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Abstract

Dictionary learning has emerged as a promising alternative to the conventional hybrid coding 

framework. However, the rigid structure of sequential training and prediction degrades its 

performance in scalable video coding. This paper proposes a progressive dictionary learning 

framework with hierarchical predictive structure for scalable video coding, especially in low 

bitrate region. For pyramidal layers, sparse representation based on spatio-temporal dictionary is 

adopted to improve the coding efficiency of enhancement layers with a guarantee of reconstruction 

performance. The overcomplete dictionary is trained to adaptively capture local structures along 

motion trajectories as well as exploit the correlations between the neighboring layers of 

resolutions. Furthermore, progressive dictionary learning is developed to enable the scalability in 

temporal domain and restrict the error propagation in a closed-loop predictor. Under the 

hierarchical predictive structure, online learning is leveraged to guarantee the training and 

prediction performance with an improved convergence rate. To accommodate with the state-of-the-

art scalable extension of H.264/AVC and latest High Efficiency Video Coding (HEVC), 

standardized codec cores are utilized to encode the base and enhancement layers. Experimental 

results show that the proposed method outperforms the latest scalable extension of HEVC and 

HEVC simulcast over extensive test sequences with various resolutions.
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I. Introduction

With the rising demands of video transmission over heterogeneous networks and clients, 

scalable video coding (SVC) has been widely considered to adapt to varying network 

conditions and terminal capabilities [1], [2]. In the past two decades, state-of-the-art 

schemes, e.g. H.264/AVC scalable extension [3] and Barbell-lifting wavelet-based SVC [4], 

have been studied and standardized to achieve this goal. Recently, SHVC [5], the scalable 

extension of High Efficiency Video Coding (HEVC [6]) standard, has been finalized to 

minimize coding complexity and bridge the gap between non-scalable and scalable 

implementations for practical deployment. It enables multiple single-layer HEVC codec 

cores with inter-layer reference picture processing modules to efficiently achieve scalable 

functionality.

In general, temporal and spatial scalability are fundamental topics for scalable video coding. 

Inspired by wavelet-based schemes for image coding (i.e., EZW [8], SPIHT [9] and EBCOT 

[10]), subband/wavelet methods have been extensively adopted for scalable video coding. 

For video sequences, three dimensional wavelet decomposition can be achieved by 

extending 2-D spatial wavelet transform along the block-based motion information [11]–

[13]. However, separable DWT in these methods fails to match motion trajectories, as 

perfect reconstruction cannot be guaranteed for block-based motion at subpixel accuracy. 

Thus, motion compensated temporal filtering (MCTF) was developed to leverage lifting 

structure of wavelet transform for motion alignment. In MCTF, lifting-based temporal 

transform can be directly applied to the original frames before spatial transform for desirable 

approximation performance [14]–[17] or performed on the subbands after wavelet 

decomposition to address specific objectives related to spatial scalability [18]–[21]. 

Furthermore, interlayer correlations were exploited with in-scale motion compensation in 

the spatial domain [22] to jointly consider the low-pass signals from lower-resolution layer 

and compensated high-pass signals within the same resolution layer for reconstruction. 

However, these methods still need to transmit block-level motion information in addition to 

the wavelet coefficients.

On the other hand, scalable extension of conventional hybrid motion compensation-discrete 

cosine transform (MC-DCT) framework has been widely studied for scalable video coding. 

Pyramidal layered methods and hierarchical B pictures are the state-of-the-art techniques to 

enable spatial and temporal scalability, respectively. Hierarchical B pictures [23] were first 

developed for H.264/AVC and its scalable extension, which adopted close-loop control to 

progressively refine frames at the finer layer of scalability without requiring motion-

compensated update. In comparison to MCTF, it enables flexible reference structures with 

restricted propagation of errors and improved compression efficiency in the context of 

block-based motion [24]. To support multidirectional motion estimation, fully scalable 

motion model (SMM [25]) was developed to incorporate with the hierarchical B frame and 
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rate-distortion optimization. Inheriting the properties of H.264/AVC and its scalable 

extension, HEVC naturally leverages hierarchical B pictures to support the temporal 

scalability. To achieve spatial scalability, pyramid methods were considered to reconstruct 

higher resolution layers from the lower resolution one with upsampled texture and encoded 

motion information [26]. They are typically redundant in comparison to the original video 

sequences due to the overcomplete pyramid decomposition. To improve reconstruction, 

upsampling performance was improved with 2-D Wiener interpolation filter [27] and inverse 

filtering of down-sampled signals optimized for least-square errors [28]. To integrate with 

HEVC, Shi et al. [29] designed quadtree-based and learning-based interlayer prediction 

mode to support single-loop and multi-loop solutions for spatial scalability. Furthermore, 

Kang et al. [30] considered a cascaded two-layer representation of prediction residuals in 

HEVC, where sparse representation is adopted to capture regular patterns of residuals 

derived by DCT in a sequential manner. To optimize inter-layer prediction, Han et al. [31] 

formulated an estimation-theoretic framework that optimized the conditional distribution for 

relevant information from base and enhancement layers. In [32], empirical rate-distortion 

optimization coupling quantization-rate and quantization-distortion models was developed 

for spatially scalable video coding. Though optimized for upsampling performance, spatial-

temporal correlations are not sufficiently exploited with conventional rigid motion 

compensation schemes.

Recently, dictionary learning has emerged as an alternative solution to the upsampling 

problem in the hybrid framework, where trained overcomplete dictionary improves the 

reconstruction from the low-quality visual data based on spatial-temporal correlations. 

Inspired by sparse representation based on the patch-based overcomplete dictionary [33], 

example-based approach [34] was developed for super-resolution based reconstruction for 

video coding. In [35], enhanced skip and direct modes were advanced to integrate spatial 

super-resolution and interpolation with H.264 and HEVC standard. Incorporating primal 

sketch priors [36], Xiong et al. [37] proposed a sparse spatio-temporal representation for 

prediction and reconstruction of frames. Furthermore, online learning [38] has been adopted 

to improve the convergence rate of spatio-temporal dictionary learning. Although dictionary 

learning based methods have been demonstrated competitive with conventional methods in 

terms of rate-distortion performance and visual quality, its sequential training and prediction 

structure is too rigid for scalable video coding.

This paper proposes a novel framework based on progressive dictionary learning for scalable 

video coding, especially in low bitrate regions. For pyramidal layers, sparse representation 

based on spatio-temporal dictionary is adopted to improve the coding efficiency of 

enhancement layers (ELs) with a guarantee of reconstruction performance. The 

overcomplete dictionary is trained to adaptively capture local structures along motion 

trajectories as well as exploit the correlations between neighboring layers of resolutions. 

Furthermore, progressive dictionary learning is developed to enable the scalability in 

temporal domain and restrict the error propagation in the close-loop predictor. Under the 

hierarchical predictive structure, online learning is leveraged to guarantee the training and 

reconstruction performance with an improved convergence rate.
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To be concrete, spatio-temporal dictionary learning is adopted for inter-layer prediction, 

which exploits the spatio-temporal consistency along motion trajectory and inter-layer 

correlations between base and enhancement layer. To enable full scalability for video 

coding, two hierarchical predictive structures for progressive dictionary learning are 

proposed to consider local and long-term motion. In each temporal layer, non-reference 

frames in spatial EL are reconstructed based on the spatio-temporal dictionary progressively 

updated with the reference frames and reconstructed non-reference frames. This hierarchical 

structure can adaptively capture varying structures along the motion trajectory in 

reconstruction. In comparison to the previous work [37], the proposed method contributes to 

progressive dictionary learning for scalable video coding, where generation of training set 

with motion compensation, training process and dictionary-based prediction are improved 

and optimized to enable flexible learning and predictive structures for spatial and temporal 

scalability.

