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Low-complexity Multidimensional DCT Approximations

V. A. Coutinho* R. J. Cintra† F. M. Bayer‡

Abstract

In this paper, we introduce low-complexity multidimensional discrete cosine transform (DCT) approxi-

mations. Three dimensional DCT (3D DCT) approximations are formalized in terms of high-order tensor

theory. The formulation is extended to higher dimensions with arbitrary lengths. Several multiplierless

8×8×8 approximate methods are proposed and the computational complexity is discussed for the general

multidimensional case. The proposed methods complexity cost was assessed, presenting considerably lower

arithmetic operations when compared with the exact 3D DCT. The proposed approximations were embedded

into 3D DCT-based video coding scheme and a modified quantization step was introduced. The simulation

results showed that the approximate 3D DCT coding methods offer almost identical output visual quality

when compared with exact 3D DCT scheme. The proposed 3D approximations were also employed as a tool

for visual tracking. The approximate 3D DCT-based proposed system performs similarly to the original exact

3D DCT-based method. In general, the suggested methods showed competitive performance at a considerably

lower computational cost.
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1 Introduction

The discrete cosine transform (DCT) is an important tool in several practical applications [5, 6]. For highly

correlated one-step Markov data, the DCT behaves as an approximation for the Karhunen-Loève trans-

form (KLT) [37], which is the optimum transformation for data decorrelation [22]. While the KLT kernel

is based on the input data statistical behavior, the DCT kernel is not, which facilitates the design of fast algo-

rithms that depend only on the transform length [13]. Consequently, the DCT is adopted in a multitude of data

compression applications [100], such as audio coding [99], still image compression [113], and video coding [12].

Depending on the nature of data, applications require the computation of the multidimensional DCT [18,

20, 32, 43, 54, 119]. Multidimensional DCT algorithms usually take advantage of the well-known DCT kernel

separability property [18, 54, 108, 110] and successively apply one dimensional DCT (1D DCT) algorithms for

higher dimensional computation [13,121]. Such technique is often referred as the row-column method [86]. In

the context of still image compression, e.g. JPEG encoding standard [113], the two-dimensional DCT (2D DCT)
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is applied as the block transformation [101]. In video coding standards, such as MPEG [62, 113], H.261 [63]

H.263 [64], H.264 [111], HEVC [65], the 2D DCT is considered for spatial decorrelation of each video frame.

In view of such range of applications, several fast algorithms for the 1D DCT have been proposed [27,

50, 61, 76, 84, 115]. Indeed, the theoretical minimum for the multiplicative complexity [58] was attained by

the Loeffler DCT algorithm [84]. Because exact DCT algorithm design is a mature field of research, it is

unlikely that new fast algorithms for the exact 1D DCT could furnish significant improvement in terms of

computational complexity. In such scenario, different techniques to further reduce the 1D DCT computational

cost were considered, such as the integer DCT [22, 29, 52, 59, 120], the binDCT techinque based on lifting

schemes [30, 83, 112], the DCT approximations [10, 14, 15, 17, 33, 34, 36, 57, 78, 85, 97], the pruned DCT algo-

rithms [75,88,116], as well as combined approaches [35,41,72,90]. In fact, the HEVC coding standard adopts

the integer 2D DCT as a key step for decorrelation [65,98]. In such scenario, 2D DCT approximations also have

been applied successfully, achieving competitive performance at a lower computational cost [35, 41, 97]. DCT

approximations are transformations that present low computational cost while preserving important DCT

properties, such as energy compaction and decorrelation capability. Unlike the exact DCT, approximations are

not subject to theoretical lower bounds of multiplicative complexity [58] and their design is an open field of

research. Several multiplierless DCT approximations have been proposed since the introduction of the pioneer

signed DCT (SDCT) [57]. State-of-the-art approximations include: the Lengwehasatit-Ortega DCT approxi-

mation (LODCT) [78], the Bouguezel-Ahmad-Swamy (BAS) series [14–17], the rounded DCT (RDCT) [34], the

modified rounded DCT (MRDCT) [10], and the improved approximate DCT (IADCT) in [97].

Despite of its wide usage in video compression standards, the 2D DCT does not take into account the cor-

relation between successive video frames. In general, video standards address temporal correlation by means

of motion estimation algorithms [74], which present high computational costs [24]. An alternative to avoid

such complex methods is the interframe coding approach, which applies block transformation to three dimen-

sional arrays [92, 95, 105]. Consequently, three dimensional transformations emerge as the tool of choice.

Three dimensional DCT (3D DCT) based coding exploits both temporal and spatial correlation of pixels, since

energy compaction property is extended to temporal dimension. In [19, 20, 24, 25, 73, 77, 91, 106–108], video

compression schemes that divides successive frames into “cubes” of pixels and applied them to 3D DCT are

proposed. Chan and Lee proposed a method to generate quantization “volume” for 3D DCT coefficients [24],

instead of using usual quantization matrix [12]. Recently, the “SoftCast” architecture for wireless multicast

video transmission was proposed [67–69]. Such method applies the 3D DCT, avoiding motion compensation

and differential encoding. In [82], the 3D DCT spatiotemporal decorrelation properties are exploited for a

novel no-reference video quality assessment method. The 3D DCT is also considered as feature for liver image

segmentation [43], visual tracking [81] and motion analysis [20]. Furthermore, real-time ultrasonic medi-

cal and industrial applications require computationally efficient three dimensional data compression [48,56].

DCT-based designs are an alternative for hardware architectures in such context [23, 31, 96]. In [18], a 3D

vector-radix decimation-in-frequency (3D VR DIF) algorithm which compute the 3D DCT directly is proposed,

presenting fewer multiplications operations than the row-column method. In [66], an integer 3D DCT FPGA

implementation for video compression is proposed. Furthermore, higher dimensional DCT, e.g. the four di-

mensional DCT (4D DCT), have found practical applicability [42] in several contexts such as light-field ren-

dering [79,87], lumigraph [55,123], and video coding [8,104,118]. Fast algorithms for multidimensional DCT

were proposed in [28,42,122].
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Despite such wide range of applications, the design of 3D DCT approximations considered as low-

complexity tools represent an unexplored field of research. The integer 3D DCT approximation proposed

in [66] still requires a large amount of arithmetic operations, including multiplication operations. Moreover,

to the best of our knowledge, 3D DCT approximations still lacks a formal mathematical treatment.

