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Abstract

We present a method for image registration based on 3D scale- and rotation-invariant keypoints. 

The method extends the Scale Invariant Feature Transform (SIFT) to arbitrary dimensions by 

making key modifications to orientation assignment and gradient histograms. Rotation invariance 

is proven mathematically. Additional modifications are made to extrema detection and keypoint 

matching based on the demands of image registration. Our experiments suggest that the choice of 

neighborhood in discrete extrema detection has a strong impact on image registration accuracy. In 

head MR images, the brain is registered to a labeled atlas with an average Dice coefficient of 92%, 

outperforming registration from mutual information as well as an existing 3D SIFT 

implementation. In abdominal CT images, the spine is registered with an average error of 4.82 

mm. Furthermore, keypoints are matched with high precision in simulated head MR images 

exhibiting lesions from multiple sclerosis. These results were achieved using only affine 

transforms, and with no change in parameters across a wide variety of medical images. This work 

is freely available as a cross-platform software library.

Index Terms

computer vision; 3D SIFT; medical image registration; computed tomography (CT); magnetic 
resonance imaging (MRI)

I. Introduction

Medical image registration is the task of aligning a pair of medical images by mapping 

relevant objects to the same coordinates. It is an essential preprocessing step in a wide 

variety of imaging tasks, especially those involving morphology and localization of lesions, 

brain activity, or other objects of interest. While most work has focused on intensity-based 

registration, in which all image data is considered, there has been some interest in 

addressing the problem via local keypoints [1]–[5]. Keypoints are stable image coordinates 

selected by purely local or shift-invariant operations, and matched between images based on 

local information. Unlike intensity-based methods, keypoint-based methods do not require 

initialization and cannot converge to local minima. Furthermore, they succeed despite 

anatomical differences which would otherwise necessitate preprocessing. For example, 

tissue containing lesions can be registered based on information local to normal anatomy. 
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Similarly, scans showing different organs, such as the abdomen and full body, can be 

registered without the need to remove inconsistent anatomy.

Many methods have been proposed for detecting and describing keypoints in two-

dimensional images [6]–[8]. However, less attention has been paid to three-dimensional or 

volumetric images. Our past work and the work of others has shown that unique challenges 

arise in higher dimensions, necessitating modifications to the usual keypoint algorithms [2], 

[5], [9], [10]. In particular, orientation assignment and the geometry of gradient histograms 

are more complicated in ℝn, as ℝ2 is revealed to be a special case.

This work offers three main contributions. First, we present a generalization of the Scale-

Invariant Feature Transform (SIFT) algorithm to ℝn, with particular attention paid to ℝ3. 

The generalized algorithm differs mainly in orientation assignment and gradient histogram 

geometry. These modifications allow the resulting keypoints to achieve the same invariances 

to scale and rotation in ℝn as the original has in ℝ2. In particular, rotation invariance is 

mathematically proven in ℝn. Secondly, we present a new analysis of the choice of 

neighborhood in discrete extrema detection, which is necessary for accurate results in our 

experiments. Finally, we develop a fully-automatic image registration system based on 

keypoint matching that succeeds on a wide variety of medical images.

In our experiments, keypoint-based methods outperform registration from mutual 

information, and the proposed method outperforms an exiting approach to 3D SIFT. Using 

only affine transforms, the proposed method aligns the brain to an atlas in head magnetic 

resonance (MR) images with an average Dice coefficient of 92%, and registers the spine in 

longitudinal computed tomography (CT) studies with an average error of 4.82 mm. 

Keypoints are matched with high precision in simulated head MR images exhibiting 

multiple sclerosis (MS) lesions, despite arbitrary rotations. The same parameters succeed on 

this wide range of medical images. To enable adoption into more complex systems, this 

work is freely available as a cross-platform software library [11].

II. Related work

There have been several previous efforts to extend SIFT keypoints to higher dimensions. The 

first application was for video action recognition [10]. Soon after, various authors explored 

SIFT feature matching for various applications in volumetric imaging. Ni et al. applied 3D 

SIFT to ultrasound panorama construction, while Flitton et al. experimented with 

recognition of non-medical objects [3], [12]. Cheung and Harmeneh developed an n-

dimensional extension of SIFT and experimented with matching keypoints in various MR 

and CT images [1]. While these works showed encouraging results for various applications, 

the approaches used were theoretically flawed, as the method of orientation estimation did 

not account for true 3D rotations, and the histogram geometry made the descriptors 

anisotropic.

Corrections to some of these problems have appeared previously in the literature. Kldser et 

al. corrected the problem of histogram geometry, but to our knowledge this work on video 

processing was not adopted in the literature on medical image analysis [9]. Allaire et al. 
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developed a method for estimating 3D orientation by extending the gradient histogram 

approach of the original SIFT [2]. The same method of orientation invariance was adopted 

by Toews et al., among other innovations, and evaluated on abdominal CT and head MR 

registration [4]. However, all of these approaches suffer from quantization due to histogram 

bins, and to our knowledge none of them has simultaneously provided a correct method for 

both orientation estimation and histogram geometry in three dimensions. In this work we 

propose an extension of SIFT to 3D which addresses these theoretical difficulties. We 

propose a method of orientation estimation based on eigendecomposition of the structure 

tensor, which we prove accounts for arbitrary rotations in any number of dimensions. 

