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Abstract—Near-infrared gray images captured together with
corresponding visible color images have recently proven useful for
image restoration and classification. This paper introduces a new
coloring method to add colors to near-infrared gray images based
on a contrast-preserving mapping model. A naive coloring
method directly adds the colors from the visible color image to the
near-infrared gray image; however, this method results in an
unrealistic image because of the discrepancies in brightness and
image structure between the captured near-infrared gray image
and the visible color image. To solve the discrepancy problem,
first we present a new contrast-preserving mapping model to
create a new near-infrared gray image with a similar appearance
in the luminance plane to the visible color image, while preserving
the contrast and details of the captured near-infrared gray image.
Then based on the proposed contrast-preserving mapping model,
we develop a method to derive realistic colors that can be added to
the newly created near-infrared gray image. Experimental results
show that the proposed method can not only preserve the local
contrasts and details of the captured near-infrared gray image,
but transfers the realistic colors from the visible color image to the
newly created near-infrared gray image. Experimental results
also show that the proposed approach can be applied to
near-infrared denoising.

Index Terms—Near-infrared imaging, coloring, image fusion,
color transfer, denoising, dehazing

I. INTRODUCTION

Near-infrared imaging was developed to consecutively
capture near-infrared gray images and visible color images
[1]. In general, a hot mirror is used to prevent the near-infrared
part of the electromagnetic spectrum, ranging from 750 to 1400
nm, from reaching sensitive CMOS sensors and contaminating
the visible color images. However, if the hot mirror is replaced
with a piece of clear glass and a pair of lens-mounted filters to
block or pass the near-infrared region, a visible color image and
its corresponding near-infrared gray image can be captured.
This pair of images often has different pixel information for the
same scene. The resulting redundant information can be helpful
in certain tasks, including image denoising [2], deblurring [3],
dehazing [4], and classification [5].
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Fig. 1. (a) Near-infrared gray image, (b) visible color image, and (c)
colored infrared image.

A. Motivation

The objective of this paper is to provide a new way to color a
near-infrared gray image. This is ostensibly easy to accomplish
because visible color images are available. It is tempting to use
a naive coloring method that merely combines the chrominance
planes from the visible color image with the near-infrared gray
image in an opponent color space. However, discrepancies can
emerge between the near-infrared gray image and the visible
color image. In other words, the brightness and image structure
of near-infrared gray images can differ from those of the visible
color images. An example is provided in Fig. 1. In Fig. 1(a), the
near-infrared gray image shows the leaves on the tree and the
lines on the wall. However, these are absent in the visible color
image in Fig. 1(b). This is caused by the low dynamic range of
the camera that leads to pixel saturation in the dark and bright
regions. Therefore, a naive coloring method to directly add
colors from the visible color image to the near-infrared gray
image results in unnatural image colors, as shown in Fig. 1(c).
In particular, the colors of the tree in the colored near-infrared
image are unnatural, in contrast to those of the tree in the visible
color image. Therefore, this paper focuses on a method for
solving this discrepancy so that the natural colors from the
visible color image can be transferred to a near-infrared gray
image without any loss of detail and contrast.

B. Contribution

® A new method for transferring the colors from a visible
color image to a near-infrared gray image is presented. This
method first involves modeling a contrast-preserving linear
mapping between the two images. This mapping model is
used to generate a new near-infrared gray image and then to
correct the chrominance distribution of the visible color
image, thereby transferring realistic colors to the newly
created near-infrared gray image. Moreover, the proposed
mapping model can resolve the discrepancy between the



near-infrared gray image and visible color image.

® A detail layer transfer method based on the detail difference
constraint is introduced to enhance the detail layer of the
newly created near-infrared gray image. The detail
difference constraint forces the gradients of the detail layer
of the newly created near-infrared gray image to be closer to
those of the captured near-infrared gray image. By adopting
this detail difference constraint, detail description and the
amount of visual information can be improved.

® Conventional methods [1-4] focus on fusing images to
increase visual information or edge representation.
However, the proposed method is concerned with
transferring the colors from the visible color image to the
near-infrared gray image without any loss of detail and
contrast. The differences between the conventional and
proposed methods are discussed in this paper. The
experimental results confirm that the proposed method is
more effective at expressing local color contrast and detail
than conventional methods.

® [n dim lighting conditions, captured visible color images
can contain significant noise. In this case, the question
arises as to whether the proposed method effectively works
on the captured image pair of a noisy visible color image
and the near-infrared gray image. The experimental results
show that the proposed approach used for the near-infrared
coloring can also be applied to image pairs captured under
dim lighting conditions. Moreover, it is discussed how the
proposed near-infrared denoising differs from conventional
image-pair-based fusion [2,3,6,7,8,9,10].