The present work addresses the derivation of multiplierless 3D DCT approximations. High-order tensor

theory [45,46] is applied to algebraically formulate the approximate 3D DCT computation. The concept is ex-

tended to the multidimensional case. To demonstrate the effectiveness of the sought 3D DCT approximations,

we aim at applying them to two major contexts: (i) interframe video coding [19,20,24,25,73,77,91,92,106–108]

and (ii) visual tracking [81, 103, 109]. In these two distinct real-world problems, we provide quantitative evi-

dence of the appropriateness of our approach.

The paper is organized as follows. In Section 2, the fundamental mathematical background is presented

and high-order tensor theory is reviewed. In Section 3, multidimensional DCT approximations are addressed.

The approximate computation for the 3D and muldimensional DCT is formalized in Section 3.1. The complex-

ity assessment is discussed in Section 3.2. A trade-off analysis is presented in Section 3.3. Section 4 covers

interframe video coding by means of 3D DCT approximations. A method to modify the quantization step in

3D DCT based video coding is also proposed. To further validate the proposed approximations, in Section 5,

we assess a 3D DCT approximation as a tool for visual tracking. Conclusions are summarized in Section 6.

2 Mathematical Background

In this section, we review the necessary mathematical concepts related to the DCT and tensor theory.

2.1 1D and 2D DCT

The 1D DCT maps an N-point discrete signal x =
[

x[0] x[1] · · · x[N −1]
]⊤

into the N-point signal X =
[

X [0] X [1] · · · X [N −1]
]⊤

, given by the following relation [5]:

X [k],αN [k] ·
N−1
∑

n=0

x[n] ·cos

(

π(2n+1)k

2N

)

,

k = 0,1, . . . ,N −1,

(1)

where

αN [k],

√

1

N
·







1, if k = 0,
p

2, otherwise.
(2)
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Let A be a 2D signal of size N1 ×N2, whose entries are given by a[n1,n2], for ni = 1,2, . . . ,Ni −1, and i = 1,2.

The entries of the 2D transform-domain signal B are computed according to the following expression [32]:

b[k1,k2],αN1
[k1] ·αN2

[k2] ·
N1−1
∑

n1=0

N2−1
∑

n2=0

a[n1,n2]

·cos

(

π(2n1 +1)k1

2N1

)

·cos

(

π(2n2 +1)k2

2N2

)

,

ki = 1,2, . . . ,Ni −1, i = 1,2.

(3)

Both the 1D DCT and the 2D DCT can be expressed by means of matrix products. For the 1D case, we

have:

X=CN ·x, (4)

where CN is the DCT matrix whose entries are expressed by:

cN [k,n] =αN [k] ·cos

(

π(2n+1)k

2N

)

,

k,n= 0,1, . . . ,N −1.

(5)

For the 2D case, the input 2D signal can be understood as a matrix A of size N1 ×N2 and its associate trans-

formed signal is furnished by:

B=CN1
·A ·C⊤

N2
. (6)

2.2 3D DCT and High-order Tensor

The 3D DCT of a discrete signal T with entries t[n1,n2,n3], ni = 0,1, . . . ,Ni −1, for i = 1,2,3, is given by the

signal Y , whose entries are given by [18,81]:

y[k1,k2,k3],αN1
[k1] ·αN2

[k2] ·αN3
[k3]

·
N1−1
∑

n1=0

N2−1
∑

n2=0

N3−1
∑

n3=0

t[n1,n2,n3]

·cos

(

π(2n1 +1)k1

2N1

)

·cos

(

π(2n2 +1)k2

2N2

)

·cos

(

π(2n3 +1)k3

2N3

)

,

ki = 1,2, . . . ,Ni −1, i = 1,2,3.

(7)

Vectors and matrices can be modelled as first- and second-order tensors, respectively [46]. Analogously, a

3D signal can be understood as a third-order tensor [45,81,94]. A third-order tensor is simply an array that re-

quires three indices. Let A ∈ F
N1×N2×···×NR be an Rth-order tensor whose entries are given by a[n1,n2, . . . ,nR ],

where F can be either the set of the real or complex numbers and ni = 0,1, . . . ,Ni −1, for i = 1,2, . . . ,R. The

i-mode product of the tensor A by a matrix M ∈ F
H×Ni [11, p. xxxv], denoted by A ×i M, is defined as a tensor
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B ∈ F
N1×N2×···×Ni−1×H×Ni+1×···×NR , whose entries are expressed by:

b[n1, . . . ,ni−1,h,ni+1 , . . . ,nR ],
Ni−1
∑

ni=0

a[n1, . . . ,ni , . . . ,nR ]

·m[h,ni ],

(8)

where m[h,ni ] are the entries of M and h= 0,1, . . . ,H−1.

The i-mode product formalism provided by (8) generalizes vector and matrix products. In fact, considering

a column-vector (first-order tensor) v ∈ F
N1 and matrices (second-order tensor) A ∈ F

N1×N2 , M1 ∈ F
L×N1 , and

M2 ∈ F
H×N2 , the following expressions hold:

v×1 M1 =M1 ·v, (9)

A×1 M1 =M1 ·A, (10)

A×2 M2 =A ·M⊤
2 . (11)

Furthermore, the i-mode product presents the following properties [46,81]:

(T ×i M)× j N=
(

T × j N
)

×i M

=T ×i M× j N, i 6= j.
(12)

Taking into account two matrices M ∈ F
Ni×L and G ∈ F

L×Ni , and an Rth-order tensor T ∈
F

N1×N2×···×Ni×···×NR , it can be shown that [46]:

T ×i (M ·G)=T ×i G×i M. (13)

In particular, we have that:

T ×i INi
=T , (14)

where INi
is the identity matrix of order Ni .