Furthermore, we base our gradient histograms on the regular icosahedron, interpolating 

contributions between histogram bins by the barycentric coordinates of the triangular faces, 

which mitigates quantization effects in a geometrically plausible way. To our knowledge, 

these approaches have not been previously used for 3D keypoints, and resolve the 

mathematical issues of previous work.

In addition to theoretical contributions, this work contains several practical innovations. 

First, we examine the role of neighborhood choice in discrete extrema detection, 

demonstrating experimentally that the ℓ1 neighborhood outperforms the ℓ∞ neighborhood for 

medical image registration. Second, we explore the use of 3D SIFT keypoints with a 

different feature descriptor based on geometric moment invariants (GMIs), comparing the 

performance between the SIFT and GMI descriptors. Finally, we offer an open-source, 

cross-platform implementation, usable in both C and Matlab, which was lacking in the 

existing literature [11].

III. Keypoint detection and description

There are two stages to extracting keypoints from an image. The first involves detecting 

points which can be reliably matched between pairs of images. The second involves 

generating a feature vector describing the image content in a window centered at each point. 

The resulting feature vectors, called “descriptors,” are approximately invariant to dilation, 

rotation, and translation of the underlying image. The following section summarizes these 

methods, proceeding by analogy to the SIFT algorithm, which was originally defined for 

two-dimensional images.

A. Keypoint locations

Candidate keypoint locations are obtained in much the same way as in the original SIFT 

algorithm [6]. To approximate scale invariance, we search for maxima of both the image 

space coordinate x, and a Gaussian scaling parameter, σ. The vector (x, σ) is called a “scale-

space” coordinate. The function to be maximized is the image convolved with the Laplacian 

of Gaussian function

(1)
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where gσ(x) is a Gaussian function of parameter σ [13]. This is approximated by convolution 

with the difference of Gaussians (DoG) function

(2)

where δ is a small constant [6]. The DoG function is computed by subtracting successive 

levels of a Gaussian scale-space pyramid.

The extrema of d(x, σ) form the initial keypoint candidates. While past authors have usually 

defined extrema as maxima and minima of the (3n – 1)-connected ℓ∞ neighborhood, we 

define extrema using the 2n-connected ℓ1 neighborhood, as seen in figure 1. These 

neighborhoods are known in cellular automata theory as the Moore and von Neumann 

neighborhoods, respectively. The ℓ1 extrema are a superset of those found with the ℓ∞ 

neighborhood. Defining extrema in this way lends itself to the theoretical interpretation that 

a point is an ℓ1 extremum only if it is a stationary point of its forward differences1. While 

this results in a considerable increase in the number of extrema, and thus the necessary 

computation, it yields a far greater number of correctly matched keypoints2.

Having found our initial candidates, we reject those weak in magnitude. Formally, we reject 

a candidate (x, σ) if

(3)

where α is a constant parameter. This differs slightly from the original SIFT formulation, as 

the max term in equation 3 adapts the threshold to the contrast of our data [6]. Unlike the 

original SIFT, we do not interpolate keypoint coordinates to sub-voxel accuracy, as this 

failed to improve matching stability in our experiments [14].

B. Local orientations and corner detection

In order to construct rotation-invariant feature descriptors, it is common practice to assign a 

repeatable orientation to each keypoint [6]–[8]. By rotating the windowed image according 

to the inverse of its orientation, the feature descriptor is made invariant to rotations of its 

object. Information related to the orientation is also used to reject poorly-localized objects, 

such as plate- and tube-like structures in ℝ3.

Keypoint detection algorithms in ℝ2 typically assign to each keypoint an angle θ, from 

which a rotation matrix is computed. In SIFT, θ is selected according to a mode of a gradient 

histogram computed in a window around the keypoint. In truth ℝ2 is a special case, and this 

approach does not generalize to higher dimensions [2]. A rotation matrix in ℝn is an 

orthogonal matrix R ∈ ℝn×n with |R| = 1. Analogous to the two-dimensional case, such a 

1See theorem 1 in the appendix.
2See the experiment in section V-A
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matrix may be formed by trigonometric functions of n Euler angles. But, (n – 1)-spherical 

coordinates yield only n – 1 angles. Thus, we cannot define an orientation by selecting only 

one vector from the gradient histogram. Nevertheless, Scovanner et al. used the two Euler 

angles given by spherical coordinates to produce a rotation matrix in ℝ3, admitting that this 

approach does not cover the general case [10]. Accordingly, much of the prior work on 3D 

SIFT was not rotation-invariant [1], [3], [9], [10], [12], [15].

Allaire et al. circumvented this issue by first selecting a vector from the gradient histogram, 

and then computing an additional histogram in its plane through the origin [2], [4]. In ℝ3, 

finding the mode of this secondary histogram amounts to computing the “roll” about the first 

vector. Besides the computational cost, a problem for this approach is quantization by the 

histogram bin angles. A simple alternative for orientation assignment, isotropic and applying 

to any number of dimensions, is to utilize the correlation between gradient components, also 

known as the structure tensor,

(4)

where ∇I(x) is the gradient of image I at location x, approximated by finite differences, and 

w(x) is a Gaussian window centered at the keypoint, the width of which is a constant 

multiple of the keypoint scale.

