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Affine Non-local Means Image Denoising
Vadim Fedorov, and Coloma Ballester

Abstract—This work presents an extension of the Non-Local
Means denoising method, that effectively exploits the affine
invariant self-similarities present in images of real scenes. Our
method provides a better image denoising result by grounding
on the fact that in many occasions similar patches exist in the
image but have undergone a transformation. The proposal uses
an affine invariant patch similarity measure that performs an
appropriate patch comparison by automatically and intrinsically
adapting the size and shape of the patches. As a result, more
similar patches are found and appropriately used. We show that
this image denoising method achieves top-tier performance in
terms of PSNR, outperforming consistently the results of the
regular Non-Local Means, and that it provides state-of-the-art
qualitative results.

Index Terms—Image denoising, patch-based method, patch
similarity, affine invariance.

I. INTRODUCTION

THERE are many different ways of obtaining a digital
image of a real world scene: digital cameras, scanning

devices, etc. Unless an image is generated completely by a
computer, it is subject to the acquisition noise. Many different
kinds of denoising algorithms are widely used to suppress
this noise while preserving image details, textures and colors.
They are embedded in firmware of digital cameras and are also
applied in the very beginning of image and video processing
pipelines.

This work presents an extension of the Non-Local Means
framework that effectively exploits the affine invariant self-
similarities present in images of real scenes. Like the Non-
Local Means strategy, our method considers 2D patches (local
neighborhoods) and works by collecting the most similar
patches and averaging them weighted by their similarity. Be-
sides, our proposal grounds on the fact that in many occasions
similar patches exist in the image but have undergone a
transformation. Indeed, the geometry of the observed 3D scene
affects the appearance of local neighborhoods, for example
due to a different position with respect to the camera, and
also affects patch comparison. Our proposal uses an affine
invariant patch similarity measure that considers and esti-
mates the associated distortions from local texture content
and automatically adapts the size and shape of the patches to
perform the appropriate comparison. As a result, more similar
patches are found and used in the denoising of the image,
which provides better results. We demonstrate that our method
outperforms the Non-Local Means in terms of PSNR values
and also produces results that visually look as good as the
state-of-the-art results or, in some cases, even more pleasing.

The remainder of the paper is organized as follows. In
Section II we revise previous work on image denoising.
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Section III motivates our approach and reviews the required
definitions. We explain the proposed method in Section IV,
including the most important implementation details. Then
in Section V we briefly discuss the choice of parameters
of the method. In Section VI we present both quantitative
and qualitative assessments of the proposed method. Finally,
Section VII concludes the paper.

II. RELATED WORK

The problem of removing the noise of an image while
preserving its structure and characteristics like geometry,
texture or color has been extensively investigated over the
last decades. Some early works approach denoising by lo-
cal methods, for example, using anisotropic diffusion [27].
The total variation denoising model of [34] inspired many
variational formulations for image denoising. In [34] it was
applied for images corrupted by the Gaussian noise, and has
also been used for Riccian [24], salt-and-pepper [26] and
multiplicative noise [2]. Other operators have been proposed,
e.g., the total generalized variation [4] or non-local regu-
larizers as [15], [5]. Frequency domain methods have been
developed and extensively studied as well, e.g., windowed
discrete cosine transform (DCT) [38], [39], wavelet transform
based methods [10], [32], curvelets [35], etc. More recently
it was proposed [11], [23] to learn dictionaries for sparse
and redundant image representation from images themselves
instead of exploiting predefined ones (like wavelets or DCT).
These methods attempt to model the space of image patches.

Non-local or patch-based approaches are used in most of
the state-of-the-art methods for image denoising, restoration,
super-resolution, inpainting and object recognition [6], [28],
[33], [31], [14], [30], [17], [12]. Image denoising has gone
along with the advances in patch-based techniques. Non-Local
Means [6] exploits the notion of non-local self-similarity of
image patches and works by collecting and averaging the
most similar patches in the image. In the current work we
present an extension of this seminal approach that inspired
many denoising methods and has also led to the study and
development of non-local regularity priors [29], [1]. One of
the state-of-the-art denoising methods, the BM3D method [8],
combines spatial self-similarity with thresholding in the fre-
quency domain through the collaborative filtering of groups
of similar patches. The resembling method of [40] exploits
principal component analysis instead of DCT. Both methods
involve two almost identical steps: the first one provides the
basic estimate and the second one refines the final result using
the initial estimate as a guide. A Bayesian interpretation of
the method of [40], named Non-Local Bayes, was recently
proposed in [18]. Non-Local Bayes is a spatial-based method
that improves Non-Local Means by considering a Gaussian
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Fig. 1. From left to right: original Dice image, a zoom of a search window
with its central (reference) point shown in white, similarity values computed
between the central point and all other points using the similarity measure (2)
and square patches, and using the proposed affine invariant patch similarity
measure. White color encodes the highest similarity.

probability model for each set of similar patches. In many
denoising works it is assumed that the noise type and level
are known in advance. The Noise Clinic method [20] for blind
denoising goes beyond this assumption and combines a noise
model estimation with a multiscale modification of the Non-
Local Bayes method.

Let us finally note that rotationally invariant patch compar-
ison for image denoising was already studied in the past [41],
[16], [42]. Besides that, it was noticed that denoising with reg-
ular square patches may cause noise halos around contrasted
edges. To remove this kind of artifacts it was proposed in [9]
to replace square patches by several types of neighborhoods
with various shapes (discs, bands, half-discs, quarter-discs)
and to combine their estimations using Stein’s Unbiased Risk
Estimate [36]. Our similarity measure originates from a multi-
scale patch comparison theory [3], [13] and considers a richer
space of patches that includes all affine-transformed patches.
However, as we will state in the following Section, for each
pair of patches the transformations are uniquely determined
using the image content.

III. AN AFFINE INVARIANT SIMILARITY MEASURE

In this section we recall the definition of an affine invariant
patch similarity measure first given in [13]. We start by mo-
tivating the use of the proposed similarity measure for patch-
based denoising. Additionally, we propose a modification that
better adapts the similarity measure for denoising.

