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GRASS: A Gradient-Based Random
Sampling Scheme for Milano Retinex

Michela Lecca, Alessandro Rizzi, and Raul Paolo Serapioni

Abstract— Retinex is an early and famous theory attempting
to estimate the human color sensation derived from an observed
scene. When applied to a digital image, the original implemen-
tation of retinex estimates the color sensation by modifying the
pixels channel intensities with respect to a local reference white,
selected from a set of random paths. The spatial search of the
local reference white influences the final estimation. The recent
algorithm energy-driven termite retinex (ETR), as well as its
predecessor termite retinex, has introduced a new path-based
image aware sampling scheme, where the paths depend on local
visual properties of the input image. Precisely, the ETR paths
transit over pixels with high gradient magnitude that have been
proved to be important for the formation of color sensation. Such
a sampling method enables the visit of image portions effectively
relevant to the estimation of the color sensation, while it reduces
the analysis of pixels with less essential and/or redundant data,
i.e., the flat image regions. While the ETR sampling scheme is
very efficacious in detecting image pixels salient for the color
sensation, its computational complexity can be a limit. In this
paper, we present a novel Gradient-based RAndom Sampling
Scheme that inherits from ETR the image aware sampling
principles, but has a lower computational complexity, while
similar performance. Moreover, the new sampling scheme can be
interpreted both as a path-based scanning and a 2D sampling.

Index Terms— Path-based Retinex model, spatial color
correction, image enhancement.

I. INTRODUCTION

THE human color sensation deriving from the observation
of a certain point of a scene may differ from the physical

color signal coming from that point. In fact, several experi-
ments revealed that the color sensation at a point depends
not only on the photometric properties of that point, but also
on the physical cues and spatial arrangement of the colors
surrounding that point [1]–[3].

Retinex [4] is an early computational model that attempts to
estimate the color sensation. Retinex model follows the human
vision structure for which the color signal is processed initially
by the retina photoreceptors and then by the cortex performing
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a spatial interaction among the colors of the observed scene.
Across this pipeline, the chromatic components of the color
signal are processed independently. When applied to a non-
calibrated digital color picture, Retinex produces an enhanced
color image, where the chromatic dominant of the light and
possible smooth shadows are lowered, while scene details
and edges are enhanced. This corresponds to a qualitative
estimation of the color sensation [5]. In order to consider
the mutual influence of adjacent colors in an image, Retinex
performs a spatial exploration of each pixel neighborhood.
Then it modifies the pixel color with respect to a local
reference white, selected from the explored region. Many
implementations of Retinex are available in the literature [6].
They differ to each other in the way to spatially explore
the neighborhood of each pixel and in the way to process
adjacent colors. The original Retinex implementation scans the
neighborhood of an image pixel x by a set of random paths
ending in x . The chromatic intensities of the color sensation
at x are obtained as the averages, among these random paths,
of the relative ratios of the channel intensities of subsequent
pixels along each path, and division by zero is prevented.

The path-based scanning approach of the original Retinex
has been adopted by many other subsequent Retinex imple-
mentations, e.g. [7]–[9].

The work we present here originates from two recent
path-based implementations of Milano Retinex [3], [10], a
class of Retinex algorithms mainly developed for color image
enhancement: Termite Retinex (TR) [11] and Energy-driven
Termite Retinex (ETR) [12]. The main novelty of these
methods is their image aware spatial color sampling, i.e.
their sampling procedure takes into account visual cues of the
image. Precisely, in TR and ETR, the Retinex paths are thought
as the traces of a swarm of artificial termites traveling from
any pixel x in search for a local white reference. Each termite
path depends on the image edges, on the spatial position of
the termite, and on the routes previously traveled by other
termites (if any). The dependence on the edges is justified by
the important role that edges play in the formation of the color
sensation [3], [13]–[15]. The dependence on the position has
been introduced to push the termite route over the image in
search of a local reference white. Finally, the dependence on
the geometry of the paths previously traveled is inspired by
an adaptation of the stigmergic behaviour of a natural swarm
of termites foraging for food: it allows to optimize the spatial
image exploration by discouraging the multiple visit of image
regions already considered.

As Retinex, TR and ETR process separately the three chro-
matic channels of the input image. In TR, any termite starts
from a pixel x , and it chooses its next step by maximizing
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the local contrast over a 3×3 window, within the constraints
imposed by stigmergy and distance. In ETR, any termite route
is computed as the local minimum of an energy functional,
designed so as to favor the visit of sharp edges (i.e. pixels with
high gradient magnitude) that are close to x , according to the
evidence that the chromatic influence among adjacent colored
regions is related to their relative position [3], [16]. In this
functional, stigmergy is modeled by a term that discourages
the over-exploration of already visited image portions.

The edge based sampling schemes of TR and ETR provide
an efficient way to spatially explore the pixel neighborhood in
search for a local white reference: they favor the analysis of
image pixels containing information relevant to color sensa-
tion, while they disadvantage the collection and processing of
data coming from less important image areas. The sampling
scheme of ETR is particularly efficacious in this respect,
however its practical usage is adversely affected by its high
computational complexity mainly due to the minimization of
the energy functional.

TR and ETR have paved the way for the development
of a new class of Retinex implementations, characterized by
image aware sampling schemes. This topic is a challenging
and attractive issue, both from a psycophysical and algorithmic
point of view. In fact, it addresses the problem to define a set
of visual features that possibly influence the color sensation
and to include them in a novel Retinex model in an efficient
way. As mentioned above, this research direction is still poorly
investigated.

