropriate final threshold
set. Depending on the considered attribute and the complexity
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of the scene, this process can be computationally expensive
and time consuming.

To the authors’ best knowledge, the first automatic approach
aimed at decreasing the manual intervention was proposed in
[37], where a vector of thresholds was derived by computing
a given attribute on each object extracted by a preliminary
clustering or classification computed on the original scene.
The final set of thresholds was identified by clustering the
threshold vector and selecting for each cluster the threshold
corresponding to the minimal attribute value. The method
provided better or similar results to the manual selection.
A drawback of the approach is represented by the possible
inconsistency between the attribute values of the connected
components extracted by the classification map and those
represented by the tree, making the approach very sensitive
to variations in the pre-classification map.

In a supervised classification scenario, an automatic pro-
cedure for the threshold selection of the standard deviation
attribute was proposed in [38]. The selected thresholds were
identified based on a statistical analysis of the available
training samples. Similar approach was extended to the area
attribute in [39]. These procedures identify a large set of
thresholds, providing high dimensional profiles that intrinsi-
cally contain redundant features, and thus, requiring a further
dimensionality reduction procedure in order to avoid the
raising of the Hughes’ phenomenon.

An interesting strategy was proposed in [40], where the
filter thresholds of the area profile were selected based on
the analysis of the characteristic function of the pattern spec-
trum [44], [45], which corresponds to the probability density
function of the granulometric curve of the area profile, i.e.,
a curve related to the size distribution of the structures in
the image [41]. In particular, the selected thresholds were
those whose characteristic function best approximated the one
obtained by considering a larger set of thresholds. The method
required an initial set of thresholds, which was manually de-
fined prior to the filtering. The selection was then based on the
sampling of the original characteristic function with a constant
rate. In this case, a number of filtered images (potentially with
all possible thresholds) were produced in order to compute
both the original and the approximated granulometric curves,
resulting in a computationally non-efficient strategy.

What associates all the aforementioned methods is that
they might not exploit the full information contained in the
tree representations. For instance, instead of exploiting the
nodes information they involve additional statistical learning
methods (e.g., supervised/unsupervised classification, feature
extraction). The idea of this work started by a simple consider-
ation: the filtered images that compose a profile are computed
by pruning a tree. A simple and effective threshold selection
method can be based entirely on morphological information
contained in the tree.

III. THEORETICAL BACKGROUND

A. Trees based on threshold decomposition

This section reviews three tree representations based on
threshold decomposition of the image, namely, the min- and

max-tree (i.e., component trees) and the Tree of Shapes (ToS).
Component trees were introduced by Jones [14], [46] as
efficient image representations that enable the computation of
advanced morphological filters in a simple way. These trees
are actually hierarchical structures that encode the threshold
sets and their inclusion relationship and allow efficient imple-
mentations of connected filters.

More formally, let f : Ω→ E be a discrete two-dimensional
grayscale image, defined on a spatial domain Ω ⊆ Z2 and
taking values on a set of scalar values E ⊆ Z. For any λ ∈ Z,
a lower L(f) and upper U(f) threshold set is defined by:

L(f) = {x ∈ Ω, f(x) < λ}, (1)

U(f) = {x ∈ Ω, f(x) > λ}, (2)

Let P(Ω) be the power set of all the possible subsets of
Ω. Given X ∈ Ω, the set of connected components of X is
denoted as C(X) ∈ P(Ω). If ≤ is a total relation, any two
connected components X,Y ∈ C(L(f)) are either disjointed
or nested. The min-tree and max-tree structures represent the
components in L(f) and U(f) respectively with their inclusion
relations. For example, Fig. 2(c) shows the max-tree structure
of the image in Fig. 2(a). The arrows in denote the parent
relation between the nested connected components that are
identified in Fig. 2(b).

The Tree of Shapes (also known as topographic map), is a
hierarchical representation of a gray-level image in terms of
the inclusion of its level lines. The ToS is a morphological
self-dual representation of the connected components within
an image (i.e., zones enclosed by an isolevel line). Since it is
self-dual, it makes no assumption about the contrast of objects
(either light object over dark background or the contrary).
The ToS can be interpreted as the result of merging the min-
and max-tree [15] into a single tree. It was firstly introduced
by Monasse et al. [47], where the structure was computed
with the Fast Level Line Transform (FLLT) algorithm: it first
computes the pair of dual component trees and then obtains
the ToS by merging both trees. Afterwards, Caselles et al. [48]
introduced the Fast Level Set Transform algorithm (FLST),
which relies on a region-growing approach to decompose the
image into shapes. An operation called saturation is applied to
the connected components, resulting in flat regions obtained
by progressively merging nested regions. Specifically, the
algorithm extracts each branch of the tree starting from the
leaves and growing them up to the root until only a single flat
region is reached. Song et al. [49], proposed to retrieve the ToS
by building the tree of level lines and exploiting the interior
of each level line. Recently, Geraud et al. [50] proposed
a new algorithm to compute the ToS in order to reduce
the computational complexity and overcome the restriction
to only 2D images of the previous methods. The algorithm
computes the ToS with quasi-linear time complexity when data
quantification is low (typically 12 bits or less) and it works
for nD images. Moreover, Crozet et al. [51] presented the first
parallel algorithm to compute the morphological ToS based on
the previous algorithm [50].
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Described more formally, given the set X ∈ Ω let ∂X be the
border of X and X̄ the complementary of X . The hole-filling
operator H : P(Ω)→ P(Ω) is defined by:

H(X) = Ω \ C(X̄, ∂X) (3)

where C(X̄, ∂X) is the connected component of X̄ linking
with the image border. Given the operator H, a shape is any
element of the set:

S = {H(L)}λ ∪ {H(U)}λ (4)

If ≤ is total, any two shapes are either disjointed or nested,
hence the cover of S,⊆ makes the ToS. The definition of the
shapes as hole-filled connected components of the lower L(f)
and upper U(f) threshold set proofs that the ToS can be seen
as a merge of the min- and max-tree. However, the hole-filling
operation creates shapes within neither to the min-tree nor to
the max-tree.