A. Motivation

Recent progress in image denoising is associated with
the concept of self-similarity which is pervasive for natural
images. In a broad sense, such methods as [6], [18], [8], [17]
work by combining neighborhoods of points or patches of a
noisy image that appear similar to each other and extracting
from them a common estimate of the original noiseless image.
The basic principle is that, by the variance law in probability
theory, the noise standard deviation of the average of samples
decreases. This approach is intuitively consistent, if one can
find many samples for every image detail. In order to find
patches which are most similar to a reference patch, many
denoising methods use a simple patch distance measure:

D(x, y) =
1

|P |
∑
i∈P

(u(x+ i)− v(y + i))2, (1)

where P denotes a neighborhood of the origin 0 ∈ R2 forming
a patch, and |P | denotes the area of P (in practice, the number
of pixels in P ). This can be rewritten in the continuous setting
as:

D(x, y) =
1

%

∫
R2

η(h)(u(x+ h)− v(y + h))2 dh, (2)

where η(h) is a characteristic function of the patch which
equals to 1 when h ∈ P and 0 otherwise. Sometimes η is a
weighted characteristic function such as a Gaussian. Anyhow,
% is the normalizing factor.

Usually, patches are set to be squares and no transformations
are allowed between two patches being compared. Since it
is numerically impractical to check the whole image, similar
patches are searched in a relatively small window around a
reference point. The usual size of the search window ranges
from 21 by 21 to 35 to 35 pixels. This allows one to reduce
the overall computational expenses, however, when the level
of noise increases, it is becoming less probable to encounter
enough similar patches. We claim that allowing for some
transformations between patches being compared can increase
the amount of similar patches within the search window and
thus improve the denoising result. Fig. 1 illustrates it with a
simple experiment on the classical Dice image. For a given
point and a search window around it we calculate similarity
between that point and all other points in the window using
both the similarity measure (2) and our proposal. As can be
seen, in our case much more points along the edge receive
high similarity values. This in turn leads to a better denoising
result, as shown in Section VI.

An appropriate similarity measure was recently proposed
in [13]. Like (2), it operates on intensities but now within
elliptical patches whose size and shape are not fixed a priori.
It is defined by taking into account the underlying local
geometrical content of the image, thus is related to the shape-
from-texture approach, and uses structure tensors to define
shapes of patches and to extract a local transformation between
any two of them. The proposed structure tensors are proved to
be affine covariant and the similarity measure in turn is affine
invariant.

B. Affine Covariant Structure Tensors

First of all we introduce the notion of affine covariant
structure tensors and explain how they can be used to define
shape-adaptive patches. Given a real-valued image u, we
consider an image-dependent tensor field Tu as a function
that associates a tensor (a symmetric, positive semi-definite
2× 2 matrix) to each point x in the image domain (which we
assume to be R2 to simplify). The tensor field is said to be
affine covariant if, for any affinity A,

TuA(x) = ATTu(Ax)A, (3)

where uA(x) := u(Ax) denotes the affinely transformed
version of u. Given a tensor Tu(x) we can associate to it
an elliptical region of “radius” r centered at x

Bu(x, r) = {y ∈ R2 : 〈Tu(x)(y − x), (y − x)〉 ≤ r2}. (4)
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Fig. 2. Affine covariant neighborhoods (patches) computed at corresponding
points in two images taken from different viewpoints. Despite the change in
appearance, patches capture the same visual information.

Fig. 3. An affine invariant patch comparison which is achieved by normalizing
the patches to discs and aligning them with suitable rotations.

When the tensor is affine covariant, we have that
ABuA(x, r) = Bu(Ax, r). This means that the tensors can
be used to define affine covariant regions which transform
appropriately via an affinity. We will refer to these regions as
shape-adaptive or elliptical patches to distinguish them from
the square patches of fixed size. Fig. 2 illustrates the patches
defined by the affine covariant tensors of [13], computed for
a set of corresponding points in two images related by a
homography. Note that even though the transformation is not
an affinity, the patches still match, since a homography can be
locally approximated by an affinity.

Affine covariant tensors at two corresponding locations
allow us to extract the affine distortion between corresponding
elliptical patches, up to a rotation, as shown in [13]. Indeed, for
any affine transformation A, there exists an orthogonal matrix
R such that

A = Tu(Ax)−
1
2RTuA(x)

1
2 . (5)

This last equation provides an intuitive geometric relationship
between the tensors, the associated elliptical patches and the
affinity. Consider a point x and the corresponding affine
covariant elliptical patch BuA(x). Mapping BuA(x) by the
affinity yields Bu(Ax). The application of A can be decom-
posed in three steps. First, applying TuA(x)

1
2 , we transform

BuA(x) into a disc or radius r. We refer to the resulting
patch as a normalized patch. Then, a rotation is applied to
the normalized patch. Finally, Tu(Ax)−

1
2 maps the rotated

normalized patch to the elliptical patch Bu(Ax).
To fully determine the affinity A, one needs to find the

rotation R. Any rotation would yield an affinity that maps the
elliptical patch associated to TuA at x to the one associated
to Tu at Ax. For a wrong value of the rotation, the image
content inside both patches will not match. Therefore, the
right value for the rotation can be computed by aligning the
image content of both patches. For this aim, we decompose the
rotation as R = Ru(Ax)R−1

uA(x), where Ru(Ax) and RuA(x)
are estimated from the image content inside the patches.
In practice, we calculate them by aligning the dominant
orientation of the normalized patches to the horizontal axis.

To compute the dominant orientation we use histograms of
gradient orientations as in the SIFT descriptors [22].