II. RELATED WORK

A. Regularization Approach

If the discrepancy problem can be ignored, a naive coloring
method that involves combining the chrominance planes of the
visible color image with the near-infrared gray image can be an
adequate solution. However, in most cases, the discrepancy
problem cannot be ignored, and thus, more sophisticated
techniques are required. One solution is to adopt a
regularization approach [3,6,7] that has been widely used for
image-pair-based restoration. The regularization term can be
modeled as follows:
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where x” and x"" indicate the luminance plane for the visible
color and near-infrared gray images, respectively, and f

denotes the horizontal or vertical derivative filter. In (1), the
first term, i.e., the data-fidelity term, indicates that the unknown
luminance image to be estimated is similar to the luminance
plane for the visible color image. However, to improve the edge
representation, a regularization term is needed that is provided
by the second term in (1). This constraint forces the edges from
the unknown luminance plane to be close to those in the
near-infrared gray image. In (1), y is a constant value that

controls the sparsity [8]. In general, the value of y is less than

one. Given an estimated luminance plane, the colors can be
taken directly from the visible color image. In other words, the
estimated luminance plane can be combined with the
chrominance planes from the visible color image.

B. Multiresolution Approach

Another approach is to apply multiresolution techniques
[1,9,10] widely used for image fusion. The wavelet transform is
a well-known multiresolution representation, using which, the
luminance plane for the visible color image can be combined
with the luminance plane for the near-infrared gray image as
follows:
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where ©(x”) and O(x"") indicate the wavelet coefficients of

the luminance planes for the visible color and near-infrared
gray images, respectively, and MAX denotes the function that
returns the largest value of a set of values. The above equation
shows that the wavelet coefficients of the luminance plane for
the visible color image are linearly mixed with those of the
near-infrared gray image for the lowest frequency subband.
However, for other subbands, a larger wavelet coefficient
between O(x*) and O(x"") is selected to increase the details

of the colorized gray image. Given the created luminance plane,
according to (2), its colors can be taken directly from the visible
color image.

C. Statistical Approach

In [11], mean and variance, which are the representative
statistics of natural images, are used to transfer the color
appearance of a reference image to that of a target image. This
approach can also be adopted to solve the near-infrared
coloring problem. In other words, the local mean and variance
of the visible color image luminance plane can be changed
according to the local mean and variance of the near-infrared
gray image as follows:

) O-_nir O-_nir
X = () e and X =X

V| Vi
(28 28

A3)

where subscript i indicates pixel location, x; and o; denote
the mean and variance of the local patch centered at the ith
pixel location, respectively, and x and x¢° indicate the ith
pixel values of the luminance and chrominance planes of the
colorized image, respectively. The above equation tells us that
the luminance plane of the visible color image x}' can be
scaled according to the variance ratio ¢/ /o) . In addition, the
new chrominance plane x¢* can also be created by scaling the
chrominance planes x} of the visible color image by the
variance ratio.
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Fig. 2. Block-diagram of proposed method.

III. PROPOSED NEAR-INFRARED COLORING

Figure 2 shows a block-diagram of the proposed method.
First, the visible color image x" is separated into the
luminance and chrominance planes x” and x' through a
forward opponent color space conversion, and then the
proposed contrast-preserving mapping is applied to the image
pair consisting of the near-infrared gray image x" and the
luminance plane of the visible color image x* . The details and
visual information of the newly created luminance plane x*
via the contrast-preserving mapping are further enhanced by
the detail layer transfer. The relation between x"" and x"
established via the contrast-preserving mapping is used for the
color transfer, which changes the color distribution of the
chrominance plane x* . Next, the detail-enhanced version of
the newly created luminance plane is combined with the
modified chrominance plane. Finally, the colored output image
x° is obtained via the backward opponent color space
conversion.

A. Proposed Approach

The central idea of the proposed near-infrared coloring
method is the contrast-preserving mapping model. As shown in
Fig. 1, the discrepancy problem results in unnatural colors. To
handle this issue, a contrast-preserving mapping model is
proposed. The first role of this model is to create a new
near-infrared gray image. As shown in Fig. 2, the newly created
near-infrared gray image x* can preserve the detail and local
contrast of the near-infrared gray image x"” . The input visible
and near-infrared patches, as shown in Fig. 2, are extracted
from the tree region of Fig. 1. However, the newly created
near-infrared gray image x* is different from the captured
near-infrared gray image x"” . The second role is to determine
the mapping relation between the near-infrared gray image x""
and the visible color image x" . A critical point of the proposed
coloring method is that it adds unknown colors to the newly
created near-infrared gray image x* , not the captured
near-infrared gray image x"" . To estimate the unknown colors
of the newly created near-infrared gray image, the mapping
relation obtained using the contrast-preserving mapping is
utilized. In other words, the mapping relation provides a new
color transfer model to predict the unknown colors from the
chrominance images x* of the visible color image.

