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near-infrared gray image and visible color image. 
 A detail layer transfer method based on the detail difference 

constraint is introduced to enhance the detail layer of the 
newly created near-infrared gray image. The detail 
difference constraint forces the gradients of the detail layer 
of the newly created near-infrared gray image to be closer to 
those of the captured near-infrared gray image. By adopting 
this detail difference constraint, detail description and the 
amount of visual information can be improved. 

 Conventional methods [1–4] focus on fusing images to 
increase visual information or edge representation. 
However, the proposed method is concerned with 
transferring the colors from the visible color image to the 
near-infrared gray image without any loss of detail and 
contrast. The differences between the conventional and 
proposed methods are discussed in this paper. The 
experimental results confirm that the proposed method is 
more effective at expressing local color contrast and detail 
than conventional methods. 

 In dim lighting conditions, captured visible color images 
can contain significant noise. In this case, the question 
arises as to whether the proposed method effectively works 
on the captured image pair of a noisy visible color image 
and the near-infrared gray image. The experimental results 
show that the proposed approach used for the near-infrared 
coloring can also be applied to image pairs captured under 
dim lighting conditions. Moreover, it is discussed how the 
proposed near-infrared denoising differs from conventional 
image-pair-based fusion [2,3,6,7,8,9,10]. 

II. RELATED WORK 

A. Regularization Approach 

If the discrepancy problem can be ignored, a naive coloring 
method that involves combining the chrominance planes of the 
visible color image with the near-infrared gray image can be an 
adequate solution. However, in most cases, the discrepancy 
problem cannot be ignored, and thus, more sophisticated 
techniques are required. One solution is to adopt a 
regularization approach [3,6,7] that has been widely used for 
image-pair-based restoration. The regularization term can be 
modeled as follows: 
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where lvx  and nirx  indicate the luminance plane for the visible 
color and near-infrared gray images, respectively, and f  

denotes the horizontal or vertical derivative filter. In (1), the 
first term, i.e., the data-fidelity term, indicates that the unknown 
luminance image to be estimated is similar to the luminance 
plane for the visible color image. However, to improve the edge 
representation, a regularization term is needed that is provided 
by the second term in (1). This constraint forces the edges from 
the unknown luminance plane to be close to those in the 
near-infrared gray image. In (1), γ  is a constant value that 

controls the sparsity [8]. In general, the value of γ  is less than 

one. Given an estimated luminance plane, the colors can be 
taken directly from the visible color image. In other words, the 
estimated luminance plane can be combined with the 
chrominance planes from the visible color image. 

B. Multiresolution Approach 

Another approach is to apply multiresolution techniques 
[1,9,10] widely used for image fusion. The wavelet transform is 
a well-known multiresolution representation, using which, the 
luminance plane for the visible color image can be combined 
with the luminance plane for the near-infrared gray image as 
follows: 
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where )(Θ lvx  and )(Θ nirx  indicate the wavelet coefficients of 

the luminance planes for the visible color and near-infrared 
gray images, respectively, and MAX  denotes the function that 
returns the largest value of a set of values. The above equation 
shows that the wavelet coefficients of the luminance plane for 
the visible color image are linearly mixed with those of the 
near-infrared gray image for the lowest frequency subband. 
However, for other subbands, a larger wavelet coefficient 
between )(Θ lvx  and )(Θ nirx  is selected to increase the details 

of the colorized gray image. Given the created luminance plane, 
according to (2), its colors can be taken directly from the visible 
color image. 

C. Statistical Approach 

In [11], mean and variance, which are the representative 
statistics of natural images, are used to transfer the color 
appearance of a reference image to that of a target image. This 
approach can also be adopted to solve the near-infrared 
coloring problem. In other words, the local mean and variance 
of the visible color image luminance plane can be changed 
according to the local mean and variance of the near-infrared 
gray image as follows: 
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where subscript i  indicates pixel location, iμ  and iσ  denote 

the mean and variance of the local patch centered at the thi  
pixel location, respectively, and lo

ix  and co
ix  indicate the thi  

pixel values of the luminance and chrominance planes of the 
colorized image, respectively. The above equation tells us that 
the luminance plane of the visible color image lv

ix  can be 

scaled according to the variance ratio lv
i

nir
i σσ . In addition, the 

new chrominance plane co
ix  can also be created by scaling the 

chrominance planes cv
ix  of the visible color image by the 

variance ratio.  
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TABLE I 
 MSE EVALUATION 

