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3D Display Calibration by Visual Pattern Analysis
Hyoseok Hwang, Hyun Sung Chang, Dongkyung Nam, In So Kweon

Abstract—Nearly all 3D displays need calibration for correct
rendering. More often than not, the optical elements in a 3D
display are misaligned from the designed parameter setting. As a
result, 3D magic does not perform well as intended. The observed
images tend to get distorted.

In this paper, we propose a novel display calibration method
to fix the situation. In our method, a pattern image is displayed
on the panel and a camera takes its pictures twice at different
positions. Then, based on a quantitative model, we extract all
display parameters (i.e., pitch, slanted angle, gap or thickness,
offset) from the observed patterns in the captured images.
For high accuracy and robustness, our method analyzes the
patterns mostly in frequency domain. We conduct two types
of experiments for validation; one with optical simulation for
quantitative results and the other with real-life displays for
qualitative assessment. Experimental results demonstrate that
our method is quite accurate, about a half order of magnitude
higher than prior work; is efficient, spending less than 2 s for
computation; and is robust to noise, working well in the SNR
regime as low as 6 dB.

Index Terms—Display calibration, 3D observation model, auto-
stereoscopic display, parameter estimation, rendering correction.

I. INTRODUCTION

DURING the past decade, we have witnessed rapid ad-
vancement in 3D display technology. Diverse approaches

have attempted to realize 3D scenes on a flat panel display.
Among them, a multiview autostereoscopic display provides,
at a low cost, immersive 3D environments to multiple users
without requirement of wearing special glasses. An auto-
stereoscopic display uses optical elements such as lenticular
lenses or parallax barriers to direct each ray from the pixels
toward the intended view point [2], [3]. Although the lenses
and barriers work differently, i.e., lenses by refracting the rays
and barriers by blocking irrelevant rays, they commonly fulfill
the same principle that different pixels must be visible in
different eye positions. If the left eye and the right eye are
located in different viewing zones, they will observe different
images and consequently recognize the binocular disparity.
Moreover, as the eyes move horizontally, the observed images
change slightly, realizing so-called motion parallax. The binoc-
ular disparity and the motion parallax are two most important
visual cues for human 3D perception [4].
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In terms of hardware, autostereoscopic displays are easy to
implement. We only need to attach optical elements in front or
at the back of a usual 2D display panel. Due to the simplicity
as well as the cost efficiency, the autostereoscopic displays
have been adopted in a variety of commercial products from
3D display walls to mobile devices [5].

Despite all the advantages, several issues still remain [6].
Above all, visual quality degradation may happen by optical
misalignment and/or by crosstalk. If the optical elements are
misaligned from the desired parameter values (e.g., slanted
angle, pitch, etc.), the observed images get distorted. For
the autostereoscopic display, multiple viewpoint images must
be prepared, by various means [7] (e.g. multiple camera
array, depth image based rendering, image based rendering),
and be multiplexed together in a panel image, as shown
in Fig. 1. Here, the multiplexing must follow correct view
assignment which depends on the display parameters [8]. In
practice, however, the parameters are likely to differ from
the designed values for many reasons: fabrication/assembly
inaccuracy, thermal effect, chronological change, to name a
few. Whatever the reason is, even a small error may lead to a
significant amount of image distortion.

On the other hand, crosstalk generally refers to a phe-
nomenon whereby light from a pixel, designated for a specific
view point, is smeared into adjacent ones. It occurs mainly
due to the shape mismatch between the pixels and the optical
elements. An autostereoscopic display typically slants the lens
or barrier to mitigate moiré artifacts and to divide the reso-
lution reduction by both dimensions. As a result, rectangular
pixels can hardly pass through the slanted optical element as
a whole; only a fraction can make it, forming a parallelogram
jointly with multiple pieces of other pixels. This makes the
viewer see not only the intended pixels but also unintended
ones. Consequently, images may look blurry or look as if they
were multiply-exposed [9]. Strictly speaking, given the slanted
structure, the crosstalk is inevitable. But recent research results
[10]–[13] show that one may reduce the crosstalk “effects”
(i.e., blur, multiple-exposure, etc.) by appropriately adjusting
pixel values so that they compensate for the crosstalk. To do
this, one needs a precise model of the crosstalk which again
requires the knowledge of the actual display parameters.

To summarize, knowing the display parameters to a suffi-
cient level of accuracy is prerequisite to solving the image
distortion and crosstalk problems. Therefore, we need to
estimate the display parameters at least once, after installing
the optical elements to the display, or more frequently (e.g.,
on-the-fly) whenever it is necessary.

In this paper, we propose a novel method for the display
parameter estimation. The proposed method is based on the
analysis of pattern images observed from a couple of view
points. We investigate what the observed patterns tell us
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Fig. 1. Overall procedure of realizing 3D scenes in a multiview autostereoscopic display. In this example, we assume that the input images are from a
multiple camera array.

about the display parameters and develop a frequency-domain
algorithm which robustly works in everyday environment.
Unlike prior work, which usually requires many images to be
photographed from all viewing zones at the optimal viewing
distance, our method only needs two observations and is
largely insensitive to the observation positions.

The remainder of this paper is organized as follows. We
review the related work in the next section. In Section III,
we establish an observation model for images which are seen
through the optical elements of the autostereoscopic display.
Section IV presents a novel display calibration method, based
on the observation model, which robustly estimates the display
parameters in frequency domain. Then, we experimentally
validate the proposed method in Section V. Finally, Section VI
concludes the paper.