To validate the efficacy of this work, the proposed framework is integrated with standardized 

codec cores to accommodate with the state-of-the-art scalable schemes like SHVC and 

scalable extension of H.264/AVC. Experimental results show that the proposed scheme 

outperforms SHVC and HEVC simulcast over extensive test sequences with various 

resolutions and is competitive with HEVC in the low bit-rate region.

The rest of this paper is organized as follows. Section III presents the proposed framework 

for scalable video coding with spatio-temporal dictionary learning. In Section IV, 

progressive dictionary learning is formulated to enable spatial and temporal scalability. 

Experimental results are shown in Section V for validation. Finally, we conclude the 

contributions and discuss future work in Section VI.

II. Preliminaries

Dictionary learning has been develop to improve the upsampling performance in the hybrid 

framework. Consider that each GOP is divided into the first L reference frames (RFs) XR 

and remaining non-reference frames (NRFs) ZNR for separate coding. Here, XR are encoded 

at their original resolution and utilized to train the spatio-temporal overcomplete dictionary 

to reconstruct the high-frequency details from downsampled version of ZNR. For video 

sequences, adaptive regularized dictionary learning [37] was developed to make spatial-

temporal sparse representation based on dictionary pairs for spatial structures along motion 

trajectory.

minDL, DH, αn
∑

n = 1

N
∑
t = 1

T 1
2‖Zl

n − DLαn
(t)‖2

2 + λi‖αn
(t)‖0 + ‖DHαn

(t) − Rn
(t)Xh‖2

2 , (1)

where {DL, DH} is the trained dictionary pair for low- and high-frequency components, αn
(t)

is the sparse representation vector and Rn
t  is the operator indicating block-based motion 

compensation. To maintain the spatio-temporal consistency along the motion trajectory, 
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dictionary pairs are trained based on 2-D patches and 3-D volumes, respectively. Since 

spatial components like edges are crucial for reconstruction performance based on dictionary 

learning, video sequences are decomposed into primitive and non-primitive regions. 

Consequently, primitive patches are extracted to represent multi-scale geometry of single 

frames, i.e. edges, ridge and corners. Introducing primal sketch priors, 2-D dictionary pairs 

are developed to capture local geometry of single frames based on the primitive patches with 

low dimensionality. On the other hand, non-primitive volumes are generated to maintain 

local spatio-temporal consistency. 3-D dictionary pair is trained for each GOP based on the 

3-D volumes from reference frames. For local consistency, 3-D volumes are obtained by 

pairing a patch and its motion compensated version from the reference frames. Motion 

compensation frame interpolation is adopted with overlapped block motion compensation to 

obtain estimated reference frames for volume generation. For training and reconstruction, K-

SVD is incorporated to iteratively optimize the dictionary and sparse representation vector, 

respectively.

In adaptive regularized dictionary learning, dictionary is trained from the first L = 3 RFs on 

a GOP basis and NRFs are reconstructed in a sequential manner based on the trained 

dictionary. This fact implies that it cannot naturally support spatial and temporal scalability. 

Recognizing its restriction in scalable video coding, this paper proposes progressive 

dictionary learning with hierarchical predictive structures in spatial and temporal 

dimensions. Flexible hierarchical predictive structures are developed for 3-D volume 

generation, dictionary learning and inter-layer prediction.

III. Scalable Video Coding With Hierarchical Predictive Structures

This section provides the proposed framework with hierarchical predictive structures for 

scalable video coding. Dictionary-based sparse representation is adopted to improve the 

prediction and reconstruction in the proposed framework. For spatial scalability, inter-layer 

prediction is achieved based on spatio-temporal dictionary learning to exploit motion 

information. Hierarchical predictive structures considering local and long-term motion are 

developed to enable temporal scalability with a guaranteed reconstruction performance.

A. The Proposed Framework

Fig. 1 depicts the proposed framework for scalable video coding, where sparse 

representation based on spatio-temporal dictionary learning is progressively leveraged for 

reconstructing the enhancement layer (EL). In comparison to conventional pyramidal 

layered methods, progressive dictionary learning is proposed to improve EL reconstruction 

by reducing required bits for HF details. For each GOP, the first L frames are selected as 

reference frames (RFs) XR, which are encoded at their original resolution and utilized to 

train the spatio-temporal overcomplete dictionary for EL reconstruction in the deocder side. 

In this paper, L is set to 2 to facilitate dyadic decomposition of each GOP. The base layer 

(BL) is generated by downsampling the group of pictures with a set of Gaussian filters. 

Here, we define ZBL as the downsampled non-reference frames in BL. Standard codec cores 

are separately employed for XR and ZBL to produce a standardized bitstream for network 
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transmission, where motion information within and across GOPs is exploited to represent 

structures of different scales along motion trajectories in BL and EL.

In the decoder side, the non-reference frames (NRFs) are reconstructed from the decoded 

BL and EL. Let us denote X̂
BL and ẐBL the downsampled decoded RFs and NRFs in BL, 

respectively. Due to the Gaussian filter, reconstruction of NRFs in EL can be considered as a 

combination of signals for the low-frequency (LF) and high-frequency (HF) components. In 

the proposed framework, the LF component Z̃
BL can be easily obtained by scaling up ẐBL, 

while the HF details Z̃
EL are inferred by inter-layer prediction based on the trained 

dictionary pairs over the scale-up RFs X̃
BL from BL and corresponding X̂

EL in EL. To 

maintain spatio-temporal consistency, 2-D patches from primal sketches are extracted for 

edges and textures, and 3-D volumes are obtained by concatenating patches from non-

primitive regions to represent local motion. Specifically, concatenation for 3-D volumes 

involves patches from current frame for prediction and the estimation of its succeeding 

frame. The sparse representation of Z̃
EL is made from Z̃

BL based on the trained dictionary 

pair (DBL, DEL).

Furthermore, progressive dictionary update is proposed to achieve scalable functionality in 

the temporal domain. For each temporal layer, its spatio-temporal dictionary is progressively 

updated based on the inter-layer prediction from previous temporal layers for improved 

reconstruction performance. Inspired by hierarchical B-pictures in hybrid framework, two 

hierarchical predictive structures are developed to guarantee the causality and availability of 

RFs across multiple temporal layers. To balance the performance and efficiency of 

dictionary learning, online learning is adopted to update the dictionaries for each temporal 

layer with enhanced convergence rate.

The proposed framework can benefit scalable video coding in two aspects. First, inter-layer 

prediction can be improved with the spatio-temporal dictionary learning by reducing bits for 

HF details required in the conventional schemes. Second, it enables a flexible framework 

with competitive performance in comparison to the dictionary learning based video coding 

schemes. In Section III-B and III-C, we elaborate inter-layer prediction and hierarchical 

predictive structure, respectively. Section IV formulates progressive dictionary learning for 

the proposed framework.