In view of the above, the 3D DCT can be expressed according to the i-mode products of order tensors by

the DCT matrix. For the 1D DCT case, (4) becomes X = x×1 CN . Likewise, the 2D DCT in (6) is given by:

B =A×1 CN1
×2 CN2

. Accordingly, let T ∈ F
N1×N2×N3 be the input discrete signal as a third-order tensor. The

3D DCT is the third-order tensor given by [81]:

Y =T ×1 CN1
×2 CN2

×3 CN3
. (15)

2.3 DCT Approximations

The main goal of the DCT approximations is to achieve similar mathematical properties relative to the DCT at

a significantly lower computational cost. In general, an N-point DCT approximation ĈN is given by the product

of a low-complexity matrix TN and a diagonal matrix SN . Orthogonality or quasi-orthogonality properties are

ensured by SN =
√

[

diag
(

TN ·T⊤
N

)]−1
, where diag(·) extracts the diagonal elements of its matrix arguments

5



returning a diagonal matrix [36]. Thus, ĈN =SN ·TN [10,14,15,17,34,57,78,97].

Considering the one dimensional case, an N-point input vector x is transformed into the N-point output

vector X given by the following expression:

X= ĈN ·x

=SN ·TN ·x,
(16)

where all matrices are square of order N. The inverse transformation is computed according to x = Ĉ−1
N

·X,

where the inverse matrix is given by [36]:

Ĉ−1
N =







T⊤
N
·SN , if ĈN is orthogonal,

T−1
N

·S−1
N

, otherwise.
(17)

For 2D DCT approximations, an N ×N input matrix A is submitted to the following transformation:

B= ĈN ·A · Ĉ⊤
N

=SN ·TN ·A ·T⊤
N ·S⊤

N

=
(

sN ·s⊤N
)

⊙
(

TN ·A ·T⊤
N

)

,

(18)

where sN is an N-point column vector containing the diagonal elements of matrix SN , B is the N×N transform-

domain data, and ⊙ denotes the Hadamard product [60]. The term (sN ·s⊤
N

) is a matrix populated with mul-

tiplicative entries; whereas the operation (TN ·A ·T⊤
N

) is often multiplierless or of very low computational

cost.

In some contexts, the term (sN · s⊤
N

) can be merged into a subsequent operation block. For instance, in

image/video coding, the quantization step can fully absorb the complexity of (sN · s⊤
N

) [22]. In this case, the

term (sN ·s⊤
N

) does not introduce any extra arithmetic operation [10,14,15,17,34,36,57,78,97]. Table 1 presents

several examples of matrices TN and SN available in literature for the popular blocklength N = 8.

3 Multidimensional Approximate DCT

Although widely examined as a tool for image/video compression [10, 14, 15, 17, 33, 34, 36, 57, 78, 97], DCT ap-

proximations lack a formal mathematical definition for general multidimensional case. In the present section,

we focus on deriving algebraic expressions based on the above-mentioned tensor analysis. As a consequence,

we propose approximate 3D methods based on state-of-the-art 1D DCT approximations. We also evaluate the

arithmetic complexity of the general multidimensional DCT approximation with emphasis on the 3D case.

3.1 Mathematical Definition

We aim at approximating the multidimensional DCT based on the vector bases of 1D DCT approximations [10,

14,15,17,34,57,78,97]. Such associate basis vectors often lack closed-form expressions, being generally derived

from numerical computation and/or brute-force search [36]. Therefore, in general, simple analytic expressions

similar to (1), (3), and (7) are not available. However, we can derive multidimensional DCT approximations

6



Table 1: Several approximate 1D DCT methods for N = 8

Method T8 S8

SDCT [57]











1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 −1 1 1 1 −1
1 −1 −1 1 1 −1 −1 1
1 −1 1 1 −1 −1 1 −1
1 −1 1 −1 −1 1 −1 1
1 −1 1 −1 1 −1 1 −1











diag
(

1p
8

, 1p
8
, 1p

8
, 1p

8
, 1p

8
, 1p

8
, 1p

8
, 1p

8

)

.

LODCT [78]













1 1 1 1 1 1 1 1
1 1 1 0 0 −1 −1 −1
1 1

2
− 1

2
−1 −1 − 1

2
1
2

1

1 0 −1 −1 1 1 0 −1
1 −1 −1 1 1 −1 −1 1
1 −1 0 1 −1 0 1 −1
1
2 −1 1 − 1

2 − 1
2 1 −1 1

2
0 −1 1 −1 1 −1 1 0













diag
(

1p
8

, 1p
6
, 1p

5
, 1p

6
, 1p

8
, 1p

6
, 1p

5
, 1p

6

)

RDCT [34]











1 1 1 1 1 1 1 1
1 1 1 0 0 −1 −1 −1
1 0 0 −1 −1 0 0 1
1 0 −1 −1 1 1 0 −1
1 −1 −1 1 1 −1 −1 1
1 −1 0 1 −1 0 1 −1
0 −1 1 0 0 1 −1 0
0 −1 1 −1 1 −1 1 0











diag
(

1p
8

, 1p
6

, 1
2

, 1p
6
, 1p

8
, 1p

6
, 1

2
, 1p

6

)

MRDCT [10]











1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 −1
1 0 0 −1 −1 0 0 1
0 0 −1 0 0 1 0 0
1 −1 −1 1 1 −1 −1 1
0 −1 0 0 0 0 1 0
0 −1 1 0 0 1 −1 0
0 0 0 −1 1 0 0 0











diag
(

1p
8

, 1p
2

, 1
2

, 1p
2
, 1p

8
, 1p

2
, 1

2
, 1p

2

)

BAS-2008 [14]













1 1 1 1 1 1 1 1
1 1 0 0 0 0 −1 −1
1 1

2
− 1

2
−1 −1 − 1

2
1
2

1

0 0 −1 0 0 1 0 0
1 −1 −1 1 1 −1 −1 1
1 −1 0 0 0 0 1 −1
1
2 −1 1 − 1

2 − 1
2 1 −1 1

2
0 0 0 −1 1 0 0 0













diag
(

1p
8

, 1
2
, 1p

5
, 1p

2
, 1p

8
, 1

2
, 1p

5
, 1p

2

)

BAS-2009 [15]











1 1 1 1 1 1 1 1
1 1 0 0 0 0 −1 −1
1 1 −1 −1 −1 −1 1 1
0 0 −1 0 0 1 0 0
1 −1 −1 1 1 −1 −1 1
1 −1 0 0 0 0 1 −1
1 −1 1 −1 −1 1 −1 1
0 0 0 −1 1 0 0 0











diag
(

1p
8

, 1
2
, 1p

8
, 1p

2
, 1p

8
, 1

2
, 1p

8
, 1p

2

)