C. Computation of Affine Covariant Tensors

In this work, we use the particular dense field of affine co-
variant tensors and associated neighborhoods proposed in [13],
which are computed from the following iterative algorithm:

T (k)
u (x) =

∫
B

(k−1)
u (x,r)

Du(y)⊗Du(y) dy

Area(B
(k−1)
u (x, r))

, (6)

where u is the given image and B
(k)
u is the elliptical patch

related to T (k)
u , defined by

B(k)
u (x, r) = {y : 〈T (k)

u (x)(y − x), (y − x)〉 ≤ r2} (7)

for k ≥ 1, and

B(0)
u (x, r) = {y : |Du(x)T (y − x)| ≤ r} (8)

for k = 0. To simplify notation in the following, let us
denote by Tu(x) the affine covariant structure tensor T (k)

u (x)
for a fixed value of k (in our experiments k = 30, as
in [13]) and a fixed value of r (notice that r > 0 is a free
parameter). Similarly, we denote by Bu(x) the affine covariant
neighborhood B(k)

u (x, r).

D. An Affine Invariant Patch Similarity

We are interested in comparing patches of an image. Let us
generalize and consider the problem of comparing the patches
around two points x, y defined in images u and v, respectively.
We begin with an intuition behind the proposed similarity
measure. The patches are defined by the local metric given
by the tensors Tu(x) and Tv(y). In order to compare both
patches, equation (5) suggests the following mapping between
them:

C(x, y) = Tv(y)−
1
2Rv(y)R−1

u (x)Tu(x)
1
2 . (9)

We can interpret C(x, y) as an affinity, mapping the elliptical
patch associated to Tu(x) into the one associated to Tv(y).
If u in the vicinity of x is an affinely transformed version
of v in the vicinity of y, then C(x, y) recovers the true
affinity. Intuitively, an affine invariant patch similarity could
be computed as the distance between the elliptical patch at y
and the result of applying C(x, y) to the patch at x. In practice,
it is more suitable to transform both elliptical patches to discs
of radius r (as depicted in Fig. 3) and to compare the aligned
normalized patches:

Da(t, x, y) =∫
∆t

gt(h)
(
u(x+ T

− 1
2

u Ru(x)h)− v(y + T
− 1

2
v Rv(y)h)

)2

dh,

(10)

where ∆t denotes a disc centered at the origin with radius
proportional to t > 0 (the so-called scale) and big enough
such that the weighting function gt has effective support in
∆t. Da is a multiscale affine invariant patch distance which
intrinsically extends the set of available patches.
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Let us now review the origins of the similarity measure
corresponding to (10). It was derived in [13] as a compu-
tationally tractable approximation in the linear case of the
multiscale analyses of similarity measures introduced in [3].
There, the authors show that all scale spaces of similarity
measures D(t, x, y) satisfying a set of appropriate axioms are
solutions of a family of degenerate partial differential equa-
tions. Images are considered in those papers as Riemannian
manifolds endowed with a metric defined by a tensor field.
If this tensor field is affine covariant, the resulting similarity
measure is affine invariant. In this Riemannian framework,
the defined affine covariant tensors can be seen as a metric in
the image plane and C in (9) defines an isometry between
the tangent spaces in the two manifolds (R2, Tu(x)) and
(R2, Tv(y)). The authors refer to C as the a priori connection,
since it is related to the notion of connection appearing in
parallel transport (see [3] for details). WKB approximation
method, named after Wentzel, Kramers and Brillouin, was
used in [13] to obtain (10) as an approximate solution to
a linear partial differential equation with spatially varying
coefficients as a convolution with a short-time space-varying
kernel. Let us finally notice that gt in (10) can be either an
approximated geodesic weighting function or a Gaussian, and
represents a weighted characteristic function of both patches
being compared and determines the comparison scale.

E. Patch Size Constraint

In most of the patch-based methods square patches of a
fixed size are used. The size of the patches may change
depending on the noise level, however, it is always the same
within a single image. Commonly square patches are chosen
to be small, their size ranges from 3 by 3 to 7 by 7 pixels
(sometimes slightly bigger). Our method allows the patch
shapes to adapt to the local image content, thus the patches
may well have different sizes. We would like to preserve
this shape-adaptiveness and at the same time to be able to
limit the maximum patch size to capture only small pieces
of visual information. To some extent the r parameter in (4)
controls the size of a covariant elliptical patch, however, it
also depends on the image content itself (see Fig. 4, left
image). For the same value of r, elliptical patches are always
significantly bigger in homogeneous regions than in textured
regions or close to edges. As shown in Fig. 4, in the presence
of noise elliptical patches tend to shrink due to the additional
gradients associated with noise. This effect is accentuated
in homogeneous regions, therefore elliptical patches become
more uniform in size. On the other hand, as these additional
gradients have random magnitudes and directions, the shape
of patches does not change a lot. This phenomenon motivates
the way of placing an upper boundary constraint on the size
of elliptical patches.

We are interested in simulating additive Gaussian noise
in our tensor computation scheme (Eq. (6)-(8)). From this
perspective, additional noise can be seen as a multitude of
extra gradients with random directions and expected magni-
tude related to the variance of noise. We approximate it by

adding a small constant value to the diagonal elements and
define a new tensor to be

T̃u(x) = Tu(x) + βI, (11)

where β controls the amount of simulated noise and, therefore,
the maximum allowed size of the associated elliptical patches,
say it B̃u(x). To relate β with the size constraint, let the
reference point x be located in an infinitely wide region with
uniform color. Since all the gradients are equal to zero, the
term Tu(x) is equal to zero as well and the resulting tensor is
defined solely by β. If β = 0, an elliptical patch at x would
have infinite size. If β > 0, the patch becomes a disc. From (4),
its boundary is given by

∂B̃u(x) = {y : 〈βI(y − x), (y − x)〉 = r2}
= {y : β ‖y − x‖2 = r2}. (12)

Let Rmax be the radius of this disc. Then ‖y − x‖2 = R2
max

and

β =
r2

R2
max

. (13)

The relation (13) allows us to parametrize the patch size
constraint in terms of the maximum possible radius of a patch,
shall it appear in a completely homogeneous region. Fig. 5
shows the effect of applying the size constraint with different
values of Rmax. Note that for Rmax = 5, elliptical patches
are almost uniform in size and still follow the image content.