The structure tensor is real and symmetric, and thus it has an orthogonal 

eigendecomposition, K = QΛQT. If the eigenvalues are ordered and distinct, then the 

decomposition is unique except for negation of columns of Q. A graphical interpretation of 

the structure tensor and its eigenvectors is given in figure 2. This matrix is well-known in 

computer vision, especially with regard to corner detection. Kandel et al. used these 

eigenvectors to align pairs of image patches [16]. In this work, we use them to derive an 

orientation local to each keypoint, obviating the need for pairwise alignment.

The matrix Q cannot give a robust orientation per se, as it is ambiguous as to the direction of 

change along each axis. To see this, consider that Q is invariant to negation of ∇I. We must 

incorporate more information to achieve rotation invariance. A natural choice is to compute 

the direction of change along each vector qi, the ith column of Q, which is just the sign of the 

directional derivative

(5)

We remove this ambiguity by requiring that the directional derivative of each eigenvector is 

positive, computing the columns of R as ri = siqi. Here we reject keypoints with si = 0 as 

degenerate. Then, si ∈ {−1, 1}, so . Expanding terms we have
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(6)

so that K = RΛRT. Intuitively, this states that negation of any eigenvectors still yields an 

eigendecomposition of K. This fact allows us to prove that the matrix R tracks rotation of the 

image data about the keypoint3. It also allows us to avoid reflections, having |R| = −1, by 

negation of rn. The structure tensor is not unique in having these properties, for example a 

rotation matrix can be recovered by a similar process of eigendecomposition and sign 

correction using third-order image moments [17]. Compared to that approach, we prefer the 

structure tensor due to its simplicity and computational expedience.

In the previous discussion we have assumed that the eigenvectors and their directional 

derivatives were reliably computed. In practice, this holds only for certain data. We now 

introduce criteria to reject degenerate keypoints, which would not be reliably oriented. We 

first verify the stability of the eigenvectors, rejecting a keypoint if , where λi 

is the ith eigenvalue of K, in ascending order, and β a constant parameter. Next, we test the 

angle between the gradient d and eigenvectors qi,

(7)

The directional derivative is unstable when the two vectors are nearly perpendicular. Thus, 

we reject a keypoint if mini |cos(θi)| < γ, a constant parameter. This also serves as a method 

of corner detection, rejecting points at which the image is nearly invariant in the direction of 

qi. For example, in ℝ3 a tube-like structure is nearly invariant along a single axis, while a 

plate-like structure is poorly-localized in a plane. We omit testing the ratio |λn/λ1| which 

was approximated by many corner detectors, including the original SIFT, as in our 

experiments it gives similar results to the proposed angle test [6], [18]. These two criteria 

remove a large fraction of the unreliable keypoints.

C. Gradient histograms

Gradient histograms are a robust representation of local image data [6], [19]. A gradient 

histogram estimates the distribution of image gradients in a window, with bins assigned 

based on the direction of the gradient vector ∇I(x), and contributions weighted by the 

magnitude |∇I(x)|. In SIFT, the polar angle is divided evenly into eight bins, with each bin 

sweeping  radians [6]. Here again, ℝ2 is a special case, as we cannot divide the possible 

directions in ℝn into bins in such a simple way. Previous authors extended this concept to 

higher dimensions by converting the gradient to (n – 1)-spherical coordinates, dividing each 

3See theorem 2 in the appendix.

Rister et al. Page 6

IEEE Trans Image Process. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



angle into bins of the same increment [1]–[4], [10], [12], [15]. We refer to this as the “globe” 

method, because the edges between bins are the same as the lines of longitude and latitude in 

a globe. As noted by Scovanner et al., this histogram is biased towards certain directions in 

ℝ3 [10]. The problem can be seen by viewing the gradient histogram as a tessellation of the 

unit (n – 1)-sphere. Here, a gradient vector is assigned to the bin intersected by the ray 

sharing its direction and origin. As shown in figure 3, the globe results in differently-shaped 

tiles.

Viewing the problem in this way, it is clear that we must tessellate the (n – 1)-sphere into 

congruent tiles, with each vertex incident to the same number of tiles. The number of convex 

polytopes satisfying these constraints depends on n [20]. In three dimensions, they are given 

by the five Platonic solids. Of these, we choose the regular icosahedron, having the largest 

number of faces. Similar methods based on Platonic solids were previously developed for 

human action recognition in video sequences of two-dimensional images [9], [21].

Although the histogram is now evenly weighted between tiles, it is still subject to artifacts 

due to quantization of the gradient directions. To mitigate this effect, we change the 

histogram again, so that the bins are the vertices of the icosahedron, rather than its faces. To 

accumulate a gradient vector into a bin, we interpolate its magnitude between the three 

vertices incident to its intersecting triangle, as shown in figure 4. This is equivalent to 

interpolating onto the three nearest face centers of the dual graph, the regular dodecahedron. 

We use as interpolation weights the barycentric coordinates of the point where the gradient 

ray intersects the triangle. This is computationally efficient, as the barycentric coordinates 

are already computed to test for ray-triangle intersection via the Mvller-Trumbore algorithm 

[22].