This paper aims at enriching the current state of the art
in the image aware spatial sampling. Specifically, here we
propose GRASS, a novel Gradient-based RAndom Sampling
Scheme for Milano Retinex [3], [10], which is based on the
same features of ETR (e.g. stigmergy, image gradient, spatial
distance), but is characterized by a much lower computational
complexity. Basically, GRASS works as follows. For each
chromatic channel, GRASS explores the neighborhood of a
pixel x by N random squares, having different size and
orientation (see Figure 1 for an example), scans each square
exhaustively by parallel segments, and detects over each seg-
ment a pixel maximizing the gradient magnitude weighted by a
function of the pixel distance from x . Then GRASS processes
the neighborhood of the pixels selected on the squares in order
to find out a local white reference, and computes the final color
sensation at x in the same way as in ETR.

The exploration mechanism of GRASS is similar to that of a
flat scanner. Each square can be viewed as the document plane
of the scanner, while each scanning segment is like the moving
linear sensor at a fixed time. In this framework, any pixel
selected by GRASS in the square is what the linear sensor
detects over the scanned segment and saves to build up the
final digital picture.

GRASS entails two main novelties. First, its sampling figure
at any image pixel x (i.e. the set of pixels sampled around x)
is similar to that output by ETR, in the sense that both ETR
and GRASS favor the sampling of the image pixels, but the
GRASS computation has a much lower complexity than that of
ETR. This makes GRASS much more practicable than ETR.
Second, GRASS has an interesting characteristic: its sampling

Fig. 1. GRASS scans the neighborhood of any image pixel x by random
squares. This figure shows such a square (in green) for the barycenter x
(in red) of the image support. The algorithm scans the segments parallel to the
side AB; the orange circles highlight the pixels selected along each segment.
See Section III for more details.

scheme can be regarded both as a path-based approach and
as a bi-dimensional spatial sampling as well. Precisely, the
interpretation of GRASS as a path-based sampling scheme
arises when we look at the pixels sampled from each square
as at the control points of a curve scanning the square. At
the same time, since we do not impose any constraint about
the connectivity between the square pixels and de facto we
do not compute any path, GRASS can be interpreted as
2D sampling of the gradient magnitude map in a neighborhood
of x . Due to this characteristic, GRASS can be also viewed
as evolution of the 2D spatial sampling proposed by Random
Spray Retinex (RSR) [17], where the figure sampling of any
pixel x is a set of pixels distributed around x with radial
density. However, we highlight that GRASS strongly differs
from RSR and from its further versions STRESS [18] and
QBRIX [19], because these methods do not take into account
the image content for sampling.

The paper is organized as follows: Section II introduces
some notation used in the paper, and describes the algorithms
TR, ETR, RSR, STRESS and QBRIX; Section III explains
the mathematical and technical details of GRASS; Section IV
reports the experiments measuring the GRASS performance
on image enhancement; finally, Section V contains our
conclusions.

II. RELATED WORK

This Section is devoted to the description of related work. In
Subsection II-A we introduce some notation used throughout
the paper. In Subsection II-B we describe the algorithms TR
and ETR, that first propose an image aware image sampling
and that can be thus considered the predecessors of GRASS.
In Subsection II-C we briefly describe RSR and its further
versions STRESS and QBRIX.

A. Notation

Let us introduce some notation, that will be used in the
following.
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We denote a chromatic channel of an RGB image J by I .
In this framework, I is described as a function I : Supp(I ) →
[0, 1], where Supp(I ) is the set of the spatial coordinates of
the image pixels. We indicate the number of pixels of I by
|I | and we use x to indicate a pixel in Supp(I ).

We indicate the chromatic component of the color sensation
deriving from I by S and we refer to S also as the filtered
version of I . S is an 1D image, defined as a function from
Supp(I ) to [0, 1]. The color sensation of a color image J is
a RGB image defined over Supp(J ) and its chromatic com-
ponents are the filtered versions of the chromatic components
of J .

For all the methods described next, in order to prevent
division by zero, any intensity value I (x) = 0 is replaced with
I (x) = ε, with ε close to zero. In particular, in the experiments
presented here ε = 10−6.

Finally, we use the notation ‖ · ‖ to indicate the Euclidean
norm of the vector “·”.

B. Image Aware Image Sampling: TR and ETR

Termite Retinex (TR) explores the neighborhood of any
pixel x of I by means of N paths γ1, …, γN with length l,
viewed as the traces of N termites T1, …, TN .

For each i = 1, …, N , the path γi is represented as an
ordered set of pixels x1, …, xl , where x1 := x . For each
k = 2, . . . , l, the pixel xk is chosen in the 3×3 window
N(xk−1) centered at xk−1, so that xk maximizes the function
fk : N(xk−1) → [0,+∞) defined as:

fk(y) = 1

K
[θ(y)]α

[‖ xk−1 − y ‖ +|I (xk−1) − I (y)|√
2

]β
(1)

over the set of pixels in N(xk−1) never traveled by Ti , i.e.
xk �= xh for any h < k.