Of course, this term, added to the diagonal of the structure
tensors, breaks the affine covariant property of tensors. Most
strongly it affects invariance of the similarity measure to
scaling. This is easily verified mathematically and can be
illustrated with the following experimental example (Fig. 6).
Let two corresponding points be given on two images related
by an affinity (a scaling in this case). Two elliptical patches
calculated using the original scheme are shown in Fig. 6a
and 6b. They cover the same visual information. Elliptical
patches with the size constraint applied are shown in Fig. 6c
and 6d. The patch shown in Fig. 6c cannot grow enough
to take the edges into consideration. As a consequence, the
corresponding elliptical patches do not capture the same visual
information, moreover tensors do not recover the correct
local affinity. For some applications this breaking of affine
covariance is unacceptable, however, in the case of denoising
we do not expect to encounter severe scaling within a relatively
small search window.

The size constraint plays the most important role for the
cases of small levels of noise when it prevents elliptical
patches from growing too big in uniform regions. When there
is a clearly defined structure within a patch it is less affected
by the size constraint.

IV. NON-LOCAL MEANS DENOISING WITH AN AFFINE
INVARIANT SIMILARITY MEASURE

In this section we describe our extension of the well known
Non-Local Means denoising method.
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Fig. 4. Elliptical patches on images with different levels of noise. From left to right, standard deviation of noise: 0 (original noiseless image), 2, 5, 10, 15.

Fig. 5. Elliptical patches on the original noiseless image, calculated using different size constraints (different values of Rmax in (13)). From left to right,
Rmax: ∞ (β = 0, no size constraint), 20, 15, 10 and 5.

(a) (b) (c) (d)

Fig. 6. Effect of constraining the patch size. (a) and (c) show part of an image
in its original size, (b) and (d) show part of the same image scaled down by
2. (a) and (b) illustrate elliptical patches without any size constraints, (c) and
(d) illustrate elliptical patches with the size constraint Rmax = 25 applied.

A. Description of the Method

In this work we follow the strategy of the original Non-
Local Means scheme proposed in [6]. In particular, given a
noisy image we go through all of its points and, for every
point, we calculate patch distances between that reference
point x and other points y around it. As in the other works, we
limit this set of surrounding points to a square window of a
given size w, centered at the reference point x. Instead of the
very common patch distance measure (2) we use the recently
proposed measure (10). Consequently, instead of common
square patches, we consider elliptical patches given by the
affine covariant structure tensor at every point of an image.
Note that in the denoising problem, v in (10) coincides with u.

To be able to denoise color images we adapt the point-wise
square difference in (10) to operate on vector values:

Da(t, x, y) =∫
∆t

gt(h)
∥∥∥u(x+ T

− 1
2

u Ru(x)h)− u(y + T
− 1

2
u Ru(y)h)

∥∥∥2

dh,

(14)

where u denotes a color images in RGB color space and u is
a gray-scale image associated with it. Let us remark that we

use the gray-scale version u to calculate the structure tensor
field and the associated shape-adaptive patches.

In order to convert distances into similarities we use the
exponential function and define the similarity of the patches
centered at x and y as:

S(x, y) = e−
Da(t,x,y)

λ2 , (15)

where λ = bσ is a bandwidth that depends on the standard
deviation σ of the noise and is controlled by the parameter
b > 0 of the method. Note that the distance Da is already
squared.

To denoise an elliptical patch at the reference point x,
we average all the patches at surrounding points y using
their similarity values S(x, y) as weights. Note that in this
aggregation process elliptical patches have to be appropriately
transformed to match the patch at x being denoised. We cal-
culate this transformation from the structure tensors using (9).
The denoised patch is then given by a weighted average:

P̂u(x) =
1

%(x)

∑
y∈Ww(x)

S(x, y) · C(y, x)Pu(y),

%(x) =
∑

y∈Ww(x)

S(x, y), (16)

where Ww(x) denotes the search window of size w and
centered at x. C(y, x) denotes the a priori connection (9) that
transforms an elliptical patch at y to an elliptical patch at x.
That is, it first transforms an elliptical patch to a disc, then
rotates this disc and finally transforms it into another elliptical
patch. Of course, in the discrete setting, some kind of interpo-
lation of color values has to be done after this transformation.
For this we use the Nadaraya-Watson estimator [25], [37] with
Gaussian kernel.

Since denoised patches may overlap each other, every
pixel of the resulting image receives multiple color estimates.
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Fig. 7. Left to right: original images, and homogeneous regions, in white,
computed for noisy images with noise standard deviation 2, 10 and 30.

The estimates coming from a denoised patch are weighted
depending on their distance to the center of that patch. The
resulting color for a pixel is calculated as a weighted average
of all estimates. We use here the same anisotropic intra-
patch weights, given by the affine covariant tensors, as in
the similarity measure (10). In this way patch aggregation
complies with patch comparison.
Homogeneous region test. Our patch comparison by means
of the affine invariant similarity measure can be related
to the shape-from-texture techniques in the sense that the
shape of elliptical patches is defined by the underlying image
texture. Thus, in the absence of clear textural information
(in a homogeneous region), the shape of elliptical patches
becomes very dependant on the image noise. In the denoising
application it leads to a high frequency noise that is suppressed
but still remains in homogeneous regions. To reduce this
dependency, the parameters of the method can be adjusted to
allow for bigger patches, however, it usually leads to a blurry
reconstruction in textured regions. To avoid contradiction in
the choice of parameters for denoising homogeneous regions
and fine image details (for example, textures and standalone
edges) we treat them differently.