To compute the keypoint descriptor, also known as the feature vector, we first take a 

spherical image window centered at the keypoint, of radius 2σ, where σ is a constant 

multiple of the keypoint scale from equation 2. To achieve rotation invariance, the image is 

rotated by the inverse of the keypoint orientation from section III-B. The spherical window 

is then divided into a 4 × 4 × 4 array of cubical sub-regions, as seen in figure 5. A separate 

gradient histogram is computed for each sub-region, with 12 vertices per histogram, giving 

43 · 12 = 768 components in total. Using a Gaussian window, the contribution of each voxel 

is weighted by a Gaussian function of scale σ, based on its distance to the keypoint. To avoid 

quantization, the contribution of each voxel is distributed by barycentric coordinates 

between the three vertices of its intersecting triangle, and by trilinear interpolation between 

the eight sub-region centers enclosing the voxel in a cube. Thus, if the keypoint location is k, 

the sub-region is centered at y, and (λ1, λ2, λ3) are the barycentric coordinates of the point 

where the gradient ray intersects the face of the icosahedron, the value added by voxel x to 

the bin corresponding to λi is

(8)
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where the exponential term is the Gaussian window, and the product term is the trilinear 

interpolation weight for y. This is analogous to the original SIFT formulation, but it 

interpolates over triangles instead of circular arcs, and cubes instead of squares [6]. After all 

values have been accumulated, the descriptor is ℓ2 normalized, truncated by a constant 

threshold δ, and normalized again [6].

D. Geometric moment invariants

Although the original SIFT descriptor was based on gradient histograms, it is possible to 

interchange keypoint detectors and descriptors. For comparison, we implemented a different 

feature descriptor based on geometric moment invariants. In this context, moments are 

functions mapping images to real numbers, having the form

(9)

where p, q, r ∈ ℕ, I : ℝ3 → [−1, 1] is the image and R > 0 is the window radius. GMIs are 

polynomials of these moments, which have been shown to be invariant to various geometric 

transformations. These quantities were used as feature vectors to match anatomical locations 

in the HAMMER registration algorithm [23]. In this work, we form a feature vector from the 

second-order rotation-invariant polynomials

(10)

which were studied by several authors [17]. The first GMI is proportional to the mean 

intensity, while the others are more difficult to interpret. Since these quantities will be vastly 

different in magnitude, we first define the normalizing constant

(11)

which is just the moment of the function I(x, y, z) = sgn(xpyqzr), the largest possible value of 

Mpqr. Then we compute the normalized GMIs

(12)
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These constants suffice to map each GMI to roughly the same range. However, we still have 

the issue that J2 and J3 are second- and third-order polynomials, making them more sensitive 

to changes in the moments than J1 or J2. To compensate for this, we use the final mapping

(13)

with J̄0 = J̃0 and J̄1 = J̃1. It is clear that the normalized GMIs have the same geometric 

invariances as the originals. As in the original HAMMER work, we found that 

discriminative matching requires taking GMIs centered at multiple voxels in a neighborhood 

around the keypoint, although this destroys rotation invariance. We took R = 11 and 

concatenated GMIs from a 5 × 5 × 5 image window centered at the keypoint, yielding a 

descriptor with 53 · 4 = 500 components. These parameters were chosen to yield a 

computation time and feature vector size comparable to our 3D SIFT descriptor.

IV. Keypoint matching and image registration

We now review how to register a pair of images from keypoints. This consists of two phases, 

matching the keypoints to establish corresponding locations, and fitting a transformation to 

the correspondences.

A. Keypoint matching

In keypoint matching, we identify a subset of the keypoints in one image appearing in the 

other. More formally, given a set S1 of keypoint descriptors in the source image, and S2 in 

the reference image, we wish to find a bijection from some subset S̃
1 ⊂ S1 to another S̃

2 ⊂ 
S2. We allow subsets because some keypoints may not be present in the other image, due 

either to occlusion, field of view, or failure in keypoint detection. Given a metric d(x, y) over 

feature descriptors, we can order the members of S2 by their distance to a descriptor in S1. 

We use the Euclidean distance for d, as it is inexpensive to compute and gives the best 

results of the metrics we tried. Let x ∈ S1, and let yi ∈ S2 be the ith-nearest member of S2 to 

x. Lowe defined the matching score

(14)

which is small when the match between x and y1 is particularly distinctive, i.e. x is much 

closer to y1 than to any other member of S2 [6]. Thus, we say that x matches y1 if g(x, S2) is 

below some threshold η. This prevents matching when keypoints are locally similar, which 

often occurs in medical images.

The previous criterion is neither symmetric nor injective. That is, the matches from S1 to S2 

need not be the same as those from S2 to S1. To address this limitation, we perform the 
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procedure in each direction, S1 → S2 and S2 → S1, rejecting matches for which the two 

passes disagree. Note that we need only compute g(y, S1) for each y ∈ S2. In practice |S̃
2| is 

often a small fraction of |S2|, so the bijective matching algorithm is only slightly more 

expensive than the original.