The function θ is named the poison term and implements
the stigmergy: it penalizes the value of fk on each pixel
already traveled by a termite. Precisely, for each x , θ is
initialized to 1.0, then the value θ at a pixel y is decreased of
a fixed positive quantity δ each time a termite passes over y.
The parameters α and β weight the contribution of the poison
to the term including the spatial distance and the local contrast
(in particular, α, β ≥ 0 and α +β = 1). When the function fk

is constant over the pixels of N(xk−1) not yet traveled by
the termite, the termite chooses randomly its next step. The
denominator K is a normalization term introduced to rescale
fk(y) in [0, 1] and to interpret it as a probability density
function. The parameters N , l, δ, α, β are user inputs.

The computational complexity of the TR sampling approach
is O(Nl|I |). Based on some experimental results, the work
in [11] suggests to set up l as the 70% of the length of the
diagonal of Supp(I ). This makes the complexity of TR much
smaller than O(N |I |2).

After the image exploration, TR computes the color sensa-
tion by the ratio-product-reset mechanism of MI-Retinex [3],
as described in [7] and reported in [11].

The sampling scheme of TR has been proved to be effica-
cious for image exploration. However, some inefficiency still
remains where a termite transits over a flat region. In this case,

the termite selects randomly its next step, therefore it may
happen that the termite scans the entire flat region, collecting
redundant and unessential information for color sensation.

Energy-driven Termite Retinex (ETR) solved this problem
by imposing global mathematical conditions to the paths.
In order to manage the concept of functional minimization
in a straightforward manner, in [12] the ETR scheme was
formalized over a continuous domain. In this framework, ETR
explores the neighborhood of any pixel x by N self-avoiding,
continuous paths γ1, . . . , γN : [0, 1] → R2 which, as in TR,
are computed by an iterative procedure.

For each i = 1, . . . , N , the path γi connects γi (0) := x
to another pixel γi (1) := yi , that is sampled randomly from
a uniform distribution defined over Supp(I ) and yi �= y j for
any j �= i , j = 1, . . . , N . Moreover, γi minimizes the energy
functional

Ex(γ ) =
∫ 1

0

[ 1

1 + d(x, γ (s)) ‖ ∇ I (γ (s)) ‖2 + θx(γ (s))
]
ds

(2)

over the set of continuous paths from [0, 1] to R2 scanning
Supp(I ), where ∇ I indicates the gradient of I and d is a
spatial distance term defined as

d(x, γ (s)) = D2− ‖ x − γ (s) ‖2 (3)

and D is the length of the diagonal of Supp(I ).
The function θx : Supp(I ) → [0,+∞) is a poison term,

analog to that of ETR. θx is initialized to zero when i = 1.
Then, for any i > 1, the value of θx is increased by a
quantity δx over the pixels traveled by the termite Ti−1.
N and δx are user input, but Lecca et al. [12] also suggest
to set up them according to the image visual content.

The color sensation at x is then computed as proposed
in [17] by the following equation:

S(x) = 1

N

N∑
i=1

I (x)

max{I (γi (t)) : t ∈ [0, 1]} . (4)

The sampling scheme of ETR is very efficacious: the ter-
mites poorly visit uniform regions, while cover more the image
portions close to the nest x and containing edges. Nevertheless,
in practice, the usage of ETR is adversely affected by its com-
putational burden, mainly due to the minimization procedure:
the computational complexity of ETR is O(N |I |2 log(|I |)).

C. 2D Spatial Sampling: RSR, STRESS and QBRIX

The algorithm RSR [17] replaces the path-based approach
of the original Retinex implementation with a 2D spatial
sampling. Precisely, RSR scans the image regions around each
pixel x by a number of random sprays. A random spray is a
set of pixels randomly selected from a circular neighborhood
of x with a radial density. Each chromatic value of the output
at x is then computed as the mean value of the ratios between
the intensity at x and the maximum intensity of each spray,
averaged over the number of sprays, and division by zero is
prevented.

STRESS [18] (Spatial-Temporal Retinex-inspired Envelope
with Stochastic Sampling) is a variant of RSR, particularly
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suitable for local contrast stretching, automatic color
correction, spatial color gamut mapping, and efficient color
to gray-scale conversion, e.g. [20], [21]. As RSR, STRESS
explores the neighborhood of each image pixel by random
sprays, but it uses a different equation to estimate the pixel
output. For each chromatic channel, and for each image
pixel x , STRESS computes the lightest and the darkest pixel
in each spray centered at x and uses these values to define
two envelope functions that contain the chromatic signal.
The red, green and blue chromatic intensities of x are thus
stretched between the corresponding minimum and maximum
values in the envelopes.

QBRIX [19] (Quantile-Based approach to RetIneX) is a
probabilistic formulation of RSR. It removes the sampling
procedure completely and models the spatial arrangement
of the colors around any image pixel through a suitable
probabilistic distribution function (pdf). QBRIX relies on two
main observations: first, colors rarely occurring in the image
are irrelevant to final color filtering; second, as already pointed
out by RSR, the chromatic influence of the colors of the pixels
around a pixel x decreases by increasing the distance from x .
These observations lead to two different implementations. The
first one is a global filter (here denoted by G-QBRIX). The
pdf of each chromatic channel is computed and the intensity
value corresponding to a quantile fixed by the user, is set up as
reference white. The color filtering is obtained by rescaling the
chromatic values of the image by the selected quantile which
controls the percentage of colors to be discarded. The second
implementation takes into account also the second observation
and leads to a local filter (here denoted by L-QBRIX). For
each chromatic channel and for each pixel x , the algorithm
computes a pdf at x , where the contribution of each image
pixel is weighted by its distance from x . The color filtering
at x is then computed as in G-QBRIX. Disregarding the
random sampling, QBRIX computes a final filtered image with
a negligible chromatic noise. Since GRASS also considers the
spatial distance, in the comparative analysis presented next,
we considered L-QBRIX only.