B. Attribute filters
The way C is defined leads to different tree representations

(see previous section) and hence distinct partition πf (i.e., set
of connected components of f ) of the spatial domain Ω. If we
consider a connected operator ψ, by definition it will operate
on f only by merging the connected components of the given
set C [23]. Thus, the result of the filtering will be a new
partition πψ that is coarser (i.e., containing fewer regions) than
the initial one: πf v πψ(f) meaning that for each pixel p ∈ Ω,
πf (p) ⊆ πψ(f)(p) [42, Ch. 7]. The coarseness of the partition
generated by a connected operator is determined by a threshold
λ (i.e., a size-related filter threshold). Given two instances of
the same connected operator with different filtering thresholds,
ψλi and ψλj , which we denote for simplicity as ψi and ψj ,
respectively, there is an ordering relation between the resulting
partitions: πψi v πψj given λi ≤ λj . Among the different
types of connected operators, attribute filters have largely
diffused. Attribute filters remove connected components in
C according to an attribute A that is computed on each
component. In greater detail, the value of an attribute A is
evaluated on each connected component in C and this measure
is compared with a reference threshold λ in a binary predicate
Tλ (e.g., Tλ := A ≥ λ). An attribute can be increasing
(e.g., the area of the component) or non-increasing (e.g.,
standard deviation, moment of inertia, etc.). In the former, the
increasingness of A leads to an attribute closing or opening
(min-tree and max-tree, respectively). The tree filtering is
rather straightforward, since it is performed by pruning the
nodes whose attribute function A is under a given threshold,
which can be seen as an attribute thresholding. In the latter,
the non-increasingness of A leads to attribute thinnings and
thickenings. Specific filtering and restitution rules have been
defined in [15] [45] for non-increasing attributes that can be
categorized in two groups: pruning and non-pruning strategies.
In general terms, if the predicate is true the component is
maintained, otherwise it is removed. According to the attribute
considered, different filtering effects driven by characteristics
such as the regions’ scale, shape or contrast can be obtained,
leading to a simplification of the image.

C. Attribute profiles

Let us consider a family of L connected operators ψ
computed considering a sequence of L either increasing or
decreasing values of the filter threshold Λ = {λi}L1 that we call
it a profile Pψ := {ψi}L1 . Considering the entries of a profile,
the absorption property holds on the resulting partitions such
that ψjψi will lead to πψj for i ≤ j. So filtered results can be
ordered sequentially.
In this work, we will focus on profiles built with attribute
filters, so called attribute profiles (APs). Profiles considering
attribute filters were initially proposed for the analysis of
remote sensing images in [24]. By considering a max and a
min-tree, attribute opening and closing profiles were defined,
respectively as:

Pγ = {γT0 , γTλ1 , . . . , γTλL}, (5)

Pφ = {φT0 , φTλ1 , . . . , φTλL }, (6)

where γT and φT represent the attribute opening and closing,
respectively, {Ti} is a criterion evaluated on the set of thresh-
olds Λ and φT0(f) = γT0(f) = f , which is the original image.
By denoting with P−φ the closing profile taken in reverse order
(such that each entry is greater or equal than the subsequent
one), in [24] its concatenation with an attribute opening profile
was named Attribute Profile (AP):

AP = {P−φ \ φ
T0 ,Pγ}. (7)

The AP is composed of 2L+1 images (L closings, the original
image and L openings).
Analogously, when considering the contrast invariant operator
ρ based on the inclusion tree, the profile Pρ, named Self-Dual
Attribute Profile (SDAP) [25], [26], can be obtained:

Pρ = {ρT0 , ρTλ1 , ..., ρTλL }, (8)

with ρT0(f) = f .

IV. PROPOSED APPROACH FOR AUTOMATIC
THRESHOLD SELECTION

A. Definition of Granulometric Characteristic Function

The proposed automatic threshold system is based on the
definition of a descriptive function that globally quantifies
the filtering effect on gray-level image due to the image
transformation performed by a connected operator ψ. Being
inspired by the concept of granulometric curves, which show
the interaction of the size of the image structures with the
filters when the filter threshold varies, we extend the gran-
ulometry definition by considering other characteristics that
can be measured to provide information on the effect of in-
creasingly coarser filtering. Exploiting the tree representation,
a measureM(ψ), representing a specific aspect of the filtering
effect we want to measure, can be easily computed at each
threshold value, resulting in the definition of a granulometric
characteristic function (GCF), which is formally defined as:

GCF(Pψ(f)) = {M(ψi)}Li=1. (9)

Thus, if M : f → R, GCF(Pψ(f)) leads to L scalar
values (one for each value of threshold extracted from the
tree representation).
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In this study, we present three definitions of GCFs based
on the following three measures M:

1) Sum of gray-level values: Similarly to the conventional
granulometry, this measure provides information related to the
effect of the filtering with respect to the changes in terms of
gray-levels that are produced in the image.