II. RELATED WORK

In recent years, plenty of 3D research has focused on
the visual quality improvement. We first review several work
seeking to minimize the 3D image distortion that occurs due
to optical misalignment.

Wang et al. [14] propose a method to correct the subpixel
positions of the panel image when the amount of optical
misalignment is known. The correction is basically equiva-
lent to newly assigning views to all subpixels according to
the actual parameters. The results demonstrate the quality
improvement of the 3D images; however, the misalignment
needs to be somehow measured in advance. Lee and Ra
[15] measure the misalignment. They display a periodic color
pattern such that the subpixels of the same view have the
same color, initially using the designed parameters for the
view assignment. Then, they observe the pattern at the optimal
viewing distance. If the actual parameters differ from the
designed ones, color variations happen. The authors argue that
the misalignment errors are specifically related to the number
of color variations. They estimate the errors based on the
counted number of color variations and re-synthesize the panel
image following the estimated parameters. In another work,
Lee and Ra [16] attempt to find where, among all viewing

zones, each subpixel looks brightest and then to conduct view
assignment accordingly. This approach is supplemented by
Zhou et al. [11], who concretely show how to find the pixel
correspondences between the panel and captured images using
structured lights. The scheme can deal with complicated types
of misalignments, including inhomogeneous ones, but is not
convenient to apply in practice because it requires too many
images to be photographed from all viewing directions. Ge et
al. [17] propose a computer-vision based method to estimate
the parameters of VarrierTM, a huge autostereoscopic display
tiled with thirty-five panels and as many parallax barriers.
Stereo cameras examine left and right images, mimicking the
human eyes. Then, the parameters are sequentially adjusted
until the cameras find little artifact in both images. Hirsch et
al. [18] show that the moiré-magnifier effect may be useful
for calibrating the angle between the lens array and the panel.
They establish a mathematical model of the observation when
a specific pattern is observed through lenses. We pursue a
similar course in this paper. But Hirsch et al. do not show how
to automate the calibration and how to deal with all types of
display parameters. Here our approach departs from theirs.

Another line of research improves the 3D visual quality
by reducing the crosstalk effect. Li et al. [10] set up a set
of linear equations, each of which represents the intensity
mixture of light for each site of subpixels. They assume that
a subpixel, at its intended view point, is only affected by two
adjacent subpixels of the same color. To obtain the equation
coefficients, they measure the crosstalk from the neighbors
using an imaging photometer. By solving the linear equations,
they find a new intensity value for every subpixel that ef-
fectively cancels out the crosstalk effect. Similar approaches
follow. Zhou et al. [11] consider the same crosstalk model,
but they impose the range constraint (i.e., between 0 and 255)
on the new intensity values. There might be no solution that
exactly satisfies all the linear equations as well as the range
constraint. In this reason, Zhou et al. formulate the crosstalk
cancellation as a constrained least-square problem. To find the
solution, they use an iterative algorithm. Wang and Hou [12]
do pretty much the same things. But notably they compute,
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rather than measure, the equation coefficients by the visible
proportion of each subpixel. In more recent work [13], Li et
al. still assume the same crosstalk model. Instead of imposing
the range constraint on the output (i.e., new intensity value),
they propose a way to estimate the maximum input range that
would keep the output values to be within the valid range.
They pre-compress the input dynamic range and simply solve
the linear equations. Here, for the computation efficiency, they
use inverse filtering, in frequency domain, which exploits the
shift-invariance property of the crosstalk model.

Note that, in the crosstalk model, the linear equations actu-
ally depend on the display parameters. To compensate for the
crosstalk based on the linear equations, we require them to be
sufficiently accurate. If not, any attempt for crosstalk removal
would not only fail but would also add new artifacts, which
strongly necessitates reliable display parameter estimation.

III. OBSERVATION MODEL

In this section, we present a mathematical model for the
observation when an image on the panel goes through the
optical elements of the autostereoscopic display. For clarity,
we particularly consider an autostereoscopic display in which
parallax barriers exist in front of the panel.1 The display has
the following four parameters (see Fig. 2):

(1) Pitch p;
(2) Slanted angle α;
(3) Gap or Thickness t;
(4) Offset σ.

We denote the set of the parameters by Θ, i.e., Θ = (p, α, t, σ).
For later use, we also define h and ρ as

h =
d

d− t
p

cosα
(1)

ρ =
d

d− t
σ, (2)

where d is the distance from the panel to the observer’s eye.
We will use Θ to denote the derivative parameters (h, α, ρ),
not only to denote the primary parameters (p, α, t, σ), if it
makes no confusion.

A. Visible Pixels

The parallax barriers enable every pixel on the panel to
have directionality. Based on a projective model, we trace
back all the rays that reach the eye position (u, v) at the
distance d. Here, for simplicity, we assume a conceptually
ideal environment. The panel has infinite size and infinitely
high resolution; the barrier slits are infinitesimally narrow; and
light does not disperse.

In Fig. 2, we can express the barrier slits as a set of lines,
i.e.,

S(Θ) =
{

(x′, y′) : x′ = y′ tanα+ σ + n
p

cosα
, ∀n ∈ Z

}
.

(3)

1Our subsequent results are not restricted to such type of displays. They
are generally applicable to the displays with rear barriers or with lenticular
lenses.

Fig. 2. 3D display with a parallax barrier. The architecture is parameterized
by the barrier slit pitch p; the slanted angle α of the slits; the gap t between
the panel and the barrier; and the horizontal offset σ by which the slits are
located from the center of the panel.

