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Abstract— In this paper, a novel joint sparse representation 
method is proposed for robust face recognition. We embed both 
group sparsity and kernelized locality-sensitive constraints into 
the framework of sparse representation. The group sparsity 

constraint is designed to utilize the grouped structure information 
in the training data. The local similarity between test and 
training data is measured in the kernel space instead of the 

Euclidian space. As a result, the embedded nonlinear information 
can be effectively captured, leading to a more discriminative 
representation. We show that, by integrating the kernelized local-

sensitivity constraint and the group  sparsity  constraint,  the 
embedded structure information can be better explored, and 
significant performance improvement can be achieved. On the 

one hand, experiments on the ORL, AR, extended Yale B, and 
LFW data sets verify the superiority of our method. On the other 
hand, experiments on two unconstrained data  sets,  the  LFW 

and the IJB-A, show that the utilization of sparsity can improve 
recognition performance, especially on the data sets with large 
pose variation. 

Index Terms— Face recognition, sparse representation, locality- 
sensitive, kernel methods, group sparsity. 

 

I. INTRODUCTION 

ACE recognition has been an  active  research  topic  in 

the field of pattern recognition and computer vision  over 

the past decades. Although numerous  approaches  [1]–[6] 

have been proposed, recognition methods that are robust to 

challenges such as illumination changes, occlusion, noise, 

facial expressions, aging, and resolution variations [7] are still 

highly desirable. 

With the prevalence of compressive sensing [8], [9] theory, 

especially   sparse   coding   [10],   [11],   recognition methods 
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based on sparse representation have received more and more 

attention in recent years. Nowadays, sparse representation is 

broadly applied in various tasks, such as face recognition [4], 

[6],   super-resolution   [12],   image   inpainting   [13],  facial 

expression recognition [14], and  visual  tracking [15], [16].   

In [4], Wright et al. were among the first to introduce sparse 

representation to face recognition and proposed an effective 

Sparse Representation Classification (SRC) method. The  

basic idea of SRC is to represent the test sample as a sparse 

linear combination of the training samples, and then assign  

the test sample to the class which leads to the minimum 

reconstruction error. A large number of sparse representation 

based approaches have been proposed for face recognition. 

Yang et al. [17] adopted Gabor features instead of raw pixels 

for sparse representation. By learning an occlusion dictionary, 

occluded face images can be well handled. Deng et al. [18] 

exploited the intra-class variant dictionary, and applied an 

Extended SRC (ESRC) to the problem of undersampled face 

recognition. Wagner et al. [6] developed a sparse representa- 

tion based face recognition system to deal with variations in 

illumination, image misalignment, and partial occlusion simul- 

taneously. This system works well under a variety of realistic 

conditions. The SRC based methods make a reasonable 

assumption that the subspaces of different individuals satisfy 

certain incoherence. However, this assumption cannot always 

be held due to common facial organ distribution. This may 

mean the query image is represented by samples from many 

different individuals. To deal with this problem and utilize the 

intrinsic structure information embedded in the training data, 

Yuan et al. [19] proposed a group lasso that solves the convex 

optimization problem at the group level. Elhamifar et al. [20] 

proposed a more robust group sparse representation (GSRC) 

method, which aims to represent the test image using the 

minimum number of groups/blocks. In [21], Lai et al. further 

extended group lasso to class-wise sparse representation (CSR) 

by laying more stress on the sparsity between the classes 

during optimization. More recently, Jiang et al. [22] proposed 

a low-rank dictionary decomposition bases sparse- and dense- 

hybrid representation method to overcome the problem of 

corrupted training data and insufficient representative samples 

in each class. All the aforementioned methods are dedicated   

to finding a linear representation of data. However, in many 

practical  applications,  linear  representations  are  not  able  

to represent the non-linear structures  of  data.  To  address  

this issue, many efforts have been devoted to developing 

kernel sparse representation classification (KSRC) [23]–[27]. 

Differing from those methods that  find sparse   representation 
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Fig. 1.    A toy  example  of  two  different  representations.  A query  image   
y (denoted by circle) can be well represented by samples of triangle with 
identical coefficients. It can also be well represented by samples of diamond 
with identical coefficients. 