B. Contrast-Preserving Linear Mapping
To transfer the colors from the visible color image to the

near-infrared gray image without any loss of detail, a
contrast-preserving mapping is first needed. The objective of
the proposed contrast-preserving mapping is to find the relation
between the luminance plane for the visible color image and
near-infrared gray image. Based on this mapping relation,
another near-infrared gray image is generated that preserves the
local contrast. Furthermore, the colors corresponding to the
newly created near-infrared gray image can be estimated. The

proposed contrast-preserving mapping model can be
formulated as follows:
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where p; and Q; contain the pixel values of the extracted

patches from the lurninance planes of the visible color and
near-infrared images at the ith pixel location, respectively. A
decorrelated color space [11] is used to generate these
luminance planes. Other opponent color spaces, ¢.g., CIELAB
or YCbCr [1], could be considered. Assuming that the extracted
patch has an odd size mxm , p; and Q; can be defined as

follows:
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where R; is a matrix that extracts the patch at the ith pixel

location from an image [12] and 7 denotes the transpose
operator. In (6), 1 indicates the column vector filled with one.
If x and x"" are image vectors that are N x1 in size, the
matrix R; has dimensions m? x N . In (4), Wis a diagonal
matrix consisting of weights that are inversely proportional to
the distance between the center pixel location i and its
neighboring pixel location. Vector a! = [oci,l ai,Q] contains
two elements indicating the slope and bias, respectively.
Therefore, the data fidelity term ||W,” 2(ps _Qiui)"Z from (4)
can be regarded as a linear mapping. In other words, the
near-infrared luminance patch R;x"" is mapped to the visible

luminance patch R;x" without any constraints. Adding a
. . . 2
local contrast-preserving regularization term ||a,- —a?"

prevents this. In this paper, the value of u. is set to 7,500.



TABLE [
MSE EVALUATION
Test Images Figs. 1(a) and (b)  Figs. 5(a)and (b)  Figs. 6(a) and (b)
MSE 2.1x10° 4.1x10° 6.5x10"

Under regularization, &% is given as follows:
o’ = [x{”" /avg (R;x"") O]T + W [x}" /avg(R;x") O]T @)

where avg denotes the averaging function. The above

equation indicates that the center-pixel values from the
extracted near-infrared and visible-luminance patches are
divided by their respective average values and then combined
linearly with weighting values that are set by the variance ratio
between the two patches. The ratio of the center-pixel’s
brightness to the background brightness, as shown in (7), can be
used as the local contrast measure [13,14]. In addition, the slope

of ai1 corresponds to local contrast in an image. Thus, the
slope a; for the estimated linear mapping Q;a; preserves
both the

visible-luminance patches. The closed-form solution to (4) is
given as follows:

local contrast a? for near-infrared and

a; = (Q,TW;Qt + ,UcI)il(Q,TWipi + ,Uc(l?) (8)

where I indicates the identity matrix. Given the estimated a.; ,
the pixel value of the newly created near-infrared luminance
image at the ith pixel location can be obtained as follows:

X7 = X0+ o ©

where x? is the newly created near-infrared luminance image
with the contrast-preserving mapping. Here, «; is the

linear-mapping relation between the luminance images.

C. Validity of Linear Mapping Model

In (4), the relation between the near-infrared luminance
image and luminance plane of the visible color image is
modeled by a linear mapping function. To check this
assumption, the linear mapping model was evaluated with
respect to mean square error (MSE). The image pairs of the
visible color and near-infrared gray images, as shown in Figs. 1,
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where |||| indicates the /, -norm. The pixel range of the tested

5, and 6, were tested. MSE is defined as |XV’ - x“

images was scaled to [0—1] and the value of u. in (4) was set

to zero. Table I shows that the calculated MSE values are quite
small, and thus we conclude that the use of the linear mapping
model is valid.

According to the image acquisition model [15,16], the
camera response corresponds to the integral of the product of
the relative power spectral distribution of the reflected light and
the spectral sensitivity function over all the wavelength regions.

Let us assume that the spectral sensitivity function used to
capture the luminance plane of the visible color image can be
approximated by scaling and translating the spectral sensitivity
function of the near-infrared luminance image as follows:

S"(A) = R(A) + w2 G(A) + w3 B(A) (10)
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where R(1), G(4), and B(4) denote the spectral sensitivity

functions of a camera's filters that respond to the long, middle,
and short visible wavelength regions. In addition, L(1) is the

relative spectral power distribution of the reflected light, and
S¥(A) and S"r (1) correspond to the spectral sensitivity

functions to capture the luminance planes of the visible color
and near-infrared gray images, respectively. As shown in (10),
the linear combination of R(1), G(4), and B(1) with weight

o generate the spectral sensitivity function S”(1) to capture
the luminance plane of the visible color image. If S¥(1) can be
modeled by aS""(1)+ f , as shown in (11), the pixel value of
the near-infrared gray image, described by [, §"(1)L(A)dA , can

be linearly mapped to the pixel value of the luminance plane of
the visible color image, described by [, S¥(1)L(1)dA.