BAS-2013 [17]











1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 −1 −1 1 1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 −1 −1 1 −1 1 1 −1
1 −1 1 −1 −1 1 −1 1
1 −1 1 −1 1 −1 1 −1











diag
(

1p
8

, 1p
8
, 1p

8
, 1p

8
, 1p

8
, 1p

8
, 1p

8
, 1p

8

)

IADCT [97]











1 1 1 1 1 1 1 1
0 1 0 0 0 0 −1 0
1 0 0 −1 −1 0 0 1
1 0 0 0 0 0 0 −1
1 −1 −1 1 1 −1 −1 1
0 0 0 1 −1 0 0 0
0 −1 1 0 0 1 −1 0
0 0 1 0 0 −1 0 0











diag
(

1p
8

, 1p
2

, 1
2

, 1p
2
, 1p

8
, 1p

2
, 1

2
, 1p

2

)

7



by means of the high-order tensor formalism. We first focus on the three dimensional case. Let T ∈ F
N×N×N

be a third-order tensor representing a given input discrete signal. The associate transform-domain output

third-order tensor Y ∈ F
N×N×N is given by:

Y ,T ×1 ĈN ×2 ĈN ×3 ĈN

=T ×1 (SN ·TN )×2 (SN ·TN )×3 (SN ·TN).
(19)

From the properties expressed in (12) and (13), we can recast (19) according to:

Y =T ×1 TN ×2 TN ×3 TN ×1 SN ×2 SN ×3 SN . (20)

Therefore, the 3D approximate DCT can be computed by first computing the i-mode products by the low

complexity matrices TN . The operations involving the diagonal matrix SN can be efficiently combined and

computed separately.

The inverse transformation is related to the inverse approximate DCT matrix given in (17). Considering

expressions (12), (13), (14), and (19), the inverse 3D DCT approximation is given by:

T =Y ×1 Ĉ−1
N ×2 Ĉ−1

N ×3 Ĉ−1
N . (21)

We can extend the above expressions to the multidimensional case to derive R-dimensional DCT approx-

imations of size N1 × N2 × ·· · × NR . Let
{

ĈNi

}R

i=1 be a collection of Ni-point DCT approximations matrices,

where ĈNi
= SNi

·TNi
for i = 1,2, . . . ,R, as described in Section 2.3. Let T ∈ F

N1×N2×···×NR be an Rth-order

tensor representing an input data array. The approximate transform-domain output data is defined by:

Y ,T ×1 ĈN1
×2 ĈN2

×3 · · ·×R ĈNR

=T ×1 (SN1
·TN1

)×2 (SN2
·TN2

)×3 · · ·

×R (SNR
·TNR

)

=T ×1 TN1
×2 TN2

×3 · · · ×R TNR

×1 SN1
×2 SN2

×3 · · ·×R SNR
.

(22)

Notice that there can be different 1D DCT approximations for a fixed blocklength. Thus, if Ni = N j , for

i 6= j, the approximations for the ith and jth dimension may not necessarily be the same—although their

blocklengths are the same. However, selecting identical approximations for the identical blocklength seems to

be a natural choice.

The inverse multidimensional transformation is computed according to the following expression:

Y =T ×1 Ĉ−1
N1

×2 Ĉ−1
N2

×3 · · · ×R Ĉ−1
NR

, (23)

where Ĉ−1
Ni

is derived from (17).
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Table 2: Coding efficiency and computational complexity assessment

Efficiency 1D Complexity 3D Complexity

Method Cg (dB) η (%) Mult. Add. Shift Mult. Add. Shift

DCT (by definition) [5] 8.83 93.99 64 56 0 12288 10752 0

Loeffler DCT algorithm [27] 8.83 93.99 11 29 0 2112 5568 0

Chen DCT algorithm [27] 8.83 93.99 16 26 0 3072 4992 0

3D VR DIF algorithm [18] 8.83 93.99 – – – 1344 5568 0

SDCT [57] 6.03 82.62 0 24 0 0 4608 0

LODCT [78] 8.39 88.70 0 24 2 0 4608 384

RDCT [34] 8.18 87.43 0 22 0 0 4224 0

MRDCT [10] 7.33 80.90 0 14 0 0 2688 0

BAS-2008 [14] 8.12 86.86 0 18 2 0 3456 384

BAS-2009 [15] 7.91 85.38 0 18 0 0 3456 0

BAS-2013 [17,72] 7.95 85.31 0 24 0 0 4608 0

IADCT [97] 7.33 80.90 0 14 0 0 2688 0

3.2 Complexity Assessment

Due to the kernel separability property [71], the exact and approximate multidimensional DCT can be com-

puted by successive instantiations of the 1D DCT [18,78,108]. Consequently, a fast algorithm for the approxi-

mate 1D DCT can be applied for higher dimensions. In (22), R different i-mode products are employed. Thus,

applying (8) to (22) for a specific dimension i, we obtain an expansion with N1 · N2 · · ·Ni−1 · Ni+1 · · ·NR free

indices and i-mode products. The same reasoning can be applied to the remaining dimensions.

Let A1D

(

ĈNi

)

be the arithmetic complexity of ĈNi
. Such complexity encompasses multiplicative, additive,

and bit-shifting costs, which depends on the considered fast algorithm. Then, the arithmetic complexity for

the R-dimensional case is generally given by:

ARD

(

ĈN1
,ĈN2

, . . . ,ĈNR

)

=
R
∑

i=1

Ω
(i)
R

·A1D

(

ĈNi

)

, (24)

where

Ω
(i)
R
,



















1, if R = 1,

R
∏

j=1
j 6=i

N j , otherwise.
(25)

For the 1D case, the right-hand side of (24) becomes A1D

(

ĈN1

)

. If (i) N1 = N2 = ·· · = NR , N, R ≥ 2, and

(ii) the same approximate matrix ĈN is considered in all dimensions, then the arithmetic complexity is given

by:

ARD

(

ĈN

)

= R ·NR−1 ·A1D

(

ĈN

)

. (26)

Although our approach is general and suitable for any blocklength, we focus our attention in N = 8. Indeed,

this particular blocklength is relevant in a significant number of practical contexts [62, 65, 75, 99, 113]. Thus
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we can benefit of state-of-the-art methods.