B. Inter-Layer Prediction for Spatial Scalability

In this section, we develop inter-layer prediction based on spatio-temporal dictionary 

learning for the two-layer scalable architecture. Inter-layer prediction exploits the 

correlations between BL and EL to reconstruct the NRFs in EL, where 2-D primitive patches 

and 3-D non-primitive volumes are adopted to capture local geometry and maintain spatio-

temporal consistency along motion trajectory, respectively. We assume that each patch/

volume is obtained by linearly combining a small subset of patches/volumes with 

coefficients αn ∈ ℝM for the n-th one. Here, reconstruction is based on overlapped patches/

volumes to improve reconstruction performance with an acceptable efficiency.

1) 2-D Primitive Patches for Local Geometry—For primal sketches, 2-D patches are 

represented based on the instinctive features of block-based structures classified by K 
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Gaussian filters. To capture local geometry, a set of K 2-D dictionary pairs { Dbl
k , Del

k }, 1 ≤ k 

≤ K are generated by clustering the 2-D primitive patches extracted along the primal 

sketches. Given the scale-up NRFs Z̃
EL from BL and trained dictionary pair { Dbl

k , Del
k }, the 

lost HF details for EL are recovered by

{α∼n, z∼n
h} = arg min

{αn
k, zn

h}
∑

n = 1

N 1
2‖zn

l − Dbl
k αn

k‖2
2 + λ‖αn

k‖0 + ‖Del
k αn

k − zn
h‖2

2 , (2)

where zn
l  is the n-th patch extracted from Z̃

BL, zn
h is the corresponding prediction for Z̃

EL, 

and λ is a regularization parameter. In Eq. (2), the first and third terms evaluate the 

approximation and reconstruction error for the scale-up (LF) and HF frame, respectively, 

and the second term restricts the number of coefficients to maintain sparsity. Z̃
EL is 

reconstructed by collecting z∼n
h that are obtained with joint optimization over patches from 

the scale-up (LF) BL and EL.

2) 3-D Non-Primitive Volumes for Spatio-Temporal Consistency—In non-

primitive regions, 3-D volumes are predicted by block-matching based motion estimation to 

maintain the consistency of the motion trajectory based on incomplete visual patterns. Given 

trained 3-D dictionary pair {DBL, DEL}, the minimization function in Eq. (2) can be further 

extended to video sequences by considering the spatio-temporal consistency along motion 

trajectory.

f (αn, zn
h, DEL, DBL) = min

zn
h, αn

∑
i, j

∑
t

1
2‖ℛn z∼n

l − DBLαn‖2
2 + λ‖αn‖0 + ‖DELαn − ℛnzn

h‖2
2

(3)

where αn(i, j, t) denotes the identical sparse coefficients for dictionaries, ℛn(i, j, t) is a 

projection matrix extracting a patch at time t and location (i, j). Under the assumption of 

sparse priors, sparse representation αn is derived based on the 3-D volumes from scale-up 

frame Z̃
BL to reconstruct the HF details zn

h, as shown in Fig. 2. Considering motion 

trajectory, 3-D volumes are obtained by concatenating the patches from the non-primitive 

Z̃
BL and its motion compensated estimation from RFs and reconstructed NRFs.

3) Motion Compensation for Volume Generation—To accommodate standardized 

codecs like SHVC and scalable extension of H.264, bidirectional motion estimation and 

compensation is adopted to generate 3-D volumes for spatio-temporal consistency of local 

structures. Given current frame to be reconstructed, its own patches z∼n
l  and corresponding 

motion-compensated estimation zn
l  are concatenated to construct 3-D volumes. Since the 

spatio-temporal consistency tends to be maintained in both BL and EL, the motion 
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estimation and compensation in EL is performed based on the motion vector derived in BL. 

For each NRF ẐBL in BL motion compensated frame interpolation (MCFI) is leveraged to 

obtain its estimation Z̄BL from its preceding and succeeding reconstructed frames ℱBL′  and 

ℱBL″ . Here, ℱBL could be RFs or reconstructed NRFs complying with decoding order.

Given arbitrary matching block zi, j locating at (i, j), its candidate motion vector v is 

evaluated for motion estimation in terms of SAD. Without loss of generality, we first 

consider forward motion vector. To accommodate with HEVC, the optimal forward MV is 

recursively searched in a hierarchical manner for zi, j and all its sub-blocks with sizes 

ranging from 64 × 64 to 4 × 4. Here, search window is adaptive with the size of (sub-)blocks 

to balance performance and complexity. Similarly, the backward MVs could also be 

acquired.

When MVs are obtained, ZB̄L is estimated with overlapped block motion compensation 

(OBMC [40]) to reduce unnatural artifacts. OBMC utilizes the MVs to determine a group of 

neighboring blocks for weighted estimation. The pixel In(i′, j′) of zi, j in the n-th frame can 

be esitmated by weighting the matched blocks (zi, j and four adjacent blocks) with derived 

MVs in the n′-th frame.

In(i′, j′) = ∑
p = − 1

1
∑

q = − 1

1
wp, q (i′, j′) In′ (i″, j″), (4)

where wp,q (s) is the normalized weights for blocks and (i″, j″) = (i′, j′) + v(i + p, j + q) is 

determined by the MV v(i + p, j + q) for the block zi + p, j + q. Furthermore, the weights wp,q 

can be adjusted based on the reliability of MVs in compensating current block.

wp, q (i′, j′) =
Φi, j(vi + p, j + q)wp, q(i′, j′)

∑s = − 1
1 ∑t = − 1

1 Φi, j(vi + s, j + t)ws, t(i′, j′)
(5)

Here, Φi, j (vi + p, j + q) is the reliability of MV for zi + p, j + q in proportion to zi, j, which is 

defined as the ratio of the prediction error εi, j of current block zi, j using current MV vi, j 
against the one using neighboring MV vi + p, j + q.

Φi, j(vi + p, j + q) =
εi, j(vi, j)

εi, j(vi + p, j + q)

Using OBMC, z̄i, j in Z̄
BL is estimated by comparing the weighted estimates derived by 

forward and backward MVs in the sense of SAD.

It is worth mentioning that the selection of preceding and succeeding frames for motion 

estimation and compensation could be adaptive with the decoding (reconstruction) order of 
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frames within or across GOPs. In Section III-C, we extend the motion estimation and 

compensation scheme to accommodate the hierarchical predictive structures for temporal 

scalability.

4) Equivalency to Inter-Layer Motion—Contrary to conventional scalable video coding 

framework, the proposed method does not explicitly perform inter-layer motion. In 

progressive dictionary learning, the pairs of 3-D trained dictionaries actually maintain a 

projection from BL to EL compensated with local motion. Let us denote ℘i, j,t the projection 

operator for a patch at time t and location (i, j). Given arbitrary patch or volume, its motion 

vector vi, j, t for BL can be determined based on RFs to minimize metrics like SAD. When 

vi, j,t is employed in EL based on the assumption of sparse priors, the equivalent motion 

vector in EL can be derived as ℘i, j, tvi, j, t.

The proposed progressive dictionary learning method implicitly makes motion compensated 

prediction in EL reconstruction for NRFs. For each GOP, dictionary pairs are initially 

trained based on the patches and volumes from RFs. Consequently, reconstruction of each 

volume in EL for NRFs is based on the representation vector α derived by approximating 

the corresponding volume in BL for NRFs with a combination of volumes in BL for RFs. 