B. Image registration

Having extracted keypoints and matched them in a pair of images, we register the images by 

fitting a geometric transformation to these correspondences. In this work we will only use 

affine transforms, which are simple mathematically and suffice to register our data. Given a 

coordinate x ∈ ℝn, with parameters A ∈ ℝn×n and b ∈ ℝn, an affine transform has the form 

x′ = Ax + b. This characterizes all translations, dilations, rotations and reflections, among 

other operations. It is a linear operator in ℝn+1, as we have

Algorithm 1 Fitting a function via RANSAC

Let f : ℝn → ℝn be the function we wish to fit. Furthermore, let , such that xk ∈ ℝn corresponds 
to yk ∈ ℝn. N and ε are parameters.

I* ← ø

for i = 1, …, N do

 Fit f to a randomly drawn subset of S

 I ← {(x, y) ∈ S : ‖f(x) – y‖ < ε}

 if |I| > |I*| then

  I* ← I

 end if

end for

Fit f to I*

(15)

As such we can fit an affine transform by linear regression, requiring at least n + 1 matches 

for uniqueness. Some of the matches will be erroneous, so we reject outliers by Random 

Sample Consensus (RANSAC) as in algorithm 1 [24]. This attempts to find the transform 

with the most inliers, by iteratively fitting transforms to subsets of the data. The final 

transformation is the least squares fit to the inliers, where the error is the Euclidean distance 

in millimeters.

V. Experiments

In this section, we present experiments showing the robustness of keypoint-based image 

registration, and the necessity of the proposed modifications to the original SIFT algorithm. 

We test on three types of data, each demonstrating a different image registration task, where 

we compute a different kind of accuracy. The first test is intra-patient registration of 
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simulated multiple sclerosis (MS) cases, in which we compare different variations on 3D 

SIFT detectors and descriptors. The second test is inter-patient registration of simulated 

normal brain MRIs, in which we compare our feature-based method to intensity-based 

image registration. The final test is intra-patient registration of real abdominal CT scans 

from longitudinal cancer studies, in which we evaluate the accuracy of the algorithm on a 

challenging real-world use case.

We used the same parameters for all tests, to avoid over-fitting to the test data. The keypoint 

parameters from section III were α = 0.1, β = 0.9, γ = 0.5 and δ = 0.0335. The Gaussian 

scale-space pyramid from section III-A assumed an initial scale of σn = 1.15, a base scale of 

σ0 = 1.6, and six levels per octave. We refer the readers to the original SIFT literature for the 

meaning of these parameters [6]. Except in figure 7, the matching threshold from section IV-

A was η = 0.8. Finally, algorithm 1 used N = 2500 iterations and ε = 20 mm, except for the 

MS experiment in section V-A where ε was the same as the error threshold. Most of the 

code was implemented in ANSI C, with OpenMP multithreading. All experiments were run 

on all four cores of an Intel Core i5-4590 CPU. Although the processing time and accuracy 

depend heavily on the parameters, these values suffice for a wide range of medical imaging 

tasks.

A. Brain MR with MS lesions

The following experiment simulates registration of brain MRIs from an MS patient over 

time. The reference image is of a normal brain, and the source or moving image is of the 

same brain, but with severe lesions. The test images come from the BrainWeb MRI 

simulator, using T2 weighting, 1 mm resolution, 3% noise, and 20% field nonuniformity 

[25]. To simulate clinical conditions, we rotated the source image by 10° about the z axis. 

Figure 6 shows a slice of the test images, along with matches from the proposed method. 

Because the data come from the same anatomical model, we have the ground truth 

displacement at each voxel, so we can verify each matched keypoint independently. This 

allows us to compute precision and recall for different versions of 3D SIFT features.

The evaluation methodology is as follows: a true correspondence is one within ε mm of the 

ground truth, and a positive is a matched keypoint in the source image. For example, a false 

positive is a keypoint which was assigned an incorrect match, while a false negative is a 

keypoint for which a true correspondence exists in the other image, but was not assigned a 

match. From these definitions, we computed the standard precision and recall scores,

We also computed the mean squared error (MSE) of the resulting affine transformation, 

taken as the squared distance between the matched keypoint and the ground truth location in 

the reference image, averaged over each keypoint in the source image.
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We tested two versions of 3D SIFT features, one with the ℓ1- and one with the ℓ∞-

neighborhood, as described in section III-A. We also tested the GMI features from section 

III-D with each of the two neighborhoods. To reduce the dependence of the experiment on 

the error threshold, we computed the scores for ε = 2 and ε = 5, which are reasonable 

thresholds for many problems in medical image analysis. Despite the theoretical differences, 

in our experiments the global and icosahedral histograms of section 3 yielded equivalent 

results. Thus we chose the icosahedron, as it is theoretically superior and results in a smaller 

feature descriptor.

In this experiment the ℓ∞ neighborhood yielded higher recall, but fewer total matches, as 

shown in figure 7 and table I. This is intuitive, as we would expect a more conservative 

choice of keypoints to reduce the chance of error. Nevertheless, for this application it is 

indispensable that we have a sufficient number of matches, and we shall see in: section V-B 

that the ℓ1 neighborhood is essential for accurate inter-patient registration. For each choice of 

neighborhood, the SIFT descriptor yielded more matches, and higher precision and recall, 

and lower MSE than the GMI descriptor. This suggests it is a more distinctive representation 

of the underlying image than the GMI descriptor.