GCFval(Pψ(f)) =
{∑

|f − ψi(f)|
}L
i=1

. (10)

When attribute filters are applied on the ToS, the sum of
gray-level values might not be meaningful since the hierarchy
in which the nodes are organized is not driven by an ordering
relation among gray levels (i.e., as for min-tree and max-tree).
The nodes of the ToS follow the inclusion relationship of
the regions and hence the interpretation of the GCF is not
straightforward. For instance, in Fig. 1 the effect of the filtering
applied on the image is not accounted by the GCF measure
since there is no change in the total sum of gray values before
and after the filtering.

3 3 3 3 3 3 3 3 3 3 3

3 5 5 5 5 3 0 0 0 0 3

3 5 0 0 5 3 0 5 5 0 3

3 5 5 5 5 3 0 0 0 0 3

3 3 3 3 3 3 3 3 3 3 3

(a)

3 3 3 3 3 3 3 3 3 3 3

3 5 5 5 5 3 0 0 0 0 3

3 5 5 5 5 3 0 0 0 0 3

3 5 5 5 5 3 0 0 0 0 3

3 3 3 3 3 3 3 3 3 3 3

(b)

Fig. 1. Attribute filter computed on the ToS: T = A(area) ≤ 2. Original
image (a) and filtered image (b). In both images, the sum of the gray-level
values is equal to 153.

2) Number of changed pixels: This measure provides in-
formation on the number of pixels that change gray-value at
different filtering. The obtained GCF results more sensitive
to changes in the spatial extent of the regions rather than in
gray-levels.

GCFpix(Pψ(f)) = {card[f(p) 6= ψi(f)(p)],∀p ∈ E}Li=1 ,
(11)

where card[·] denotes the cardinality of a set.
3) Number of changed regions: This measure extracts in-

formation on the number of connected components that are
affected at each filtering level. It is topological invariant to
both the spatial extent and gray-level variations induced by
the filtering.

GCFreg(Pψ(f)) = {card[C(f)]− card[C(ψi(f))]}Li=1 . (12)

The considered measures increase for progressively coarser
filters, providing monotonic increasing GCFs. An example of
the extraction of a GCF is shown in Fig. 3, where a toy image
is used. Starting from the tree representation of the image,
which, in this case, is a max-tree, the GCF is obtained by
considering the number of regions as measure.

It is worth noting that other measures able to describe
specific characteristics of the filtering effects could be also
considered and implemented for the definition of more GCFs.

B. Automatic threshold selection

1) Purpose: The problem we want to address can be
formulated as the identification of a subset Λ̂ = {λ̂i}L̂z=1

among the set of all possible values of λs, Λ̄ = {λi}Li=1,
with L̂� L. The full set Λ̄ is extremely scene dependent and
can potentially be very large making the problem of selecting
the subset Λ̂ more complicated, since the full set is not readily
accessible. A possible strategy for the selection relies on the
computation of a profile by considering a relatively large
number of λs (considering all of them in real scenarios is
impractical) and prune the profile by selecting some of filtered
images and related filter thresholds so defining Λ̂. However,
such an approach is limited by the need of generating the
filtered images in order to perform the selection and by the
lack of guarantee that all possible thresholds are considered
for selection. Here we propose to consider the GCFs defined
in Sec. IV-A in order to select those values λs that lead to
“significant” changes in the effect of the filters (as measured
by the considered GCF). A similar approach was first exploited
in [40], where granulometric curves were used for estimating
a pre-defined sub-set of values of λ that generate salient
filtered images (see Section II). The main advantage of the
proposed method is the use of tree representation of the image
(augmented with the values of the attributes for each node),
which allows us to obtain prior information on the image
decomposition, such as the full set Λ̄ (i.e., all possible values of
λ), to compute a GCFs prior any filtering. In particular, each
node, which maps a region of spatially connected pixels in
the image, gives information related to the value of attributes,
gray-level and number of pixels. Such information is exploited
for the computation of the GCFs.

2) Proposed solution: Similarly to [40], in the proposed
approach, the set Λ̂ of the selected thresholds corresponds
to the one that best approximates a GCF computed on the
set Λ̄. By approximating a GCF curve, we assume that the
distribution of the measure M that underlies the GCF can be
extracted and approximated by using the selected L̂ thresholds.
The approximated GCF curve, hereafter GĈF, is obtained by
using a piecewise linear regression approach [43]2 which C++
implementation is freely available.

The method implements an adaptive segmentation ap-
proach for time-series where segmentation points (or break-
points) divide the time series into intervals (or segments).
In our case, time-series represent sequences of data points
(x0, y0), . . . , (xn−1, yn−1), with xi representing the threshold
i and (yi) the correspondent GCF’s intensity. A polynomial
function is exploited to approximate each interval according
to a chosen model that describes the interval itself (e.g.,
constant, linear, etc.). The segmentation error is estimated by
computing the Euclidean (l2) norm between the interval and its
polynomial approximation. In our approach, the segmentation
of the original GCF is achieved by considering constant
and linear models. This would drive the segmentation to
have segments that cover intervals characterized by a linear
behaviour and have segmentation points where a change in