Table 2 shows the computational costs for R = 3 for several proposed 3D DCT approximations. Transfor-

mations were based on the discussed 1D DCT approximations in Table 1 and computed according to (20). All

approximate methods present null multiplicative complexity. For reference, we also included the computa-

tional cost of the exact DCT evaluated according to (i) its definition, (ii) to the Loeffler DCT algorithm [84],

and (iii) to the Chen DCT algorithm [27]. The Loeffler DCT algorithm achieves the theoretical minimum mul-

tiplicative complexity for 1D case [58] and the Chen DCT algorithm is employed in the HEVC standard [65].

We also included the costs of the 3D VR DIF algorithm [18], which computes the exact 3D DCT directly with-

out the row-column approach and requires less multiplications operations than the Loeffler DCT algorithm

for 3D case. Table 2 also displays popular coding performance measures [22, p. 163]: (i) coding gain Cg; and

(ii) transform efficiency η.

Table 3 shows the percent reductions in the coding performance measurements and computational com-

plexity for each 3D method when compared with the exact 3D DCT, considering the 3D VR DIF direct algo-

rithm. The total complexity reduction was obtained considering the sum of all arithmetic operations in Table 2.

The percent reductions in complexity offered by the proposed approximations exceeds the percent reductions

in performances. This fact suggests a favorable trade-off. The 3D MRDCT and 3D IADCT methods equally

present 61.1% and 51.7% reductions in total arithmetic cost and number of additions, respectively, when com-

pared with the 3D VR DIF algorithm. The 3D LODCT shows the smallest performance degradation: 4.9%

and 5.6% reductions in coding gain and transform efficiency reduction, respectively, at a total computational

saving of 27.8%.

3.3 Trade-off Analysis

The overall performance of a particular approximate 3D DCT in a specific contexts depends on a large number

of factors [21]. A variety of trade-off effects are present, being a very hard task to precisely quantify them [35,

75]. However, an initial trade-off analysis can be obtained by means of a combined figure of merit f that takes

into consideration computational complexity and coding performance, which are two major metrics in the

field [13, 22]. We propose the following convex combination as the figure of merit for assessing the discussed

3D DCT approximations:

f ,γ · (normalized computational complexity)

+ (1−γ) · (normalized performance),
(27)

where γ ∈ [0,1] is a weighting factor and the normalization is taken to ensure the variables are compara-

ble. Quantity γ adjusts the importance of each component—computational complexity and performance—

according to the given context. Such type of figure of merit is often found in optimization literature referred to

as ‘cost function’ [49].

For the computational complexity metric in (27), we adopt the arithmetic cost given by the weighted sum

of the multiplicative, additive, and bit-shift complexities. Let M, A, and S be the number of multiplications,

additions, and bit-shifting operations, respectively; and wm, wa, and ws their respective weighting costs. Then,

10



we define:

(arithmetic cost), wm ·M+wa · A+ws ·S

= wm ·
(

M+ wa

wm

· A+ ws

wm

·S
)

= wm ·
(

M+β · A+β′ ·S
)

,

(28)

where β= wa/wm and β′ = ws/wm. However, because bit-shifting operations require considerably lower energy

consumption and hardware resources when compared with additions or multiplications [13, 89, 97], we have

that wm ≫ ws; therefore we obtain β′ ≈ 0. Moreover, because (27) takes the normalized complexity (relative to

the largest measured value among all methods), the term wm has no practical effect. Hereafter, for simplicity,

we can consider wm = 1. Consequently, we obtain:

(arithmetic cost)≈ M+βA. (29)

Estimating the actual value for β is not an easy task, as discussed in [21, p. 395]. However, it is a well-known

fact that multiplying is a more complex operation than adding (wm > wa) both in hardware and software

implementations [13]. Thus, we have that β < 1. Moreover, computational systems tend to satisfy wa ≪ wm;

thus low values of β are expected in practice. In view of the above, we adopted β ∈ [0,1] in our analysis. In

its turn, for the performance metric in (27), we adopted the negative of the coding gain, so the figure of merit

decreases in value as the coding performance improves. Transform efficiency was not included because it is

correlated to coding gain.

We submitted all discussed 3D DCT approximations and the exact 3D DCT considering the VR DIF algo-

rithm to the proposed figure of merit for all values of γ and β. In Figure 1, we labeled regions according to the

particular 3D transformation that excels in that particular plot area (combinations of γ and β). Low values of γ

emphasize coding performance; thus—as expected—the exact 3D DCT tends to be the optimum choice. From

γ ≈ 0.2, approximations surpass the exact computation. For middle-low, middle-high, and high γ values, the

3D LODCT, the 3D BAS-2008, and the 3D MRDCT are the optimized methods, respectively. Analyzing the β-

axis, for low β values, which emphasizes the multiplicative over arithmetic complexity, the 3D LODCT tend to

outperform the competing approximations. By incrementing β, which amplifies the importance of the additive

complexity for the overall computational cost, the 3D BAS-2008 and the 3D MRDCT become more relevant;

occupying a larger area in the plot. Also, the area where the exact 3D DCT is the best method slightly grows

as β increases. The proposed approximate 3D methods occupy a vastly larger area of the plot; outperforming

the exact 3D DCT method in realistic scenarios.

4 Interframe Video Coding Based on 3D DCT Approximations

This section introduces low-complexity interframe video coding schemes [4, 73, 80, 92, 108] equipped with the

discussed 3D DCT approximations (cf. Table 1 and (20)). We embed the 3D DCT approximations into a three

dimensional block transform coding system based on 3D DCT [4, 73, 80, 92, 108]. We also propose a method

to modify a given 3D quantization volume in order to avoid extra computation of such 3D approximate trans-

forms. Then we submit a set of widely employed video sequences to the modified video coding system to

11
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Figure 1: Optimum 3D transformations for different cost function parameters.

Table 3: Coding efficiency and computational complexity percent reduction relative to the exact 3D DCT (con-

sidering 3D VR DIF direct algorithm)

Efficiency 3D Complexity

Method Cg η Mult. Add. Total

3D SDCT 31.7 % 12.1 % 100 % 17.2 % 33.3 %

3D LODCT 4.9 % 5.6 % 100 % 17.2 % 27.8 %

3D RDCT 7.3 % 7.0 % 100 % 24.1 % 38.9 %

3D MRDCT 16.9 % 13.9 % 100 % 51.7 % 61.1 %

3D BAS-2008 8.0 % 7.6 % 100 % 37.9 % 44.4 %

3D BAS-2009 10.4 % 9.2 % 100 % 37.9 % 50.0 %

3D BAS-2013 10.0 % 9.2 % 100 % 17.2 % 33.3 %

3D IADCT 16.9 % 13.9 % 100 % 51.7 % 61.1 %

evaluate output video quality relative to the original coding scheme.