The ray that passes both the slit (x′, y′) and the eye position
(u, v) must come from a pixel (x, y) such that(

x

y

)
=

d

d− t

(
x′

y′

)
− t

d− t

(
u

v

)
. (4)

By arranging Eq. (4) with respect to (x′, y′) and subsequently
by plugging it into Eq. (3), we obtain the set of pixels that are
visible from the eye at (u, v):

Pγ(Θ) =
{

(x, y) : x = y tanα+ ρ

+
(
n+ γ(u, v; Θ)

)
h, ∀n ∈ Z

}
, (5)

where

γ(u, v; Θ) =
t

pd

(
v sinα− u cosα

)
. (6)

The eye position is only one-dimensionally parameterized, i.e.,
via γ. This is because we assumed a line-type barrier that only
allows one-dimensional parallax.2 Multiple eye positions have
a common set of visible pixels if they share the same value of
γ. In this reason, we can use γ, what we call view, in place
of the eye position (u, v), whenever the exact 2D coordinate
is not necessary. Note also that Pγ is periodic, in terms of γ,
with the period equal to 1. A space of the 2D eye positions,
which forms a single period of γ, i.e., γ ∈ [0, 1), is often called
the primary field of view. Beyond it, the set of visible pixels
simply repeats, extending the effective field of view [19].

We have figured out which pixels are visible at the ob-
server’s side. For correct rendering, at the panel’s side, the
same set of pixels must be controlled to display the correspon-
dent image. This naturally generates the following pixel-view
assignment rule:

R : Pγ(Θ) 7→ γ. (7)

2The same is also true for the cylinder-type lenslet array.
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Fig. 3. 2D lattice structure generated by the intersection of Pγ′ (Θr)
(greenish lines), and Pγ(Θ) (blueish lines). We assume that αr 6= α. The
coordinates of each point are given by Eqs. (10), (11).

We can rewrite Eq. (5) as

Pγ(Θ) =

{
(x, y) :

x− ρ− y tanα (mod h)

h
= γ

}
, (8)

by eliminating n. The resulting pixel-view assignment function
has exactly the same form as van Berkel’s [8]. Van Berkel
actually derived the function with lenticular lenses, while
we did with parallax barriers. In this sense, our derivation
complements his work.

B. Misalignment Effects

We emphasize that the display parameters must be known
for the pixel-view assignment. We denote, by Θr =
(pr, αr, tr, σr) or Θr = (hr, αr, ρr), the input parameters with
which the 3D rendering module performs the view assignment.
Let us partition the pixels on the panel by the assigned view.
Then, the set of pixels assigned for view γ′ becomes equal to
Pγ′(Θr) (see Eq. 7). The 3D rendering works correctly if, for
every view γ ∈ [0, 1), all the visible pixels Pγ(Θ) are assigned
with the correct view number. We mathematically express this
correct 3D rendering condition as

Pγ′(Θr) ∩ Pγ(Θ) =

{
Pγ(Θ), γ′ = γ

∅, γ′ 6= γ
(9)

for every γ, γ′ ∈ [0, 1). One can easily verify that this
condition is simply equivalent to that Θr = Θ.

What would result if Θr 6= Θ? We will evaluate Pγ′(Θr)∩
Pγ(Θ) to see which pixels in the observation are actually
correct and which are wrong. Recall that both Pγ′(Θr) and
Pγ(Θ) represent a bunch of lines parallel and equispaced
within each set. We still assume the same idealized envi-
ronment that we used in identifying visible pixels: panel
with infinite resolution, nondispersive light, etc. We will relax
the conditions in Section IV. If the lines in both sets have
“exactly” the same slope (i.e., αr = α), the intersection can
form either another set of lines or the empty set. In this paper,
we skip considering this case because it is unlikely to happen
in practice.

If the lines in Pγ′(Θr) have a different slope from those in
Pγ(Θ) (i.e., αr 6= α), the intersection produces a set of points:

x =
mhr tanα− nh tanαr

tanα− tanαr

+
(ρr + γ′hr) tanα− (ρ+ γh) tanαr

tanα− tanαr
(10)

y =
mhr − nh+ ρr + γ′hr − ρ− γh

tanα− tanαr
, (11)

where (m,n) ∈ Z× Z. We make the following observations:

Lattice encoding. The points form a lattice pattern in
2D plane (see Fig. 3). The lattice pattern encodes the actual
parameters Θ = (h, α, ρ) in a certain way.

View-invariant structure. The lattice structure is invariant
(only up to a shift) to both view parameters γ and γ′.

Mixed views. With γ fixed and γ′ varying (from 0 to
1), the lattice pattern makes a continuous shift along the
lines of Pγ(Θ). This implies that rainbow-like view blending
will appear in the observation. This phenomenon quite much
resembles crosstalk. But remember that it happens due to the
wrong assignment of views by the rendering module rather
than due to light leakage.3

IV. CALIBRATION

Supposing that we do not know the actual display parame-
ters, how can we estimate them with a high level of accuracy?
In this section, we provide a method, based on the observation
model that we considered in the previous section.

We seek to obtain all physical parameters, i.e., p, α, t, σ, in
our calibration. However, a single observation is not sufficient
for unambiguous identification. We may easily show this by
example. Consider the following two cases: (1) p = 0.9975×√

10, α = arctan(1/3), t = 25, σ = 0, (2) p = 0.9950 ×√
10 α = arctan(1/3), t = 50, σ = 0, while the observer

is commonly at (u, v) = (0, 0), distant from the panel by
d = 10, 000. If we evaluate Pγ(Θ) in Eq. (5), it is exactly
the same for both cases. Given the same image, the observer
sees exactly the same thing for both cases, not being able to
distinguish one case from the other. In this study, we make a
couple of observations to get rid of the ambiguity.