D. Detail Layer Transfer

The proposed contrast-preserving linear mapping model
enables the image appearance of the newly created
near-infrared luminance plane to be similar to that of the
luminance plane of the visible color image. Moreover, it can
transfer the local contrast of the captured near-infrared
luminance plane to the newly created near-infrared luminance
plane. These results can be used to resolve the discrepancy
mentioned in the introduction. Furthermore, the pixel saturation
of the visible color image, as shown in Fig. 1(b), can be solved.
However, when mapping details of the near-infrared luminance
plane to the luminance plane of the visible color image, some
details can be lost. To address this issue, the detail layer of the
newly created luminance plane is modified as follows:

Ax? =x2 —x» and Ax"" = x"ir —xbnir (12)
Il}in{,ud ||AX—AX0’ 4 i|(AX®fj)_(AXW ®f/ )|} (13)

X J=1
xo' = xbo + Ax (14)

where x> and x>"" denote the base layers of the newly
created near-infrared luminance plane and the captured
near-infrared luminance plane, respectively, and Ax* and
Ax"" indicate the corresponding detail layers. As shown in



(14), the newly estimated detail layer Ax is obtained via (13)
and then added to the base layer x> , thus producing the
detail-enhanced version x*'. In (13), the second term brings the
gradient difference between the two detail layers closer. This
detail difference constraint further enhances the details of the
newly created near-infrared luminance plane. In (12), the two
base layers are generated. In this paper, a nonlocal means
filtering was used [17]. Other filtering, e.g., bilateral filtering
could be considered [18]. Equation (13) can be solved by the
alternating minimization technique [6-8], where the value of
I 1s set to 200.

E. Color Transfer

In this section, we introduce how to create colors in the
newly created infrared luminance image x*' . Because the
relation between the visible color and near-infrared luminance
planes has been established, the unknown colors for the newly
created near-infrared luminance image x* can be derived as
follows:

0'c

X' =x/""/a;;y and X7 =x]?/a;,

(15)
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where x;' and x}** indicate the two chrominance planes of
the visible color image defined in the decorrelated color space
[11]. Thus, the above equation indicates that the unknown

chrominance planes x?' for the newly created

0'c2

and x;

infrared luminance image x” can be obtained by dividing the
chrominance planes for the visible color image by a;; , the
mapping relation. Equation (15) is derived from the
contrast-preserving linear mapping—i.e., by x"a;; = X! ,
which reveals that the unknown chrominance planes for the
newly created near-infrared gray image can be defined as the
contrast-enhanced version of the chrominance planes for the
visible color image. Therefore, by combining the luminance
plane x°' with the chrominance planes x?' and x/“* , the
proposed method not only preserves the local contrasts and
details of the near-infrared gray image, but also transfers the
colors from the visible color image to the newly created
infrared luminance image.

F. Proposed Color Transfer vs. Chroma Mapping

The proposed color transfer, as given in (15), can be regarded
as a chroma mapping [19]. In the CIELAB color space, the
chroma value of the newly created colored image at the ith
pixel location can be defined as:

Cr = o f o+ (i s |
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where C; indicates the chroma value. The above equation
reveals that the proposed color transfer model linearly changes
the chroma value of the captured visible color image x!

according to the inverse number of the local contrast a;; . If
1/a;, is generalized to a scaling factor s;, (16) becomes the
same as space-variant chroma mapping. Therefore, it is
expected that the effectiveness of the proposed color transfer
will be similar to that of the chroma mapping, leading to a
change in the chroma.

IV. PROPOSED NEAR-INFRARED DENOISING

In dim lighting conditions, visible color images can contain
noise. Even in this case, the proposed approach for
near-infrared coloring can be directly applied to the captured
image pair of the noisy visible color image and near-infrared
gray image; only an initial denoising is required. In other words,
the proposed coloring method can be directly applied to the
image pair of the denoised noisy visible color image and
near-infrared gray image. The initial denoising can remove fine
details in the visible color image along with the noise. However,
the proposed contrast-preserving mapping can transfer the
details of the captured near-infrared gray image to the newly
created near-infrared gray image. Therefore, the newly created
near-infrared gray image can be both noise-free and detail-
preserved. Moreover, the discrepancy between the noisy visible
color image and near-infrared gray image, which is no less a
critical issue than the noise issue, can be resolved via the
proposed contrast-preserving mapping.

Initial
Denoising

Proposed

r Contrast- v
! i Preserving u
A Mapping <
xv,: a x“

Fig. 3. Proposed scheme for near-infrared denoising.