4.1 Modified Quantization Procedure for Video Compression

In image compression schemes, the quantization step plays a fundamental role since it non-linearly re-scales

or discards transform-domain components according to (i) their respective importance to perceived visual

quality [12, p. 155] or (ii) data correlational properties [12, p. 156]. In 2D DCT coding, the quantization

procedure depends on quantization tables (or matrices) [12, 101] prescribed by adopted standards, such as

MPEG [62,113], H.261 [63] H.263 [64], H.264 [111], and HEVC [65].

As detailed in [22, 78, 83, 112], the diagonal matrix of the approximate DCT (cf. (16)) can be merged into

the quantization tables, eliminating the need for additional computation implied by the diagonal elements.

However, for the 3D DCT based coding, such tables are not adequate because they are 2D arrays in nature [19,

20, 24, 77]. Instead of a quantization table, a quantization volume is required. In [19, 24, 77], methods to

generate 3D quantization volumes are proposed. In this section, we aim at proposing a method for embedding

the diagonal matrices described in (20) into a given quantization volume.

Let Q ∈ F
N×N×N be a previously designed 3D quantization volume, whose entries are given by q[k1,k2,k3],

12



for k1,k2,k3 = 0,1, . . . ,N −1. The quantization step performs the following computation [24,77]:

ỹ[k1,k2,k3]= round

(

y[k1,k2,k3]

q[k1,k2,k3]

)

,

k1,k2,k3 = 0,1, . . . ,N −1,

(30)

where y[k1,k2,k3] are transform-domain coefficients according to (20) and ỹ[k1,k2,k3] are the transform-

domain quantized coefficients. The dequantization process is defined by ŷ[k1,k2,k3]= ỹ[k1,k2,k3]·q[k1,k2,k3],

where ŷ[k1,k2,k3] is an estimative of y[k1,k2,k3] [12].

Now, we split the computation of (20) into two steps: (i) the i-mode products involving the low-complexity

matrix T, given by:

A =T ×1 TN ×2 TN ×3 TN , (31)

and (ii) the i-mode products requiring the diagonal matrix SN . In the Appendix, we demonstrate the following

expression:

y[k1,k2,k3]= a[k1,k2,k3] ·dk1
·dk2

·dk3
, (32)

where a[k1,k2,k3] are tensor A entries given in (31) and dk is the kth diagonal element of SN . Applying (32)

into (30), we obtain:

ỹ[k1,k2,k3]= round

(

a[k1,k2,k3] ·dk1
·dk2

·dk3

q[k1,k2,k3]

)

,

k1,k2,k3 = 0,1, . . . ,N −1.

(33)

We propose a new quantization volume Q
∗ ∈ F

N×N×N , whose entries are computed by:

q∗[k1,k2,k3],
q[k1,k2,k3]

dk1
·dk2

·dk3

. (34)

Replacing (34) in (33), we obtain the modified quantization step as follows:

ỹ[k1,k2,k3]= round

(

a[k1,k2,k3]

q∗[k1,k2,k3]

)

,

k1,k2,k3 = 0,1, . . . ,N −1.

(35)

Notice that only the tensor A is required to be computed. It is employed as the input data to the modified

quantization step (35). Because the computation of A demands only the low-complexity transformation TN

(see (31)), the computational overhead imposed by diagonal matrix is eliminated. The modified dequantization

process can be obtained by a similar procedure and it is furnished by: ŷ[k1,k2,k3]= ỹ[k1,k2,k3] ·q⋆[k1,k2,k3],

where

q⋆[k1,k2,k3], q[k1,k2,k3] ·dk1
·dk2

·dk3
. (36)
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4.2 Video Compression Simulation

A video compression scheme based on [4, 73, 80, 92, 108] was considered. Nine standard CIF [51] YUV video

sequences available at [2] were chosen as third-order tensors of size N1 ×N2 ×N3. The CIF video sequences

present N1 = 352 and N2 = 288; and we selected 296 consecutive frames (N3 = 296). Each video tensor was

divided into 8×8×8 smaller tensors, which were applied to the 3D transformation defined in (20), and then

submitted to the quantization stage. The 1D DCT approximations shown in Table 1 were considered to derive

the 3D approximate methods. In addition, the exact 3D DCT was also included in the experiments for com-

parison. The quantization volume suggested in [77] was applied to the modified quantization procedure, as

described in Section 4.1. The procedure was simulated at quality factors Q ranging in Q ∈ [0.1,4.0] [12]. The

inverse procedure was applied to reconstruct the video sequence. The decoding process includes a modified

dequantization and calls to the inverse approximate 3D transformation.

To evaluate the data compression performance, we employed the peak signal to noise ratio (PSNR) [14]

and the structural similarity index (SSIM) [117] as figures of merit. The PSNR measure is related to the mean

squared error (MSE) according to:

PSNR, 10 · log10

(

2552

MSE

)

. (37)

Let t[n1,n2,n3] be the entries of original video tensor T and t̂[n1,n2,n3] be the entries of the recovered video

tensor T̂ . The MSE of the 3D data is computed by [24]:

MSE,
1

N1N2N3
·

N1−1
∑

n1=0

N2−1
∑

n2=0

N3−1
∑

n3=0

e2[n1,n2,n3], (38)

where e[n1,n2,n3] = t[n1,n2,n3]− t̂[n1,n2,n3]. Since SSIM is defined for still images [117], we computed the

SSIM between each original frame and its associate compressed frame. Then, the mean SSIM (MSSIM) taken

across frames was evaluated, resulting in a performance measure suitable for video sequences.

The average PSNR and average MSSIM for all considered video sequences are shown in Figure 2 at the

discussed range of Q values. The 3D DCT effected the highest video quality, whereas the 3D SDCT presented

a considerably lower performance when compared to competing approximations. Most approximate methods

performed similarly to the exact 3D DCT, specially at low compression rate (small values of Q).