Thus, the presentation vector explicitly represents the motion for the specific patch from 

RFs. Since the dictionary pair is updated progressively, current frame tends to be estimated 

from the decoded frames. This fact implies that motion compensated prediction is implicitly 

performed in the EL construction based on the trained dictionary pair. Given the BL for RFs 

and NRFs, The projection operator ℘i, j, t explicitly maps the base layer motion with the 

dictionary pair. In the proposed method, ℘i, j, t is adaptively trained based on the training set.

C. Hierarchical Predictive Structure for Temporal Scalability

In previous dictionary learning based video coding schemes, NRFs are reconstructed in a 

sequential manner based on the dictionary trained from RFs. However, hierarchical B-

pictures for hybrid framework cannot be directly employed, as 3-D volumes from each NRF 

are generated with MCFI based on previously reconstructed NRFs. In this section, we 

develop hierarchical predictive structures (HPS) that enable temporal scalability for 

progressive dictionary learning considering local and long-term motion information.

As shown in Fig. 1, it is a dominant problem to reconstruct NRFs ẐEL using their sparse 

representation priors along the temporal dimension in addition to local structures between 

adjacent frames. The coding performance of ELs can be improved with the trained 

dictionaries that capture regular features to maintain spatio-temporal consistency along 

motion trajectories. To allow temporal scalability, we propose hierarchical prediction of 

NRFs based on the dictionary derived from the RFs and the reconstructed NRFs in the 

previous temporal layers. Under the proposed HPS, NRFs in each temporal layer can be 

independently reconstructed from RFs and NRFs in previous temporal layers. Furthermore, 

sequential learning can be leveraged for each temporal layer to update dictionaries based on 

previously reconstructed NRFs, so that the reconstruction performance of NRFs, especially 

those are distant from RFs in the GOP, can be improved.
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1) Hierarchical Predictive Structure for Local Motion—Couples of frames are 

generated by concatenating decoded RFs and NRFs for spatio-temporal dictionary learning 

in a dyadic case. To consider local motion, we propose HPS-LO to extract 3-D volumes 

from two adjacent frames by concatenating the most matched patches in two adjacent RFs 

along the motion trajectory. RFs have the highest priority in encoding and decoding, which 

constitute the temporal BL T0 and represent the coarsest supported temporal resolution. 

Subsequently, it can be refined by inserting one or more temporal EL for finer temporal 

levels. Each couple of adjacent frames is served as one B-picture to support refined 

prediction and dictionary update. Given the GOP with a size of 2Λ, it can be divided into Λ 
temporal layers: one BL and Λ−1 ELs. Denote T0, ⋯, TΛ−1 the Λ temporal layers. For 

arbitrary 0 ≤ κ < Λ, Tκ produces an independently decodable bitstream with a ratio (2κ−Λ+1) 

of the full frame rate for the GOP. To allow temporal scalability, motion-compensated 

prediction is restricted to reconstructed frames with a temporal layer identifier κ′ ≤ κ. Fig. 

3(a) and (b) show the hierarchical predictive structures for a GOP with 16 frames under the 

hybrid MC-DCT and proposed framework.

2) Hierarchical Predictive Structure for Long-Term Motion—Besides HPS-LO, we 

propose HPS-LT to consider long-term motion across multiple GOPs. In HPS-LT, RFs and 

NRFs with corresponding positions in two adjacent GOPs are coupled for spatio-temporal 

dictionary learning. Fig. 3(c) provides an example for two GOPs with size 16. Given the 

GOP size 2Λ, the trained dictionary tends to represent the motion with a gap of 2Λ frames. 

The two adjacent GOPs can be reconstructed simultaneously with the hierarchical predictive 

structure for dictionary learning, where the required number of RFs can be reduced to one. 

Analogous to HPS-LO, the two GOPs can be divided into Λ+1 temporal layers for 

scalability. For temporal ELs Tκ, its 2κ frames can be independently reconstructed to update 

dictionaries for Tκ+1.

In temporal layer Tκ, HPS-LO and HPS-LT perform motion estimation and compensation 

based on the RFs and reconstructed NRFs from T0, ⋯, Tκ−1. In comparison to previous 

dictionary learning methods, each temporal layer can be progressively decoded and 

reconstructed for scalable frame rate. The training set is enlarged for each temporal layer by 

extracting volumes from couples of reconstructed NRFs. The atoms of the 3-D spatio-

temporal dictionary are progressively updated from T0 to TΛ−1 (for HPS-LO) or TΛ (for 

HPS-LT). Both alternatives are desirable for high-definition applications, as enriched prior 

knowledge can facilitate NRF reconstruction to achieve high-fidelity visual quality and 

improved rate-distortion performance. For each temporal layer, spatial scalable functionality 

is preserved using inter-layer prediction, as spatio-temporal dictionary learning is only 

performed on the reconstructed NRFs from previous temporal layers.

In summary, HPS-LO tends to achieve better reconstruction performance by considering the 

local motion between two adjacent frames. However, HPS-LO cannot provide arbitrary 

frame rate as the traditional hierarchical B-pictures, as it requires at least two RFs for each 

GOP and an increment proportional to two NRFs. By contrast, HPS-LT would degrade the 

reconstruction of ELs by only considering long-term motion between GOPs. In temporal 

domain, it is fully scalable, as only one RF is necessary for each GOP.
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IV. Progressive Dictionary Learning With Hierarchical Prediction Structure

In this section, we elaborate the progressive dictionary learning with HPS for spatial and 

temporal scalability, including spatio-temporal dictionary learning for inter-layer prediction 

and progressive learning for temporal dictionary update. Integrating these methods, practical 

algorithm for progressive dictionary learning is developed for scalable video coding.

A. Spatio-Temporal Dictionary Learning for Inter-Layer Prediction

Fig. 4 illustrates spatio-temporal dictionary learning for inter-layer prediction. To exploit 

correlations along the motion trajectory, each frame in BL is segmented into a primitive 

layer, a non-primitive coarse layer, and a non-primitive smooth layer [37]. 2-D patches and 

3-D volumes are collected from the primitive and non-primitive layers for local geometry 

and spatio-temporal consistency in the video sequences, respectively. In the decoder side, 

X̂
R are used to learn a set of K 2-D sub-dictionary pairs ( Dbl

k , Del
k ), k = 1, ⋯, K, and a 3-D 

dictionary pair (DBL, DEL) for EL reconstruction based on correlations across different 

spatial layers.

2-D sub-dictionary pairs are trained to capture low-dimensional local geometry like edge 

segments and textures in a multi-scale manner. The training set is generated by extracting 2-

D patches at the same positions from corresponding frames in BL and EL. In training, 2-D 

primitive patches are clustered with the edge orientation in a scale space to specify such 

local geometry. A series of K Gaussian filters with various scales and orientations are 

introduced to record the maximum filter response and label the primitive patches along the 

primal sketch. For the k-th cluster 𝒮bl
k  and 𝒮el

k , (Dbl
k , Del

k ) is constructed with ℓ2,1 optimization.

min
Dbl

k , Del
k , ak

‖𝒮bl
k − Dbl

k αk‖2
2 + ‖𝒮el

k − Del
k αk‖2

2 + ‖αk‖1, (6)

Here, αk is the sparse representation vector for the k-th cluster.