2The C++ implementation used in this work is freely available at http:
//lemire.me/fr/abstracts/SDM2007.html
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5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5 2 2 2 2 2 2 2 2 2 2 5 1 1 1 1 5 5 5
5 2 3 3 3 3 3 3 3 3 2 5 1 1 1 1 5 5 5
5 2 3 3 3 3 3 3 3 3 2 5 5 5 5 5 5 5 5
5 2 2 2 2 2 3 5 5 3 2 5 5 5 5 5 5 5 5
5 2 2 2 2 2 3 5 5 3 2 5 5 0 0 0 5 5 5
5 2 2 2 2 2 3 5 5 3 2 5 0 0 5 0 5 5 5
5 2 2 2 2 2 3 3 3 3 2 5 0 0 5 0 5 5 5
5 2 2 2 2 2 2 2 2 2 2 5 0 0 5 0 5 5 5
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Fig. 2. Example of max-tree representation derived by a toy image. (a) Toy image where for each pixel the grey-value is shown. (b) The iso-level regions,
which represent the connected regions, are identified. (c) The structure of the max-tree that describes the image in its components C (note that the subscript
represents the gray-level while the superscript uniquely identifies the component within the gray-level).
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Fig. 3. Example of a GCF computed on a toy image by considering the number of changed regions as measure. The figure shows the effect of the filtering
on the toy image and the evolution of the GCF for each possible threshold.
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trend appears, i.e., where the curvature is changing. The
segmentation points are then exploited to derive the candidate
thresholds by projecting the breakpoints over the x-axis (see
Fig. 9). For more details on the piecewise linear regression
approach, the Authors encourage the Reader to consult the
work in [43].

The proposed method implements two possible strategies for
the selection of the final subset: a) the size, L̂, of the subset,
Λ̂, is provided by the user as input threshold for the regression
model; b) the final number of thresholds is automatically iden-
tified according to the estimation error. Focusing on the second
strategy, the automatic thresholds identification is based on an
iterative analysis of the estimation error computed in terms of
the normalized root mean squared error (NRMSE) between the
original GCF, which is obtained by considering the full set Λ̄,
and the GĈF computed for an increasing number of thresholds,
nth, starting from nth = 1. As shown in Fig. 9, the estimation
error curve decreases when more thresholds are considered,
showing a L-shape distribution, i.e., a monotone decreasing
curve that becomes stable after a certain point located in the
elbow region of the curve. The aim of the iterative procedure
is to identify such point, which corresponds to the one of
maximum curvature. A simple pseudo-code that shows the
entire procedure for the automatic strategy is described in
Algorithm 1. The algorithm takes as input the 2D gray-scale
image f , the tree T , the attribute A and the measure M.
For each input, various options are given in brackets. Due to
the nature of the employed regression model, the first and the
last breakpoints correspond to the first threshold (i.e., equal
to 0, resulting in the original input image) and to the last
threshold (resulting in all pixels having the same gray-scale
value), respectively, which do not provide useful information
(see Fig. 3) and thus discarded.

V. EXPERIMENTAL ANALYSIS

Aiming at comparing the proposed approach with other
existing strategies, the experimental analysis is carried out
on two real remote sensing data sets and the performance
is evaluated in terms of classification accuracies. It worths
to note that the proposed selection method is unsupervised,
which means that no class information is used in the selection
procedure. For instance, the set of the selected thresholds and
its associated features might not be discriminative of objects
belonging to different classes. Therefore, the comparison with
[38] is partly unfair since it make use of information of the
labeled samples (i.e., training set). Anyway the experimental
results show the flexibility of the proposed approach in pro-
viding complementary contextual information as a support for
a classification problem.

A. Data set description

1) Rome: The data set is composed by panchromatic and
multispectral (blue, green, red and near IR) channels acquired
by QuickBird satellite sensor over the city of Rome, Italy. The
data size is 1188 × 972 pixels with a geometrical resolution of
0.65 m in panchromatic and of 2.62 m in multispectral. The
acquired scene is a dense heterogeneous urban area, which

Algorithm 1: Thresholds selection
input : 2D grayscale image f ,

Tree T (‘min-tree’,‘max-tree’,‘ToS’),
Attribute A (‘area’,‘standard deviation’,etc.),
Measure M (‘val’,‘pix’,‘reg’)

output: A set of thresholds Λ̂

1 Computation of tree representation T (f);
2 Computation of attribute A(T ) on nodes;
3 {λi}Li=1 ←− sort(A(T ));
4 for i = 1 to L do
5 GCF(Pψλi (f))←−M(ψλi(T ))

6 end
7 Initialization: nth←− 1;
8 while elbow position is not stable do
9 Estimation of GĈF(Pψ(f), nth);

10 GĈFinterp ←− Interpolation of GĈF over Λ̄;
11 errnth ←− 1−NRMSE(GCF, GĈFinterp);
12 if nth > 1 then
13 compute the elbow position of err;
14 end
15 nth←− nth+ 1;
16 end
17 L̂←− nth;
18 Λ̂←− {λ̂i}L̂z=1;

includes 9 ground reference classes, namely: buildings, blocks,
roads, light train, vegetation, trees, bare soil, soil, towers. The
data set and the related reference map are shown in Figs. 4a
and 4b, respectively, while the class information is reported
in Table I. This data set is considered challenging due to the
oblique acquisition angle and the presence of long shadows.
Pansharpening was applied to the panchromatic and multi-
spectral channels using the Undecimated Discrete Wavelet
Transform method [52].

2) Pavia: The data set is a hyperspectral image acquired by
ROSIS-03 (Reflective Optics Imaging Spectrometer) airborne
sensor over the university area of the city of Pavia, Italy. The
sensor has 115 data channels with a spectral coverage ranging
from 0.43 to 0.86 µm. After removing 12 noisy data channels,
the final data set counts 103 spectral bands, showing an area of
610 × 340 pixels with a geometrical resolution of 1.3 m. The
ground-truth includes nine classes of interest, namely: asphalt,
meadow, gravel, trees, metal sheets,bare soil, bitumen, self-
blocking bricks and shadows. The data set and the related
reference map are shown in Figs. 4c - 4e, while the class
information is reported in Table I.