Test Images Figs. 1(a) and (b)  Figs. 5(a) and (b) Figs. 6(a) and (b)

MSE 5
101.2

  
5

101.4
  

5
105.6



 
Under regularization, 0

iα  is given as follows: 
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where avg  denotes the averaging function. The above 

equation indicates that the center-pixel values from the 
extracted near-infrared and visible-luminance patches are 
divided by their respective average values and then combined 
linearly with weighting values that are set by the variance ratio 
between the two patches. The ratio of the center-pixel’s 
brightness to the background brightness, as shown in (7), can be 
used as the local contrast measure [13,14]. In addition, the slope 
of 1,iα  corresponds to local contrast in an image. Thus, the 

slope iα  for the estimated linear mapping iiαQ  preserves 

local contrast 0
iα  for both the near-infrared and 

visible-luminance patches. The closed-form solution to (4) is 
given as follows: 
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where I  indicates the identity matrix. Given the estimated iα , 
the pixel value of the newly created near-infrared luminance 
image at the thi  pixel location can be obtained as follows: 
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o
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where lo

ix  is the newly created near-infrared luminance image 

with the contrast-preserving mapping. Here, iα  is the 
linear-mapping relation between the luminance images. 

C. Validity of Linear Mapping Model 

In (4), the relation between the near-infrared luminance 
image and luminance plane of the visible color image is 
modeled by a linear mapping function. To check this 
assumption, the linear mapping model was evaluated with 
respect to mean square error (MSE). The image pairs of the 
visible color and near-infrared gray images, as shown in Figs. 1, 

5, and 6, were tested. MSE is defined as Nll ov
2

xx  , 

where   indicates the 2l -norm. The pixel range of the tested 

images was scaled to [0–1] and the value of cμ  in (4) was set 

to zero. Table I shows that the calculated MSE values are quite 
small, and thus we conclude that the use of the linear mapping 
model is valid.  

According to the image acquisition model [15,16], the 
camera response corresponds to the integral of the product of 
the relative power spectral distribution of the reflected light and 
the spectral sensitivity function over all the wavelength regions. 

Let us assume that the spectral sensitivity function used to 
capture the luminance plane of the visible color image can be 
approximated by scaling and translating the spectral sensitivity 
function of the near-infrared luminance image as follows: 

 
)()()()( 321 λBωλGωλRωλS v                  (10) 

 
 



















 

λλ

nir

λ

nir

λ

v

λdλLβλdλLλSα

λdλLβλSαλdλLλS

)()()(                      

)()()()(

  (11) 

 
where )(λR , )(λG , and )(λB  denote the spectral sensitivity 

functions of a camera's filters that respond to the long, middle, 
and short visible wavelength regions. In addition, )(λL  is the 

relative spectral power distribution of the reflected light, and 
)(λS v  and )(λS nir  correspond to the spectral sensitivity 

functions to capture the luminance planes of the visible color 
and near-infrared gray images, respectively. As shown in (10), 
the linear combination of )(λR , )(λG , and )(λB with weight 

ω  generate the spectral sensitivity function )(λS v  to capture 

the luminance plane of the visible color image. If )(λS v  can be 

modeled by βλSα nir )( , as shown in (11), the pixel value of 

the near-infrared gray image, described by λ nir λdλLλS )()( , can 

be linearly mapped to the pixel value of the luminance plane of 
the visible color image, described by λ v λdλLλS )()( . 

D. Detail Layer Transfer 

The proposed contrast-preserving linear mapping model 
enables the image appearance of the newly created 
near-infrared luminance plane to be similar to that of the 
luminance plane of the visible color image. Moreover, it can 
transfer the local contrast of the captured near-infrared 
luminance plane to the newly created near-infrared luminance 
plane. These results can be used to resolve the discrepancy 
mentioned in the introduction. Furthermore, the pixel saturation 
of the visible color image, as shown in Fig. 1(b), can be solved. 
However, when mapping details of the near-infrared luminance 
plane to the luminance plane of the visible color image, some 
details can be lost. To address this issue, the detail layer of the 
newly created luminance plane is modified as follows: 
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where lob,x  and nirb,x  denote the base layers of the newly 
created near-infrared luminance plane and the captured 
near-infrared luminance plane, respectively, and loxΔ  and 

nirxΔ  indicate the corresponding detail layers. As shown in 
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TABLE II 
 DEFINITIONS OF THE FOUR MEASURES 

Cab u94.0CF  , where ab  and Cu  are  related to the standard deviation of the chrominance planes and mean value of the chroma image, respectively.