To demonstrate rotation invariance, we performed the same experiment under varying 

rotation angles from 0 to 90 degrees, using ε = 2 mm. For this test we used the ℓ∞ 

neighborhood with the proposed SIFT method, the GMI descriptor, and a modified SIFT 

descriptor which does not correct for rotation. We condensed the precision and recall into 

the standard F1 score, reported alongside the mean squared error. We can see in figure 8 that 

our SIFT descriptor is the only one capable of handling rotations above 30°. This validates 

the proposed method of orientation estimation, and demonstrates that GMIs are not effective 

in accounting for rotation when extracted from multiple voxels, which is necessary for 

accurate matching.

B. Inter-patient brain MR

This experiment simulates registration of normal brain MRIs from different patients. Among 

the most common applications of this procedure is brain segmentation. One image, deemed 

the “atlas,” is labeled by an expert. To segment a second image, called the “subject,” we 

register it to the atlas. We then assign to each voxel the label of its corresponding atlas 

location, and compute the standard Dice coefficient between these labels and the ground 

truth.

To establish ground truth tissue labels, we used BrainWeb simulated MRI images [25]. We 

chose their “normal brain” model, the same as in section V-A, as the labeled atlas. BrainWeb 

provides 20 additional anatomical models, which we chose as the unlabeled subjects. All 

simulations used T1 weighting, 1 mm resolution, 3% noise, and 20% field nonuniformity. To 

establish a reasonable test for affine registration, we condensed the original BrainWeb tissue 

classes into three superclasses: brain, background, and other. The brain class consists of gray 

matter, white matter, and cerebrospinal fluid. The background class consists of empty space. 

The remaining class consists of all other tissue types, including as skull, muscle and dura 

mater. The simplified atlas model is shown in figure 9.
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To simulate clinical conditions, we scaled each of the subjects by ±10% in volume, and 

rotated them by ±10° about the z, x, and z′ axes, in that order, where z′ is the resulting z 
axis after the second rotation, the origin being the center of the image. The actual 

transformation parameters were drawn randomly from uniform distributions.

In this experiment we tested several additional methods for comparison to the proposed 3D 

SIFT-based method. First, we compared to the binary distribution of the 3D SIFT work of 

Toews et al. [4]. They use a different method for orientation estimation and gradient 

histograms, a special ranked encoding of the feature vector, and a different matching 

procedure based on Bayesian probabilities. Second, we compared to intensity-based image 

registration which iteratively minimizes the mutual information between the reference and 

the warped image [26]. For this we used the C++ implementation provided by the Advanced 

Normalization Tools (ANTs) [27]. For the parameters we chose three pyramid levels, each 

half the size of the next, with an adaptive step size. Registration was performed in four 

stages: first we compute a translation based on the centers of mass, then we iteratively refine 

the transformation, first with a translation, then a rigid motion, and finally an affine 

transformation. The objective function was evaluated at every voxel. These are standard 

parameters for general-purpose medical image registration. Finally, we computed the scores 

for the identity transformation, which does no registration at all, to give a sense of the initial 

misalignment.

As shown in table II, the keypoint-based methods with ℓ1 neighborhoods outperformed the 

other methods. We aborted registration if fewer than five inliers were found, which is one 

more than needed to uniquely determine an affine transformation. Using the ℓ∞ 

neighborhood with the proposed 3D SIFT descriptor, sufficient inliers were found in only 13 

of 20 cases, whereas the ℓ1 neighborhood succeeded in all 20 cases. This suggests that the ℓ∞ 

neighborhood rejects stable keypoints. Even with the ℓ1 neighborhood, there may be as few 

as 50 matches in inter-patient registration, making every true match valuable.

In comparison to the 3D SIFT implementation of Toews et al., the proposed method 

achieved greater registration accuracy, at the cost of increased computation time. Since we 

do not have source code for this method, we cannot say with certainty what accounts for its 

faster processing time. However, three main differences in the methods might explain these 

results. First, the method of Toews et al. uses a 2 × 2 × 2 array of gradient histograms, with 

only 8 orientation bins for each histogram. This smaller descriptor should be quicker to 

compute, and quicker to match between images. Second, their method uses a ranked 

encoding and Bayesian matching procedure, which might be faster than exhaustive 

Euclidean matching. Third, their approach did not use the ℓ1 neighborhood, so it should 

detect fewer keypoints, possibly with fewer matches, which yields faster matching. In 

applications where speed is critical, the smaller histogram array, ranked encoding and 

Bayesian matching could be incorporated into the proposed method.

While the GMI feature descriptors proved less distinctive in the previous experiment, they 

performed slightly better than the SIFT descriptors in this inter-patient registration task. It is 

possible that distinctiveness in image representation, which is desirable in intra-patient 

registration, could actually be a hindrance when the objects being matched have different 
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geometry. To our knowledge, the combination of SIFT keypoints with GMI descriptors is 

novel, and could be a promising avenue for future research. Nevertheless, with the ℓ1 

neighborhood the SIFT and GMI descriptors yielded very similar registration performance, 

and the SIFT descriptor was faster to compute.