Motivated by [18], we first check whether a reference patch
can be considered as located in a homogeneous region. For
that we calculate the variance of all color values in a set of
L patches in Ww(x), most similar to the reference patch at
x. L is a parameter of the method. As commented in [18],
for homogeneous regions that color variance is expected to be
small and close to the noise variance. We check if it is less than
Hσ2, where σ is the noise variance and H is a thresholding
parameter of the method. Note that we use the same values
for both L and H in all our experiments (see Section V). If
the homogeneous region test is passed (i.e., the patch belongs
to a homogeneous region), the reference patch is denoised by
filling it with a single average color c(x), computed from the
similar patches. For every channel separately:

c(x) =
1

%(x)

∑
y∈PL(x)

∑
z∈Bu(y)

u(z),

%(x) =
∑

y∈PL(x)

∑
z∈Bu(y)

1, (17)

where PL(x) is a set of at most L centers of patches which
are most similar to a patch centered at x. If the homogeneous
region test is failed, the algorithm proceeds normally. Fig. 7
shows some examples, computed for noisy images with dif-
ferent levels of noise. The points satisfying the homogeneity

Fig. 8. Elliptical patch normalization. On the left an elliptical patch is shown
in blue. On the right a set of scattered points of that patch, being normalized
by Tu(x)

1
2 to a disc, is shown in blue over a regular grid which is shown in

red. In this case, the grid resolution (number of grid nodes along the diameter)
g = 11.

criterion are shown in white. With this trivial modification we
can avoid using the similarity measure in the case it was not
designed for.

B. Implementation Details

Patch comparison. In the proposed method elliptical affine
covariant patches are used instead of the square patches of a
fixed size. The scheme described in Section III-C allows one
to calculate at any given point x both the structure tensor and
the elliptical patch defined by it. As shown in Section III-B,
an elliptical patch can be normalized to a disc of radius r
using its corresponding tensor. Since in practice digital images
are discrete, after normalization any patch turns into a set of
scattered points (shown in blue in Fig. 8). In order to compare
one normalized patch with another, we interpolate these sets of
scattered points to a regular grid. For interpolation we use the
Nadaraya-Watson estimator [25], [37], with Gaussian kernel
which standard deviation σ̄ depends on the density of the
scattered points. More specifically, it depends on the radius
of a normalized patch (that is determined by the parameter r
of the method) and on the number of points within a patch
being normalized:

σ̄ =
r

|Bu(x)|
. (18)

Since a normalized patch is a disc, the resolution of the regular
grid can be specified by the number of grid nodes along its
diameter. This grid resolution g is a free parameter of the
method. The choice of g for different values of noise variance
is described in Section V.

As commented in Section III-B, a local affine transformation
can be estimated from two tensors, but only up to a rotation.
To compensate for the missing rotation we calculate dominant
orientations of the normalized patches after interpolating them
to the regular grid. For this we use histograms of gradient
orientations as in the SIFT descriptors [22]. Several dominant
orientations can be extracted from a single patch and every
one of them gives a possible additional rotation. Therefore,
every patch can be associated with multiple candidate trans-
formations Gi(x) = R−1

u,i(x)Tu(x)
1
2 , as many as there are

dominant orientations. According to our observations, most
commonly the number of dominant orientations does not
exceed two. Of course, patch normalization and interpolation
to the regular grid should be repeated for each of these
transformations. When calculating patch distance between two
patches, we compare every candidate normalization of the first
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C (y,x) 

a) b) c) d) e)

W

Fig. 9. Diagram illustrating the aggregation step of the proposed method:
a) normalization (W denotes the search window); b) interpolation; c) patch
denoising; d) color estimates aggregation; e) resulting denoised image.

with every candidate normalization of the second and keep the
configuration that gives the smallest distance.

Since the tensor field is associated with the input noisy
image, it can be precomputed in the very beginning. More-
over, the regular grid is constructed only once using a given
resolution g, therefore, all possible normalized versions for
every elliptical patch can also be computed in advance and
stored in memory, together with their corresponding candidate
transformations Gi(x). In this way, the calculation of the
proposed patch distance between two points boils down to
several squared array differences as in (1).
Patch aggregation. As commented above, to compare ellipti-
cal patches in a more efficient way, we normalize them to the
regular grid in the pre-processing step. In the aggregation step,
similar patches have to be transformed once again to match a
reference patch. For that we calculate the complete transfor-
mation C(y, x) using (9). Since halves of this transformation,
namely R−1

u (x)Tu(x)
1
2 and R−1

u (y)Tu(y)
1
2 , are computed in

advance and stored in memory in pair with their corresponding
normalizations, the C(y, x) computation costs only one matrix
inversion and one matrix multiplication.

After transforming a similar patch to its reference patch,
another interpolation is needed to aggregate color values
from that similar patch. For this we use the same Nadaraya-
Watson estimator as before, but for now the Gaussian standard
deviation of the kernel is specified by a free parameter i of
the method. This parameter allows us to control the sharpness
of the denoising result. The choice of its value, same for all
levels of noise, is discussed in Section V.

In the aggregation process, patches within the search win-
dow are weighted depending on their similarity (15) to the
reference patch. This suggests the weight value of 1 for the
reference patch itself. To avoid overweighting of the noise
from the reference patch we instead take the maximum weight
among the other patches in the search window.

For performance reason we use three pairs of buffers of
the same size as an input image during the aggregation (see
Fig. 9). In every pair, the first buffer accumulates color values
and the second buffer – total weights. Normalized values are
then obtained by element-wise division of the first buffer by
the second. The first pair of buffers is used to interpolate every
patch from within the search window after transforming it to
its corresponding reference patch. The second pair of buffers is
used to aggregate these transformed patches in order to denoise
their reference patch. And, finally, the third pair of buffers
aggregates color estimates for every pixel of the output image
from different denoised patches.