To further exploit temporal correlations in inter-layer prediction, spatio-temporal dictionary 

pair (DBL, DEL) is trained to represent observed visual patterns in non-primitive regions. To 

maintain the spatio-temporal consistency, 3-D non-primitive volumes are extracted along the 

motion trajectory. Similar to inter-layer prediction, motion-compensated frame interpolation 

is adopted to generate 3-D volumes by concatenating decoded patches and its matched 

version with bidirectional motion estimation from RFs. DBL and DEL are jointly optimized 

over the training set of N volumes.

minDBL, DEL, αn
∑

n = 1

N 1
2‖xn

BL − DBLαn‖2
2 + λ‖αn‖0 + ‖DELαn − ℛnxn

EL‖2
2

(7)
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Here, xn
BL and xn

EL are volumes from the RFs and reconstructed NRFs. In optimization, 

iterative batch algorithms like K-SVD [41] would suffer from a high computational 

complexity and degraded coding efficiency due to minimizing the empirical cost over the 

entire training set. To achieve an enhanced convergence rate with a guarantee of 

approximation error, stochastic approximation [42] is leveraged to directly minimize the 

expected cost with dynamical update based on the randomly selected training data.

min
DBL, DEL, αn

t ∑
n = 1

N
∑
t = 1

τ 1
2‖xn

BL − DBLαn
t ‖2

2 + λ‖αn
t ‖0 + ‖DELαn

t − ℛn
t xn

EL‖2
2

(8)

where αn
t  is the representation coefficients at the t-th iteration.

Furthermore, we demonstrate the consistency for inter-layer prediction based on the trained 

dictionary. Under the two-layer architecture, the reconstructed NRFs with HF details from 

EL can be represented based on the trained dictionary pair.

ZEL = Z∼BL + Z∼EL = (DBL + DEL)α (9)

In Proposition 1, we show that the approximation error ||ẐEL−(DBL + DEL)α||2 is related to ||

Z̃
BL−DBLα||2 for BL.

Proposition 1—Given the trained dictionary DBL and DEL for the base and enhancement 
layer, with sufficient sampling, the approximation error for the reconstructed NRFs with EL 
can be upper-bounded by the one for BL.

Proof: Please refer to Appendix A.

Proposition 1 demonstrates that the consistency for inter-layer prediction can be maintained 

with the proposed dictionary learning method. It implies that the enhancement layer can be 

reconstructed based on the sparse representation coefficients derived from the trained 

dictionary DBL for base layer. Since the scaled-up base layer Z̃
BL and DBL are known in the 

inter-layer prediction, the reconstruction error could be minimized based on the sparse 

representation.

B. Progressive Learning for Temporal Dictionary Update

Fig. 5 depicts the progressive dictionary learning procedures for HPS. Decoded RFs X̂R are 

used to train the initial dictionary pair ( DBL
0 , DEL

0 ). Thus, spatio-temporal sparse 

representation can be made for NRFs ZBL
0  in BL based on the initial 3-D dictionaries DBL

0

and DEL
0 . Subsequently, the reconstructed NRFs ZEL

0  in EL are decomposed to generate 3-D 

non-primitive volumes and the dictionary pair is updated for predicting the enhancement 
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layer T1. The reconstructed ZBL
0  and ZEL

0  are taken as reference frames to make motion 

estimation and compensation. MCFI is performed within the frames (RFs and NRFs) 

obtained from T0 and T1 to generate the training set of 3-D volumes by concatenating the 

motion-compensated frames ZBL
0  and ZEL

0 . As a consequence, the reconstructed NRFs in a 

coarser temporal layer Tκ are utilized as reference frames to sequentially update the 

dictionary and predict non-reference pictures in a finer layer Tκ+1. To guarantee the 

efficiency of dictionary learning, online dictionary learning is leveraged to recursively derive 

the dictionaries DBL
κ + 1 and DEL

κ + 1 with newly-added volumes in Tκ.

DBL
κ + 1 = ∏

𝒞
[DBL

κ − δt ∇Dl(zκ, Dκ)], (10)

where  is a convex constraint set to prevent D from being arbitrarily large by restraining the 

ℓ2-norm of dictionary atoms dm, 1 ≤ j ≤ M not greater than one and 

l(zκ, Dκ) = minα
1
2‖zκ − Dκα‖2

2 + λ‖α‖1 is the regularized approximation error for the κ-th 

temporal layer. When DBL
κ + 1 is obtained, the corresponding dictionary DEL

κ + 1 for EL is 

derived by minimizing the representation error minDEL
{‖𝒮EL − DELα‖

F
2 } with a row full-

rank coefficient matrix α.

DEL = 𝒮ELα+ = 𝒮ELαT(ααT)−1
(11)

Eq. (11) implies that the approximation error led by the progressive dictionary learning tends 

to depend on the trained dictionary for base layer. For simplicity, we use Dκ to represent the 

updated dictionary DBL
κ  for BL based on the volumes from the κ-th reconstructed EL.

The progressive dictionary update can improve the reconstruction performance with the 

hierarchical predictive structure. For each temporal layer, volumes from reconstructed NRFs 

would enrich the training set for progressive update of dictionary basis. This fact implies that 

the sparse priors tend to approach the actual statistics of the GOP. Moreover, online 

dictionary learning can aggregate the structures in current temporal layer and propagate the 

accumulated results from all the previous layers. Thus, reconstruction of NRFs in higher 

temporal layer can be refined with a warm restart to reduce the required number of iterations 

for convergence. As a support, we demonstrate in Proposition 2 that the approximate cost 

f t(D
κ) = 1

t ∑n = 1
t l(xn

(κ), Dn
κ) for the progressive dictionary learning asymptotically converges 

to the expected cost f (D*) = ∫x l (x,D*) dp (x) w.r.t. the actual distribution p(x) of the GOP 

consisting of XR and ZNR.
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Algorithm 1

Progressive Dictionary Learning Algorithm

1: Input: Decoded reference pictures X̂R in BL and EL, decoded NRFs in BL, and regularization parameter λ.

2: Extract i.i.d samples x0 ∈ ℝM×N of distribution p(x) from X̂R.

3: Initialization: D0.

4:
Inter-layer reconstruction: Recover the frames ZEL

(1) in T0 from X̂R using D0.

5: for κ = 1 to Λ−1 do

6:  Progressive dictionary learning:

7:
  D0

k = Dk − 1.

8:  for t = 1 to τ do

9:
  Draw xt

(κ) from the pictures ZEL
(κ)  in the κ-the temporal layer in EL Tκ.

10:   Sparse coding: LARS-Lasso algorithm to solve Eq. (14).

11:
  Dictionary update: Block-coordinate descent with warm restart Dt − 1

κ  to optimize Eq. (13).

12:  end for

13:
  Dκ = Dτ

κ.

14:
 Inter-layer reconstruction: Recover the frames ZEL

(κ + 1) in Tκ from ZBL
(κ + 1) using Dκ.

15: End for

Proposition 2—In progressive update for dictionary DBL, given volumes z randomly 
selected from reconstructed frames, the divergence between the approximate cost fk (Dk) 

and expected cost f (D) converges almost surely to zero with sufficient sampling.

Proof: Please refer to Appendix B.