 

 

coefficients in the original space, these kernel-based methods 

first map the original data into a high-dimensional feature 

space, and then learn sparse representation in the obtained 

kernel space. Recently, it  has  been  verified  that  data 

locality is more necessary than sparsity for efficient sparse 

coding [28]–[30]. In order to take advantage of both data 

locality and group sparsity, Chao et al. [31] presented a 

locality-constrained group sparse representation (LGSR) 

method for robust  face  recognition.  An  extension  of  

KSRC, i.e., locality-sensitive kernel sparse representation 

classification (LS-KSRC) [32], was proposed to integrate 

KSRC with data locality in the kernel feature space rather  

than in the original feature  space. 

In this paper, data locality, group sparsity and the kernel 

trick is further explored, and a joint sparse representation 

method, named kernelized locality-sensitive group sparsity 

representation (KLS-GSRC) is proposed.  It  is  shown  that, 

by integrating data locality, group sparsity and the  kernel 

trick, the structure and nonlinear information embedded in the 

training and test data can be better exploited, and consequently 

a more discriminative representation can be  obtained. 

The rest of this paper is organized as follows. In Section 2, 

some related sparsity classification methods are briefly 

reviewed.  Section  3  details   the   proposed   method.  

Section 4 presents experimental  results  and  analysis.  

Section 5 concludes the paper. 

 
II. SPARSITY CLASSIFICATION 

A. Sparse Representation Based Classification 

Sparse representation provides a useful facility for classi- 

fication provided that each class has sufficient   representative 

training samples and the training data are uncorrupted. Assume 

that there are n training images A = [a1, a2, . . .  , an ]∈  RD×n 

where ai ∈ RD(i = 1, 2, . . .  n) denotes the i th training image 
and D is the dimension of feature vector. Given a test image 

y ∈ RD , the traditional SRC [4] seeks the sparsest solution of 

y = Ax , where x = [x1, x2 , . . . ,  xn]T is the sparse coefficient 
vector and xi is the coefficients associated with the i th training 

image. In order to avoid the NP-hard problem brought by l0-

norm, a stable solution can be obtained by solving the 

following l1-norm minimization problem, 

min "x "1  s.t."y − Ax "2 < ε (1) 
x ∈ RD 

where ε is associated with a noise term with bounded  energy. 

B. Group Sparsity Representation Based Classification 

The SRC can achieve discriminative representation when 

the subspaces spanned by different individuals are independent 

of each other. However, this assumption cannot always be 

guaranteed due to common facial organ distribution. One 

potential problem is the test image may be represented by 

training images from  different  individuals. This  may  result 

in ambiguous or wrong classification. Ideally, the test image 

should only be represented by the training images from one 

individual corresponding to the correct identity.  Following 

this idea, Elhamifar et al. [20] proposed a group sparse 

representation based classification (GSRC) method. GSRC 

aims to represent  the  test  image  by  training  images  from 

as few individuals as  possible.  To  impose  this  constraint, 

the label information of training data is considered and the 

dictionary A is divided into groups where each group is formed 

by the training images from the same individual. And then,  

the classification is achieved by searching a representation that 

uses the minimum number of  groups. 

Let m be the number of groups, and xi be the coefficient 

associated with the i th group. The following l2,1 mixed-norm 

is considered to derive the sparse coefficient x of y, which 
minimizes the number of nonzero  groups, 

m 

P1 : min 
. 

"xi "2  s.t."y − Ax "2 < ε (2) 

x ∈ RD 
i 1

 

where the l2,1 mixed-norm is a combination of a l1 norm across 
groups and a l2 norm within groups. The outer l1 norm is used 
to guarantee a group sparse  representation. 

In addition to minimizing the number of nonzero groups, 

one alternative method is to minimize the number of nonzero 

reconstructed vectors Aixi , 
m 

P2 : min 
. 

"Aixi "2  s.t."y − Ax "2 < ε (3) 

x ∈ RD 
i 1

 

where Ai ∈ RD×ni is the subset of A that contains the training 
images from class i , ni is the number of training samples in  
the i th class, and xi is the representation coefficient associated 
with the i th class. 

To make it clear, in the following, the sparse representation 

method which minimizes the number of nonzero groups is 

denoted as P1 and the one which minimizes the number of 

nonzero reconstructed vectors is denoted as P2. The difference 

between P1 and P2 is discussed in the next   section. 