III. GRASS

The Gradient-based RAndom SAmpling Scheme (GRASS)
proposed here derives from ETR as an alternative,
computationally more efficient, edge aware sampling
scheme. As ETR, GRASS explores the image regions
around any pixel x by taking into account the magnitude
of the image gradient and the spatial distance from x of
the sampled pixels. It also implements a stigmergy-inspired
mechanism to overcome the multiple exploration of the same
region.

GRASS scans the neighborhood of x by means of a set
of N random squares with different size and orientation, and
with a side containing the pixel x (see Figures 1 and 2). These
squares are computed as follows.

For any pixel x , N pixels y1, . . . , yN are sampled at random
from Supp(I ) as in ETR. These N pixels are chosen so that
yi �= y j �= x for any i �= j , where i, j = 1, . . . , N .

For each i , the pair (x, yi) defines a square si in Supp(I ),
such that:

Fig. 2. An example of GRASS sampling: the square si highlighted in green
samples a region around the pixel x , that here is the center of mass of the
image support. The square is defined by the segment x − yi (in magenta),
where yi is a pixel randomly sampled over the image: the square is centered
at x , the length of its sides is the length of x − yi , i.e. ‖ x − yi ‖, and the
side AD := Li containing x is orthogonal to x − yi . The square is scanned
along the segments parallel to AD. HK is an example of such a segment. The
orange pixels inside si indicates the positions of the pixels maximizing φx
over each segment scanned in si (see Eq. (8)).

1) the middle point of the segment x − yi is the barycenter
of si ;

2) the length of the sides of si is equal to the length
‖ x − yi ‖ of x − yi ;

3) one side of si , let’s say Li , contains x and it is orthog-
onal to the direction of x − yi .

Each square si defines an asymmetric neighborhood of x .
Figure 2 shows an example of such a square, drawn in green

color on a gray level image, and defined by the barycenter of
the image support (i.e. the pixel x) and by the pixel yi . The
square vertices are named A, B, C, D, and AD := Li .

GRASS scans si from Li (AD in Figure 2) to the opposite
side (BC in Figure 2) along the direction parallel to that of Li .
Due to the discrete nature of the data, such a procedure is
equivalent to scan each segment of si orthogonal to x − yi

(e.g. the blue segment HK in Figure 2). Let σ1, . . . , σM be all
these segments, where M is equal to ‖ x − yi ‖, rounded to
the closest integer.

These segments are used to select in si a set of pixels which
are relevant to color sensation, i.e. they are close to x and
they maximize the gradient magnitude over a subset of the
neighborhood of x . Precisely, for each j = 1, . . . , M , GRASS
selects a pixel u j ∈ σ j that maximizes over σ j the function
φx : si → R defined as:

φx(u) :=‖ ∇ I (u) ‖ dG(x, u) − 
(u), u ∈ si (5)

i.e.

φx (u j ) = max{‖ ∇ I (u) ‖ dG(x, u) − 
(u) : u ∈ σ j } (6)

where

• as in ETR, ∇ I indicates the gradient of I ;
• the function dG is a spatial term weighting the

gradient magnitude and ranging over [0, 1]. It is
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Fig. 3. The first image shows the gradient magnitude of the image in Figure 1. The other pictures show some random squares (in green) used to scan
the neighborhood of the barycenter x of the image support (see Figure 1). These pixels maximizes a function which is directly proportional to the gradient
magnitude, while inversely proportional to their Euclidean distance from x .

defined as

dG(x, u) = 1 − ‖ x − u ‖
D

(7)

where D is the length of the diagonal of Supp(I );
• the function 
 is a penalty term (i.e. the poison), analog

to θ and θx in TR and ETR, and its values range over R.
It penalizes the multiple visit of the pixels u1, . . . , uM

selected over the segments σ1, . . . , σM . This task is
accomplished by initializing 
 to zero, then by increasing
its values with a positive quantity � over the u j ’s.

If both the pixels u and v of σ j satisfy Eq. (6), the algorithm
selects the pixel that is the closest to x , in order to taking into
account the influence that distance plays on the spatial color
interaction [3], [16]. If u and v have the same distance from x ,
the algorithm chooses in {u, v} the pixel scanned lasted.
In the example reported in Figure 2, the pixels u1, . . . , uM

maximizing φx over σ1, . . . , σM are marked in orange.
Finally, GRASS scans the 3×3 windows W1, . . . , WM cen-

tered respectively at u1, …, uM and selects a pixel u(si ) such
that

I (u(si )) = max
j=1,...,M

max{I (y) : y ∈ W j }, (8)

i.e. the pixel u(si ) has the maximum intensity over the set
∪M

k=1Wk .
Figure 3 shows the gradient magnitude map (on the top, left

corner) of one chromatic channel of the picture in Figure 1,
some squares (in green color) sampled around the barycenter

of the image support and the pixels detected by GRASS in
each square (orange circles).