Fig. 3 shows how the proposed near-infrared coloring
method can deal with the noise and discrepancy issues. First, to
remove the noise in the visible color image, an initial denoising
is performed. At this time, it is recommended that the noise
should be completely removed, as shown in the denoised gray
image x"< . Second, to restore the image structure of the
denoised gray image x“'¢, the proposed contrast-preserving
mapping is used. The proposed contrast-preserving mapping
can transfer details from the captured near-infrared gray image
x"" to the denoised gray image x"< , as shown in the newly
created near-infrared gray image x” Moreover, the
discrepancy between xV< and x"" that can be found in the
red lines near the brim can be resolved at the same time. The
unknown colors can then be added to the newly created
near-infrared gray image x* according to the color transfer
model in (15). Therefore, the proposed near-infrared denoising
method is closer to the coloring method. This is because details
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Fig. 4. Experimental results: (a) newly created infrared gray image using the proposed contrast-preserving mapping, (b) the same image with
details enhanced using the proposed detail layer transfer method, (c) detail enhanced image colored by the naive method, (d) detail enhanced

image colored by the proposed color-transfer method, (e) new infrared gray image colored by the gradient regularization approach ( x, =10*), (f)

new infrared gray image colored by the gradient regularization approach (, =1), (g) new infrared gray image colored by the multiresolution
approach, (h) new infrared gray image colored by the dehazing technique [4].
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Fig. 5. Experimental results: (a) visible color image, (b) near-infrared gray image, (c) newly created infrared gray image using the proposed
contrast-preserving mapping, (d) newly created infrared gray image with details enhanced using the proposed detail layer transfer method, (e)
detail enhanced image colored by naive method, (f) detail enhanced image colored by the proposed color-transferring method, (g) new infrared

gray image colored by the naive method, (h) new infrared gray image colored by the gradient regularization approach ( x, =10*), (i) new infrared
gray image colored by the multiresolution approach, and (j) new infrared gray image colored by the dehazing technique [4].

and colors are transferred to the denoised gray image x'< . V. EXPERIMENTAL RESULTS
This is the main difference between the proposed near-infrared
denoising and conventional-image-pair-based fusions via
gradient regularization [3,6,7], weighted least squares [2], and
multiresolution [1,9,10] methods.

A. Visual Quality Comparison

To verify the visual effectiveness of the proposed coloring
method, test images that include high contrast and detail were
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Fig. 6. Experimental results: (a) visible color image, (b) near-infrared gray image, (c) newly created infrared gray image with the proposed
contrast-preserving mapping, (d) newly created infrared gray image with details enhanced using the proposed detail layer transfer method, (e)
detail enhanced image colored by the naive method, (f) detail enhanced image with the proposed color-transferring method, (g) new infrared gray
image colored by the naive method, (h) new infrared gray image colored by the gradient regularization approach ( x4, =10%), (i) new infrared gray

image colored by the multiresolution approach, and new infrared gray image colored by the dehazing technique [4].
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Fig. 7. Experimental results: visible color images (first column), near-infrared gray image (second column), and images colored by the proposed

method (third column), naive method (fourth column), gradient regularization approach (fifth column), multiresolution approach (sixth column),

and dehazing technique [4] (seventh column).

proposed method, the conventional image fusion techniques
such as the gradient regularization [3,6,7], multiresolution [1,
9,10], and multiscale tone and detail manipulation [4] were
adopted because the near-infrared coloring can be considered
as an image fusion problem. To reiterate the points mentioned
above, the proposed coloring method is good at representing
Fig. 8. Detail comparison: before detail layer transfer (upper row) and  local detail, contrast, and realistic colors. As shown in Fig. 4(a),
after detail layer transfer (bottom row). the newly created near-infrared luminance image, rendered

using (4), preserved detail in the tree regions. Furthermore, the
chosen from the near-infrared image database [1], as shown in  tree regions that have been darkened in the visible color image
Figs. 4, 5, 6, and 7. Also, to compare the performance of the  because of the low dynamic range of the camera, as depicted in
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Fig. 9. Experimental results: (a) noisy visible color image, (b) near-infrared gray image, (c) image denoised via nonlocal means filtering, (d)
newly created near-infrared gray image via the proposed contrast-preserving mapping, (¢) newly created near-infrared gray image with details
enhanced using the proposed detail layer transfer method, (f) image colored using the proposed color transfer method, (g) chroma-enhanced
version of the Fig. 9(f), (h) image denoised using BM3D [20], (i) image colored by the naive method, (j) image denoised using the gradient
regularization approach, (k) image denoised using the weighted least squares approach, (1) image denoised using guided image filtering [21], and

(m) image denoised using scale map method [22].