B. Experimental setup

For each data set, the profiles derived from the different
tree structures (min-tree, max tree and ToS) are computed as
described in Section III-C for both the attributes of area and
standard deviation.

In the case of Pavia data set and, more in general, when
hyperspectral images are analysed, performing the morpho-
logical decomposition considering the full spectral dimension
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(a) (b) (c) (d) (e)

Fig. 4. Rome data set: (a) true colour image and (b) reference data. Pavia University data set: (c) true colour image; (d) test set and (e) training set.

TABLE I
CLASSES AND NUMBERS OF TRAINING AND TEST SAMPLES FOR ROME AND PAVIA DATA SETS.

Rome Pavia

No. Class Training Test No. Class Training Test

1 Buildings 18126 163129 1 Asphalt 548 6304
2 Blocks 10982 98834 2 Meadow 540 18146
3 Roads 16353 147176 3 Gravel 392 1815
4 Light train 1606 14454 4 Trees 524 2912
5 Vegetation 6962 62655 5 Metal sheets 265 1113
6 Trees 9088 81792 6 Bare soil 532 4572
7 Bare soil 8127 73144 7 Bitumen 375 981
8 Soil 1506 13551 8 Self-blocking bricks 514 3364
9 Towers 4792 43124 9 Shadows 231 795

TABLE II
THE SIZE L OF THE FULL SETS OF VALUES Λ̄ = {λi}Li=1 FOR EACH DATA

SET, DIFFERENT TREE REPRESENTATIONS AND ATTRIBUTES.

f A min-tree max-tree ToS

Panch. area 3206 5337 5910
standard deviation 109 212 210

1st pc area 1907 1823 2302
standard deviation 90 212 208

2nd pc area 1191 1972 2181
standard deviation 67 111 108

3rd pc area 970 944 1124
standard deviation 87 74 89

4th pc area 365 398 431
standard deviation 32 62 73

is not feasible. In such case, dimensionality reduction is com-
monly applied in order to derive a sub-set of few feature on
which perform the multi-scale morphological feature extrac-
tion. In our experiment analysis, dimensionality reduction is
performed via principal component analysis retaining the first
four principal components (pc) corresponding to the highest
eigenvalues.

Table II reports the size L of the full sets of possible
thresholds Λ̄ = {λi}Li=1 (i.e., the full set of attribute values)
that characterize each data set. The thresholds used to extract
the final profile are automatically selected by employing the
automatic strategy described in Section IV-B, which is based

on the estimation error analysis, and using the measures
detailed in Section IV-A.

For the classification task, a random forest algorithm is
employed as supervised learning algorithm with the number of
trees set at 200. In the case of Roma data set, the classification
results are obtained by performing a 10-fold cross-validation
with random selection of the training set to be the 10 % of the
reference samples, while the remaining samples are used as
test set. For such data set, mean values and standard deviations
of the classification results are computed and reported in the
final analysis. In the case of Pavia data set, both the training
and testing sets are available in the literature and considered
fixed.

Furthermore, the classification results obtained by exploiting
the proposed approach are compared against those obtained
from tree strategies available in the literature and presented
in [39] (hereafter Gha13), [38] (hereafter Mar13) and [37]
(hereafter Mah12), taking into account their context of appli-
cation (e.g., Mar13 is an approach developed to work with
the standard deviation attribute, therefore is not included in
the analysis when the area attribute is used). The methods are
briefly described in Sec. II.

C. Results and discussion

In this section, the experimental results are presented and
discussed for each data set. For Rome data set, we report in
Fig. 9 the estimated GĈFs for the ToS and each measure,



9

TABLE III
CLASSIFICATION RESULTS OBTAINED FOR ROME DATA SET. EACH

PROFILE IS BUILT ON THE PANCHROMATIC IMAGE CONSIDERING THE
ATTRIBUTE area. FOR EACH METHOD AND PROFILE, THE TABLE REPORTS

THE AVERAGE OF 10-FOLD CROSS-VALIDATION PROCEDURE OF THE
PERCENTAGE OVERALL ACCURACIES OA(%), THE PERCENTAGE AVERAGE

ACCURACIES AA(%) AND THE KAPPA COEFFICIENTS K, WITH RELATIVE
STANDARD DEVIATIONS SHOWN IN BRACKETS.