For the automated calibration, we use a camera as the
measurement device. In this context, hereafter, the position
(u, v), view γ, and the distance d denote those of the camera,
not of a human eye. We assume that the camera coordinate
(u, v, d) can be known from state-of-the-art camera pose
estimation techniques (e.g., [20]). Section IV-C explains the
procedure.

Although many recent studies have been proposed for the
display calibration, they generally require that a number of
observations should be made (see Section II). A few exceptions
exist. The work by Hirsch et al. [18] and by Lee and Ra
[15] needs rather a small number of observations. However,

3Certain studies (e.g., [11]) define “crosstalk” in wide terms, while classi-
fying it into intrinsic crosstalk and extrinsic crosstalk. What we consider here
corresponds to the extrinsic one.
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the aim of [18] is basically to help a “human” observer to
calibrate the angle (α in our notation) in micro levels, so it
does not fit our purpose (i.e., automated calibration dealing
with all types of display parameters). In contrast, [15] can be
made automated and be made applicable, without difficulty,
for finding all display parameters. But its drawback lies in
the accuracy. Their model, based on counting color change,
suffers from a sort of quantization effect. The counting-based
measurements are not easy to obtain to a small fractional
precision. Besides, their modeling holds only if the actual
display parameters are sufficiently close to the designed ones
(or the initial ones). Otherwise, aliasing may happen and every
color change may not be observed, violating their assumption.

A. Pattern Images

In our study, we seek to directly observe the lattice encoding
pattern (as in Fig. 3) without complication. For this purpose,
we prepare the all-white image for a single view γ′ = 0 and
all-black images for the other views, and interweave them
according to our rendering parameters. The design parameters
may be available, and we may want to use them for rendering.
However, in our perspective, they are merely one of many
values that mismatch the actual parameters. Instead of using
those values, we choose rendering parameters such that it can
make our analysis as simple as possible. In this study, we use

hr = β, αr = 0, ρr = ε (12)

with β being a multiple of 3. With the choice, the panel image
is filled with vertical stripes of the same color, spaced by β
and offset by ε. Then, the lattice pattern is reduced to (see
Eqs. 10 and 11)

Lγ(x, y) =

∞∑
m=−∞

∞∑
n=−∞

{
δ (x−mβ − ε)

· δ
(
y −m β

tanα
+ n

h

tanα
− τ
)}

, (13)

where

τ =
ε− ρ− γh

tanα
. (14)

In (13), δ denotes Dirac’s delta function.

B. Display Parameter Estimation

We have assumed several ideal conditions in deriving the
lattice pattern Lγ(x, y). Now, let us relax them one by one.

(i) The panel has a finite size. We denote the finite
window by B(x, y), which would typically be a rectangular
function without special treatment.

(ii) Barrier slits have a certain width and light may disperse.
The points on the panel spread (see Fig. 4). We denote the
point spread function by H(x, y). The shape actually depends
on the slit width, slanted angle α, distance d, etc., so H(x, y) is
difficult to specify accurately. However, it commonly delivers
some low-pass filter (LPF) characteristics.

(a) (b)

Fig. 4. 2D lattice pattern found in an actual observation. (a) Spatial
domain, (b) Frequency domain. The boxed region is shown in magnification,
with Pγ′ (Θr) and Pγ(Θ) overlaid together (in greenish and blueish color,
respectively), for better viewing. Note that a 2D lattice in spatial domain
is mapped to another 2D lattice, called reciprocal lattice [21], in frequency
domain.

(iii) The observation tends to be contaminated by noise.
We assume, for simplicity, that the noise N(x, y) is
independent and identically distributed (i.i.d.) over the pixels.

(iv) The panel has a finite resolution. This makes
the actual observation be a sampled version of the ideal
observation. We postpone considering this nonideality to a
little later part.

Taking the first three nonidealities into accounts, we may
express the actually observed image Iγ as

Iγ(x, y) = B(x, y)
(
H(x, y) ? Lγ(x, y)

)
+N(x, y), (15)

where ? denotes the convolution operator. If we define
Lo(x, y) as

Lo(x, y) =

∞∑
m=−∞

∞∑
n=−∞

{
δ (x−mβ)

· δ
(
y −m β

tanα
+ n

h

tanα

)}
, (16)

Lγ(x, y) is merely a shift of Lo(x, y), horizontally by ε and
vertically by τ (This is due to the view invariance property
of the lattice structure; see Section III-B). Therefore, we can
rewrite Eq. (15) as

Iγ(x, y) = B(x, y)
(
H(x, y) ? Lo(x− ε, y − τ)

)
+N(x, y),

(17)

where τ is a function of γ as given by Eq. (14).
We further eliminate the shift variation by moving our

analysis to the frequency domain. As is well known, a shift
leads to the phase modulation in frequency domain and does
not affect the signal magnitude. In the frequency domain,
Eq. (17) is transformed into

Îγ(fx, fy) = e−2π(fxε+fyτ)B̂(fx, fy)

?
(
Ĥ(fx, fy)L̂o(fx, fy)

)
+ N̂(fx, fy), (18)

where we used the multiplication-convolution duality.
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Generally, a 2D lattice in spatial domain is mapped to
another 2D lattice in frequency domain (see [21], [22] for
reference). In our case, L̂o(fx, fy) is given by

L̂o(fx, fy) = C

∞∑
m=−∞

∞∑
n=−∞

{
δ

(
fx −m

1

β
+ n

1

h

)

· δ
(
fy − n

tanα

h

)}
, (19)

where C denotes a constant scale factor. If we insert Eq. (19)
into Eq. (18) and make a bit of arrangement, we obtain

Îγ(fx, fy) =
∑
m,n

wmnB̂

(
fx −

m

β
+
n

h
, fy −

n tanα

h

)
+ N̂(fx, fy), (20)

where

wmn = Ce−2πim
1
β εe−2πin(

tanα
h τ− 1

h ε)Ĥ

(
m

β
− n

h
,
n tanα

h

)
.