22SF FF CR  , where FR  and FC  indicate the averaged numbers of the vertical and horizontal edges, respectively. 




L

i
ii

1
)(log)(EN hh , where h  indicates the normalized histogram of a colored image. 

 


N

i

o
i

o
i

N 1

''1
CT kxx , where k  indicates a Gaussian filter. 

 
TABLE III 

 QUANTITATIVE EVALUATION 

Test Images 
                       Measures  
Methods 

CT EN SF CF 

Fig. 4 

Naive method 12.949 14.623 15.749 11.891 

Gradient regularization 17.375 14.770 23.367 11.893 

Multi-resolution 14.516 14.761 18.68 11.936 

Dehazing method [4] 13.070 14.552 16.863 12.394 

Proposed method 19.046 14.846 23.675 13.732 

Fig. 5 

Naive method 13.828 15.625 15.219 28.583 

Gradient regularization 19.503 15.742 22.5 31.487 

Multi-resolution 16.356 15.497 18.711 29.781 

Dehazing method [4] 16.112 15.261 19.367 30.946 

Proposed method 20.111 15.704 23.445 38.373 

Fig. 6 

Naive method 8.512 14.322 9.797 11.317 

Gradient regularization 12.991 14.302 17.159 11.052 

Multi-resolution 10.603 14.423 13.54 11.133 

Dehazing method [4] 10.857 14.314 12.999 11.208 

Proposed method 13.741 14.555 17.845 10.366 

Fig. 7 
(First row) 

Naive method 10.657 14.826 10.98 16.397 

Gradient regularization 12.909 15.113 14.128 17.604 

Multi-resolution 10.995 14.945 11.616 16.914 

Dehazing method [4] 12.157 15.033 12.447 17.114 

Proposed method 14.656 15.138 15.787 21.759 

Fig. 7 
(Second row) 

Naive method 19.025 15.410 17.031 17.164 

Gradient regularization 19.464 14.895 17.122 17.483 

Multi-resolution 18.158 15.083 16.798 17.685 

Dehazing method [4] 12.874 15.105 15.962 17.925 

Proposed method 23.630 15.205 20.238 30.029 

Fig. 7 
(Third row) 

Naive method 24.637 15.944 24.751 21.608 

Gradient regularization 33.450 15.922 36.554 22.587 

Multi-resolution 27.209 15.893 28.758 22.623 

Dehazing method [4] 25.785 15.795 27.206 22.702 

Proposed method 31.207 15.889 34.068 24.579 

AVG. 

Naive method 14.935  15.125  15.588  17.827  

Gradient regularization 19.282  15.124  21.805  18.684  

Multi-resolution 16.306  15.100  18.017  18.345  

Dehazing method [4] 15.143 15.010 17.474 18.715 

Proposed method 20.399  15.223  22.510  23.190  

 
gradient regularization, multiresolution, and dehazing 
approaches. However, the conventional methods have their 
own merits. The gradient regularization approach is good at the 
representing edges, as shown in the grass region of Fig. 5(h) 
and the bush region of Fig. 6(h). In contrast, the multiresolution 
approach is good at increasing the amount of visual information, 
especially in the distant mountain region of Fig. 5(i) and the 

cloud region of Fig. 6(i). The disadvantage to using the gradient 
regularization approach is that it often omits visual information, 
for example, the clouds in the sky have been removed, as shown 
in Fig. 6(h). The disadvantage of the multiresolution approach 
is that the colors it produces are often unrealistic, as shown in 
Fig. 5(i), and the strength of edges are relatively weak when 
compared to the gradient regularization and proposed method, 
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as in the roof regions of Fig. 6(i). The advantage and 
disadvantage of the dehazing approach [4] are similar to those 
of the multiresolution approach, as checked in Figs. 5(j) and 
6(j). This is because the dehazing method is based on the 
multiscale tone and detail manipulation. Thus, both the 
proposed and conventional methods have their own merits and 
demerits. However, the proposed method is more effective at 
expressing the color contrasts than conventional methods. In 
addition, fine details and natural colors can be obtained 
simultaneously. This is possible because the proposed coloring 
method adopts three kinds of transfer: contrast, detail, and color, 
as shown in the block-diagram of Fig. 2. In addition, the 
proposed method lays more emphasis on near-infrared coloring, 
whereas the conventional methods focus on fusing the images 
for the improvement of edge representation and information 
preservation. This is the main difference between the proposed 
and conventional methods. For a more visual comparison, 
additional image results are provided in Fig. 7. Moreover, a few 
visible/near-infrared image sets including thin lines, high 
texture content, or a combination of high texture and flat areas 
are tested and then provided in Supplement. The performance 
results are similar to Figs. 4-7. All the resulting images can be 
downloaded from our website for the paper (https://sites.google. 
com/site/ changhwan76son/).  