GCFval GCFpix GCFreg Gha13

No. features 5 5 4 15

26.81 (0.22) 34.34 (0.13) 40.66 (0.14) 37.28 (0.16) AA
Pφ 42.46 (0.16) 49.58 (0.11) 54.16 (0.05) 52.33 (0.11) OA

28.73 (0.27) 37.78 (0.11) 44.30 (0.11) 41.76 (0.15) K

No. features 5 5 4 15

57.33 (0.69) 67.31 (0.18) 59.43 (0.16) 68.88 (0.19) AA
Pγ 62.56 (0.35) 71.68 (0.08) 63.57 (0.05) 70.62 (0.09) OA

54.42 (0.48) 65.91 (0.11) 56.01 (0.07) 64.58 (0.11) K

No. features 9 9 7 29

55.34 (0.49) 75.96 (0.17) 65.86 (0.14) 77.94 (0.13) AA
AP 61.90 (0.32) 78.21 (0.06) 69.95 (0.07) 78.25 (0.09) OA

53.55 (0.41) 73.96 (0.08) 64.03 (0.08) 74.12 (0.11) K

No. features 6 3 4 15

82.57 (0.14) 67.36 (0.32) 72.26 (0.12) 77.91 (0.18) AA
Pρ 84.27 (0.06) 76.59 (0.15) 75.41 (0.04) 79.76 (0.08) OA

81.25 (0.07) 71.90 (0.19) 70.63 (0.05) 75.77 (0.11) K

No. features 5 + 4 5 + 4 4 + 4 15 + 4

69.24 (0.13) 73.60 (0.09) 73.78 (0.09) 73.25 (0.11) AA
Pφ + MS 74.93 (0.06) 78.84 (0.06) 79.12 (0.04) 79.14 (0.04) OA

69.89 (0.07) 74.67 (0.07) 75.01 (0.05) 75.03 (0.05) K

No. features 5 + 4 5 + 4 4 + 4 15 + 4

85.75 (0.11) 89.45 (0.09) 81.14 (0.11) 87.62 (0.06) AA
Pγ + MS 86.08 (0.04) 89.75 (0.04) 82.87 (0.05) 87.67 (0.03) OA

83.43 (0.06) 87.81 (0.05) 79.56 (0.07) 85.33 (0.04) K

No. features 9 + 4 9 + 4 7 + 4 29 + 4

82.21 (0.18) 91.15 (0.11) 84.78 (0.11) 91.39 (0.11) AA
AP + MS 83.84 (0.11) 91.99 (0.06) 86.75 (0.04) 91.80 (0.05) OA

80.70 (0.14) 90.48 (0.07) 84.22 (0.04) 90.27 (0.06) K

No. features 6 + 4 3 + 4 4 + 4 15 + 4

94.18 (0.07) 90.87 (0.12) 85.42 (0.12) 92.74 (0.09) AA
Pρ + MS 94.72 (0.04) 92.41 (0.05) 87.36 (0.07) 92.93 (0.03) OA

93.73 (0.05) 90.98 (0.06) 84.95 (0.09) 91.61 (0.04) K

showing the selected thresholds used for building the relative
profile considering the attribute area. Moreover, for each
estimated GĈF, the relative estimation error, which provides
the size of the final threshold set, is also provided. It is
worth noting that by employing the Algorithm 1, the point
selected on the curve represents a trade-off between the size
of the threshold set and the minimum estimation error. In each
GĈF’s graph, the line composed by blue dots represents the
real GCF (computed with the full set of thresholds), the red
line denotes the estimated GĈF and yellow circles identifies
the breakpoints, which are used to derive the thresholds for
building the profile. It can be seen that each GCF, computed by
considering a different measure, describes a certain behaviour
of the morphological decomposition, and thus, provides a
different set of thresholds.

Considering the Rome data set, the classification results of
the experiments in which the attribute area is employed are
shown in Table III. The table shows the results obtained by the
proposed approach for the three GCFs (i.e., GCFval, GCFpix,
GCFreg), and those obtained by Gha13 method. First, the
experimental analysis is conducted by considering the only
panchromatic channel, and later, the analysis is extended to
include the spectral channels in the feature space. In both

TABLE IV
CLASSIFICATION RESULTS OBTAINED FOR ROME DATA SET. EACH PROFILE

IS BUILT ON THE PANCHROMATIC IMAGE CONSIDERING THE ATTRIBUTE
standard deviation. FOR EACH METHOD AND PROFILE, THE TABLE

REPORTS THE AVERAGE OF 10-FOLD CROSS-VALIDATION PROCEDURE OF
THE PERCENTAGE OVERALL ACCURACIES OA(%), THE PERCENTAGE

AVERAGE ACCURACIES AA(%) AND THE KAPPA COEFFICIENTS K, WITH
RELATIVE STANDARD DEVIATIONS SHOWN IN BRACKETS.

GCFval GCFpix GCFreg Gha13 Mar13

No. features 3 2 6 12 5

20.25 (2.64) 32.78 (0.12) 39.62 (0.09) 42.89 (0.16) 28.91 (0.21) AA
Pφ 38.23 (1.81) 46.63 (0.09) 53.25 (0.05) 56.68 (0.07) 44.76 (0.18) OA

20.92 (3.28) 34.51 (0.11) 43.03 (0.09) 47.25 (0.08) 31.49 (0.24) K

No. features 6 4 8 12 5

63.55 (0.44) 63.20 (0.11) 70.17 (0.21) 70.48 (0.13) 68.43 (0.15) AA
Pγ 68.00 (0.21) 66.40 (0.06) 70.92 (0.05) 70.51 (0.04) 70.66 (0.11) OA

61.39 (0.25) 59.55 (0.08) 64.99 (0.08) 64.55 (0.07) 64.71 (0.14) K

No. features 8 5 13 23 9

55.32 (1.77) 66.09 (0.11) 75.95 (0.08) 78.19 (0.12) 69.55 (0.25) AA
AP 64.42 (0.51) 68.75 (0.06) 76.55 (0.04) 79.07 (0.09) 72.07 (0.11) OA

56.74 (0.66) 62.58 (0.08) 71.98 (0.05) 74.96 (0.11) 66.34 (0.14) K

No. features 4 5 7 12 5

73.53 (0.29) 78.05 (0.12) 80.13 (0.14) 80.26 (0.13) 74.05 (0.28) AA
Pρ 76.23 (0.17) 80.23 (0.06) 81.01 (0.08) 80.98 (0.07) 76.54 (0.16) OA