 
III. THE PROPOSED METHOD 

Although the independent subspace problem can be solved 

to some extent by minimizing the number of groups engaged 

in the representation, the group sparse representation still 

suffers from the ambiguity inherent from the l1 part of l2,1 

mixed-norm when the subspaces of different groups are highly 

correlated. The reason is that the l1  norm tends to select one  

of the highly correlated group in a random manner    [33]. 

The figure in [21] illustrates the failure case of SRC and 

GSRC, in which four training samples (i.e., a1,1, a1,2, a2,1,  

a2,2) from two individuals (triangle and diamond) and a query 



 

 
 

 

sample y (circle) are shown. If the subspaces spanned by   two 

individuals are highly correlated, the query sample  can  be 
well represented by the samples of either triangle or diamond 

subject, i.e. y = 0.5a1,1  + 0.5a1,2  and  y  =  0.5a2,1  +  
0.5a2,2.  Both  SRC  and  GSRC  fail  in  this  case  and     they 

randomly  choose  triangle  or  diamond  as  the  classification 

result. Since the collaborative representation-based classifi- 

cation  (CRC)  [34]  has  infinite  solutions  in  such  cases, i.e. 

y = α(a1,1+a1,2)+β(a2,1+a2,2) if α and β satisfies α+β = 1, 
these representations are not discriminative either. 

Intuitively, we tend to assign the query sample to the 

triangle. Fortunately, we have the prior knowledge that the 

query sample is closer to a1,1 and  a1,2  in  the  feature space, 

and thus we can put more emphasis on the neighboring 

samples. Such an idea was recently integrated into the SRC 

framework [32]. 

To utilize the label information and  further  enforce  the 

data locality in the  kernel feature space, group sparsity and  

the kernel trick is used to propose a joint-sparsity repre- 

sentation method, named kernelized locality-sensitive group 

sparsity representation classification (KLS-GSRC). In KLS- 

GSRC, the data similarity is measured in the kernel feature 

space, thus the nonlinear relationship of data can be better 

explored. 

Assume that there exists a nonlinear kernel mapping func- 
tion φ to map the test image y and dictionary A to φ(y) 

and  μ  =  [μ1, μ2 , . . . ,  μn ]  =  [φ(a1), φ(a2),..., φ(an)]. 
The KLS-GSRC method is formulated as the following    joint 

minimization problem: 
m 

min λ" p ⊗ x "2 + 
. 

"Aixi "2 

Algorithm  1  Kernelized  Locality-Sensitive  Group  Sparsity 

Representation Classification (KLS-GSRC) 
 

 

 

   
 

 
 

  

 

 

 

 
 
 

and guarantees the similar input sample to produce similar 

representation results. 

As a group sparsity regularizer, the second term in Eq. (4) 

favors representing the test image with training images from 

fewer groups. Instead of minimizing the number of nonzero 

coefficients (P1), the number of nonzero reconstructed vec- 

tors (P2) is minimized. When the dictionary elements are 

linearly independent, the  solution of  Eq.  (3) is  equivalent to 

that of Eq. (2) since "Aixi "2 > 0 if and only if "xi "2 > 0. 
However,  this  condition  does  not  hold  when  the dictionary 

x ∈ RD 
i=1 

comprises linearly dependent data. In practice, the assumption 
of  linear  dependency  is  reasonable  when  the  facial   organ 

s.t."y − Ax "2 < ε (4) 

where the first term is the locality-sensitivity regularizer [32], 

the second term is the group sparsity regularizer and λ is a 

tradeoff parameter. 

In the first term of Eq. (4), the notation ⊗ represents 

element-wise multiplication. p ∈ Rn×1 is the locality adaptor, 
which  is  used  to  measure the  kernel  distance between φ(y) 

and each column of μ. The distance metric is computed by: 

pi  = 
,

ex p(dk(y, ai)/η) (5) 

where η is a positive constant and the kernel Euclidian distance 

dk(y, ai) induced by a kernel k  is defined   as: 

dk(y, ai) = 
,

(φ(y) − φ(ai), φ(y) − φ(ai)) 

= 
,

k(y, y) − 2k(y, ai) + k(ai, ai ) (6) 

Following [30], the Gaussian kernel function is used in the 

method: 

k(y, ai) = exp(−|y − ai |2/2σ 2) (7) 

where σ denotes the standard deviation in the Gaussian kernel. 