Fig. 9 shows the experimental results for the image pair 
captured in dim lighting [2]. In Figs. 9(a) and (b), it is clear that 
the visible color image contains noise and discrepancy occurred, 
especially for the chart's patches and red lines near the brim of 
the bowl. Fig. 9(c) shows the initially denoised visible color 
image via nonlocal means filtering [17]. In this figure, the 
details have clearly been removed. However, this detail loss can 
be restored by applying the proposed contrast-preserving 
mapping and detail layer transfer, as shown in Figs. 9(d) and (e). 
In Fig. 9(d), it is clear that the newly created near-infrared gray 
image preserves its detail thanks to the proposed contrast- 
preserving mapping. Moreover, the discrepancy problem can 
be resolved. For example, the red line on the bowl that was 
removed in the near-infrared gray image of Fig. 9(b) is restored. 
In Fig. 9(e), the use of the detail layer transfer leads to an 
improvement in the detail description. Fig. 9(f) shows the 
colored image with the proposed color transfer method and Fig. 
9(g) is the chroma-enhanced version of the Fig. 9(f). That is, the 
chroma mapping, as shown in (16), is applied to the Fig. 9(f). 
The scale factor, is , is set with 1.2. In the case of the noisy 
visible and near-infrared image pairs, the values of the 
estimated linear mapping relation, iα , in (4), can be shrunk. 
This is because the used denoised luminance image has already 
lost its contrast and edge, as shown in Fig. 9(c), which can lead 
to the decrease in chroma. Different from other resulting 
images, as shown in Figs. 9(h)-(m), the colored image with the 
proposed denoising method has little noise and color distortions. 
Thus, the chroma mapping can improve the colorfulness 
without noise amplification, as shown in Fig. 9(g). BM3D [20] 
is known as one of the state-of-the-art denoising methods. 
However, its visual quality is poor, as shown in Fig. 9(h). It is 
guessed that the main reason is due to the non-Gaussian noise in 

the captured visible color image. The image-pair-based 
denoising methods based on the weighted least squares [2] and 
gradient regularization [3,6,7] can produce better-resulting 
images than those obtained from the BM3D. This is possible 
because the clean near-infrared image is used as a guidance 
image [2]. Figs. 9(l) and (m) show the denoised images with the 
guided image filtering [21] and scale map method [22], 
respectively. As shown in the red boxes of Fig. 9(l), the lines 
cannot be restored. Also, the background textures are almost 
removed. This indicates that the guided image filtering is not 
suitable for resolving the discrepancy problems. Similarly, the 
scale map method cannot clearly restore the lines, as shown in 
red boxes. The edges of the brim of the bowl are broken. Also, 
the background colors are different from those of the captured 
visible color image. Based on the comparison of the resulting 
images, the visual quality of the proposed method is better than 
those of the conventional methods. This is possible because the 
proposed denoising method is based on both detail and color 
transfers, as discussed in Section IV. In other words, the 
proposed denoising method adds details and colors to the 
denoised luminance image of Fig. 9(c). This is the main 
difference between the proposed denoising method and the 
conventional image fusion methods [2,3,21,22]. From these 
results, it can be concluded that the proposed near-infrared 
coloring method is effective at removing noise of the captured 
visible color images in dim lighting condition. 

Also, note that in Fig. 9, the weighted least squares and 
gradient regularization approaches utilized both the noisy 
visible color image and near-infrared gray image. In other 
words, the denoised version of the noisy visible color image via 
the nonlocal means denoising is used as a guidance image in the 
weighted least squares approach [2]. Also, the gradient 
regularization approach used the denoised image to model the 
data-fidelity term, as shown in (1). Therefore, the weighted 
least squares and gradient regularization approaches can be 
considered as multi-frame denoising methods as well. 