(21)

We interpret Eq. (20) as follows: The signal part forms a
mixture of functions B̂. The functions would be sincs if
B(x, y) were a rectangular window. We use a simple trick
to make B(x, y) be Gaussian. We multiply Gaussian weights
to the pixel values. Then, in our case, the signal part of Îγ
becomes a mixture of Gaussians, rather than a mixture of sincs,
because a Gaussian remains as a Gaussian (with a different
bandwidth) in frequency domain. The mixture weights wmn
are proportional to Ĥ , which has the LPF characteristics as
aforementioned. This means that the amplitude of a Gaussian
is high around the center of the frequency axes and diminishes
away from the center.

Finally, we attempt to consider the remaining nonideality
that the panel has a finite resolution. In the frequency domain,
this poses two implications. First, the signal replicates due
to the sampling effect. The replica might be able to corrupt
the original signal, behaving like noise. But recall that the
Gaussians far from the origin have attenuated weights. When
they are replicated at the multiples of the sampling frequency
and then stretched to around the origin, the magnitudes
become negligible. Therefore, even with the sampling effects,
Eq. (18) holds around the origin quite well. Second, the
resolution of the observation may be so low that we cannot
directly extract the parameters from the observation, to a
sufficient level of accuracy. We will soon show how to deal
with this issue in our calibration.

Horizontal pitch h, Slanted angle α: Given Îγ(fx, fy),
we detect a Gaussian peak around the origin. To accurately
localize the peak, we employ paraboloid fitting around the
initial ballpark. The paraboloid fitting can be performed quite
efficiently because the closed-form solution is available. A
similar approach was proposed by Cho et al. [23] in calibrating
light-field cameras. But our scheme includes a notably distinct
feature. Recall that our signal around its peak is almost a
Gaussian because we cooked it by means of the window
function B(x, y). In log domain, it “indeed” becomes a

(a)

(b) (c)

Fig. 5. Accurate peak localization. (a) Initial ballpark peak point and the
neighborhood. (b) Magnified plot. The shape around the peak is almost a
(coarsely sampled) Gaussian. (c) Magnified plot in log domain. The shape
around the peak is almost a (coarsely sampled) paraboloid. The peak point is
estimated by the paraboloid fitting in the log domain.

paraboloid (see Fig. 5), so the paraboloid fitting in the log
domain should work very well.

With no noise involved, this provides us

f∗x =
m

β
− n

h
, f∗y =

n tanα

h
(22)

for some m,n ∈ Z. In fact, noise is well suppressed in
frequency domain. We will argue that the signal-to-noise ratio
(SNR) around a Gaussian peak is quite high in frequency
domain. To see this, let us consider the signal power and the
noise power around peaks. First, due to the unitary property
of the Fourier transform, the total signal power is preserved
(this is known as Parseval’s theorem [24]). But the number of
lattice points is usually far fewer in frequency domain than in
spatial domain (e.g., see Fig. 4), and it implies that the signal
power is concentrated on the points (or peaks). On the other
hand, noise power is evenly spread over all the frequencies
because the noise is assumed to be i.i.d. over the pixels and
the Fourier transform is unitary. Therefore, the SNR becomes
quite high around a peak in frequency domain (while quite
low around a valley).

From Eq. (22), we obtain

h =
n

m/β − f∗x
, α = arctan

f∗y
m/β − f∗x

. (23)

If m and n are somehow known, Eq. (23) directly gives us
the two parameters h and α. Otherwise, h and α remain in
uncertainty, but they are still restricted to be in a discrete set
of candidates. To break the ambiguity, we actually multiplex
two patterns in a panel image (with different values of β and
ε). To be specific, we use β = 15, ε = 0 for one pattern
and β = 24, ε = 1 for the other. Multiplexed together, these
patterns generate the panel image that consists of two sets of
stripes, each differently colored and differently spaced. In the
observation, the two stripe patterns can easily be separated.
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Then, for each pattern j = 1, 2, we construct the candidate set
Cj(h, α) using Eq. (23) for m,n ∈ Z. Then, we intersect the
candidate sets C1, C2 to find h and α that can explain both
patterns at the same time. In practice, however, noisy factors
or numerical imprecisions are likely to make the “exact”
intersection be empty. So, we actually compute h and α such
that they are close to C1 and C2 at the same time:

(h, α) = arg min
(h′,α′)

min
(h,α)j∈Cj
j=1,2

2∑
j=1

∥∥∥(h′, α′)− (h, α)j

∥∥∥2. (24)

Pitch p, Gap or Thickness t: To further identify the
physical parameters p and t, we make a secondary observation
at a different distance from the first one. Let dk denote the
distance of the camera from the panel for the kth observation
(k = 1, 2). We meant that d1 6= d2. We assume that the
distances are known by a camera estimation technique (see
Section IV-C) and that we have already estimated the slanted
angle α and the horizontal pitch hk for each observation k.