The locality-sensitivity term in Eq. (4) is used to encourage 

encoding the input sample using its kernel space neighbor- 

ing dictionary elements, as well as satisfying the sparsity 

constraint. The exponential operator in Eq. (5) ensures the 

corresponding coefficients shrink to zero when dk is  large, 

distribution over different people is similar to that in the 
training data. In addition, for a test sample y, since we usually 

take the class i minimizing the reconstruction error "y− Aixi "2 

as its classification result, it gives an explanation from another 

way that minimizing the number of nonzero reconstructed 

vectors can generally produce better classification results than 

minimizing the number of nonzero coefficients. Moreover, 

since the group sparsity constraint is  imposed by minimiz-  

ing a l2,1 mixed-norm, a coefficient reweighting mechanism 

can be  implicitly  realized  by  using  P2.  In  other  words,  

the contribution of coefficients is weighted according to their 

reconstruction errors during the optimization  procedure. 

By integrating the kernelized locality-sensitivity and the 

group sparsity constraint, the KLS-GSRC aims to represent the 

test sample by using fewer neighboring groups in the kernel 

space. As a consequence, the nonlinear structure information 

embedded in the test and training data can be better explored 

and higher recognition performance can be achieved. Algo- 

rithm 1 summarizes the procedure of  KLS-GSRC. 

 
IV. EXPERIMENTS 

In  this  section,  the  performance  of   the   proposed 

method (KLS-GSRC) is evaluated on three canonical face 

datasets,  including  the   ORL   [35],   the   AR   [36]   and   

the   Extended   Yale   B   [37],   and   two   unconstrained face 



 

 
 

  
 

          
 

Fig. 2.    Sample images from the ORL  dataset. Fig. 4.    Sample images from the Extended Yale  B  dataset. 

 

  
 

 

Fig. 5. Sample images from the subset of the LFW dataset. The clipping                     
                                                                                boxes were painted in  red. 

 

Fig. 3.    Sample images from the AR  dataset. 

 
 

datasets [38], i.e., LFW deep funneled images [39], [40] and 

the IJB-A dataset [41]. The ORL dataset contains 400 face 

images of 40 subjects (10 images per subject) with variations 

in pose, illumination and facial expression. Fig. 2 shows some 

sample images of the ORL dataset.  The AR dataset consists  

of 3276 frontal face images of 126 individuals. The images 

have variation, including in expression, illumination, and pose. 

Some sample images are shown in Fig. 3. The Extended Yale 

B dataset contains 2414 images of  38  subjects.  64  frontal 

face images with various illumination conditions for each 

subject were taken. Fig. 4 shows some sample images in this 

dataset. The LFW and IJB-A datasets are designed to study  

the problem of unconstrained face recognition. All the images 

were collected from  the web. LFW  contains 13233 images   

of 5749 people. IJB-A contains 5712 images of 500 subjects. 

As there are many individuals with only one or several distinct 

photos in the datasets, SRC-based methods cannot work well  

if used directly. Therefore, a subset of each dataset was  

formed by choosing the subjects with enough training images 

in the experiments. For the LFW dataset, the subjects with 

more than 20 images (total 62 subjects) were  selected  to  

form the experimental subset. Furthermore, to concentrate on 

the recognition task, the deep funneled  images  were  used. 

The face area of each image was extracted using a fixed 

bounding box, where the upper-left and lower-right corners 

are (70, 55) and (185, 195), respectively. The determination   

of the bounding box location is according to the positions      

of 40 randomly selected LFW faces. Fig. 5 shows some  

sample images and the clipping boxes of the subset of deep 

funneled LFW. IJB-A is a dataset released by the Intelligence 

Advanced Research Projects Activity (IARPA). Readers can 

refer to http://www.nist.gov/itl/iad/ig/facechallenges.cfm for 

details. IJB-A has full pose variation, so it is more challenging 

than LFW. According to each split, only the subjects with  

more than 20 training images (total 51 subjects) were selected 

to build the experimental subset. Each image was cropped 

according to the hand-labelled bounding box and resized to  

the size  of 120*150. Fig. 6 shows some cropped images of  

the subset of IJB-A. 

 

 

 

 

Fig. 6.    Sample cropped images from the subset of the IJB-A    dataset. 
 