71.60 (0.21) 76.45 (0.07) 77.39 (0.11) 77.26 (0.08) 71.86 (0.19) K

No. features 3 + 4 2 + 4 6 + 4 12 + 4 5 + 4

67.60 (0.12) 71.80 (0.12) 73.40 (0.12) 74.41 (0.09) 70.83 (0.08) AA
Pφ + MS 73.85 (0.08) 76.79 (0.03) 78.61 (0.05) 79.80 (0.04) 76.21 (0.03) OA

68.59 (0.11) 72.20 (0.04) 74.40 (0.06) 75.83 (0.05) 71.50 (0.04) K

No. features 6 + 4 4 + 4 8 + 4 12 + 4 5 + 4

87.70 (0.08) 83.29 (0.08) 86.28 (0.09) 86.43 (0.07) 87.74 (0.05) AA
Pγ + MS 88.56 (0.03) 84.73 (0.06) 86.60 (0.05) 87.31 (0.05) 88.50 (0.04) OA

86.39 (0.04) 81.81 (0.07) 84.04 (0.06) 84.89 (0.06) 86.32 (0.05) K

No. features 8 + 4 5 + 4 13 + 4 23 + 4 9 + 4

86.33 (0.07) 85.51 (0.13) 88.51 (0.07) 89.46 (0.07) 86.18 (0.11) AA
AP + MS 87.79 (0.05) 86.63 (0.08) 89.22 (0.04) 90.76 (0.04) 87.87 (0.05) OA

85.47 (0.07) 84.09 (0.11) 87.17 (0.05) 89.00 (0.05) 85.55 (0.06) K

No. features 4 + 4 5 + 4 7 + 4 12 + 4 5 + 4

88.74 (0.06) 91.14 (0.09) 90.36 (0.11) 90.06 (0.06) 89.60 (0.08) AA
Pρ + MS 90.06 (0.07) 92.22 (0.05) 91.26 (0.08) 91.06 (0.02) 90.64 (0.06) OA

88.18 (0.08) 90.76 (0.06) 89.61 (0.11) 89.36 (0.03) 88.87 (0.08) K

scenarios, it can be seen that by employing the Pφ or Pγ
profiles alone leads to poor classification accuracies. This is
due to the fact that both the attribute opening and attribute
closing profiles extract partial information of the scene, related
to dark and bright regions, respectively. Such behaviour is
also explained by the high complexity and heterogeneity
of the scene, in particular for the class building, which is
characterized by an high spectral variability (gray-level range
of values). The classification results are improved when the
attribute opening and closing are considered as part of the
same structure, as it is in the case of AP . By using such
operator, the opening and closing profiles derived by the min-
tree and max-tree representations are concatenated, providing
complementary information, but requiring a higher number of
thresholds for the estimation of GĈFs. A further improvement
is achieved by employing the ToS representation to obtain the
Pρ profiles, which obtains the highest classification accuracy.
The Pρ performs the morphological decomposition consid-
ering dark and bright regions at the same time, making this
operator more adaptable to different gray-levels conditions. By
comparing the different methods, it is important to notice that
the proposed method creates, in general, profiles characterized
by a very small number of features, while obtaining classifica-
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TABLE V
CLASSIFICATION RESULTS OBTAINED FOR PAVIA DATA SET. EACH PROFILE
IS BUILT ON THE FIRST FOUR PRINCIPAL COMPONENTS CONSIDERING THE
ATTRIBUTE area. FOR EACH METHOD AND PROFILE, THE TABLE REPORTS

THE PERCENTAGE OVERALL ACCURACIES OA(%), THE PERCENTAGE
AVERAGE ACCURACIES AA(%) AND THE KAPPA COEFFICIENTS K.

GCFval GCFpix GCFreg Gha13 Mah12

No. features 16 21 18 60 36

76.67 83.57 83.45 84.16 85.77 AA
EPφ 77.72 79.70 81.82 79.79 80.84 OA

70.85 73.27 75.70 73.55 74.80 K

No. features 17 13 16 60 36

85.96 86.65 84.90 88.59 87.57 AA
EPγ 75.08 86.48 75.87 85.50 82.25 OA

68.86 82.41 69.84 81.25 77.35 K

No. features 29 30 30 116 68

85.63 89.79 85.50 93.07 91.15 AA
EAP 76.54 88.04 80.91 91.25 88.08 OA

70.49 84.01 74.88 88.46 84.27 K

No. features 19 16 14 60 36

93.73 94.22 85.75 91.88 88.39 AA
EPρ 94.01 94.34 83.58 91.06 85.08 OA

91.82 92.33 78.12 88.12 80.33 K

tion accuracies that are better or similar to those obtained by
Gha13 method. The classification maps corresponding to the
best results achieved by each technique are shown in Fig. 5.

The classification results obtained by considering the stan-
dard deviation attribute are shown in Table IV. The obtained
results have a similar trend to those obtained with the attribute
area. As in the previous case, when the Pφ or Pγ are used
alone, they achieve the lowest classification accuracies, while
by employing the AP and Pρ, the results are improved. For
this case, we report the accuracies achieved by the Gha13 and
Mar13 methods. From the comparison it can be observed that
all the methods achieved very similar classification results.
However, the proposed approach requires less features com-
pared to the Gha13, while Mar13 provides profiles of similar
size. Fig. 6 shows the classification maps corresponding to
the best results achieved by each technique considered in the
comparison.