For each observation, the horizontal pitch is related to the
physical pitch p and gap t by (see Eq. 1)

hk =
dk

dk − t
· p

cosα
, k = 1, 2. (25)

It is straightforward to solve Eq. (25). The solution is given
by

p =
h1h2(d2 − d1) cosα

d2h1 − d1h2
, (26)

t =
d1d2(h1 − h2)

d2h1 − d1h2
. (27)

Offset ρ, σ: The offset parameters only affect how much
the observed image Iγ(x, y) is shifted from the lattice pattern
Lo(x, y). Given all other display parameters as well as the
camera pose, the amount of the shift can be robustly estimated
by finding ζ that best matches Iγ(x+ ε, y+ ζ) to Lo(x, y). In
frequency domain, the operation is implemented by

τ = arg max
ζ

∣∣∣∣∣∑
m,n

Îγ

(
m

β
− n

h
,
n tanα

h

)

· e2πi(m
1
β ε+n(

tanα
h ζ− 1

h ε))

∣∣∣∣∣. (28)

After computing τ , we can estimate the parameter ρ as (see
Eq. 14)

ρ = ε− τ tanα− γh. (29)

where γ is evaluated in advance, by Eq. (6), on the basis of the
known parameters. Then, we can subsequently find the offset
σ, by Eq. (2),

σ =
d− t
d

ρ. (30)

C. Camera Pose Estimation

We assume that the intrinsic camera parameters (e.g., fo-
cal length, principal point, radial distortion coefficients) are
known. Otherwise, camera calibration (e.g., see [25]) can be
conducted in advance to the 3D display calibration.

To estimate camera poses, we exploit a state-of-the-art
method in that field, called homography decomposition [20].
We detect four corners of the display in the captured image and
find homography between the world coordinates and image
coordinates. The homography can be decomposed into the
intrinsic parameter matrix and the camera pose matrix. As
assumed, we know the intrinsic parameter matrix, so we can
compute the camera pose matrix by multiplying its inverse
to the homography. The camera pose matrix tells us the
camera rotation and translation relative to the origin (i.e., panel
center) of the world coordinate. The translation vector exactly
corresponds to the camera position (u, v, d).

If the camera is rotated, the shape of the display may
appear geometrically distorted in the captured image. For our
display calibration, we need it to be rectified. This could
be done with a usual image rectification technique using the
computed rotation matrix. In this study, we use an equivalent
yet simpler scheme that warps the four corners to the vertices
of a rectangle of the panel resolution.

V. EXPERIMENTS

We conduct two types of experiments to evaluate the per-
formance of the proposed calibration scheme. In the first set
of experiments, we generate a synthetic dataset from POV-Ray
simulation [26], for diverse “virtual” 3D displays. The ground-
truth display parameters are available for the synthetic dataset,
so we can quantitatively evaluate the estimation error. We also
run the experiments in noisy settings and see how robust the
proposed scheme is. In the second set of experiments, we apply
the proposed scheme to real-life autostereoscopic displays. For
those displays, the actual display parameters are generally
unknown, which makes it difficult to directly compute the
estimation error. In this case, we evaluate the performance
in the visual aspect of the observed images when rendering is
done using the estimated display parameters. We assess the
visual quality in subjective terms as well as two objective
measures (i.e., peak-signal-to-noise ratio, structural similarity
index).4

A. Synthetic Dataset Calibration

For the synthetic dataset, we build a simulation environment
based on a ray tracing tool called POV-Ray [26]. We consider
three types of 3D displays as listed in Table I where the
designed parameters Θo = (po, αo, to, σo) are shown together.
For misalignment, we add perturbations to the designed pa-
rameters. We assume that the perturbations are uniformly

4Some test images are from public domain (Big Buck Bunny c©Blender
Foundation, UCSD/MERL Light Field Repository [27], The Stanford Light
Field Archive [?], MIT Synthetic Light Field Archive [?]), and others are
graphically generated by ourselves.
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TABLE I
3D DISPLAYS IMPLEMENTED IN OUR SIMULATION ENVIRONMENT

UNITS IN PARAMETER SPEC.: MILLI-METERS (LENGTH), DEGREES (ANGLE)

Display Size Optical Designed parameters
(Resolution) elements po αo to σo

FHD55B 55 in Barrier 1 18 4 0.5
(1 920×1 080)

UHD32B 32 in Barrier 0.5 10 2 0.2
(3 840×2 160)

WQXGA10L 10 in Lenticular 0.1 12 1 0.05
(2 560×1 600)

distributed over the following range:

|p− po|
po

< 0.01,
|α− αo|
αo

< 0.01,

|t− to|
to

< 0.01,
|σ − σo|
po

< 0.01. (31)

For each type of display, we implement 10 instances, each
with independent random perturbations.