In the following analysis, we exclude the 3D SDCT since competing approximations showed considerable

higher performance. Generally, the approximate methods presented less than 7% PSNR degradation relative

to the exact DCT. For example, for Q = 0.1, the 3D LODCT shows only 1.53% lower PSNR compared to the

exact DCT, whereas the 3D IADCT presents a 5.22% PSNR reduction. For Q = 4, such values are 2.01% and

6.36%, respectively. Figure 3 presents a qualitative comparison for the first frame of the “foreman” video

sequence for Q = 0.25. The frames are essentially indistinguishable. The complete compressed video sequence

is available in [39].

We assessed the impact of the motion level on the video encoding performance for each discussed methods

and for all considered video sequences. As the motion level measure, we adopted the average motion vec-

tors magnitude |m| [44]. The motion vectors were extracted from video frames employing the ARPS motion

estimation algorithm [9,93]. In Table 4, we show the motion level of each considered video sequence.

It is expected that the 3D DCT presents a performance decrease in higher motion level videos since high
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temporal variation leads to energy dispersion in higher 3D DCT coefficients [82]. However, other factors such

as the spatial texture of frames also impacts on the visual quality [44]. Since 3D DCT approximations also

aim at preserving the original 3D DCT properties, such behavior is expected to happen in similar fashion.

We show in Table 5 the performance of each 3D method at each video sequence, as well as the correlation

coefficient ρ between the performance metric and the motion level measure. Indeed, the correlation values

show an inverse tendency between performance and motion level, specially for the SSIM metrics, which better

captures the perceived visual quality when compared with the PSNR [117]. Furthermore, all approximate

methods present similar correlation values to the exact 3D DCT. Therefore, the proposed 3D methods are

suitable candidates for replacing the exact 3D DCT in video coding at different motion levels.

Table 4: Motion level of considered video sequences

Sequence index Sequence Motion level |m|
1 akyio 0.0387

2 container 0.0954

3 news 0.2561

4 silent 0.4877

5 mobile 0.748

6 mother-daughter 0.7594

7 hall-monitor 0.805

8 coastguard 1.7614

9 foreman 2.345

5 Visual Tracking

Visual tracking consists in predicting the location of a target over a frame sequence based on an initial tar-

get position. A large variety of tracking methods is available in literature [109]. Immediate applications

include: visual surveillance and security control [38, 70, 114], driver assistance and tracking vehicles [7, 38],

and wireless sensor visual networks (WSVN) [47,114]. The class of trackers discussed in [3,103,109] employs

principal component analysis (PCA) as appearance model [103, 109]. Mathematically, PCA is equivalent to

the KLT [53]. Inspired by PCA-based trackers and by the relation between the KLT and the DCT, Li et al.

proposed a discriminative learning-based visual tracking method based on the 3D DCT for low-dimensional

subspace representation [81]. Such algorithm leads to a computationally more efficient implementation when

compared to purely PCA-based techinques [81,103].

Low-complexity algorithms for visual tracking systems paves the way for real-time computationally de-

manding applications [7, 26, 124]. As extensively discussed in [10, 14, 15, 17, 22, 33–36, 41, 57, 59, 78, 83, 97,

102, 112], DCT approximations are emerging tools for DCT-based technologies at a low computational cost.

In this section, we embedded a 3D DCT approximation in a video tracking system. We modified the 3D DCT

block in [81] in order to compute a 3D DCT approximation, according to (20). The original algorithm in [81]

computes N1 × N2 × N3 incremental 3D DCT by using a fast Fourier transform (FFT) [5]. Quantities N1

and N2 were set fixed, whereas N3 varied incrementally until a maximum buffer size T. The method de-

mands N1N2

(

log2 N1 + log2 N2

)

+ N1N2N3 log2 N3 complex multiplications and twice such value of complex
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Table 5: Performance of proposed methods for each video sequence and correlation with motion level

Measure Method

Sequence index

correlation ρ
1 2 3 4 5 6 7 8 9

PSNR (dB)

3D DCT 39.12 35.87 36.33 34.93 26.42 37.74 35.68 30.22 31.69 -0.55

3D SDCT 34.31 31.41 31.31 30.74 21.05 33.27 32.16 25.77 27.08 -0.51

3D LODCT 38.27 35.21 35.59 34.42 25.86 37.07 35.24 29.79 31.18 -0.54

3D RDCT 37.80 34.83 35.06 34.06 25.11 36.66 34.95 29.36 30.82 -0.52

3D MRDCT 36.71 33.68 33.88 33.13 23.42 35.58 34.28 28.13 29.61 -0.51

3D BAS-2008 37.88 34.76 35.22 34.12 24.94 36.68 35.06 29.24 30.75 -0.53

3D BAS-2009 37.52 34.50 34.83 33.87 24.50 36.34 34.81 28.96 30.44 -0.52

3D BAS-2013 37.69 34.73 35.03 34.10 25.14 36.50 34.90 29.29 30.63 -0.54

3D IADCT 36.56 33.53 33.76 32.99 23.26 35.41 34.17 28.02 29.51 -0.50

SSIM

3D DCT 0.96 0.93 0.95 0.92 0.87 0.94 0.93 0.86 0.86 -0.84

3D SDCT 0.92 0.89 0.90 0.84 0.72 0.87 0.89 0.74 0.73 -0.78

3D LODCT 0.95 0.93 0.94 0.91 0.86 0.93 0.93 0.85 0.84 -0.84

3D RDCT 0.95 0.92 0.94 0.91 0.84 0.92 0.92 0.84 0.84 -0.82

3D MRDCT 0.94 0.91 0.93 0.89 0.79 0.91 0.92 0.80 0.80 -0.76

3D BAS-2008 0.95 0.92 0.94 0.91 0.84 0.93 0.93 0.83 0.84 -0.80

3D BAS-2009 0.95 0.92 0.94 0.91 0.83 0.92 0.92 0.82 0.83 -0.80

3D BAS-2013 0.95 0.92 0.94 0.91 0.84 0.92 0.92 0.83 0.83 -0.84

3D IADCT 0.94 0.91 0.93 0.89 0.78 0.91 0.92 0.79 0.80 -0.76

additions [13, 81]. We set N1 = N2 = T = 8 in order to achieve compatibility with the approximate methods

considered in the current work.