 

To demonstrate the superiority  of  the  proposed  method, 

the KLS-GSRC was comprehensively compared with  sev- 

eral related sparse representation based face recognition 

methods  [4],  [20],  [31],  [32].  In  addition,  two   variants   

of LGSR, named LGSR (with P2) and  LGSR  (with  ker-  

nel),  were  also  compared.  The  LGSR  (with  P2)  applies 

the group sparsity by minimizing the number of nonzero 

reconstructed vectors instead of the number of nonzero coef- 

ficients, and the LGSR (with kernel) extends the locality 

measure from the Euclidian space to the kernel space. Further- 

more, two non-sparse algorithms, a collaborative representa- 

tion based method (CRC) [34] and a Matrix Regression based 

method (NMR)  [42]  were  also  compared.  CRC  represents 

a test image associated with all the training samples and 

minimizes the representation error using the least square 

criterion. NMR is a two-dimensional image-matrix-based error 

model. Differing from the traditional one-dimensional pixel- 

based model, it utilizes the two-dimensional structure of the 

error image to enhance classification  performance. 

 
A. Parameter Settings 

ε = 0.05, η = 0.25 throughout the experiments. Prin- 

cipal component analysis (PCA) [43] was used to reduce 
feature dimension before classification. To choose the value 

of λ, the performance of KLS-GSRC on three datasets was 

investigated by varying λ in the range of 0.00001,   0.0001, 

0.001, 0.01, 0.1, 1, 1.5. For each test, half of the images were 

randomly selected as  the  training set,  and  the  remainder  as 

the test set. The experimental results are reported in Table  I.   

It shows that λ = 0.0001 consistently yields the best results   
in the three datasets, and this setting is used in    the following 

experiments. 
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TABLE I 

PERFORMANCE UNDER DIFFERENT PARAMETER VALUES OF λ ON THREE 

DATASETS 

TABLE III 

PERFORMANCE OF DIFFERENT METHODS ON THE AR DATASET 

 

  
 

TABLE II 

PERFORMANCE UNDER DIFFERENT TRAINING/TEST SPLIT SETTINGS ON THE 

ORL DATASET 

 

 

 

B. Results on ORL Database 

In this experiment, the performance of different methods 

under different training/test split settings on the ORL   dataset 

were evaluated. For each test, a subset with L (L = 3, 4, 5) 
images per subject was randomly seleced to form the  training 

set, and the remaining images were taken as the testing set. 

The recognition accuracy was computed by  averaging over  

30 independent tests. To make  a  fair  comparison, the  high- 

est average recognition rate of each method under different 

parameter settings was recorded, as seen in Table   II. 

As shown in Table II, the highest recognition ratio was 

consistently obtained by the proposed method under different 

training/test split settings. The superiority of minimizing the 

number of nonzero reconstructed vectors instead of the number 

of nonzero coefficients can be verified by comparing the 

performance of P1 and P2. The same conclusion can  be  

drawn by comparing LGSR and LGSR (with P2). When the 

kernelized locality-sensitive constraint is imposed, LS-KSRC 

can obtain an improvement of about 1% over   SRC. 

Fig. 7 shows the recognition ratio of different methods under 
different feature dimension and training/testing split settings.  
It can be seen that the method always outperforms the others 

with only one exception (L = 3, feature dimension = 100). 
The best performance is obtained when the training percentage 
is 50% (Fig. 7(c)) and the PCA dimension is 40. This  method 

reaches the highest recognition rate of 98.50%, which is at 

least 0.5% higher than the other  methods. 

 
C. Experiments on AR  Database 

In these experiments, a subset of the AR dataset with pic- 

tures of 50 males and 50 females was considered. All images 

were cropped to 165*120 pixels. In each test,  7  images    per 

 

 

 
subject were randomly selected to form the training dataset, 

and the rest were used as the test dataset. Table III shows the 

average recognition rate of different methods under different 

PCA dimension reduction settings. 

In Table III, the method shows its superiority over other 

methods under different PCA dimension reduction settings. 

When the feature dimension is  36, the method can achieves   

a 5.00% performance improvement over LGSR, 1.85% over 

LGSR (with P2), 3.71% over LGSR (with kernel), and a 6.72% 

improvement over LS-KSRC. 

 

D. Experiments on Extended Yale  B Database 

In this experiment, a subset with 32 images per individual 

was selected for training, and the remaining images were used 

for testing. Table IV gives the average recognition accuracy of 

different methods under different PCA dimension reduction 

settings. 

As shown in Table IV, the proposed method still out- 

performs others methods. The KLS-GSRC obtains the high- 

est recognition ratio (97.17%) under feature dimension 504. 