Interestingly, all of the keypoint-based methods outperformed intensity-based registration in 

both accuracy and speed. This could be due to the fact that keypoint-based matching is not 

susceptible to local minima. Another possible reason is that most of the keypoint matches 

occurred in the brain, while intensity-based registration also accounts for the skull and 

background. Intensity-based methods might perform better with additional preprocessing. 

However, ceteris paribus, we ought to prefer methods requiring fewer application-specific 

adjustments.

C. Abdominal CT from Longitudinal Imaging Studies

The following experiment tests the proposed method on abdominal and full-body CT images 

from longitudinal imaging studies.

Clinical cases exhibit considerable variation between images, where the same patient is 

often imaged from different contrast phases and almost always from different scanners. The 

baseline and followup scans often have different resolutions, e.g. 1 mm slices in the baseline 

and 5 mm in the followup CT. Accordingly, our dataset consists of 12 cases exhibiting all of 

these variations. To compensate, our program extracts the resolution from the metadata of 

each image, accounting for units in all processing stages. For even greater accuracy, at the 

cost of speed, we interpolate pairs of images to the same resolution prior to keypoint 

detection. The target resolution is the minimum of the two input image resolutions in each 

dimension. For example, when registering a 1 × 1 × 1 mm series to one of 0.75 × 0.75 × 5.00 

mm resolution, we resample both to a resolution of 0.75 × 0.75 × 1.00 mm, using trilinear 

interpolation. We report both interpolated and non-interpolated registration accuracy in the 

following sections.

To establish a reference standard for comparison, we manually annotated the images with 

fiducial markers. To ensure accuracy and ease of annotation, we marked the centers of three 

distinct vertebral bodies in each time point, from the eleventh thoracic vertebra, and the 

second and fifth lumbar vertebrae, as shown in figure 10. We consider the vertebral column 

an appropriate indicator of abdominal registration performance, as its deformation is 

sufficiently complex to present a challenge, yet still reasonably approximated by an affine 

transform. Furthermore, the motion of the spine agrees closely with the motion of the whole 

torso, which cannot be said of certain soft tissues such as the lungs and diaphragm. Although 

we took care to mark the center of each vertebral body, human error is inevitable in this task, 

so our markers are not the ground truth.

Despite the vast differences in anatomy and resolution, the proposed method performed well 

on this test, as shown in figure 11. In every case the mean error was below 1 cm, and the 

mean error across all cases was within 5 mm, as shown in figure 12. We consider this a very 

good result, as an affine transform is not expected to perfectly model the spine. Furthermore, 

there is human error in our markers, so we cannot expect a perfect score. This test also 
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demonstrates the value of interpolating the input images prior to registration. While in most 

cases the method performs equally well with or without resampling, case 9 requires 

resampling to succeed.

VI. Conclusions

We described a volumetric image registration system based on scale- and rotation-invariant 

keypoints. Experimental evidence suggests the method performs well in a wide range of 

image registration tasks, being suitable for registration of intra-patient brain MR in the 

presence of MS lesions, inter-patient brain MR, and abdominal CT from longitudinal 

studies. The method outperforms an intensity-based method on these tasks, as well as 

several other types of 3D keypoints.

We now draw some conclusions on the differences between keypoint-based and intensity-

based registration. Intensity-based registration problems are easy to define, but difficult to 

solve. In contrast, keypoints are difficult to define, but the linear regression problem of 

section IV-B is trivial to solve. However, keypoint matches usually contain outliers, which 

must be rejected as in algorithm 1. When the keypoint matches are reliable, these methods 

should be preferred for their robustness. However, intensity-based methods should be 

preferred when keypoint matching is unsuccessful, or when the desired geometric 

transformation is too intricate for keypoints to provide sufficient information. Furthermore, 

it is difficult to apply keypoint-based methods to multi-modal image registration, as 

keypoints might not be detected in corresponding locations across modalities. In 

conventional photography, illumination changes are mostly monotonic, but change of 

modality in medical imaging is considerably more complex. For example, cerebrospinal 

fluid appears bright in T2 MRI and dark in T1, while the surrounding brain tissue follows 

the inverse relationship. Despite these challenges, intensity correlation could be used to 

match keypoints across modalities, if their locations were reliably detected.

In this work, we have only explored image registration as regression to an affine transform. 

In practice, this is often the first stage in a larger pipeline, using freeform or spline-based 

transformations to locally deform the image. The work presented here is relevant in this 

scenario as well. If the keypoint matches are accurate and well-distributed, they can be 

interpolated by a thin-plate spline, which is capable of nearly arbitrary deformations. It is 

also possible to treat keypoint alignment as a non-rigid point-cloud registration problem 

[28]. Keypoint matches can also be used to guide a non-rigid intensity-based registration 

algorithm [29]. However, these more advanced methods come with their own share of 

difficulties. Unlike affine transforms, interpolating splines are highly sensitive to outliers. 

Furthermore, point-cloud and intensity-based registration are computationally difficult and 

susceptible to local minima. If these issues were overcome, these techniques could be used 

to extend the proposed method to a wider range of registration problems.