We capture two images for each display instance at different
distances. In the simulation, we place the camera at some
random positions, deviated up to ±50 mm in all directions,
rotated by a small random angle ϕ (|ϕ| <1 ◦) along a random
axis. The captured images have an ultra-high-definition (UHD)
resolution, i.e., 3 840×2 160. Given two captured images,
we first conduct rectification as well as the camera pose
estimation (see Section IV-C). The rectified images are moved
to frequency domain, using the discrete Fourier transform,
in which the display parameters are estimated sequentially
through several steps (see Section IV-B). Table II presents
the estimation results and makes comparisons with those
obtained with the calibration based on prior work [15]. We
have implemented [15] by ourselves. The original scheme,
based on counting color changes, can be used to estimate h
and α, but it does not actually give a way to estimate p and
t. In our implementation, we compute p and t just as in the
proposed method (following Eqs. 26, 27), on top of their
estimate of h and α. For the offset parameter σ, we follow
their strategy of taking additional pictures after correcting p,
t, α. Specifically, we only turn on the center view pixels and
photograph the observed images from all viewing zones. The
offset parameter can be easily computed by spotting which
of the pictures is the brightest. In the table, we observe that
the proposed scheme works quite well, showing several times
higher accuracy than prior work.

We run similar experiments in noisy settings. We add Pois-
son noise to simulate photon shot noise in usual photographic
images [28]. The results are shown in Fig. 6. As expected,
the mean absolute errors increase with the level of noise, but
the rate is not high. The errors are maintained quite low even
with a significant amount of noise. The offset parameter σ
turns out to be most vulnerable to the noise. This is probably
due to error accumulation; the estimate of the offset parameter
depends on those of the other parameters in our calibration.
We plan to handle this issue, error accumulation, in our future
work.

TABLE II
PARAMETER ESTIMATION ERRORS

THE SHOWN NUMBERS ARE THE MEAN AND STANDARD DEVIATION
(IN PARENTHESIS) OF THE ABSOLUTE ERRORS

OVER 10 INSTANCES PER EACH TYPE OF DISPLAY.

Calibration based on prior work [15]

Display Estimation errors (length: mm, angle: ◦)
|∆p| |∆α| |∆t| |∆σ|

FHD55B 0.0099 4.18×10−4 0.1639 0.0460
(0.0254) (5.99×10−4) (0.2399) (0.0154)

UHD32B 0.0356 1.94×10−4 0.1455 0.0173
(0.0818) (3.58×10−4) (0.2680) (0.0043)

WQXGA10L 0.0042 1.02×10−5 0.1980 0.0048
(0.0077) (7.76×10−6) (0.1340) (0.0063)

Calibration based on the proposed method

Display Estimation errors (length: mm, angle: ◦)
|∆p| |∆α| |∆t| |∆σ|

FHD55B 0.0027 4.21×10−5 0.0296 0.0281
(0.0011) (3.96×10−5) (0.0250) (0.0175)

UHD32B 0.0017 2.98×10−5 0.0304 0.0069
(0.0005) (1.77×10−5) (0.0190) (0.0040)

WQXGA10L 0.0061 4.80×10−6 0.1643 0.0069
(0.0011) (4.17×10−6) (0.0530) (0.0019)

B. Real-Life Display Calibration

We apply the proposed method on real-life autostereoscopic
displays as well.

First, we calibrate a 32 in ultra-high-definition (UHD) dis-
play (with resolution 3 840×2 160) that has a parallax barrier
between the panel and the back-light unit. For the camera,
we use Point Grey’s Flea R©3 of the resolution 4 096×2 160.
We take two photos, each nearly at d1 ≈ 700 mm and at
d2 ≈ 1 000 mm, respectively. The calibration is conducted on
a PC workstation equipped with Intel Xeon E5-1660 processor
and 16GB memory. Given the input images, the entire process
has only taken as little as 1.99 s. Fig. 7 exhibits the visual
quality improvement by calibration for five example images.

The images in Fig. 7 have been photographed nearly at
the center position and nearly at the optimal viewing distance,
while the 3D rendering is performed according to different sets
of display parameters – (b) with the designed parameters; (c)
with the parameters calibrated based on prior work [15]; (d)
with the parameters calibrated based on the proposed method.
In Fig. 7(b), the edges in wall bricks, rabbit’s ear, elephant’s
nose, and door frames appear as if multiply-exposed, and the
Chinese character on the background of Happy Buddha suffers
from severe geometric distortion. In Fig. 7(c), the distortions
have been much alleviated but still remain. They almost
disappear in Fig. 7(d). Fig. 7 also shows the visual quality
metrics in terms of peak-signal-to-noise-ratio (PSNR) as well
as structural similarity (SSIM) index [29]. Both measures
require a reference image for the quality assessment. For
the reference, we must be able to observe the misalignment-
artifact-free image through the optical elements. To do this,
we carefully identify the view γ corresponding to the camera
position and subsequently display the viewpoint image without
giving any disparity. Then, what the observer will actually get
is a 2D image, not a 3D image, but nevertheless it delivers
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(a) (b) (c) (d)

Fig. 6. Mean absolute errors for display parameter estimation in noisy settings. (a) Pitch p, (b) Slanted angle α, (c) Gap or Thickness t, (d) Offset σ. For
each sub-figure, we compare the performance between the calibration based on prior work [15] and the proposed calibration method. We find that the errors
increase with the noise but not quite rapidly.