The chromatic component of the color sensation in x is
computed as

S(x) = 1

N

N∑
i=1

I (x)

I (u(si ))
, (9)

i.e. in the same way proposed by ETR.
In the current implementation of GRASS, the parameters N

and � are set up as functions of I , precisely:

N = R + C

2
(10)

where R and C denotes respectively the number of rows and
columns of the input image, and

� = 1

2

[
min

y∈Supp(I )
‖ ∇ I (y) ‖ + max

y∈Supp(I )
‖ ∇ I (y) ‖

]
. (11)

For each j = 1, . . . , M , 
 is updated by the following rule:


(u j ) �→ 
(u j ) + � · dG(x, u j ). (12)

We discuss the parameters set up in Section IV. Figure 4
shows some examples of square sampling with the correspond-
ing poison map 
, iteratively updated.

The pseudo-code of GRASS procedure is sketched in
Algorithm 1.

As already mentioned in Section I, the exploration mecha-
nism of GRASS is similar to that of a flat scanner. The square
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Fig. 4. Iterative image sampling by squares. From left to right: subsequent sampling squares of the center of mass of the image support (first row) and
corresponding updated poison map 
x (second row).

Algorithm 1 GRASS Algorithm

ABCD depicted in Figure 2 can be imagined as the plane of
a scanner, while the segment HK can be seen as the scanner
linear sensor moving from AD to BC (see Figure 5). The
orange pixels (that are defined by Equation 6) are what the
linear sensor detects during scanning the document (i.e. the
square content).

Finally, we remark that the choice of squares as patches for
the local exploration of the neighbor of each pixel is motivated
by computational reasons: it ensures a wide image scanning
with lower computational costs, compared with alternative
kinds of polygons, like e.g. triangles or pentagons.

The computational complexity of GRASS is in general
smaller than O(N |I |2). In fact, a part for the pixels located on
the corners, the squares used for exploring the regions around
a pixel x do not cover the entire image support, thus their size
is smaller than |I |. This is an important cue: in fact, as shown
in Section IV, GRASS computes sampling figures similar to
those of ETR (i.e. both cover more the image edges than flat
regions), but with a remarkably smaller computational burden,
that makes GRASS more practicable than ETR (see Section IV
for more details).

Fig. 5. Illustration of the metaphor used for explaining how GRASS selects
the pixels relevant to color sensation. The sampling mechanism is similar to
that of a flat scanner (on top), that explores the surface of the document to
be scanned by the light emitted by the linear sensor. Each GRASS square
(e.g. ABCD) can be intrepreted as the scanner plane, the image portion to
be explored as the document to be scanned, and each segment scanning the
square (e.g. HK) as the scanner sensor (figure on bottom). In this framework,
the yellow rule on the scanner plane would like to represent an edge to be
used by GRASS for estimating the color sensation. See also Figure 2.

IV. EXPERIMENTS

Before introducing results and measures, it is important to
clarify differences in Retinex tasks. As described in more
details in [3] and [5], Retinex was born as a computational
model of the human color sensation, but later on it has been
used for much simpler tasks, like e.g. image enhancement. The
use of Retinex for image enhancement does not require any
particular pre- or post-filtering calibration, that on the contrary
is necessary for the more complex task of human vision
modeling [5]. Nevertheless, the kind of image enhancement
performed by Retinex is always in the direction of the human
color sensation, but to assess it quantitatively requires a careful
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procedure of input and output calibration. Thus, although
without such calibrations Retinex can be seen as a qualitative
(not quantitative) estimate of color sensation, in this section
we prefer to refer to the output values as filtered image.

The evaluation of GRASS has been carried out by measur-
ing its performance on visual image enhancement. In the next
subsections, we present the measures used for quantifying this
performance, the databases, and the results.

A. Evaluation

We assess quantitatively the GRASS performance on:
i) Image enhancement.

Retinex works as an image enhancer, i.e. the output
image has equalized brightness and more visibile details
than the input one. Since the color filtering depends on
the pixels sampled over the image, the analysis of the
image output by a Retinex algorithm allows to perform
an undirected evaluation of the used sampling scheme: if
no enhancement is obtained on dark images with poorly
visible edges, then the sampling scheme adopted by that
algorithm and/or the usage of the sampled information
are probably not accurate or not appropriate for this task.
In general, there are no agreed measures to assess the
degree of the image enhancement [3], [22].
In this work, we are interested in measuring numerically
the variations of three image features that are usually
modified by Retinex algorithms: the brightness, the con-
trast and the dynamic intensity range. Therefore, we
compare the input image and the filtered one by means
of three quantitative measures f0, f1, f2 explained in
the following. All these measures or some of them have
been already used in previous works [12], [23]–[25], for
assessing the performance of Retinex approaches.
For any image I with luminance L,

– f0 is the mean value of L;
– f1 is the multi-resolution contrast of L, proposed

in [26]; f1 is obtained by averaging over multiple
scaled versions of the input luminance the mean
value of the local contrast of each pixel, computed
over a 3×3 neighborhood;

– f2 is the flatness of the probability density func-
tion (pdf) of the luminance introduced in [23] and
given by the L1 distance between the pdf of the
luminance values and an uniform pdf.