TABLE I
AVERAGE PSNR VALUES OBTAINED FOR A TEST SET OF COLOR IMAGES

WHILE VARYING THE r AND Rmax WITH ALL THE REST PARAMETERS
BEING FIXED. THE BEST CONFIGURATION IS IN BOLD

σ = 2 σ = 5
r 25 30 35 15 20 25

Rmax Rmax

2 45.00 45.02 45.01 2 39.52 39.60 39.65
3 44.85 44.85 44.83 3 39.68 39.69 39.67
4 44.75 44.74 44.72 4 39.67 39.66 39.61

σ = 10 σ = 20
r 20 25 30 40 45 50

Rmax Rmax

4 35.92 36.05 36.06 7 32.61 32.64 32.64
5 35.95 36.07 36.05 8 32.61 32.66 32.65
6 35.96 36.06 36.03 9 32.61 32.65 32.64

σ = 30 σ = 40
r 60 65 70 85 90 95

Rmax Rmax

12 30.65 30.69 30.69 18 29.26 29.28 29.27
13 30.67 30.71 30.68 19 29.28 29.31 29.29
14 30.66 30.69 30.69 20 29.29 29.28 29.28

TABLE II
PARAMETERS OF THE METHOD CHOSEN FOR DIFFERENT NOISE LEVELS σ

σ Rmax r w g
2 2 30 29 9
5 3 20 29 9

10 5 25 31 9
20 8 45 33 13
30 13 65 35 13
40 19 90 35 21

TABLE III
PARAMETERS OF THE METHOD THAT DO NOT DEPEND ON THE NOISE

LEVEL

t b i L H
1 0.35 0.35 30 0.35

V. PARAMETERS SELECTION

The proposed method depends on the following parameters.
Below, we explain the criteria to fix them.

• r – the “radius” used in the elliptical patch calculation (4)
(Section III-C).

• Rmax – the maximum size constraint for elliptical
patches. It is specified in terms of the radius of a patch,
shall it appear in a wide and completely homogeneous
region (Section III-E).

• t – the “scale” derived from the theoretical framework. It
controls the intra-patch Gaussian weights (Section III-D).

• w – the size of the search window around a reference
patch (Section IV-A).

• g – the resolution of the regular grid used for interpolation
during the patch distance calculation (Section IV-B).

• b – the bandwidth multiplier (Section IV-A).
• i – the interpolation coefficient used in the aggregation

step (Section IV-B).
• L – the number of most similar patches to be considered

in the homogeneous region test (Section IV-A).
• H – the decision threshold of the homogeneous region

test (Section IV-A).
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Fig. 10. Noiseless images used in the experiments: Alley, Computer, Dice,
Flowers, Girl, Traffic, Trees and Valldemossa.

Let us first remark how the scale is specified in (10) using
the t parameter. Instead of making the sigma of the Gaussian
weighting function gt(h) to be equal to t directly, with a slight
abuse of notation, we define it as σt = r

t . This allows us to
abstract from the r in the scale specification. Therefore, t can
be intuitively seen as the number of sigmas that would fit
inside a patch.

Since it would be impractical to test all possible combina-
tions of all the parameters, we split them into several groups
and adjust one group at a time. We measure performance of
the method on each configuration of parameters by the average
PSNR value, computed for the test set of eight color images
shown in Fig. 10.

The first group of parameters includes r, Rmax and t which
control the size of elliptical patches. Some of the PSNR values
obtained while varying the r and Rmax parameters are shown
in Table I as an example. Let us remark that only a few
values around the maximum are shown for every level of noise,
however, much wider ranges were actually tested.

The second group of parameters includes w and g which as
well should be picked for every noise level separately. The size
of the search window w should be bigger for higher levels of
noise to provide more patch candidates. The value of g should
roughly follow the value of Rmax to ensure enough resolution
of the regular grid to represent normalized patches. These
intuitions are confirmed while testing the ranges of values for
these two parameters.

The third group of parameters includes b and i. In contrast to
the original work of [6] we have not observed any significant
effect of varying the b parameter for different noise levels.
The value of i has no relations with the noise level, therefore
a single value, was picked for all the experiments.

The fourth group of parameters includes L and H which
are associated with the homogeneous region test. The same
values were picked for all levels of noise.

The values of parameters selected for different levels of
noise are summarized in Table II. The values of parameters
that do not depend on the noise level, and thus fixed for all
our experiments, are summarized in Table III.

VI. EXPERIMENTAL RESULTS AND ASSESSMENT

In this section we present assessment of the proposed
method and compare it with the original Non-local Means
method [6], and the state-of-the-art BM3D [8] and Non-local
Bayes [18] methods. In order to assess the performance of
the proposed method, we demonstrate the “method noise”

Fig. 11. “Method noise” benchmark for two noisy images (first row –
Computer, second row – Traffic) with added Gaussian white noise of standard
deviation σ = 5. From left to right: “method noise” for BM3D, Non-Local
Bayes, original Non-Local Means and for our method. For the visualization
purposes, the difference values were scaled from the range of [−4σ, 4σ] to
the range of [0, 255]. Consider observing this figure on screen and with zoom.

and the “noise to noise” benchmarks commonly used in the
literature. For a quantitative evaluation, we show the PSNR
values computed for multiple test images and different values
of the standard deviation of noise. Finally, we show some of
the denoised images for a qualitative assessment.

To obtain the results of Non-Local Means and Non-Local
Bayes we use public implementations made by the authors [7],
[21] and available online at http://www.ipol.im/. For the results
of BM3D we use the implementation made by the authors
and publicly available on the dedicated web page1. For PSNR
evaluation, visual comparison and some other experiments we
use the set of eight color images shown in Fig. 10, available
online at http://www.ipol.im/ under a Creative Commons CC-
BY license. Images Alley and Valldemossa by A. Buades, the
rest six images by M. Colom.

A. “Method Noise” and “Noise to Noise” Assessments

At first, we assess the proposed method by calculating the so
called “method noise” [6]. For that, we calculate the difference
between a noisy image and an output of a denoising method.
The “method noise” should contain as little structure from
a noisy image as possible. Fig. 11 shows the comparison
between BM3D, Non-Local Bayes, the original Non-Local
Means and our proposed method. As can be seen, for the
proposed method the “method noise” looks almost like a white
noise and is very close to the one of BM3D and Non-Local
Bayes methods. In contrast the original Non-Local Means
method suppresses strong edges (e.g. around the cooler on the
first images and along the bus on the second image) which
then appear on the difference image.