Fig. 1(b), can be recovered with higher contrast. However,
detail can be lost when mapped from the near-infrared gray
image into the luminance plane of the visible color image. For
example, the lines on the wall in the highlight regions were
almost lost. However, this drawback can be corrected via the
detail layer transfer of Eqs. (12)—(14). In Fig. 4(b), the lines on
the wall are restored. In addition, the details of the tree's leaves
and road surfaces were also enhanced. For comparison,
magnified versions of the red rectangles marked in Figs. 4(a),
5(c), and 6(c) are shown in Fig. 8. From these results, it can be
concluded that the detail layer transfer improves the amount of
information and detail description. The naive coloring method
of combining the chrominance planes of the visible color image
with the newly created near-infrared luminance image resulted
in improved colors, as shown in Fig. 4(c). The colors are more
natural than those of Fig. 1(c), indicating that the discrepancy
problem can be resolved by the proposed contrast-preserving
mapping. However, the colors appear desaturated. The
proposed color-transfer method, as defined in (15), improved
the colors by estimating the contrast-enhanced version of the

chrominance planes for the visible color image, as shown in Fig.

4(d). In addition, the colors produced with the proposed

coloring method are better than those resulting from
conventional methods, as shown in Figs. 4(e)-(h). The
difference between Figs. 4(e) and 4(f) depends on the value of
lg , which is defined in (1). A lower value enables the

preservation of the edges from the near-infrared gray image.
Despite an increase in the edges of the tree regions, the colors
become distorted, as shown in Fig. 4(f). The multiresolution
approach, shown in Fig. 4(g), preserves the details but results in
unnatural colors. The dehazing technique [4] cannot solve the
discrepancy problem. The brightness of the tree’s regions is
still dark and some lines on the wall are almost removed, as
shown in Fig. 4(h). The statistical approach [11] was not
compared in this paper. This is because its visual qualities were
not better than those of the gradient regularization, dehazing,
and multiresolution approaches. In particular, the colors it
produced were unnatural and oversaturated.

Similar effects can found in Figs. 5 and 6. It can be seen that
the discrepancy problem occurs, especially in the grass region
of Figs. 5(a) and (b) and the cloud region of Figs. 6(a) and (b).
Thus, unnatural colors were produced by the naive coloring
method, as shown in Figs. 5(g) and 6(g). In Figs. 5(f) and 6(f),
the proposed method produced better colors than the naive,



TABLE II
DEFINITIONS OF THE FOUR MEASURES

CF=0,,+0.94uc , where o, and uc are related to the standard deviation of the chrominance planes and mean value of the chroma image, respectively.

SF =+ R:>+C;> ,where Ry and Cr indicate the averaged numbers of the vertical and horizontal edges, respectively.

L
EN=-3h(i)logh(i) , where h indicates the normalized histogram of a colored image.

i=1

CT= %é X! —-x¢ ® k| , where k indicates a Gaussian filter.
TABLE III
QUANTITATIVE EVALUATION
Test Images 0o Measures CT EN SF CF
Naive method 12.949 14.623 15.749 11.891
Gradient regularization 17.375 14.770 23.367 11.893
Fig. 4 Multi-resolution 14.516 14.761 18.68 11.936
Dehazing method [4] 13.070 14.552 16.863 12.394
Proposed method 19.046 14.846 23.675 13.732
Naive method 13.828 15.625 15.219 28.583
Gradient regularization 19.503 15.742 22.5 31.487
Fig. 5 Multi-resolution 16.356 15.497 18.711 29.781
Dehazing method [4] 16.112 15.261 19.367 30.946
Proposed method 20.111 15.704 23.445 38.373
Naive method 8.512 14.322 9.797 11.317
Gradient regularization 12.991 14.302 17.159 11.052
Fig. 6 Multi-resolution 10.603 14.423 13.54 11.133
Dehazing method [4] 10.857 14.314 12.999 11.208
Proposed method 13.741 14.555 17.845 10.366
Naive method 10.657 14.826 10.98 16.397
) Gradient regularization 12.909 15.113 14.128 17.604
(FE e ZW) Multi-resolution 10.995 14.945 11.616 16.914
Dehazing method [4] 12.157 15.033 12.447 17.114
Proposed method 14.656 15.138 15.787 21.759
Naive method 19.025 15.410 17.031 17.164
) Gradient regularization 19.464 14.895 17.122 17.483
(Secpo‘fazow) Multi-resolution 18.158 15.083 16.798 17.685
Dehazing method [4] 12.874 15.105 15.962 17.925
Proposed method 23.630 15.205 20.238 30.029
Naive method 24.637 15.944 24.751 21.608
) Gradient regularization 33.450 15.922 36.554 22.587
(T}iﬁ;w) Multi-resolution 27.209 15.893 28.758 22,623
Dehazing method [4] 25.785 15.795 27.206 22.702
Proposed method 31.207 15.889 34.068 24.579
Naive method 14.935 15.125 15.588 17.827
Gradient regularization 19.282 15.124 21.805 18.684
AVG. Multi-resolution 16.306 15.100 18.017 18.345
Dehazing method [4] 15.143 15.010 17.474 18.715
Proposed method 20.399 15.223 22.510 23.190
gradient regularization, multiresolution, and dehazing cloud region of Fig. 6(i). The disadvantage to using the gradient