Among the DCT approximations shown in Table 1, we selected the MRDCT [10], which possesses the

lower additive complexity as shown in Table 2. The IADCT [97] presents the same computational cost, but

shows less favorable performance values in 3D video compression simulations. For the transient first frames,

where N3 < T, we employed a combined approximate/exact DCT algorithm using (22) with R = 3. We utilized

the MRDCT matrix for ĈN1
and ĈN2

and exact DCT matrix CN3
instead of ĈN3

until N3 reaches the final

value N3 = T = 8. Then, we computed the 3D MRDCT approximation as proposed in (19) and (20) for all the

remaining frames. In this case, the original tracker demands 1920 and 3840 complex multiplications and

complex additions, respectively, whereas the modified tracker requires only 2688 real additions, as shown in

Table 2. All remaining video tracking parameters were preserved for both original and modified methods.

It is worth mentioning that our main objective is to provide a proof-of-concept for the proposed methods;

suggesting low-complexity approximations as a feasible approach for video tracking computation. Conse-

quently, we selected a representative 3D DCT based video tracking system [81] for analysis. Figure 4 shows a

qualitative comparison for some representative frames of the “animal” video sequence, from data set available

in [1]. Both original and proposed trackers show very close performance. The full video sequence is available

in [40].

For a quantitative evaluation, the position-based measure (PBM) [109] was computed. This measure is

based on the distance of the tracked bounding box centroid relative to a previously defined ground truth

bounding box centroid. The employed ground truth data are provided in [1]. Let Tr and Gr be the tracked and
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ground truth bounding boxes, respectively, for the rth video frame. The PBM is given by [109]:

PBM(r)= 1− D(r)

Th(r)
, (39)

where Th(r) = [width(Tr) + height(Tr) + width(Gr) + height(Gr)]/2, and

D(r) =







∥ cent(Tr)−cent(Gr) ∥, if Gr ∩Tr 6=∅,

Th(r), otherwise;
(40)

and cent(·), width(·), and height(·) return the centroid, width, and height of the bounding box argument,

respectively. The PBM values are confined to the interval [0,1]. Value 0 represents a tracking failure and

value 1 indicates that the centroid of Tr and Gr are the same. Values close to 1 indicates good tracking

performance. Figure 5 shows the PBM for all frames of the “animal” video sequence. The proposed method

values tend to follow the original method curve, being sometimes even higher. In average, the proposed method

present only 1.6% lower PBM value at a much lower complexity cost, as shown in Table 2 and Table 3.

6 Conclusion

In the current work, an algebraic formulation for linear 3D DCT approximations was proposed in terms of

tensor analysis. Several multiplierless 3D DCT approximations were suggested based on state-of-art approx-

imate DCT matrices. The concept was generalized and multidimensional approximate DCT were formulated.

Mathematical expressions for the multidimensional complexity cost were derived. Such expressions were con-

sidered in the 3D case to assess the computational overhead of the proposed methods.

The approximations were applied for interframe video coding. In such context, we proposed a procedure to

modify the quantization volume in order to facilitate the use of low-complexity 3D DCT approximations. The

obtained results showed that 3D DCT approximations present competitive performance compared to exact

3D DCT algorithms at a considerably lower computational cost. We also simulated a video tracking sys-

tem, originally based on the exact 3D DCT, embedded with 3D DCT approximations. Results showed that

the modified low-cost method performed very closely to the original method. We conclude that 3D DCT ap-

proximations can be effective low-complexity tools for emerging hardware and energy limited 3D DCT-based

technologies, and also for current systems that benefit of 3D DCT computation, such as SoftCast broadcast-

ing system [67–69], 3D quantization-based video encoders [19,25,73,77,91,106,107], transform-based visual

trackers [81].

[Proof of Equation (32)]

Let us split (20) into two parts: (i) the i-mode products involving only low-complexity matrix TN and (ii) the

i-mode products requiring the diagonal matrix SN . Part (i) is given in (31). The next intermediate tensor is

B =A ×1 SN . (41)
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Let the diagonal matrix SN entries be:

s[k,n] ,







dk, if k = n,

0, otherwise,
n,k = 0,1, . . . ,N −1, (42)

where dk is the kth diagonal element of matrix SN . Taking into account (8), tensor B entries are given by:

b[k1,n2,n3]=
N−1
∑

n1=0

a[n1,n2,n3] · s[k1,n1]. (43)

Replacing (42) into (43), we derive:

b[k1,n2,n3]= a[k1,n2,n3] ·dk1
. (44)

Now the next intermediate tensor is given by:

C =B×2 SN . (45)

In a similar manner, C entries are furnished by:

c[k1,k2,n3]= b[k1,k2,n3] ·dk2

= a[k1,k2,n3] ·dk1
·dk2

.
(46)

Finally, the tensor Y given in (20) is also expressed by:

Y =C ×3 SN , (47)

whose entries are analogously obtained by:

y[k1,k2,k3]= c[k1,k2,k3] ·dk3

= a[k1,k2,k3] ·dk1
·dk2

·dk3
.

(48)
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Figure 2: Video compression performance measures.
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(a) Uncompressed

(b) 3D DCT (PSNR=37.8988, MSSIM

= 0.9456)

(c) 3D SDCT (PSNR=32.3627, MSSIM

= 0.8519)

(d) 3D LODCT (PSNR=37.2166,

MSSIM = 0.9393)

(e) 3D RDCT (PSNR=36.7865,

MSSIM = 0.9352)

(f) 3D MRDCT (PSNR=36.5764,

MSSIM = 0.9280 )

(g) BAS-2008 (PSNR=37.0146,

MSSIM = 0.9378)

(h) 3D BAS-2009 (PSNR=36.5367,

MSSIM = 0.9341)

(i) 3D BAS-2013 (PSNR=36.3304,

MSSIM = 0.9323)

(j) 3D IADCT (PSNR=35.2330,

MSSIM = 0.9135)

Figure 3: Qualitative assessment for the first frame of the “foreman” video sequence. The complete compressed

video sequence is available in [39].
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Figure 4: Qualitative tracking results for the “animal” video sequence for representative frames (first, 40th,

43rd, 56th, 57th, and 59th). The full video sequence is available in [40].
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