According to the “noise to noise” principle [19], a denoising
method should transform white noise into white noise. If in
contrast a method creates some structure from that noise, it
will introduce similar artifacts in the denoising result. For this
benchmark a uniform image with color values (127, 128, 129)
is used as an input. White noise of standard deviation 30
is added separately to every channel of that image and the
obtained noisy image is then processed by a denoising method.
For visualization purposes the resulting denoised images are
amplified: for every pixel the difference to the mean color
(128, 128, 128) is magnified by the factor of 5 (see [19] for

1http://www.cs.tut.fi/∼foi/GCF-BM3D/index.html

http://www.ipol.im/
http://www.ipol.im/
http://www.cs.tut.fi/~foi/GCF-BM3D/index.html
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Fig. 12. “Noise to noise” benchmark. First row: an image of uniform color
(127, 128, 129) with added Gaussian noise of standard deviation σ = 30.
Second row, from left to right: results of applying BM3D, Non-Local Bayes,
original Non-Local Means and our proposed method. Note that for the Non-
Local Bayes and for our method, top-right half was processed as homogeneous
region (as it should be) while bottom-left as non-homogeneous (this might
happen if the homogeneity criterion is not accurate).

the complete methodology). Fig. 12 shows the “noise to noise”
benchmark for BM3D, Non-Local Bayes, the original Non-
Local Means and our proposed method. For Non-Local Bayes
and for our method the noisy image is treated as homogeneous
and also as non-homogeneous. As can be seen, the proposed
method leaves no structural artifacts in both homogeneous and
non-homogeneous cases. This is also the case for the Non-
Local Bayes method as long as the homogeneity threshold γ is
set correctly. Meanwhile, the artifacts appear when the image
is treated as non-homogeneous. Non-Local Means method
leaves some occasional artifacts without any clear structure.
Finally, BM3D method produces noticeable characteristic ar-
tifacts which might also be observed in the denoising results.

B. PSNR and Visual Comparison

Mean square error (MSE) and peak signal-to-noise ratio
(PSNR) are commonly used in the denoising literature to
quantify a relative performance of different denoising methods.
Tables IV and V show PSNR values for denoising results
obtained for the eight color images of Fig. 10 and standard
deviation of noise σ ∈ {2, 5, 10, 20, 30, 40}. Our method
almost always outperforms the original Non-Local Means
method in terms of PSNR. As expected, for high levels of
noise, PSNR values for our method are not very far from
the ones of the state-of-the-art Non-Local Bayes and BM3D
methods.

Even though comparison by PSNR provides a handy ob-
jective metric, an important evaluation is visual comparison
that for now can only be done by a human being. Fig. 13
and 14 show several denoising results for high levels of noise.
To better illustrate the comparison, the images are zoomed
around some interesting regions. As can be seen, the original
Non-Local Means suppresses small image details and thus
produces “flattened” results. This is especially noticeable on
the images Alley, Girl and Flowers. The Non-Local Bayes,
while providing high PSNR values, may introduce abrupt
jumps in colors in regions where a smooth transition should
take place. Appearance of these new edges leads to a “stair-
casing” effect that is most visible on the images Dice, Girl

TABLE IV
PSNR VALUES FOR NOISE σ = 2, 5 AND 10

σ = 2
BM3D NL-Bayes NL-means our

Alley 45.03 45.28 42.68 43.37
Computer 45.30 45.81 43.93 44.67

Dice 48.89 49.17 48.12 48.22
Flowers 47.40 47.75 46.31 46.89

Girl 47.35 47.67 46.71 46.71
Traffic 44.66 45.17 43.45 44.00
Trees 43.13 43.44 42.15 42.62

Valldemossa 44.81 45.07 43.26 43.67
σ = 5

BM3D NL-Bayes NL-means our
Alley 39.01 39.14 37.25 37.31

Computer 40.10 40.54 38.93 39.15
Dice 45.98 46.02 44.93 45.22

Flowers 43.16 43.29 42.17 42.74
Girl 44.09 44.18 43.36 43.37

Traffic 38.75 39.39 37.59 38.01
Trees 36.11 36.54 34.71 35.03

Valldemossa 38.37 38.62 35.96 36.70
σ = 10

BM3D NL-Bayes NL-means our
Alley 34.89 34.82 33.64 33.55

Computer 36.44 36.68 35.54 35.40
Dice 43.40 43.20 41.92 42.63

Flowers 39.66 39.53 38.59 39.38
Girl 41.57 41.43 40.40 40.85

Traffic 34.61 35.15 34.05 34.10
Trees 31.24 31.70 29.59 30.31

Valldemossa 33.81 33.96 32.15 32.33

TABLE V
PSNR VALUES FOR NOISE σ = 20, 30 AND 40

σ = 20
BM3D NL-Bayes NL-means our

Alley 31.23 31.17 29.98 30.15
Computer 32.86 32.98 31.67 32.03

Dice 40.37 40.17 38.31 39.62
Flowers 36.06 36.14 34.53 36.08

Girl 38.98 38.62 36.92 38.02
Traffic 30.85 31.24 30.14 30.46
Trees 26.87 27.36 26.37 26.40