B. Quantitative Evaluation 

To evaluate the performance of the coloring methods, four 
types of measures: colorfulness (CF) [23], spatial frequency 
(SF) [24], entropy (EN) [25], and contrast (CT) [13,14] were 
chosen. These measures are defined in Table II. Further details 
about their variables can be found in the related references. 
These four measures have been used for the quantitative 
evaluation of other types of image pairs [23,25]. In this paper, 
the CF measure is used to perceptually quantify the 
colorfulness in a colored image and the SF measure is used to 
investigate edge preservation. The EN and CT measures 
quantify the amount of information and local contrast in a 
colored image, respectively. At least one of the contrast, edge, 
color, or visual information can be lost after applying image 
fusion including the near-infrared coloring. Therefore, it is 
necessary to measure how well the contrast, edge, color, and 
visual information are represented on the fused or colored 
images. For this reason, the four measures were adopted to 
evaluate the near-infrared coloring. Image quality measures 
that require a reference image [25] were not considered in this 
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paper. This is because both visible color and near-infrared gray 
images can contain image quality degradation, and thus neither 
of those images can be used as the reference image. For 
example, as shown in Figs. 1(a) and (b), the visible color image 
includes contrast loss and the near-infrared gray image has no 
color. For this reason, reference image fusion metrics, such as 
the root mean square error (RMSE) or peak signal to noise ratio 
(PSNR), were not considered. Even though there are some 
blind image quality evaluations where natural statistics of 
edges, colors, or contrasts are modeled to predict distortion 
levels [26], image enhancement algorithms such as sharpening, 
coloring, dehazing, or etc., lead to inevitable modification in 
the natural statistics. Thus, the blind image quality evaluation is 
not appropriate for near-infrared coloring. 

As expected, the naive coloring method yielded the lowest 
average scores, as shown in the lowest partition of Table III. 
However, the EN score is relatively high, especially for the test 
images located in the second and third rows of Fig. 7. The EN 
measure has the highest score when a discrete random variable 
has a uniform probability distribution [27], i.e., when the 
histogram of an image is uniform. Because these two test 
images have a wide range of pixel intensities, they obtained the 
highest EN scores. The gradient regularization approach is 
good at representing edges, and thus it obtains higher SF scores, 
especially for the test image of Fig. 7 (third row). A small value 
of gμ  in (1) can increase the SF scores, however color 

distortion can occur, as shown in Figs. 4(e) and (f). In contrast, 
the proposed method obtained the highest average scores for all 
evaluations, as shown in the lowest partition of Table III. This 
is because of the three types of transfer: contrast-preserving 
mapping, detail layer transfer, and color transfer. The contrast- 
preserving mapping preserves the local contrast of the 
near-infrared gray image and the color transfer increases the 
chrominance range of the visible color image. The detail layer 
transfer increases the strength of details and edges. The 
perceptual meaning of the CF score (the final column of Table 
III) was introduced in [23]. For example, a score that lies 
between 8 and 18 indicates that a tested image is slightly 
colorful and a score between 32 and 43 indicates that a tested 
image is quite colorful. Note that the proposed method obtains 
higher CF scores for the colorful images of Figs. 5 and 7 
(second row). In Table III, the quantitative evaluations of the 
multiresolution and dehazing approaches are not satisfactory. 
However, specific areas in the whole images, e.g., sky regions, 
can be well rendered. This indicates that those two approaches 
are more appropriate for dehazing [4], not the near-infrared 
coloring [1]. 

VI. CONCLUSION 

In this paper, a new method is presented to transfer colors 
from a visible color image to a near-infrared gray image 
without losing details and contrast. Specifically, based on a new 
contrast-preserving mapping model, the proposed contrast- 
preserving mapping method can solve the discrepancy problem 
in brightness and image structures between the visible and 
near-infrared images. Visual information loss during the 

contrast-preserving mapping can be compensated with the 
transfer of image details, thereby restoring thin lines and 
improving fine details. In addition, dehazing effects can be 
simultaneously obtained through the proposed contrast- 
preserving mapping model and the detail transfer procedure. 
Moreover, the proposed color-transfer technique generates 
realistic colors that can be added to the newly created 
near-infrared gray image by applying the space-variant chroma 
mapping to the chrominance planes of the captured visible 
color image. The proposed approach for the near-infrared 
coloring can also be used to remove noise in visible color image 
captured in dim lighting condition. Experimental results show 
the effectiveness and superiority of the new method in 
comparison with the commonly used methods. 
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