We expect that the values of f0 and f1 of the filtered
image are greater than those of the input image.
Conversely, we expect that the flatness f2 of the pdf of
the filtered image is smaller than that one of the pdf of
the input image. This is because the Retinex algorithms
generally stretch the luminance value, producing a flatter
pdf. Here we represent the pdf of the image luminance
by a normalized histogram with 256 bins.

ii) Spatial and color sampling.
In order to investigate the mechanism of the spatial
exploration and color sampling of GRASS, we measure
the range of chromatic intensity and the size of the image
portion effectively explored in the image enhancement

tests. In particular, given an image I , for each pixel
of I , we estimate the percentage of image area covered
by the pixels selected by GRASS and the percentage
of intensity values sampled by GRASS. These values,
indicated by f3 and f4 are averaged over the number of
image pixels, i.e. they are defined as

f3 = #{Intensity Values Sampled from I }
#{Intensity Values in I } × 100

f4 = #{Pixels Sampled from Supp(I )}
|I | × 100.

The value of f3 indicates the percentage of different
intensity values present in the image and considered in the
computation of the final image; usually, a good sampling
is characterized by a high value of f3. The value of f4
indicates the percentage of the size of the image portion
explored by GRASS, averaged over the number of image
pixels. If the input image contains wide flat regions, then
a small value of f4 denotes a good sampling in the overall
image, with a sparse sampling of the uniform regions.

iii) Observer Judgements.
We measure the GRASS image enhancement
performance also from a perceptual point of view.
For this task, we considered a dataset of color images,
depicting real-world scenarios. The images of this
dataset have been filtered by GRASS. The original and
the filtered pictures have been displayed on a black
background on a monitor Samsung SyncMaster 2243SN -
21.5" to a set of 22 observers. The order of the images on
the screen has been randomly choosen at the begin of the
experiments and was the same for each observer. The set
of observers includes people with different age, gender,
and work. Observers were asked to choose the preferred
image in terms of the informative content and the details.

iv) CIELab Distance.
For the pictures of COLOR-20, we also report the mean
value of the CIELab distances �E under illuminant
D65, before and after applying GRASS, averaged over
the number of pictures. We remind that �E is the
L1 distance between theinpuit and the output image in
the Lab color space. This distance is widely used to
measure the perceptual differences between an image
and its filtered version [17], [27], [28].

B. Databases

We report the evaluation results of GRASS on two different
image databases, named TEST5GRAY and COLOR-20.

TEST5GRAY is a simple, challenging set of five grey-level
images, that are identified in the next by the numbers from
1 to 5 (see Figure 6(a)) and that have been already employed
in [12] for analyzing and testing ETR. The structural features
of these pictures are highly significant to study, illustrate,
and compare the image processing of Retinex algorithms. The
usage of gray level images for evaluating Retinex algorithms is
justified by the fact that the Retinex processes each chromatic
channel separately, therefore image enhancement and spatial
sampling can be investigated on one-channel images, allowing
to better visualize the final effects and the sampling scheme.
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Fig. 6. Comparison among the filtering results obtained by using different Retinex algorithms: (a) no filtering (input images); (b) Scale-by-Max; (c) RSR
(N. of sprays = 10, N. of samples per spray = 100); (d) STRESS (N. of sprays = 10, N. of samples per spray = 100); (e) L-QBRIX (quantile = 0.995);
(f) TR (parameters as in [12]); (g) ETR (parameters as in [12]); (h) GRASS (N and � as in Equations (10) and 12)).

Therefore we use TEST5GRAY to show and evaluate the
GRASS performance on image enhancement also in compar-
ison with TR, ETR, RSR, STRESS and L-QBRIX.

The five images of TEST5GRAY are characterized by
a different spatial distribution of bright and dark regions:
Image 1 contains a very large, almost clipped white patch;
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TABLE I

TEST5GRAY: PERFORMANCE ON IMAGE ENHANCEMENT. (a) MEAN LUMINANCE f0 . (b) MULTI-RESOLUTION CONTRAST f1.
(c) HISTOGRAM FLATNESS f2 [·10−3 ]

Image 2 contains two very bright, isolated bright spots;
Image 3 is characterized by an elongated bright region against
a dark background; Image 4 and 5 contain the same issues of
the other images, but with different proportions.

The dataset COLOR-20 consists of 20 color images, depict-
ing real-world scenarios including both indoor and outdoor
environments, along with the color versions of the five images
of TEST5GRAY (see Figure 9). The images of this dataset
are grouped in two subsets upon their characteristics (see
Figures 11(a) and 12): group 1 contains 10 images, under-
exposed or captured under bad illuminant conditions, and thus
very dark and with poorly visible details; group 2 contains
10 images, with a good visibility of the details, composed by
dark and bright regions and/or characterized by a chromatic
dominant due to the light under which these pictures have
been captured. Here, we use COLOR-20 for two tasks: first,
for showing and evaluating the GRASS image enhancement
performance on color images; second, for providing a human
based evaluation of the GRASS color filtering.

C. Results on Visual Enhancement

Figure 6 reports the estimates of the color filtering achieved
by using GRASS, TR, ETR, RSR, STRESS, QBRIX and
Scale-by-Max on TEST5GRAY. We remind that Scale-by-Max
is a well known limit case of global Milano Retinex [3]: in this
case, the output is computed by rescaling each intensity value
of the input image by the maximum channel intensity. In these
experiments, the parameters N and � of GRASS have been set
up as in Equations (10) and (12), while those ETR have been
fixed as in [12]; the parameters of TR have been estimated
in order to have the same number of termites of ETR and a
poison value similar to that of ETR; for RSR and STRESS,

TABLE II

TEST5GRAY: EVALUATION OF THE EXPLORATION

SCHEME. (a) f3. (b) f4

the number of sprays and the number of samples per spray are
respectively 10 and 100; finally, the quantile used in L-QBRIX
is 0.995.