23.51 dB (0.73) 24.38 dB (0.74) 28.31 dB (0.82)

29.79 dB (0.87) 30.30 dB (0.88) 34.94 dB (0.91)

24.82 dB (0.74) 24.54 dB (0.73) 27.96 dB (0.83)

21.31 dB (0.77) 24.35 dB (0.80) 27.26 dB (0.86)

18.13 dB (0.69) 18.51 dB (0.71) 21.14 dB (0.77)

(a) (b) (c) (d)

Fig. 7. Example images observed on the 32 in 3D display. The images Lego Knights, The Stanford Bunny, Elephant, Happy Buddha, Bonsai (from top to
bottom) are rendered using different sets of parameters and photographed nearly at the center position. (a) Reference, (b) No-calibration, (c) Calibration based
on prior work [15], (d) Calibration based on the proposed method. The quality improvement by the proposed calibration is easily noticeable. Two objective
measures (PSNR in dB and SSIM index on a scale of 0 to 1) are given below each image. For better comparison, some regions are shown in magnification.

the correct target contents (in reduced resolution but without
misalignment effects) for the specific viewpoint where the
camera is located. The proposed scheme consistently shows
higher scores, in both objective criteria, than the others (by
4–7 dB in PSNR, 0.06–0.1 in SSIM index on average). An
interesting point is that, in this case, the maximum difference
among the parameters is quite small – smaller than 1µm for

pitch, smaller than 0.1 ◦ for slanted angle. But as manifested
in the figure, the visual quality varies a lot, indicating why
accurate calibration is vital to 3D displays.

Next, we calibrate a tablet PC with 2 560×1 600 pixels on its
10 in panel. A detachable lenticular sheet serves as the frontal
cover of the tablet (see Fig. 8(a)). With the cover flipped open,
the tablet normally behaves as a 2D display, but it turns into
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20.09 dB (0.66) 21.04 dB (0.68) 25.68 dB (0.80)

19.72 dB (0.80) 20.93 dB (0.80) 24.91 dB (0.87)

23.60 dB (0.91) 25.06 dB (0.92) 29.58 dB (0.95)

24.43 dB (0.88) 23.88 dB (0.88) 32.81 dB (0.89)

10.29 dB (0.58) 10.84 dB (0.59) 20.53 dB (0.82)

(a) (b) (c) (d)

Fig. 9. Example images observed on the 10 in mobile 3D display. The images Big Buck Bunny, Cake, Chess, Green Dragon, Teapot (from top to bottom) are
rendered using different sets of parameters and photographed nearly at the center position. (a) Reference, (b) No-calibration, (c) Calibration based on prior
work [15], (d) Calibration based on the proposed method. The quality improvement by the proposed calibration is clearly noticeable, particularly along edges
and in the objects with large binocular disparities. Two objective measures (PSNR in dB and SSIM index on a scale of 0 to 1) are given below each image.
Notice that more distortions happen without calibration, in comparison with Fig. 7, which is due to a larger amount of optical misalignment. However, when
calibrated using the proposed scheme, the resulting images have good visual quality nearly equal to those in Fig. 7.

a 3D display when the cover is closed. This kind of design
enables 2D/3D switching at little cost. But, on each flip, the
lenticular sheet is likely to move from where it was previously,
demanding a new instantaneous calibration. We can use the
built-in camera of the tablet PC, together with a mirror, for
the calibration, as conceptually depicted in Fig. 8(b). Except
that the captured images need to be flipped horizontally,
the calibration procedure remains the same. Fig. 9 shows
four example images rendered with the calibrated display
parameters. The image distortion has remarkably decreased

in comparison with two other schemes: (i) no-calibration, (ii)
calibration based on prior work [15]. Fig. 10 shows example
images photographed at multiple view points to verify the
motion parallax along the horizontal direction. We see that,
in the figure, the recognizability of the motion parallax is also
enhanced quite much by fixing the rendering parameters.

VI. CONCLUSION

Despite the recent advancement, 3D displays have faced
several issues to solve, regarding the visual quality, for active
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(a) (b) (c) (d)

Fig. 10. Example images observed at four different view points. The image Train is rendered using different sets of parameters. (a) Reference, (b) No-
calibration, (c) Calibration based on prior work [15], (d) Calibration based on the proposed method. The motion parallax is clearly observed in (d). The train,
buildings, and mountains move by different amounts and/or in different directions as the view point changes.

(a) (b)

Fig. 8. Mobile 3D display calibration using on-board camera. (a) 3D display
implemented on a tablet PC. (b) Calibration using the on-board camera and a
mirror. The tablet has a detachable lenticular cover for 2D/3D switching. With
the cover closed, the tablet behaves like a 3D display. The calibration can be
performed with the on-board camera. A pattern image is displayed on the
panel, and then a couple of images reflected by the mirror are captured with
the camera. Each time, the mirror must be at different positions. Except that
the images need to be flipped horizontally, the calibration procedure remains
the same.

proliferation. Some of them are fundamental, unavoidable even
if the display behaves without error (e.g., resolution reduction,
light leakage). But others are not, while being as important
issues. In this paper, we dealt with one such matter – correcting
image distortions caused by optical misalignment.

First, we established an observation model when the ob-
server looks at images through the optical elements of the 3D
display. We also considered what the observation would be
like if misalignment happens. Then, we proposed a 3D display
calibration which decodes the correct display parameters from

the observation. Given two photos of a pattern image displayed
on the 3D panel, each taken at different positions, the analysis
is conducted in frequency domain. All procedures are fully
automated and the computation time spent on estimating all
display parameters (i.e., pitch, slanted angle, gap, and offset) is
less than two seconds. The efficiency of the proposed method
makes it applicable on-the-fly whenever it is necessary. In a set
of experiments with synthetic dataset, the proposed calibration
method showed quite high accuracy, with the estimation error
0.0031 ◦ for slanted angle, 0.02µm for pitch, 74µm for offset,
13µm for gap on average, a half order of magnitude higher
than prior work. With real-life displays, the proposed method
has also demonstrated a significant improvement of visual
quality of the observed images.
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