Proposition 2 implies that the progressive dictionary learning can asymptotically achieve the 

equivalent approximation performance in comparison to the methods over the entire GOP. 

Since the dictionary is updated for the reconstructed frames in each temporal layer in an 

online manner, the efficiency of dictionary learning can be improved for video sequences 

with large-scale time-varying structures.

C. Main Algorithm

Algorithm 1 elaborates the progressive dictionary learning. Denote { x1
(κ), ⋯, xNκ

(κ)} the 

training set of 3-D volumes for the temporal layer Tκ, 0 ≤ κ ≤ λ−1. From BL T0 to the 

highest EL Tλ−1 in temporal domain, 3-D volumes are randomly and independently sampled 

from the underlying distribution p(x) to constitute the training set. Frames located in the 

highest temporal layer Tλ are always coded as non-reference frames. The dictionary D0 is 
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initialized with the samples extracted from RFs X̂
R in BL. Given arbitrary temporal layer 

Tκ, the progressive dictionary learning is iteratively performed to address the ℓ2,1 joint 

optimization problem defined in Eq. (12), where recursive optimization is formulated to 

make sparse coding for frames in current layer based on the trained dictionary Dκ and 

update the dictionary atoms to fit the newly-added training data.

f t(Dt) = min
D ∈ C, αn

t ∈ ℝM
1
t ∑

n = 1

t 1
2‖xn − Dαn

t ‖2
2 + λ‖αn

t ‖1 (12)

At each iteration t of the inner loop (Step 7–11) in Algorithm 1, one training example xt
(κ) is 

randomly picked from XR
κ  for current temporal layer, which is enlarged with reconstructed 

NRFs at the outer loop (Step 12–13) of previous iteration. Given the trained dictionary 

Dt − 1
κ ∈ ℝN × M, the sparse representation vector αt ∈ ℝM of xt

(κ) is optimized for the ℓ1-

regularized linear least-squares problem in Eq. (14). Here, the optimization problem is 

solved by a Cholesky-based LARS-Lasso algorithm for high accuracy and fast 

implementation [43], [44].

Subsequently, the ℓ2-constrained least-squares problem with the projected constraint set  is 

solved through the block-coordinate descent with a warm restart Dt − 1
κ . The atoms of Dt

κ are 

iteratively updated with the parameter-free estimation in a column-by-column manner.

Dt
κ = arg minD ∈ 𝒞

1
t ∑

n = 1

t 1
2‖xn

(κ) − Dαn‖2
2 + λ‖αn‖1 . (13)

αt = arg min
α ∈ ℝM

1
2‖xt

(κ) − Dt − 1
κ α‖2

2 + λ‖α‖1, (14)

In Fig. 5, we provide an example for the progressive dictionary learning with 4 dyadic 

hierarchical levels. A group of pictures (GOP) is decomposed into two reference frames 

(RFs) and the other non-reference frames (NRFs). NRFs are progressively reconstructed 

from the RFs of the previous and current GOP with hierarchical predictive structure HPS-

LO. In each temporal layer, the 3-D dictionary pair is updated based on the reconstructed 

NRFs from previous layer.
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V. Experimental Results

A. Implementation

For validation, we integrate the proposed framework with the latest SHVC Test Model 7 

(SHM 7 [46]), where progressive dictionary learning is proposed to reconstruct NRFs in EL 

from BL based on RFs. The proposed scheme is evaluated over extensive test sequences 

with the YUV 4:2:0 format and various resolutions including CIF (352 × 288), WQVGA 

(416 × 240), standard definition (832 × 480), full high definition (1920×1080) and WQXGA 

(2500×1600). In evaluations, each GOP is composed of 16 successive pictures, where the 

first two adjacent frames are selected as reference frames. The base layer is generated via 

spatial down-sampling with a factor of 2, but the scheme is also applicable to other 

downsampling factors. The default low delay B (LDB) and random access (RA) 

configurations for main profile are adopted for HEVC and SHVC, respectively. The GOP 

size for HEVC and SHVC is set to 16. For the proposed method, RFs and NRFs are 

separately encoded by the HEVC codec cores in the order of “I B B B ⋯” with an intra-

period of 12. Thus, the HPS-LO and HPS-LT require 3 and 4 temporal layers for each GOP, 

where RFs in the current and next GOPs are decoded as BL to train spatio-temporal 

dictionary pairs. For BL and EL, the maximum deltaQP is set to 4. In training, block sizes 

for motion estimation and compensation can vary from 64 × 64 to 4 × 4 to accommodate 

HEVC. For each temporal layer, the training set is generated by collecting 1024 volumes 

from each frame. The volume size is set to 13 × 13 × 2. The regularization parameter λ is 

0.15.

B. Rate-Distortion Performance

Fig. 6–9 show the rate-distortion curves of various test sequences obtained by the proposed 

scheme, SHVC, HEVC simulcast and HEVC under low-delay B (LDB) and random access 

(RA) configurations, respectively. The proposed scheme noticeably outperforms SHVC and 

HEVC simulcast in most cases. In the low bit-rate region, it is demonstrated to be 

competitive with HEVC, which does not support spatial scalability. For a complete 

validation, Table II and III provide the rate-distortion performance in terms of BD-PSNR 

gain and BD-rate change [47] for the proposed scheme, SHVC, and HEVC simulcast over 

HEVC. For HEVC simulcast, the rate-distortion performance is obtained by assigning same 

QP value to both resolutions. In comparison to SHVC, the proposed scheme can achieve 

BD-PSNR gain and BD-rate reduction by up to 3.0 dB and 65%, respectively. It is worth 

mentioning that the coding performance obtained by SHVC is degraded for CIF test 

sequences due to overheads for CU semantic elements and motion vectors. By contrast, the 

proposed scheme can maintain the coding performance for test sequences with a wide range 

of resolutions.

Moreover, we evaluate the two alternatives for hierarchical predictive structures HPS-LO 

and HPS-LT for progressive dictionary learning. Fig. 10 provides rate-distortion curves for 

video sequences with various resolutions under random access configuration. It shows that 

HPS-LO and HPS-LT can achieve a gain in rate-distortion performance in comparison to 

SHVC and HEVC simulcast in a wide range of bit rates. In most cases, HPS-LO 

outperforms HPS-LT by focusing on local motion for prediction and reconstruction. This 
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fact implies that HPS-LT tends to enable fully scalability in temporal domain at the cost of 

reconstruction performance. It is worth mentioning that the rate-distortion performance is 

not significantly degraded in HPS-LT, which is rooted from the fact that spatial structures are 

mainly reconstructed based on the set of 2-D sub-dictionary pairs.

C. Visual Quality

Fig. 11 shows the reconstructed frames for sequences News, BlowingBubbles, BQMall and 

ParkScene obtained by the proposed scheme, SHVC, and HEVC simulcast, respectively. The 

proposed scheme is shown to obtain better visual quality in comparison to SHVC and HEVC 

simulcast, especially in the regions of texture and edges. To make further evaluation, SSIM 

[48] is introduced for quantitive measurement, where higher SSIM score represents better 

visual quality. Fig. 12 and 13 show the curves of SSIM vs bit-rates for the four sequences 

under the low-delay B and random access configuration, respectively. Under both 

configurations, the proposed scheme is shown to outperform SHVC and HEVC simulcast in 

a noticeable gap in terms of SSIM.