As shown in Figure 6, the image enhancement produced by
Scale-by-Max is negligible, while that produced by the Retinex
algorithms RSR, STRESS, L-QBRIX, TR, ETR and GRASS
is much more visible: the filtered images are brighter and have
a higher contrast, that makes clearer the details contained in
the dark areas. Table I reports the values of f0, f1, f2 for
these images. We observe that the results obtained by GRASS
are in line with those achieved by the other approaches,
i.e. GRASS works as an image enhancer.

The values of f3 and f4 for GRASS are reported in Table II,
along with those of ETR, RSR and STRESS. On average,
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Fig. 7. A 1D image (on left) and the poison maps of GRASS (in the middle) and of ETR (on right). The poison map is computed with respect to the center
of mass of the image support.

GRASS takes into account more than the 90% of the image
intensity levels ( f3), by exploring about the 50% of the area
of the input image ( f4). The value of f3 and f4 of RSR (and
of STRESS, that adopts the RSR sampling scheme) are quite
low: for the parameters used in our experiments, the size of the
explored space is less than the 3% of the image size, while, for
the images of TEST5GRAY, the range of the intensity levels
sampled is on average less than the 55% of the whole possible
range of intensities. For Scale-by-Max and L-QBRIX, the
values of f3 and f4 can be considered as “limit cases”, because
these approaches do not perform image sampling. In particular,
Scale-by-Max scans the whole image support to pick up the
maximum chromatic intensities, but it does not consider any
spatial information. L-QBRIX also scans the whole image
support and the whole range of the chromatic intensities in
order to compute the spatial weighted pdf of the intensity at
each pixel. For both the algorithms, f3 and f4 are equal to
the 100%. We also observe that they use a single intensity
value for re-scaling the intensity of each pixel: the maximum
intensity for Scale-by-Max and the intensity determined by the
quantile input by the user for L-QBRIX. Regarding TR, from
the mathematical formulation it follows that f3 and f4 are
equal to or greater than those of ETR, because TR generally
explores more space than ETR.

ETR and GRASS output quite similar values for f3 and f4.
Compared to ETR, which uses the same visual cues as
GRASS, GRASS has a wider spreading of the sampling,
maintaining at the same time more focus on the regions with
high gradient magnitude (see Figure 7), i.e. for each pixel x ,
the sampling figure at x covers well the image edges and it
is more dense in the region close to x than far away. This
is due to the local behaviour of GRASS, that maximizes
the gradient magnitude weighted by spatial distance in image
subset around x (i.e. the squares), while ETR searches curves
defined over the whole image support. In this respect the
sampling figure of GRASS presents some similarities with that
of RSR and STRESS, where pixel sampling is constrained by
a radial density function. Consequently, as observed above, the
values of f0, f1, f2 are between those of the methods RSR,
STRESS, L-QBRIX and those of TR and ETR.

From the computational point of view, GRASS provides
execution times remarkably lower with respect to those of
ETR. For instance, the current C++ implementations of ETR

and GRASS process a gray-level image with size 64 × 64
respectively in 100 and 10 minutes on a standard PC, Intel(R)
Core(TM) i7 CPU 870 at 2.93GHz with operating system
Linux. Despite this reduction, we are aware that the com-
putation time of GRASS is still long. Code optimization is
out of the scope of this paper, however we notice that the
current implementation can be implemented on GPUs with the
CUDA parallel programming model, saving one more order of
magnitude in the execution time.

We also measured the performance of GRASS on visual
enhancement by changing the values of the parameters N
and �. We first observe that a too low value of N produces
noisy images, while a too high value of N determines an over-
exploration of the image, that tends to cancel the local effects
of the filtering. By using N

2 or N
4 squares, we obtain very

similar results: the average luminance and the local contrast
were slightly smaller, while the flatness of the luminance pdf
was slightly higher than those obtained by using N . A low
value of � forces the algorithm to visit multiple times the
same edges, leading to a filtered image very similar to that
obtained by using the global Scale-by-Max. Conversely, a very
high value of � may produce a wide coverage of the image
area, making the gradient information superfluous.

We observe that like in many Retinex implementations, also
in GRASS the exploration of the image is based on random
sampling. For this reason, the single pixel value may change
across different runs of the algorithm. However, once the
sampling parameters have been fixed, the perceptual difference
among the many possible output is negligible. A detailed
discussion of the relationship between the random sampling
and its repeatable version can be found in [9] and [19].

Finally, we give some examples of color filtering on color
pictures. Figure 8 shows the color filtering of GRASS for the
color versions of the image used for explaining the GRASS
sampling scheme in Figures 1, 2 and 3. Figure 9 shows the
results on the color version of the images of TEST5GRAY,
while Figure 10 shows other examples from COLOR-20. In
all these examples, the algorithm produces a brighter image,
with more visible details.

Table III reports the measures evaluating the image enhance-
ment performance of GRASS on COLOR-20. The values of
fi , i = 0, …, 4, have been averaged over the number of
images. The measures f0, f1, f2 have been computed on the
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Fig. 8. Results on the image used in Figures 1, 2 and 3 to explain the sampling scheme GRASS. The picture on left is the input, the picture on right is the
color filtered version. The image brightness increases from 109.8 (input image) to 132.6 (filtered image).

Fig. 9. COLOR-20: the color versions of the five images of TEST5GRAY (on top) and their GRASS filtering (on bottom).