approaches. However, the conventional methods have their
own merits. The gradient regularization approach is good at the
representing edges, as shown in the grass region of Fig. 5(h)
and the bush region of Fig. 6(h). In contrast, the multiresolution
approach is good at increasing the amount of visual information,
especially in the distant mountain region of Fig. 5(i) and the

regularization approach is that it often omits visual information,
for example, the clouds in the sky have been removed, as shown
in Fig. 6(h). The disadvantage of the multiresolution approach
is that the colors it produces are often unrealistic, as shown in
Fig. 5(i), and the strength of edges are relatively weak when
compared to the gradient regularization and proposed method,



as in the roof regions of Fig. 6(i). The advantage and
disadvantage of the dehazing approach [4] are similar to those
of the multiresolution approach, as checked in Figs. 5(j) and
6(j). This is because the dehazing method is based on the
multiscale tone and detail manipulation. Thus, both the
proposed and conventional methods have their own merits and
demerits. However, the proposed method is more effective at
expressing the color contrasts than conventional methods. In
addition, fine details and natural colors can be obtained
simultaneously. This is possible because the proposed coloring
method adopts three kinds of transfer: contrast, detail, and color,
as shown in the block-diagram of Fig. 2. In addition, the
proposed method lays more emphasis on near-infrared coloring,
whereas the conventional methods focus on fusing the images
for the improvement of edge representation and information
preservation. This is the main difference between the proposed
and conventional methods. For a more visual comparison,
additional image results are provided in Fig. 7. Moreover, a few
visible/near-infrared image sets including thin lines, high
texture content, or a combination of high texture and flat areas
are tested and then provided in Supplement. The performance
results are similar to Figs. 4-7. All the resulting images can be
downloaded from our website for the paper (https://sites.google.
comy/site/ changhwan76son/).

Fig. 9 shows the experimental results for the image pair
captured in dim lighting [2]. In Figs. 9(a) and (b), it is clear that
the visible color image contains noise and discrepancy occurred,
especially for the chart's patches and red lines near the brim of
the bowl. Fig. 9(c) shows the initially denoised visible color
image via nonlocal means filtering [17]. In this figure, the
details have clearly been removed. However, this detail loss can
be restored by applying the proposed contrast-preserving
mapping and detail layer transfer, as shown in Figs. 9(d) and (e).
In Fig. 9(d), it is clear that the newly created near-infrared gray
image preserves its detail thanks to the proposed contrast-
preserving mapping. Moreover, the discrepancy problem can
be resolved. For example, the red line on the bowl that was
removed in the near-infrared gray image of Fig. 9(b) is restored.
In Fig. 9(e), the use of the detail layer transfer leads to an
improvement in the detail description. Fig. 9(f) shows the
colored image with the proposed color transfer method and Fig.
9(g) is the chroma-enhanced version of the Fig. 9(f). That is, the
chroma mapping, as shown in (16), is applied to the Fig. 9(f).
The scale factor, s;, is set with 1.2. In the case of the noisy
visible and near-infrared image pairs, the values of the
estimated linear mapping relation, a;, in (4), can be shrunk.

This is because the used denoised luminance image has already
lost its contrast and edge, as shown in Fig. 9(c), which can lead
to the decrease in chroma. Different from other resulting
images, as shown in Figs. 9(h)-(m), the colored image with the
proposed denoising method has little noise and color distortions.
Thus, the chroma mapping can improve the colorfulness
without noise amplification, as shown in Fig. 9(g). BM3D [20]
is known as one of the state-of-the-art denoising methods.
However, its visual quality is poor, as shown in Fig. 9(h). It is
guessed that the main reason is due to the non-Gaussian noise in
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the captured visible color image. The image-pair-based
denoising methods based on the weighted least squares [2] and
gradient regularization [3,6,7] can produce better-resulting
images than those obtained from the BM3D. This is possible
because the clean near-infrared image is used as a guidance
image [2]. Figs. 9(1) and (m) show the denoised images with the
guided image filtering [21] and scale map method [22],
respectively. As shown in the red boxes of Fig. 9(1), the lines
cannot be restored. Also, the background textures are almost
removed. This indicates that the guided image filtering is not
suitable for resolving the discrepancy problems. Similarly, the
scale map method cannot clearly restore the lines, as shown in
red boxes. The edges of the brim of the bowl are broken. Also,
the background colors are different from those of the captured
visible color image. Based on the comparison of the resulting
images, the visual quality of the proposed method is better than
those of the conventional methods. This is possible because the
proposed denoising method is based on both detail and color
transfers, as discussed in Section IV. In other words, the
proposed denoising method adds details and colors to the
denoised luminance image of Fig. 9(c). This is the main
difference between the proposed denoising method and the
conventional image fusion methods [2,3,21,22]. From these
results, it can be concluded that the proposed near-infrared
coloring method is effective at removing noise of the captured
visible color images in dim lighting condition.