D. Computational Complexity

In this section, we discuss the the computational complexity for the proposed scheme, 

SHVC and HEVC simulcast. As mentioned in Section III and IV, the complexity of the 

proposed scheme mainly comes from the dictionary learning and reconstruction process. In 

learning phase, the proposed scheme commits a fast convergence speed to update the 

dictionary with the enlarged training data in a progressive manner. Decoding performance 

depends on the reconstruction of NRFs with inter-layer prediction. Since the proposed 

scheme directly optimizes the expected cost for progressive dictionary learning, it obtains 

sparser coefficients with a reduced number for iterative training in comparison to the batch-

based dictionary learning methods like K-SVD.

To keep fairness, the encoder and decoder are realized with the same HEVC codec core. The 

experiments for dictionary learning and prediction are implemented with Matlab on a PC 

with 3.0 GHz dual-core CPU and 8G RAM. Table IV provides the computational complexity 

for the proposed scheme, SHVC, and HEVC simulcast. It should be noted that the 

complexity for the proposed scheme are evaluated in terms of learning speed (sec/GOP) and 

reconstruction speed (sec/frame). Table IV shows that progressive dictionary learning is 

efficient using online learning, which is not necessarily related with the resolutions of 

sequences. However, the proposed scheme requires about 20–100 times the computational 

complexity for reconstruction under various configurations in comparison to standard 

decoding process adopted by SHVC and HEVC simulcast. In fact, it is led by solving 

LASSO problem for overlapped volumes in reconstruction, which can be improved by 

adopting fast algorithm like selective coordinate descent [49] or introducing parallel 

algorithms for block-based reconstruction. It is also possible to adjust the number of 

overlapping pixels in each block to balance reconstruction performance and computational 

complexity, as overlapping pixels for each block is set to 1 in this paper for optimal 

reconstruction performance. Finally, it is possible to improve its running speed by 

transplanting into C implementation or optimizing the Matlab implementation.
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VI. Conclusion

In this paper, we propose a progressive dictionary learning framework with hierarchical 

predictive structure for scalable video coding. Sparse representation based on spatio-

temporal dictionary is leveraged for the inter-layer prediction of pyramidal spatial layers. 

Prediction and reconstruction of enhancement layers are improved by considering the 

motion trajectory under the invariance of sparse representation across various layers. 

Inspired by the hierarchical B-pictures adopted in conventional hybrid framework, 

progressive dictionary learning is developed to enable the scalability in temporal domain and 

restrict the error propagation in a close-loop predictor. Hierarchical predictive structure is 

adopted for temporal scalable layers, where the overcomplete dictionary for prediction is 

updated with the online learning for a guaranteed reconstruction error. For validation, the 

proposed progressive dictionary learning is integrated with the latest scalable extension of 

HEVC to accommodate the standardized bitstreams for video transmission. Experimental 

results show that the proposed method outperforms the latest SHVC and HEVC simulcast 

over extensive test sequences with various resolutions.
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Appendix A. Proof of Proposition 1

Given that the sparse representation vector α, there exists a constant ε > 0 for X̃
BL and X̂

EL,

‖X∼BL − DBLα‖2
2 ≤ ε

‖XEL − DELα‖2
2 ≤ ε

The scaled-up BL X̃
BL is obtained by down- and up-sampling X̂

R using operators  and 

(i.e., bicubic).

X∼BL = 𝒰XBL = 𝒰𝒟XR = 𝒬XR

Here, the global operator  converts volumes in X̂
R into corresponding ones in X̃

BL. Thus, 

we can obtain that
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‖(𝒰𝒟(DBL + DEL) − DBL) α‖2
2 ≤ ‖𝒰𝒟(X∼BL − DBLα)‖2

2 + ‖𝒰𝒟(XEL − DELα)‖2
2 + ‖𝒰𝒟XR − DBLα‖2

2

≤ C𝒰, 𝒟 · ε

Here, C ,  is related to ‖𝒰𝒟‖2
2. Under sufficient sampling, for the i-th volume ẑi in ẐNR 

and the corresponding zi
BL in Z̃

BL, there exists αi derived from ‖zi
BL − DBLα‖2

2 ≤ ε satisfying 

that

‖(𝒰𝒟(DBL + DEL) − DBL) α‖2
2 ≤ 𝒞𝒰, 𝒟 · ε .

Thus, we can find that ||ẑi−(DBL + DEL) αi|| ≤ ε. As a result, ||ẐNR−(DBL + DEL) α|| is 

bounded by ||Z̃
BL−DBLα||.

Appendix B. Proof of Proposition 2

Given arbitrary temporal layer Tκ, the divergence between the approximate and expected 

cost can be decomposed by

f (D∗
κ) − f t (Dt

κ) = [ f (D∗
κ) − f τ (D∗

κ)] + [ f τ (D∗
κ) − f τ (Dτ

κ)] + [ f τ
κ(Dτ

κ) − f t (Dt
κ)], (15)

where f τ(D∗
κ) is the empirical cost based on D∗

κ. Given randomly selected samples, the 

divergence between the expected and empirical cost is upper-bounded by Vapnik-

Chervonenkis (VC) bound C (t /τ) log (τ /t) with positive constant C.

𝔼[ sup ∣ f (D∗
κ) − f τ(D∗

κ) ∣ ] ≤ C t
τ 0, τ ∞ a . s . ,

For the second term in Eq. (15), when fτ (D)− fτ (Dτ) is Lipschitz, it is shown in [42] that

f τ(D∗
κ) − f τ(Dτ

κ) 0, τ ∞ a . s . (16)

For the approximate cost f t(Dt
κ), we find that

f t + 1 (Dt + 1
κ ) − f t (Dt

κ) = f t + 1 (Dt + 1
κ ) − f t + 1 (Dt

κ) +
l (xt + 1

κ , Dt
κ) − f τ (Dt

κ)
t + 1 +

f τ (Dt
κ) − f t (Dt

κ)
t + 1 ≤ 0.
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Here, xt + 1
κ  is the newly-added samples at the t + 1-th iteration for Tκ+1. Given the set of 

dictionaries in all the previous layers 𝒟t
κ, the upper bound of the conditional approximate 

cost for sparse representation can be developed.

𝔼 [ f t + 1 (Dt + 1
κ ) − f t (Dt

κ) ∣ 𝒟t
κ] ≤

𝔼[l(xt + 1
κ , Dt) ∣ 𝒟t

κ] − f τ(Dt
κ)

t + 1

≤
‖ f (Dt

κ) − f τ(Dt
κ)‖

t + 1 ≤ C
t + 1 · τ

t

When t → τ, f t(Dt
κ) approaches f τ(Dτ

κ), as 𝔼[‖ f (D∗
κ) − f τ(D∗

κ)‖∞] o(1
τ ) 0, which means that 

f t (Dt
κ) converges almost surely for Tκ with the growth of τ. As a result, with sufficient 

sampling, the divergence between approximate and expect cost ∑κ = 0
Λ − 1 ∣ f t(Dt

κ) − f (D∗
κ) ∣

asymptotically varnishes for progressive dictionary learning almost surely with t → τ.
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Fig. 1. 
The proposed framework for scalable video coding based on progressive dictionary learning. 