Fig. 10. COLOR-20: some images from COLOR-20 (on top) and their GRASS filtering (on bottom).

luminance of the input and output color pictures. The measures
f3 and f4 have been computed channel by channel and then
averaged over the three channels. Table IV shows these results
broken down by groups. In addition, in Tables III and IV, we

report the results of a comparison between the performance
of GRASS and that of RSR, which, in the experiments on
TEST5GRAY, provided the results most similar to those of
GRASS in terms of f0, f1, f2. In these tests, for RSR,
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Fig. 11. COLOR-20: (a) two input images from Group 1 (top) and their GRASS filtering (bottom); for the image in the first row, the 20% of the observers
expressed their preference for the GRASS output, while the 2% preferred the original image; for the image in the second row, the 6% of the observers
preferred the filtered images, the 5% had no preference, while the remaining 11% preferred the input one. This is because of the chromaric nouse, that is
highlighed by the GRASS filtering (see the enlargements in (b)).

TABLE III

COLOR-20: EVALUATION OF GRASS AND RSR ON COLOR-20

TABLE IV

COLOR-20: EVALUATION OF GRASS AND RSR ON COLOR-20
BROKEN DOWN BY GROUPS. (a) GROUP 1. (b) GROUP 2

we considered 20 sprays per pixel and 200 samples per spray.
As well as on TEST5GRAY, also on COLOR-20, RSR and
GRASS exhibit a similar behaviour: the measures f0, f1,
f2 output by the two methods are very close to each other,
while the size of the explored image support and the range of
sampled intensities, i.e. f3 and f4 are remarkably different.

Finally, Table V reports the results of the perceptual tests
carried out on a set of 22 observers. FP, NP and OP indicate
respectively the percentage of observers preferring the filtered
image (FP), that having no preference (NP), and that preferring

TABLE V

COLOR-20: RESULTS OF PERCEPTUAL TESTS

the original image (OP). FP, NP and OP have been averaged
over the number of observers and over the number of images
per group. For Group 1, the filtered images have been preferred
by more than the 70% of the observers, while a low percentage
of people had no preferences. This means that, on average,
the GRASS filtering carried out on pictured acquired with
exposure problems, like those of Group 1, is considered highly
performing in terms of image enhancement. The 25% of the
volunteeers expressed their preference for the input images.
In some cases, this preference is due to the amplifcation of
the chromatic noise produced by GRASS on some images
of the Group 1. In fact, the pictures of COLOR-20 have
been acquired by commercial cameras with bad exposure
or under low illuminant conditions in JPEG format: due to
these issues, the image is affected by chromatic noise, that
GRASS - as well all the algorithms of the Retinex family
- tends to emphasize. Therefore, the output images may be
more noisy than the original ones, causing a preference for
the not filtered versions (see for instance Figure 11(b)). For
Group 2, that contains images taken with a better exposure
or under better light conditions, the 21% of the observers had
no preferences, while the 37% of them considered augmented
the content of the filtered images. The remaining 42% of the
observers preferred the input images. The separation between
the persons preferring the input and those preferring the output
is not very evident. In general, as reported in Table IV, for the
images of Group 2, GRASS produced a low increment of the
contrast, so that the visibility of the details remained almost
unaltered (see Figure 12 for some examples). This behavior is
typical for the family of Retinex algorithms, where if the input
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Fig. 12. COLOR-20: (a) and (b) display an image from Group2 and its GRASS filtering. For the images in (a), the 8% of the observers expressed their
preference for the GRASS output, the 8% preferred the original image, while the 6% do not have any preference; for the images in (b), the 13% of the
observers preferred the filtered images, the 5% had no preference, while the remaining 4% preferred the input one.

image is well exposed and readable, they makes almost no
changes. This is in line with the fact that the increment of the
measures f0, f1, f2 and of the perceptual CIELab distance �E
is higher for the images in Group 1 than for those in Group 2
(see Table IV).

V. CONCLUSIONS

In this work, we have presented a novel spatial color sam-
pling approach for Retinex, named GRASS. It takes inspiration
from the algorithms TR and ETR, two initial implementa-
tions of Retinex proposing an image aware spatial sampling.
GRASS introduces an alternative gradient sampling scheme,
where the neighborhood of each pixel is explored by means of
square supports with different size and orientation, and selects
from each square the pixels relevant for the Retinex compu-
tation. Relevance is defined in terms of gradient magnitude
and distance from the pixel for which the color sensation is
computed. The pixels selected from each square can be viewed
as control points of a curve scanning the square or as a 2D
sampling, so that GRASS sampling can be classified both as
a 1D and a 2D sampling approach for Retinex. In particular,
as TR and ETR, the GRASS sampling figure at any pixel
covers image egdes and, compared to ETR, is characterized
by a wider spreading around the pixel. Due to this feature, the
GRASS sampling figure presents some similarities with the
sampling figures of other bi-dimensional sampling schemes,
such as RSR and STRESS. The performance of GRASS
as image enhancer are close to those of TR, ETR, RSR,
STRESS, L-QBRIX, i.e. the color filtering of GRASS tends
to increase the brightness and the details visibility of the input
image. this makes GRASS an alternative image aware Retinex
implementation.

From the computational point of view, the sampling scheme
of GRASS has a much lower complexity than that of ETR,
hower future work will be partially devoted to the optimization
of the code. In addition, we plan to analyze possible other
edge based visual properties that can guide the Retinex image
sampling [13].
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