For the Pavia data set, the results of the attribute area are
reported in Table V. Unlike the Rome data set, the use of
Pφ or Pγ profiles provide already good classification results.
Such accuracies are slightly improved by exploiting the AP
and in particular the Pρ, which provided the best classification
accuracies. For comparison, the Gha13 and Mah12 methods
are considered. From the table, it can be seen that our approach
is able to achieve better or similar results than those obtained
by the Gha13 and Mah13 by creating low dimensional profiles.
The classification maps corresponding to the best results
achieved by each technique are shown in Fig. 7.

The classification results obtained for the same data set
using the standard deviation attribute are listened in Table VI.
Also in this case, it can be seen the effectiveness of the
proposed approach in providing the highest classification ac-
curacies (except when the Pγ is used) while providing profiles
charactered by a low number of features. In contrast, Gha13,
Mah12 and Mar13 identify profiles characterized by a high

TABLE VI
CLASSIFICATION RESULTS OBTAINED FOR PAVIA DATA SET. EACH

PROFILE IS BUILT ON THE FIRST FOUR PRINCIPAL COMPONENTS
CONSIDERING THE ATTRIBUTE standard deviation. FOR EACH METHOD

AND PROFILE, THE TABLE REPORTS THE PERCENTAGE OVERALL
ACCURACIES OA(%), THE PERCENTAGE AVERAGE ACCURACIES AA(%)

AND THE KAPPA COEFFICIENTS K.

GCFval GCFpix GCFreg Gha13 Mah12 Mar13

No. features 13 14 16 48 36 19

79.54 83.16 83.42 84.79 82.87 76.42 AA
EPφ 74.55 78.90 78.94 78.22 73.40 75.29 OA

67.10 72.28 72.17 71.57 66.09 67.36 K

No. features 21 18 15 48 36 19

93.84 90.26 85.59 89.35 84.91 89.97 AA
EPγ 90.89 89.07 85.99 88.46 84.09 91.41 OA

88.05 85.68 81.76 84.88 79.46 88.60 K

No. features 30 28 27 92 68 34

93.83 90.34 88.11 91.27 87.98 88.83 AA
EAP 92.01 88.62 86.18 89.43 85.04 88.92 OA

89.48 84.87 81.62 85.98 80.14 85.44 K

No. features 13 16 18 48 36 19

95.18 92.40 89.29 91.64 87.83 89.15 AA
EPρ 90.94 91.35 90.00 87.79 86.07 89.57 OA

88.15 88.25 86.37 83.65 81.38 85.78 K

number of features without improving the final classification
results. Fig. 8 shows the classification maps corresponding to
the best results achieved by each technique.

VI. CONCLUSIONS

This paper presented an approach for the computation
of morphological attribute profiles, which relies on a novel
framework for the automatic selection the filters’ thresholds3.
The automatic selection procedure is based on Granulometric
Characteristic Functions, a generalization of the conventional
granulometric curve. Three GCFs have been defined based on
different measures, such as the sum of the gray-level values,
the number of pixels and the number of regions affected by
the filtering. The motivation for using different GCFs relies on
the fact that the filtering effects in the image decomposition
are represented according to different characteristics (e.g., in
terms of variations of contrast, scale of the areas affected
by filtering, etc). GCFs have been then considered in the
threshold selection strategy. Specifically, the proposed selec-
tion algorithm allows to retrieve the set of thresholds whose
associated GCF better approximates the GCF computed with
all possible thresholds. It worths noting that the exploitation
of tree representations (i.e., component trees or ToS) allows
us to compute the GCFs directly from the tree representation.
This is a great advantage since manual (i.e., trial & error) and
existing automatic strategies need to actually filter an image
for carrying out the threshold selection. This is unpractical for
real applications due to the potentially high cardinality of the
set of all possible filter thresholds, resulting in a suboptimal
exploration of the domain of the filter parameters.

Experiments were conducted addressing a scene classifi-
cation problem in order to make a comparison with other

3The Matlab executable files of the proposed method are provided at http:
//www.openremotesensing.net
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(a) GCFval (OA 94.72) (b) Gha13 (OA 92.93)

Fig. 5. Classification maps of Roma data set for the experiments reported in Table III (area attribute): (a-b) Pρ + MS.

(a) GCFpix (OA 92.22) (b) Gha13 (OA 91.06) (c) Mar13 (OA 90.64)

Fig. 6. Classification maps of Rome data set for the experiments reported in Table IV (standard deviation attribute): (a-b-c) Pρ + MS.

threshold selection methods available in the literature. The
comparison showed the effectiveness of the proposed approach
in achieving overall higher classification accuracies and, at the
same time, in providing more representative profiles composed
of a lower number of filtered images. This fact is particularly
advantageous because leads to a further reduction of the
computational cost since the image analysis is performed in
a feature space of lower dimensionality. The experimental
results showed also that, considering the proposed automatic
strategy, overall the attribute profiles computed on the three of
shapes lead to a better representation (in terms of classification
accuracy) of the image content with respect to those based on
component trees.

Several aspects would deserve a more in depth analysis
starting from this work. For example, the choice of the GCF
used for the selection seems to be dependent on the scene and
on the filter used for computing the profiles. In this regard, we
plan a deeper investigation on the effects of different GCFs
in the representation of the image content. Decision fusion
strategies could be employed if one wants to consider multiple
GCFs in the analysis. Another interesting future developments
is the investigation of threshold selection when considering

jointly different attributes. Furthermore, despite the suitability
of the proposed selection technique for computing an attribute
profile used in a supervised analysis of an image, the selection
procedure is fully unsupervised. We plan to better address
the supervised classification scenario by designing a selection
technique that integrates the a priori information available in
the scene.
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