When the feature dimension was reduced to 36, the method 

obtained the best recognition performance with  an accuracy  

of 92.18%. This performance is  about  9.72%  higher  than 

P2, 3.65% higher than LGSR, 2.14% higher  than  LGSR  

(with P2) method, 1.37% higher than  LGSR  (with  kernel) 

and 3.95% higher than LS-KSRC. This result is consistent 

with the previous experimental results on the others datasets. 

Notably, the integration of kernelized locality-sensitive and 

group sparsity constraint can achieve better performance than 

applying them individually. This verifies that the embedded 

structure information can be better explored by combining 

these two constraints. 

 

E. Experiments on a Subset of LFW Deep Funneled   Images 

Since the image numbers of individuals in the LFW dataset 

are different, in this experiment, 50% of images of each 

individual were selected for training, and the remaining images 

were used for testing. There were 1526 images for training and 

1497 images for testing. Table V gives the average recognition 

accuracy of different methods under different PCA dimension 

reduction settings. 

As shown in Table V, the performance of the SR-based 

methods  declined  in  the  unconstrained  dataset  because the 



 

 
 

 
 

Fig. 7.    Performance under different feature dimension settings on the ORL dataset. (a)  L = 3. (b)  L = 4.    (c)  L = 5. 

 

TABLE IV 

PERFORMANCE OF DIFFERENT METHODS ON THE EXTENDED YALE B DATASET 

TABLE VI 

PERFORMANCE OF DIFFERENT METHODS ON THE SUBSET OF IJB-A DATASET 

 

 

 
 

 
 
 

TABLE V 

TABLE VII 

PERFORMANCE OF THE PROPOSED METHOD ON THE SUBSET OF IJB-A DATASET 

WITH DIFFERENT ε (PCA DIMENSION IS FIXED TO 300) 

PERFORMANCE OF DIFFERENT METHODS ON  THE SUBSET OF DEEP FUN-    
NELED LFW DATASET    

  
 

 

 

 

 

 

 

significant variation of the  images of  each individual leads   

to significant regression error. However, the proposed method 

still outperforms other methods. 

 
F. Experiments on a Subset of IJB-A Cropped  Images 

The gallery images of each split were used as training 

samples and the probe images as test images. Table VI reports 

the average recognition accuracy of different methods under 

different PCA dimension reduction settings. 

The performances of the SR-based methods on IJB-A are 

worse than on LFW due to the bigger pose variation in IJB-A. 

The group constraint is also affected by the big pose variation 

so that the performance of the proposed method is slightly 

lower than of SRC and  LS-KSRC. 

 
G. Experiments about Sparsity 

It can be seen from the above experiments that the CRC 

method achieves comparable performance on three canonical 

datasets but achieves poor performance on two  unconstrained 

datasets. In the unconstrained case, many images of other 

individuals may be more similar than those of the same indi- 

vidual. Discrimination ability of CR is reduced by regression 

error. It can be seen that the sparsity constraint effectively 

improves the recognition performance (more than 25%) in the 

unconstrained case. 

When the sparse coefficient vectors in each method are 

analyzed, it is found that the  sparsity  of  SRC,  LS-KSRC 

and KLS-GSRC is better than that of P1 (each test image is 

represented with less than 10% of samples) and LGSR (each 

test image is represented with most of the samples). Therefore, 

the experimental results of those methods verify that sparsity 

improves the face recognition  performance. 

The method on IJB-A with different ε was evaluated. The 

results are shown in Table VII. The sparsity is defined as the 

average number of samples with a coefficient less than 1e-5.   

It can be seen that the performance improves with the increase 

of sparsity, and the best performance is achieved at a specific 

sparsity. 

 
V. CONCLUSION 

This paper presents a kernelized locality-sensitive group 

sparsity representation (KLS-GSRC) method for robust face 

recognition. KLS-GSRC not only takes into account the 

grouped structure information of the training dictionary, but 

also  considers  the  data  locality  in  the  kernel  space.  As  a 



 

 

result, the structure and nonlinear information embedded in 

the training and test data can be better utilized, and more 

discriminative sparse representation can be obtained. These 

experiments on the ORL, AR, Extended Yale B and LFW 

datasets demonstrated the proposed joint sparse representation 

method achieves better performance than other sparse repre- 

sentation based methods. 
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