Given groups of pictures (GOP) to be encoded, the first L consecutive frames are selected as 

reference frames (RFs) XR. The remaining non-reference frames (NRFs) ZNR are 

downsampled at a predetermined ratio, e.g. 2× and 1.5×. In the decoder side, the base layer 

(BL) consists of the down-sampled decoded RFs X̂
BL and NRFs ẐBL. The enhancement 

layer (EL) XÊL collects the residual of RFs by substracting the corresponding scaled-up ones 

X̃
BL from decoded RFs X̂

R Overcomplete dictionary is trained based on the pair of blocks 

extracted from reference pictures from BL and EL, respectively. NRFs are reconstructed 

with the inter-layer prediction based on the trained dictionary. Here, ℱ represents X̂ for 

training and Ẑ for reconstruction. To enable temporal scalability, the update of dictionary 

and reconstruction are performed based on the proposed hierarchical structure.
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Fig. 2. 
Inter-layer prediction for the two-layer architecture. Patches from EL are reconstructed 

based on the trained dictionary pair DBL and DEL for BL and EL. Sparse representation α is 

estimated with DBL and non-reference frames Z̃
BL in BL. Non-reference frames Z̃

EL are 

reconstructed by exploiting inter-layer correlations for atoms between BL and EL.
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Fig. 3. 
Hierarchical predictive structure for temporal scalability within the GOP with a size of 16 

frames. Picture order count (POC) and decoding order (DO) are shown for each frame. (a) 

Hierarchical B-pictures for hybird MC-DCT framework; (b) Hierarchical predictive 

structure with local motion (HPS-LO) for progressive spatio-temporal dictionary learning; 

(c) Hierarchical predictive structure with long-term motion (HPS-LT) for progressive spatio-

temporal dictionary learning.
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Fig. 4. 
Spatio-temporal dictionary learning for inter-layer prediction. 2-D sub-dictionary and 3-D 

dictionary pairs are trained for the base and enhancement layer. Given reference frames, 2-D 

primitive patches and 3-D non-primitive volumes are extracted for dictionary learning. The 

2-D sub-dictionary paris are generated by matching 2-D patches with edge classification. 

Joint optimization over 3-D volumes are made for 3-D dictionary pair to exploit spatial and 

temporal correlations along motion trajectory.
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Fig. 5. 
Progressive dictionary learning with hierarchical predictive structure. The GOP with 16 

frames are progressively trained and predicted based on the hierarchical predictive structure. 

Firstly, spatio-temporal dictionary is trained based on the reference frames. Consequently, 

for each (base or enhancement) layer, non-reference frames are predicted based on the 

updated dictionary from previous layer and updated with stochastic gradient descent based 

on the reconstructed frames in current layer.
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Fig. 6. 
Rate-distortion curves for CIF test sequences by the proposed scheme, SHVC, HEVC, and 

HEVC simulcast under low-delay B (LDB) configuration. (a) Foreman (352 × 288). (b) 

Akiyo (352 × 288). (c) News (352 × 288). (d) Waterfall (352 × 288).
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Fig. 7. 
Rate-distortion curves for test sequences with various resolutions obtained by the proposed 

scheme, SHVC, HEVC, and HEVC simulcast under the low-delay B (LDB) configuration. 

(a) BlowingBubbles (416 × 240). (b) BQMall (832 × 480). (c) Cactus (1920 × 1080). (d) 

ParkScene (1920 × 1080). (e) Traffic (2500 × 1600).
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Fig. 8. 
Rate-distortion curves for CIF test sequences by the proposed scheme, SHVC, HEVC, and 

HEVC simulcast under random access (RA) configuration. (a) Foreman (352 × 288). (b) 

Akiyo (352 × 288). (c) News (352 × 288). (d) Waterfall (352 × 288).
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Fig. 9. 
Rate-distortion curves for test sequences with various resolutions obtained by the proposed 

scheme, SHVC, HEVC, and HEVC simulcast under the random access (RA) configuration. 

(a) BlowingBubbles (416 × 240). (b) BQMall (832 × 480). (c) Cactus (1920 × 1080). (d) 

ParkScene (1920 × 1080). (e) Traffic (2500 × 1600).
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Fig. 10. 
Rate-distortion performance (dB) for the proposed method with hierachical predictive 

structures considering local (HPS-LO) and long-term (HPS-LT) motion under random 

access (RA) configuration. (a) Akiyo (352×288). (b) BlowingBubbles (416×240). (c) 

BQMall (832×480). (d) ParkScene (1920×1080).
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Fig. 11. 
Visual results of reconstructed sequences. From top to bottom and from left to right, there 

are reconstructed frames in the enhancement layer of sequences News, BlowingBubbles, 

BQMall, and ParkScene obtained by the proposed scheme, SHVC, and HEVC simulcast, 

respectively. (a) Visual performance of News sequence. From left to right, PSNR of the 

reconstructed frames are 36.26 dB, 33.05 dB, and 32.38 dB, respectively. (b) Visual 

performance of BlowingBubbles sequence. From left to right, PSNR of the reconstructed 

frames are 30.23 dB, 27.49 dB, and 27.65 dB, respectively. (c) Visual performance of 

BQMall sequence. From left to right, PSNR of the reconstructed frames are 31.60 dB, 29.24 

dB, and 29.33 dB, respectively. (d) Visual performance of ParkScene sequence. From left to 

right, PSNR of the reconstructed frames are 31.48 dB, 30.50 dB, and 29.92 dB, respectively.
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Fig. 12. 
SSIM performance for test sequences News, BlowingBubbles, BQMall, ParkScene, and 

Traffic obtained by the proposed scheme, SHVC, and HEVC simulcast under low-delay B 

(LDB) configuration. (a) News (352 × 288). (b) BlowingBubbles (416 × 240). (c) BQMall 
(832 × 480). (d) ParkScene (1920 × 1080). (e) Traffic (2500 × 1600).
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Fig. 13. 
SSIM performance for test sequences News, BlowingBubbles, BQMall, ParkScene, and 

Traffic obtained by the proposed scheme, SHVC, and HEVC simulcast under random access 

(RA) configuration. (a) News (352 × 288). (b) BlowingBubbles (416 × 240). (c) BQMall 
(832 × 480). (d) ParkScene (1920 × 1080). (e) Traffic (2500 × 1600).
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TABLE I

Summary of Notations in Progressive Dictionary Learning

Notation Description

XR, ZNR Reference frame (RF) and non-reference frame (NRF)

ZBL Downsampled NRF at the encoder side

X̂R Decoded RF

X̂BL, ẐBL
Decoded BL for RF and NRF

X̃BL, Z∼EL
l Scaled-up frame for RF and NRF from X̂BL and ẐBL

X ̂EL Enhancement layer (EL) for RF obtained by subtracting scaled-up X̃BL from X̂R at the decoder side

Z ̃EL
Recovered high-frequency details from Z∼EL

l

ẐEL Reconstructed EL for NRF

xn
BL, xn

EL
Patch or volume extracted from BL and EL for RF

zn
l , zn

h
Patch or volume extracted from Z∼EL

l
 and Z∼EL

h

{ Dbl
k , Del

k }
The k-th 2-D sub-dictionary pair for the BL and EL

{DBL, DEL} The 3-D sub-dictionary pair for the BL and EL

α Sparse representation vector

ℱ Generalized notation for frames (X̂ for RF and Ẑ for NRF)

Tκ The κ-the temporal layer
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