Also, note that in Fig. 9, the weighted least squares and
gradient regularization approaches utilized both the noisy
visible color image and near-infrared gray image. In other
words, the denoised version of the noisy visible color image via
the nonlocal means denoising is used as a guidance image in the
weighted least squares approach [2]. Also, the gradient
regularization approach used the denoised image to model the
data-fidelity term, as shown in (1). Therefore, the weighted
least squares and gradient regularization approaches can be
considered as multi-frame denoising methods as well.

B.  Quantitative Evaluation

To evaluate the performance of the coloring methods, four
types of measures: colorfulness (CF) [23], spatial frequency
(SF) [24], entropy (EN) [25], and contrast (CT) [13,14] were
chosen. These measures are defined in Table II. Further details
about their variables can be found in the related references.
These four measures have been used for the quantitative
evaluation of other types of image pairs [23,25]. In this paper,
the CF measure is used to perceptually quantify the
colorfulness in a colored image and the SF measure is used to
investigate edge preservation. The EN and CT measures
quantify the amount of information and local contrast in a
colored image, respectively. At least one of the contrast, edge,
color, or visual information can be lost after applying image
fusion including the near-infrared coloring. Therefore, it is
necessary to measure how well the contrast, edge, color, and
visual information are represented on the fused or colored
images. For this reason, the four measures were adopted to
evaluate the near-infrared coloring. Image quality measures
that require a reference image [25] were not considered in this



paper. This is because both visible color and near-infrared gray
images can contain image quality degradation, and thus neither
of those images can be used as the reference image. For
example, as shown in Figs. 1(a) and (b), the visible color image
includes contrast loss and the near-infrared gray image has no
color. For this reason, reference image fusion metrics, such as
the root mean square error (RMSE) or peak signal to noise ratio
(PSNR), were not considered. Even though there are some
blind image quality evaluations where natural statistics of
edges, colors, or contrasts are modeled to predict distortion
levels [26], image enhancement algorithms such as sharpening,
coloring, dehazing, or etc., lead to inevitable modification in
the natural statistics. Thus, the blind image quality evaluation is
not appropriate for near-infrared coloring.

As expected, the naive coloring method yielded the lowest
average scores, as shown in the lowest partition of Table III.
However, the EN score is relatively high, especially for the test
images located in the second and third rows of Fig. 7. The EN
measure has the highest score when a discrete random variable
has a uniform probability distribution [27], i.e., when the
histogram of an image is uniform. Because these two test
images have a wide range of pixel intensities, they obtained the
highest EN scores. The gradient regularization approach is
good at representing edges, and thus it obtains higher SF scores,
especially for the test image of Fig. 7 (third row). A small value
of u, in (1) can increase the SF scores, however color

distortion can occur, as shown in Figs. 4(e) and (f). In contrast,
the proposed method obtained the highest average scores for all
evaluations, as shown in the lowest partition of Table III. This
is because of the three types of transfer: contrast-preserving
mapping, detail layer transfer, and color transfer. The contrast-
preserving mapping preserves the local contrast of the
near-infrared gray image and the color transfer increases the
chrominance range of the visible color image. The detail layer
transfer increases the strength of details and edges. The
perceptual meaning of the CF score (the final column of Table
IIT) was introduced in [23]. For example, a score that lies
between 8 and 18 indicates that a tested image is slightly
colorful and a score between 32 and 43 indicates that a tested
image is quite colorful. Note that the proposed method obtains
higher CF scores for the colorful images of Figs. 5 and 7
(second row). In Table III, the quantitative evaluations of the
multiresolution and dehazing approaches are not satisfactory.
However, specific areas in the whole images, e.g., sky regions,
can be well rendered. This indicates that those two approaches
are more appropriate for dehazing [4], not the near-infrared
coloring [1].

VI. CONCLUSION

In this paper, a new method is presented to transfer colors
from a visible color image to a near-infrared gray image
without losing details and contrast. Specifically, based on a new
contrast-preserving mapping model, the proposed contrast-
preserving mapping method can solve the discrepancy problem
in brightness and image structures between the visible and
near-infrared images. Visual information loss during the
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contrast-preserving mapping can be compensated with the
transfer of image details, thereby restoring thin lines and
improving fine details. In addition, dehazing effects can be
simultaneously obtained through the proposed contrast-
preserving mapping model and the detail transfer procedure.
Moreover, the proposed color-transfer technique generates
realistic colors that can be added to the newly created
near-infrared gray image by applying the space-variant chroma
mapping to the chrominance planes of the captured visible
color image. The proposed approach for the near-infrared
coloring can also be used to remove noise in visible color image
captured in dim lighting condition. Experimental results show
the effectiveness and superiority of the new method in
comparison with the commonly used methods.
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