Acknowledgments

The authors would like to thank Meredith Burkle and Alfiia Galimzianova for their assistance. This work was 
supported in part by grants from the National Cancer Institute, National Institutes of Health, u01ca190214 and 
5u01ca190214.

Rister et al. Page 15

IEEE Trans Image Process. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Appendix

Theorem 1. A point x ∈ ℤn is an extremum of a function I : ℤn → ℝn over its ℓi 

neighborhood B(x) only if x is a stationary point of its forward differences. Any other 

neighborhood with this property is a superset of B(x).

Proof: Let e1,…, en denote the standard Euclidean basis vectors. We define the forward 

differences as ∂I(x)/∂xk = I(x+ek)– I(x). We say that x is a stationary point of these 

differences if ∂I(x)/∂xk and ∂I(x – ek)/∂xk have opposite signs for all k ∈ {1,…n}. That is, 

the forward difference approximation of the derivative crosses zero in every dimension. 

Expanding terms, this is equivalent to saying either I(x) > I(x + ek) and I(x) > I(x – ek) or 

I(x) < I(x + ek) and I(x) < I(x – ek) for each k. This is satisfied if x is an extremum on the set 

{x ± ek : k ∈ {1, …, n}}, which is exactly B(x). It is easy to see that this holds for any 

superset of B(x), and no other neighborhoods.

Theorem 2. Let xk ∈ ℝn be a keypoint, and I : ℝn → ℝ be an image. Furthermore, let w : 

ℝn → ℝ be an (n – 1)-spherically symmetric window about xk, i.e. w(x) depends only on ‖x 
– xk‖. Finally, let the rotation matrix RI ∈ Rn×n be computed in wI, as defined in section III-

B. Then, if , its orientation has RI′ = R0Ri.

Proof: From the chain rule we can compute . Then over w′I′ we have

(16)

The change of variables  has a Jacobian determinant of one, so we have

(17)

Both , and (R0RI) Λ (R0RI)T are eigendecompositions of the matrix KI′, so we have 

said in section III-B that RI′ and R0RI can differ only by negation of columns. Let  and 

R0ri denote the ith column of each matrix, so either  or . Assume for the 

sake of contradiction that . Then, by construction of  we have
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(18)

which is a contradiction. Thus , so RI′ = R0RI.
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Fig. 1. 
Visualization of the ℓ1 (left) and ℓ∞ (right) neighborhoods in ℤ2. In our experiments, defining 

extrema with the ℓ1 neighborhood improves registration results.
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Fig. 2. 
The structure tensor, represented as an ellipsoid, under rotation. The chosen eigenvectors 

undergo the same rotation.
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Fig. 3. 
Left: histogram bins by evenly-spaced spherical coordinates. Right: Icosahedral histograms. 

The yellow tile is intersected by the gradient vector, shown in black.
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Fig. 4. 
A vector is interpolated onto the vertices of its intersecting triangle, where λi is the 

interpolation weight at νi.
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Fig. 5. 
Visualization of trilinear interpolation from equation 8 in two dimensions. The coordinate 

system is centered and rotated around the keypoint k. The descriptor is computed in a 

window of radius 2σ. The gradient magnitude at x is weighted according to its distance from 

the subregion centers yij, which enclose x in a square. In three dimensions, there are eight 

subregions yijk enclosing x in a cube.
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Fig. 6. 
The rotated head with MS lesions (left) and normal head (right), with matches in this slice 

drawn in yellow.
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Fig. 7. 
Precision-recall curves for the MS experiment, obtained by varying η in the interval [0.7, 

1.0], for two different values of ε.

Rister et al. Page 25

IEEE Trans Image Process. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8. 
MS experiment under varying degrees of rotation.
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Fig. 9. 
The atlas (left) and tissue model (right) for the segmentation test, showing the background 

(black), brain (gray), and other (white) classes.
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Fig. 10. 
Fiducial markers for the CT experiment, shown in red.
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Fig. 11. 
Example of CT registration. The baseline (left) has 0.87 × 0.87 × 5.00 mm resolution and 

shows only the abdomen. The followup (right) has 0.92 × 0.92 × 1.00 mm resolution and 

shows the full body. The overlay (middle) of the registered baseline (red) and the followup 

(gray) shows correct spine alignment. The mean landmark error for this case is 8.52 mm.
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Fig. 12. 
Mean error for the landmarks in each case. Mean error across all cases with resampling: 4.82 

mm.
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Table I

Keypoint matches, registration error and execution times for the MS experiment.

Neighborhood ℓ∞ ℓ1

Keypoints 487 10370

Descriptor SIFT GMI SIFT GMI

True matches, ε = 2 mm 129 113 2229 1385

True matches, ε = 5 mm 154 133 2695 1587

Total matches 166 155 2818 1986

Mean squared error (mm) .43 .69 .47 .58

Execution time (s) 61 74 201 190
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Table II

Mean Dice coefficients, as percentages. Higher is better.

Method Brain Background Other Time (s)

SIFT ℓ1 92 96 76 125

GMI ℓ1 92 96 78 380

SIFT* ℓ∞ 79 91 54 69

GMI ℓ∞ 80 90 54 78

Toews et al. 90 96 74 32

Mutual Information 87 96 69 558

Identity 58 82 28 N/A

*
Average over 13/20 successful cases.
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