Valldemossa 29.57 29.72 28.44 28.51
σ = 30

BM3D NL-Bayes NL-means our
Alley 29.30 29.15 27.85 28.37

Computer 30.71 30.68 29.28 30.06
Dice 38.46 37.95 36.92 37.54

Flowers 33.89 33.85 32.35 34.11
Girl 37.43 36.69 35.58 36.25

Traffic 28.80 29.03 27.74 28.54
Trees 24.56 25.03 23.79 24.31

Valldemossa 27.23 27.35 25.89 26.46
σ = 40

BM3D NL-Bayes NL-means our
Alley 27.79 27.77 26.48 27.11

Computer 28.71 29.04 27.61 28.57
Dice 36.00 36.24 35.26 36.05

Flowers 32.06 32.13 30.58 32.70
Girl 35.25 35.06 34.17 35.00

Traffic 27.27 27.52 26.23 27.17
Trees 23.03 23.50 22.42 22.88

Valldemossa 25.65 25.81 24.46 25.04

and Flowers. It is also affected by the noise halo (rare patch
effect [9]) around high contrasted edges which can be observed
on the images Traffic and Computer. While providing good
overall quality of the results, the BM3D method may introduce
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Fig. 13. Denoising results. In rows: noisy image, BM3D, NL-Bayes, NL-Means, our method. In columns: Alley (noise σ = 20), Traffic (noise σ = 20),
Computer (noise σ = 30), Dice (noise σ = 30).

characteristic structural artifacts predicted by the “noise to
noise” benchmark. They are most noticeable on the images
Trees and Valldemossa. Our method is capable of denoising
both small image details, sharp edges and smooth color
transitions; however, results may suffer from oversmoothing
in some particular cases.

In terms of computational time, our proposed method is on
average one order of magnitude slower than the original Non-
Local Means method. Partially this is explained by the fact,
that there might be several dominant orientations associated
with every shape-adaptive patch. For a pair of patches all
combinations of orientations should be compared in order
to find the smallest patch distance. In our experiments we
limit the amount of orientations to 3 for every patch, which
leads to at most 9 combinations for a pair of them. Additional
computational cost is caused by the interpolation that has to
be performed when one shape-adaptive patch is transformed

to be registered with another during image synthesis.

VII. CONCLUSIONS

In this paper we have presented an extension for the Non-
Local Means denoising method that considers shape-adaptive
patches instead of the very common square ones. The core
of our approach is a recently proposed affine invariant patch
similarity measure which allows us to compare patches re-
lated by a local affinity. By extending the space of patches
being considered, this similarity measure helps to detect more
similar patches. This in turn leads to better denoising results.
Moreover, shape-adaptive patches are well-suited for denoising
along contrasted edges and thus our method do not suffer
from the halo artifacts. We have shown that our method
almost always outperforms the original Non-Local Means both
quantitatively and qualitatively. Furthermore, while showing
slightly smaller PSNR values than BM3D and Non-Local
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Fig. 14. Denoising results. In rows: noisy image, BM3D, NL-Bayes, NL-Means, our method. In columns: Trees (noise σ = 30), Valldemossa (noise σ = 30),
Girl (noise σ = 40), Flowers (noise σ = 40).

Bayes, the proposed method provides the state-of-the-art level
of visual quality of the results. We find these observations to
be promising and consider similar extensions of Non-Local
Bayes and BM3D methods as a possible direction for future
research.

Further work will be devoted to the better suppression of the
lower frequency noise that remains in homogeneous regions
for the noise levels of σ = 30 and higher. Multiscale and
two-step denoising are among the options that will be tested
aiming to improve the results.
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[31] L. Pizarro, P. Mrázek, S. Didas, S. Grewenig, and J. Weickert. Gener-
alised nonlocal image smoothing. IJCV, 90:62–87, 2010.

[32] J. Portilla, V. Strela, M.J. Wainwright, and E.P. Simoncelli. Image
denoising using scale mixtures of gaussians in the wavelet domain.
Image Processing, IEEE Transactions on, 12(11):1338–1351, Nov 2003.

[33] M. Protter, M. Elad, H. Takeda, and P. Milanfar. Generalizing the
non-local-means to super-resolution reconstruction. IEEE Trans. on IP,
18(1):36–51, 2009.

[34] Leonid I. Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total varia-
tion based noise removal algorithms. Physica D: Nonlinear Phenomena,
60(14):259 – 268, 1992.

[35] J. L. Starck, E. J. Candès, and D. L. Donoho. The curvelet transform
for image denoising. IEEE Trans. on Image Processing, 11(6):670–684,
2002.

[36] C. M. Stein. Estimation of the mean of a multivariate normal distribu-
tion. The annals of Statistics, 43(2):1135–1151, 1981.

[37] Geoffrey S. Watson. Smooth regression analysis. Sankhya: The Indian
Journal of Statistics, Series A (1961-2002), 26(4):359–372, 1964.

[38] Leonid P. Yaroslavsky. Local adaptive image restoration and enhance-
ment with the use of dft and dct in a running window, 1996.

[39] Guoshen Yu and Guillermo Sapiro. Dct image denoising: a simple and
effective image denoising algorithm. Image Processing On Line, 1, 2011.

[40] Lei Zhang, Weisheng Dong, David Zhang, and Guangming Shi. Two-
stage image denoising by principal component analysis with local pixel
grouping. Pattern Recognition, 43(4):1531 – 1549, 2010.

[41] S. Zimmer, S. Didas, and J. Weickert. A rotationally invariant block
matching strategy improving image denoising with non-local means.
In International Workshop on Local and Non-Local Approximation in
Image Processing, Lausanne, Switzerland, August 2008.

[42] C. Zuo, L. Jovanov, H.Q. Luong, B. Goossens, W. Philips, Yu Liu,
and M. Zhang. Rotation invariant similarity measure for non-local self-
similarity based image denoising. In Image Processing (ICIP), 2015
IEEE International Conference on, pages 1618–1622, Sept 2015.

http://dx.doi.org/10.1016/j.cviu.2008.09.003
http://dx.doi.org/10.1016/j.cviu.2008.09.003

	Introduction
	Related work
	An Affine Invariant Similarity Measure
	Motivation
	Affine Covariant Structure Tensors
	Computation of Affine Covariant Tensors
	An Affine Invariant Patch Similarity
	Patch Size Constraint

	Non-Local Means Denoising with an Affine Invariant Similarity Measure
	Description of the Method
	Implementation Details

	Parameters Selection
	Experimental results and assessment
	``Method Noise'' and ``Noise to Noise'' Assessments
	PSNR and Visual Comparison

	Conclusions
	References

